4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work
{
37 struct super_block
*sb
;
38 unsigned long *older_than_this
;
39 enum writeback_sync_modes sync_mode
;
40 unsigned int tagged_writepages
:1;
41 unsigned int for_kupdate
:1;
42 unsigned int range_cyclic
:1;
43 unsigned int for_background
:1;
44 enum wb_reason reason
; /* why was writeback initiated? */
46 struct list_head list
; /* pending work list */
47 struct completion
*done
; /* set if the caller waits */
51 * Include the creation of the trace points after defining the
52 * wb_writeback_work structure so that the definition remains local to this
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/writeback.h>
59 * We don't actually have pdflush, but this one is exported though /proc...
61 int nr_pdflush_threads
;
64 * writeback_in_progress - determine whether there is writeback in progress
65 * @bdi: the device's backing_dev_info structure.
67 * Determine whether there is writeback waiting to be handled against a
70 int writeback_in_progress(struct backing_dev_info
*bdi
)
72 return test_bit(BDI_writeback_running
, &bdi
->state
);
75 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
77 struct super_block
*sb
= inode
->i_sb
;
79 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
80 return inode
->i_mapping
->backing_dev_info
;
85 static inline struct inode
*wb_inode(struct list_head
*head
)
87 return list_entry(head
, struct inode
, i_wb_list
);
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info
*bdi
)
94 wake_up_process(bdi
->wb
.task
);
97 * The bdi thread isn't there, wake up the forker thread which
98 * will create and run it.
100 wake_up_process(default_backing_dev_info
.wb
.task
);
104 static void bdi_queue_work(struct backing_dev_info
*bdi
,
105 struct wb_writeback_work
*work
)
107 trace_writeback_queue(bdi
, work
);
109 spin_lock_bh(&bdi
->wb_lock
);
110 list_add_tail(&work
->list
, &bdi
->work_list
);
112 trace_writeback_nothread(bdi
, work
);
113 bdi_wakeup_flusher(bdi
);
114 spin_unlock_bh(&bdi
->wb_lock
);
118 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
119 bool range_cyclic
, enum wb_reason reason
)
121 struct wb_writeback_work
*work
;
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
127 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
130 trace_writeback_nowork(bdi
);
131 wake_up_process(bdi
->wb
.task
);
136 work
->sync_mode
= WB_SYNC_NONE
;
137 work
->nr_pages
= nr_pages
;
138 work
->range_cyclic
= range_cyclic
;
139 work
->reason
= reason
;
141 bdi_queue_work(bdi
, work
);
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
156 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
157 enum wb_reason reason
)
159 __bdi_start_writeback(bdi
, nr_pages
, true, reason
);
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
172 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
178 trace_writeback_wake_background(bdi
);
179 spin_lock_bh(&bdi
->wb_lock
);
180 bdi_wakeup_flusher(bdi
);
181 spin_unlock_bh(&bdi
->wb_lock
);
185 * Remove the inode from the writeback list it is on.
187 void inode_wb_list_del(struct inode
*inode
)
189 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
191 spin_lock(&bdi
->wb
.list_lock
);
192 list_del_init(&inode
->i_wb_list
);
193 spin_unlock(&bdi
->wb
.list_lock
);
197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198 * furthest end of its superblock's dirty-inode list.
200 * Before stamping the inode's ->dirtied_when, we check to see whether it is
201 * already the most-recently-dirtied inode on the b_dirty list. If that is
202 * the case then the inode must have been redirtied while it was being written
203 * out and we don't reset its dirtied_when.
205 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
207 assert_spin_locked(&wb
->list_lock
);
208 if (!list_empty(&wb
->b_dirty
)) {
211 tail
= wb_inode(wb
->b_dirty
.next
);
212 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
213 inode
->dirtied_when
= jiffies
;
215 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
219 * requeue inode for re-scanning after bdi->b_io list is exhausted.
221 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
223 assert_spin_locked(&wb
->list_lock
);
224 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
227 static void inode_sync_complete(struct inode
*inode
)
230 * Prevent speculative execution through
231 * spin_unlock(&wb->list_lock);
235 wake_up_bit(&inode
->i_state
, __I_SYNC
);
238 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
240 bool ret
= time_after(inode
->dirtied_when
, t
);
243 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 * It _appears_ to be in the future, but is actually in distant past.
245 * This test is necessary to prevent such wrapped-around relative times
246 * from permanently stopping the whole bdi writeback.
248 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
254 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
256 static int move_expired_inodes(struct list_head
*delaying_queue
,
257 struct list_head
*dispatch_queue
,
258 struct wb_writeback_work
*work
)
261 struct list_head
*pos
, *node
;
262 struct super_block
*sb
= NULL
;
267 while (!list_empty(delaying_queue
)) {
268 inode
= wb_inode(delaying_queue
->prev
);
269 if (work
->older_than_this
&&
270 inode_dirtied_after(inode
, *work
->older_than_this
))
272 if (sb
&& sb
!= inode
->i_sb
)
275 list_move(&inode
->i_wb_list
, &tmp
);
279 /* just one sb in list, splice to dispatch_queue and we're done */
281 list_splice(&tmp
, dispatch_queue
);
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp
)) {
287 sb
= wb_inode(tmp
.prev
)->i_sb
;
288 list_for_each_prev_safe(pos
, node
, &tmp
) {
289 inode
= wb_inode(pos
);
290 if (inode
->i_sb
== sb
)
291 list_move(&inode
->i_wb_list
, dispatch_queue
);
299 * Queue all expired dirty inodes for io, eldest first.
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
307 * +--> dequeue for IO
309 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
312 assert_spin_locked(&wb
->list_lock
);
313 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
314 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, work
);
315 trace_writeback_queue_io(wb
, work
, moved
);
318 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
320 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
321 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
326 * Wait for writeback on an inode to complete.
328 static void inode_wait_for_writeback(struct inode
*inode
,
329 struct bdi_writeback
*wb
)
331 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
332 wait_queue_head_t
*wqh
;
334 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
335 while (inode
->i_state
& I_SYNC
) {
336 spin_unlock(&inode
->i_lock
);
337 spin_unlock(&wb
->list_lock
);
338 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
339 spin_lock(&wb
->list_lock
);
340 spin_lock(&inode
->i_lock
);
345 * Write out an inode's dirty pages. Called under wb->list_lock and
346 * inode->i_lock. Either the caller has an active reference on the inode or
347 * the inode has I_WILL_FREE set.
349 * If `wait' is set, wait on the writeout.
351 * The whole writeout design is quite complex and fragile. We want to avoid
352 * starvation of particular inodes when others are being redirtied, prevent
356 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
357 struct writeback_control
*wbc
)
359 struct address_space
*mapping
= inode
->i_mapping
;
360 long nr_to_write
= wbc
->nr_to_write
;
364 assert_spin_locked(&wb
->list_lock
);
365 assert_spin_locked(&inode
->i_lock
);
367 if (!atomic_read(&inode
->i_count
))
368 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
370 WARN_ON(inode
->i_state
& I_WILL_FREE
);
372 if (inode
->i_state
& I_SYNC
) {
374 * If this inode is locked for writeback and we are not doing
375 * writeback-for-data-integrity, move it to b_more_io so that
376 * writeback can proceed with the other inodes on s_io.
378 * We'll have another go at writing back this inode when we
379 * completed a full scan of b_io.
381 if (wbc
->sync_mode
!= WB_SYNC_ALL
) {
382 requeue_io(inode
, wb
);
383 trace_writeback_single_inode_requeue(inode
, wbc
,
389 * It's a data-integrity sync. We must wait.
391 inode_wait_for_writeback(inode
, wb
);
394 BUG_ON(inode
->i_state
& I_SYNC
);
396 /* Set I_SYNC, reset I_DIRTY_PAGES */
397 inode
->i_state
|= I_SYNC
;
398 inode
->i_state
&= ~I_DIRTY_PAGES
;
399 spin_unlock(&inode
->i_lock
);
400 spin_unlock(&wb
->list_lock
);
402 ret
= do_writepages(mapping
, wbc
);
405 * Make sure to wait on the data before writing out the metadata.
406 * This is important for filesystems that modify metadata on data
409 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
410 int err
= filemap_fdatawait(mapping
);
416 * Some filesystems may redirty the inode during the writeback
417 * due to delalloc, clear dirty metadata flags right before
420 spin_lock(&inode
->i_lock
);
421 dirty
= inode
->i_state
& I_DIRTY
;
422 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
423 spin_unlock(&inode
->i_lock
);
424 /* Don't write the inode if only I_DIRTY_PAGES was set */
425 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
426 int err
= write_inode(inode
, wbc
);
431 spin_lock(&wb
->list_lock
);
432 spin_lock(&inode
->i_lock
);
433 inode
->i_state
&= ~I_SYNC
;
434 if (!(inode
->i_state
& I_FREEING
)) {
436 * Sync livelock prevention. Each inode is tagged and synced in
437 * one shot. If still dirty, it will be redirty_tail()'ed below.
438 * Update the dirty time to prevent enqueue and sync it again.
440 if ((inode
->i_state
& I_DIRTY
) &&
441 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
442 inode
->dirtied_when
= jiffies
;
444 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
446 * We didn't write back all the pages. nfs_writepages()
447 * sometimes bales out without doing anything.
449 inode
->i_state
|= I_DIRTY_PAGES
;
450 if (wbc
->nr_to_write
<= 0) {
452 * slice used up: queue for next turn
454 requeue_io(inode
, wb
);
457 * Writeback blocked by something other than
458 * congestion. Delay the inode for some time to
459 * avoid spinning on the CPU (100% iowait)
460 * retrying writeback of the dirty page/inode
461 * that cannot be performed immediately.
463 redirty_tail(inode
, wb
);
465 } else if (inode
->i_state
& I_DIRTY
) {
467 * Filesystems can dirty the inode during writeback
468 * operations, such as delayed allocation during
469 * submission or metadata updates after data IO
472 redirty_tail(inode
, wb
);
475 * The inode is clean. At this point we either have
476 * a reference to the inode or it's on it's way out.
477 * No need to add it back to the LRU.
479 list_del_init(&inode
->i_wb_list
);
482 inode_sync_complete(inode
);
483 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
487 static long writeback_chunk_size(struct backing_dev_info
*bdi
,
488 struct wb_writeback_work
*work
)
493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
495 * here avoids calling into writeback_inodes_wb() more than once.
497 * The intended call sequence for WB_SYNC_ALL writeback is:
500 * writeback_sb_inodes() <== called only once
501 * write_cache_pages() <== called once for each inode
502 * (quickly) tag currently dirty pages
503 * (maybe slowly) sync all tagged pages
505 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
508 pages
= min(bdi
->avg_write_bandwidth
/ 2,
509 global_dirty_limit
/ DIRTY_SCOPE
);
510 pages
= min(pages
, work
->nr_pages
);
511 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
512 MIN_WRITEBACK_PAGES
);
519 * Write a portion of b_io inodes which belong to @sb.
521 * If @only_this_sb is true, then find and write all such
522 * inodes. Otherwise write only ones which go sequentially
525 * Return the number of pages and/or inodes written.
527 static long writeback_sb_inodes(struct super_block
*sb
,
528 struct bdi_writeback
*wb
,
529 struct wb_writeback_work
*work
)
531 struct writeback_control wbc
= {
532 .sync_mode
= work
->sync_mode
,
533 .tagged_writepages
= work
->tagged_writepages
,
534 .for_kupdate
= work
->for_kupdate
,
535 .for_background
= work
->for_background
,
536 .range_cyclic
= work
->range_cyclic
,
538 .range_end
= LLONG_MAX
,
540 unsigned long start_time
= jiffies
;
542 long wrote
= 0; /* count both pages and inodes */
544 while (!list_empty(&wb
->b_io
)) {
545 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
547 if (inode
->i_sb
!= sb
) {
550 * We only want to write back data for this
551 * superblock, move all inodes not belonging
552 * to it back onto the dirty list.
554 redirty_tail(inode
, wb
);
559 * The inode belongs to a different superblock.
560 * Bounce back to the caller to unpin this and
561 * pin the next superblock.
567 * Don't bother with new inodes or inodes beeing freed, first
568 * kind does not need peridic writeout yet, and for the latter
569 * kind writeout is handled by the freer.
571 spin_lock(&inode
->i_lock
);
572 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
573 spin_unlock(&inode
->i_lock
);
574 redirty_tail(inode
, wb
);
578 write_chunk
= writeback_chunk_size(wb
->bdi
, work
);
579 wbc
.nr_to_write
= write_chunk
;
580 wbc
.pages_skipped
= 0;
582 writeback_single_inode(inode
, wb
, &wbc
);
584 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
585 wrote
+= write_chunk
- wbc
.nr_to_write
;
586 if (!(inode
->i_state
& I_DIRTY
))
588 if (wbc
.pages_skipped
) {
590 * writeback is not making progress due to locked
591 * buffers. Skip this inode for now.
593 redirty_tail(inode
, wb
);
595 spin_unlock(&inode
->i_lock
);
596 spin_unlock(&wb
->list_lock
);
599 spin_lock(&wb
->list_lock
);
601 * bail out to wb_writeback() often enough to check
602 * background threshold and other termination conditions.
605 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
607 if (work
->nr_pages
<= 0)
614 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
615 struct wb_writeback_work
*work
)
617 unsigned long start_time
= jiffies
;
620 while (!list_empty(&wb
->b_io
)) {
621 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
622 struct super_block
*sb
= inode
->i_sb
;
624 if (!grab_super_passive(sb
)) {
626 * grab_super_passive() may fail consistently due to
627 * s_umount being grabbed by someone else. Don't use
628 * requeue_io() to avoid busy retrying the inode/sb.
630 redirty_tail(inode
, wb
);
633 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
636 /* refer to the same tests at the end of writeback_sb_inodes */
638 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
640 if (work
->nr_pages
<= 0)
644 /* Leave any unwritten inodes on b_io */
648 long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
649 enum wb_reason reason
)
651 struct wb_writeback_work work
= {
652 .nr_pages
= nr_pages
,
653 .sync_mode
= WB_SYNC_NONE
,
658 spin_lock(&wb
->list_lock
);
659 if (list_empty(&wb
->b_io
))
661 __writeback_inodes_wb(wb
, &work
);
662 spin_unlock(&wb
->list_lock
);
664 return nr_pages
- work
.nr_pages
;
667 static bool over_bground_thresh(struct backing_dev_info
*bdi
)
669 unsigned long background_thresh
, dirty_thresh
;
671 global_dirty_limits(&background_thresh
, &dirty_thresh
);
673 if (global_page_state(NR_FILE_DIRTY
) +
674 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
)
677 if (bdi_stat(bdi
, BDI_RECLAIMABLE
) >
678 bdi_dirty_limit(bdi
, background_thresh
))
685 * Called under wb->list_lock. If there are multiple wb per bdi,
686 * only the flusher working on the first wb should do it.
688 static void wb_update_bandwidth(struct bdi_writeback
*wb
,
689 unsigned long start_time
)
691 __bdi_update_bandwidth(wb
->bdi
, 0, 0, 0, 0, 0, start_time
);
695 * Explicit flushing or periodic writeback of "old" data.
697 * Define "old": the first time one of an inode's pages is dirtied, we mark the
698 * dirtying-time in the inode's address_space. So this periodic writeback code
699 * just walks the superblock inode list, writing back any inodes which are
700 * older than a specific point in time.
702 * Try to run once per dirty_writeback_interval. But if a writeback event
703 * takes longer than a dirty_writeback_interval interval, then leave a
706 * older_than_this takes precedence over nr_to_write. So we'll only write back
707 * all dirty pages if they are all attached to "old" mappings.
709 static long wb_writeback(struct bdi_writeback
*wb
,
710 struct wb_writeback_work
*work
)
712 unsigned long wb_start
= jiffies
;
713 long nr_pages
= work
->nr_pages
;
714 unsigned long oldest_jif
;
718 oldest_jif
= jiffies
;
719 work
->older_than_this
= &oldest_jif
;
721 spin_lock(&wb
->list_lock
);
724 * Stop writeback when nr_pages has been consumed
726 if (work
->nr_pages
<= 0)
730 * Background writeout and kupdate-style writeback may
731 * run forever. Stop them if there is other work to do
732 * so that e.g. sync can proceed. They'll be restarted
733 * after the other works are all done.
735 if ((work
->for_background
|| work
->for_kupdate
) &&
736 !list_empty(&wb
->bdi
->work_list
))
740 * For background writeout, stop when we are below the
741 * background dirty threshold
743 if (work
->for_background
&& !over_bground_thresh(wb
->bdi
))
746 if (work
->for_kupdate
) {
747 oldest_jif
= jiffies
-
748 msecs_to_jiffies(dirty_expire_interval
* 10);
749 work
->older_than_this
= &oldest_jif
;
752 trace_writeback_start(wb
->bdi
, work
);
753 if (list_empty(&wb
->b_io
))
756 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
758 progress
= __writeback_inodes_wb(wb
, work
);
759 trace_writeback_written(wb
->bdi
, work
);
761 wb_update_bandwidth(wb
, wb_start
);
764 * Did we write something? Try for more
766 * Dirty inodes are moved to b_io for writeback in batches.
767 * The completion of the current batch does not necessarily
768 * mean the overall work is done. So we keep looping as long
769 * as made some progress on cleaning pages or inodes.
774 * No more inodes for IO, bail
776 if (list_empty(&wb
->b_more_io
))
779 * Nothing written. Wait for some inode to
780 * become available for writeback. Otherwise
781 * we'll just busyloop.
783 if (!list_empty(&wb
->b_more_io
)) {
784 trace_writeback_wait(wb
->bdi
, work
);
785 inode
= wb_inode(wb
->b_more_io
.prev
);
786 spin_lock(&inode
->i_lock
);
787 inode_wait_for_writeback(inode
, wb
);
788 spin_unlock(&inode
->i_lock
);
791 spin_unlock(&wb
->list_lock
);
793 return nr_pages
- work
->nr_pages
;
797 * Return the next wb_writeback_work struct that hasn't been processed yet.
799 static struct wb_writeback_work
*
800 get_next_work_item(struct backing_dev_info
*bdi
)
802 struct wb_writeback_work
*work
= NULL
;
804 spin_lock_bh(&bdi
->wb_lock
);
805 if (!list_empty(&bdi
->work_list
)) {
806 work
= list_entry(bdi
->work_list
.next
,
807 struct wb_writeback_work
, list
);
808 list_del_init(&work
->list
);
810 spin_unlock_bh(&bdi
->wb_lock
);
815 * Add in the number of potentially dirty inodes, because each inode
816 * write can dirty pagecache in the underlying blockdev.
818 static unsigned long get_nr_dirty_pages(void)
820 return global_page_state(NR_FILE_DIRTY
) +
821 global_page_state(NR_UNSTABLE_NFS
) +
822 get_nr_dirty_inodes();
825 static long wb_check_background_flush(struct bdi_writeback
*wb
)
827 if (over_bground_thresh(wb
->bdi
)) {
829 struct wb_writeback_work work
= {
830 .nr_pages
= LONG_MAX
,
831 .sync_mode
= WB_SYNC_NONE
,
834 .reason
= WB_REASON_BACKGROUND
,
837 return wb_writeback(wb
, &work
);
843 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
845 unsigned long expired
;
849 * When set to zero, disable periodic writeback
851 if (!dirty_writeback_interval
)
854 expired
= wb
->last_old_flush
+
855 msecs_to_jiffies(dirty_writeback_interval
* 10);
856 if (time_before(jiffies
, expired
))
859 wb
->last_old_flush
= jiffies
;
860 nr_pages
= get_nr_dirty_pages();
863 struct wb_writeback_work work
= {
864 .nr_pages
= nr_pages
,
865 .sync_mode
= WB_SYNC_NONE
,
868 .reason
= WB_REASON_PERIODIC
,
871 return wb_writeback(wb
, &work
);
878 * Retrieve work items and do the writeback they describe
880 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
882 struct backing_dev_info
*bdi
= wb
->bdi
;
883 struct wb_writeback_work
*work
;
886 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
887 while ((work
= get_next_work_item(bdi
)) != NULL
) {
889 * Override sync mode, in case we must wait for completion
890 * because this thread is exiting now.
893 work
->sync_mode
= WB_SYNC_ALL
;
895 trace_writeback_exec(bdi
, work
);
897 wrote
+= wb_writeback(wb
, work
);
900 * Notify the caller of completion if this is a synchronous
901 * work item, otherwise just free it.
904 complete(work
->done
);
910 * Check for periodic writeback, kupdated() style
912 wrote
+= wb_check_old_data_flush(wb
);
913 wrote
+= wb_check_background_flush(wb
);
914 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
920 * Handle writeback of dirty data for the device backed by this bdi. Also
921 * wakes up periodically and does kupdated style flushing.
923 int bdi_writeback_thread(void *data
)
925 struct bdi_writeback
*wb
= data
;
926 struct backing_dev_info
*bdi
= wb
->bdi
;
929 current
->flags
|= PF_SWAPWRITE
;
931 wb
->last_active
= jiffies
;
934 * Our parent may run at a different priority, just set us to normal
936 set_user_nice(current
, 0);
938 trace_writeback_thread_start(bdi
);
940 while (!kthread_should_stop()) {
942 * Remove own delayed wake-up timer, since we are already awake
943 * and we'll take care of the preriodic write-back.
945 del_timer(&wb
->wakeup_timer
);
947 pages_written
= wb_do_writeback(wb
, 0);
949 trace_writeback_pages_written(pages_written
);
952 wb
->last_active
= jiffies
;
954 set_current_state(TASK_INTERRUPTIBLE
);
955 if (!list_empty(&bdi
->work_list
) || kthread_should_stop()) {
956 __set_current_state(TASK_RUNNING
);
960 if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
961 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval
* 10));
964 * We have nothing to do, so can go sleep without any
965 * timeout and save power. When a work is queued or
966 * something is made dirty - we will be woken up.
974 /* Flush any work that raced with us exiting */
975 if (!list_empty(&bdi
->work_list
))
976 wb_do_writeback(wb
, 1);
978 trace_writeback_thread_stop(bdi
);
984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
987 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
989 struct backing_dev_info
*bdi
;
992 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
993 global_page_state(NR_UNSTABLE_NFS
);
997 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
998 if (!bdi_has_dirty_io(bdi
))
1000 __bdi_start_writeback(bdi
, nr_pages
, false, reason
);
1005 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1007 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1008 struct dentry
*dentry
;
1009 const char *name
= "?";
1011 dentry
= d_find_alias(inode
);
1013 spin_lock(&dentry
->d_lock
);
1014 name
= (const char *) dentry
->d_name
.name
;
1017 "%s(%d): dirtied inode %lu (%s) on %s\n",
1018 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1019 name
, inode
->i_sb
->s_id
);
1021 spin_unlock(&dentry
->d_lock
);
1028 * __mark_inode_dirty - internal function
1029 * @inode: inode to mark
1030 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1031 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1032 * mark_inode_dirty_sync.
1034 * Put the inode on the super block's dirty list.
1036 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1037 * dirty list only if it is hashed or if it refers to a blockdev.
1038 * If it was not hashed, it will never be added to the dirty list
1039 * even if it is later hashed, as it will have been marked dirty already.
1041 * In short, make sure you hash any inodes _before_ you start marking
1044 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1045 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1046 * the kernel-internal blockdev inode represents the dirtying time of the
1047 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1048 * page->mapping->host, so the page-dirtying time is recorded in the internal
1051 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1053 struct super_block
*sb
= inode
->i_sb
;
1054 struct backing_dev_info
*bdi
= NULL
;
1057 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1058 * dirty the inode itself
1060 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1061 if (sb
->s_op
->dirty_inode
)
1062 sb
->s_op
->dirty_inode(inode
, flags
);
1066 * make sure that changes are seen by all cpus before we test i_state
1071 /* avoid the locking if we can */
1072 if ((inode
->i_state
& flags
) == flags
)
1075 if (unlikely(block_dump
))
1076 block_dump___mark_inode_dirty(inode
);
1078 spin_lock(&inode
->i_lock
);
1079 if ((inode
->i_state
& flags
) != flags
) {
1080 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1082 inode
->i_state
|= flags
;
1085 * If the inode is being synced, just update its dirty state.
1086 * The unlocker will place the inode on the appropriate
1087 * superblock list, based upon its state.
1089 if (inode
->i_state
& I_SYNC
)
1090 goto out_unlock_inode
;
1093 * Only add valid (hashed) inodes to the superblock's
1094 * dirty list. Add blockdev inodes as well.
1096 if (!S_ISBLK(inode
->i_mode
)) {
1097 if (inode_unhashed(inode
))
1098 goto out_unlock_inode
;
1100 if (inode
->i_state
& I_FREEING
)
1101 goto out_unlock_inode
;
1104 * If the inode was already on b_dirty/b_io/b_more_io, don't
1105 * reposition it (that would break b_dirty time-ordering).
1108 bool wakeup_bdi
= false;
1109 bdi
= inode_to_bdi(inode
);
1111 if (bdi_cap_writeback_dirty(bdi
)) {
1112 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1113 "bdi-%s not registered\n", bdi
->name
);
1116 * If this is the first dirty inode for this
1117 * bdi, we have to wake-up the corresponding
1118 * bdi thread to make sure background
1119 * write-back happens later.
1121 if (!wb_has_dirty_io(&bdi
->wb
))
1125 spin_unlock(&inode
->i_lock
);
1126 spin_lock(&bdi
->wb
.list_lock
);
1127 inode
->dirtied_when
= jiffies
;
1128 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1129 spin_unlock(&bdi
->wb
.list_lock
);
1132 bdi_wakeup_thread_delayed(bdi
);
1137 spin_unlock(&inode
->i_lock
);
1140 EXPORT_SYMBOL(__mark_inode_dirty
);
1143 * Write out a superblock's list of dirty inodes. A wait will be performed
1144 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1146 * If older_than_this is non-NULL, then only write out inodes which
1147 * had their first dirtying at a time earlier than *older_than_this.
1149 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1150 * This function assumes that the blockdev superblock's inodes are backed by
1151 * a variety of queues, so all inodes are searched. For other superblocks,
1152 * assume that all inodes are backed by the same queue.
1154 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1155 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1156 * on the writer throttling path, and we get decent balancing between many
1157 * throttled threads: we don't want them all piling up on inode_sync_wait.
1159 static void wait_sb_inodes(struct super_block
*sb
)
1161 struct inode
*inode
, *old_inode
= NULL
;
1164 * We need to be protected against the filesystem going from
1165 * r/o to r/w or vice versa.
1167 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1169 spin_lock(&inode_sb_list_lock
);
1172 * Data integrity sync. Must wait for all pages under writeback,
1173 * because there may have been pages dirtied before our sync
1174 * call, but which had writeout started before we write it out.
1175 * In which case, the inode may not be on the dirty list, but
1176 * we still have to wait for that writeout.
1178 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1179 struct address_space
*mapping
= inode
->i_mapping
;
1181 spin_lock(&inode
->i_lock
);
1182 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1183 (mapping
->nrpages
== 0)) {
1184 spin_unlock(&inode
->i_lock
);
1188 spin_unlock(&inode
->i_lock
);
1189 spin_unlock(&inode_sb_list_lock
);
1192 * We hold a reference to 'inode' so it couldn't have been
1193 * removed from s_inodes list while we dropped the
1194 * inode_sb_list_lock. We cannot iput the inode now as we can
1195 * be holding the last reference and we cannot iput it under
1196 * inode_sb_list_lock. So we keep the reference and iput it
1202 filemap_fdatawait(mapping
);
1206 spin_lock(&inode_sb_list_lock
);
1208 spin_unlock(&inode_sb_list_lock
);
1213 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1214 * @sb: the superblock
1215 * @nr: the number of pages to write
1216 * @reason: reason why some writeback work initiated
1218 * Start writeback on some inodes on this super_block. No guarantees are made
1219 * on how many (if any) will be written, and this function does not wait
1220 * for IO completion of submitted IO.
1222 void writeback_inodes_sb_nr(struct super_block
*sb
,
1224 enum wb_reason reason
)
1226 DECLARE_COMPLETION_ONSTACK(done
);
1227 struct wb_writeback_work work
= {
1229 .sync_mode
= WB_SYNC_NONE
,
1230 .tagged_writepages
= 1,
1236 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1237 bdi_queue_work(sb
->s_bdi
, &work
);
1238 wait_for_completion(&done
);
1240 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1243 * writeback_inodes_sb - writeback dirty inodes from given super_block
1244 * @sb: the superblock
1245 * @reason: reason why some writeback work was initiated
1247 * Start writeback on some inodes on this super_block. No guarantees are made
1248 * on how many (if any) will be written, and this function does not wait
1249 * for IO completion of submitted IO.
1251 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1253 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1255 EXPORT_SYMBOL(writeback_inodes_sb
);
1258 * writeback_inodes_sb_if_idle - start writeback if none underway
1259 * @sb: the superblock
1260 * @reason: reason why some writeback work was initiated
1262 * Invoke writeback_inodes_sb if no writeback is currently underway.
1263 * Returns 1 if writeback was started, 0 if not.
1265 int writeback_inodes_sb_if_idle(struct super_block
*sb
, enum wb_reason reason
)
1267 if (!writeback_in_progress(sb
->s_bdi
)) {
1268 down_read(&sb
->s_umount
);
1269 writeback_inodes_sb(sb
, reason
);
1270 up_read(&sb
->s_umount
);
1275 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1278 * writeback_inodes_sb_if_idle - start writeback if none underway
1279 * @sb: the superblock
1280 * @nr: the number of pages to write
1281 * @reason: reason why some writeback work was initiated
1283 * Invoke writeback_inodes_sb if no writeback is currently underway.
1284 * Returns 1 if writeback was started, 0 if not.
1286 int writeback_inodes_sb_nr_if_idle(struct super_block
*sb
,
1288 enum wb_reason reason
)
1290 if (!writeback_in_progress(sb
->s_bdi
)) {
1291 down_read(&sb
->s_umount
);
1292 writeback_inodes_sb_nr(sb
, nr
, reason
);
1293 up_read(&sb
->s_umount
);
1298 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle
);
1301 * sync_inodes_sb - sync sb inode pages
1302 * @sb: the superblock
1304 * This function writes and waits on any dirty inode belonging to this
1307 void sync_inodes_sb(struct super_block
*sb
)
1309 DECLARE_COMPLETION_ONSTACK(done
);
1310 struct wb_writeback_work work
= {
1312 .sync_mode
= WB_SYNC_ALL
,
1313 .nr_pages
= LONG_MAX
,
1316 .reason
= WB_REASON_SYNC
,
1319 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1321 bdi_queue_work(sb
->s_bdi
, &work
);
1322 wait_for_completion(&done
);
1326 EXPORT_SYMBOL(sync_inodes_sb
);
1329 * write_inode_now - write an inode to disk
1330 * @inode: inode to write to disk
1331 * @sync: whether the write should be synchronous or not
1333 * This function commits an inode to disk immediately if it is dirty. This is
1334 * primarily needed by knfsd.
1336 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1338 int write_inode_now(struct inode
*inode
, int sync
)
1340 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1342 struct writeback_control wbc
= {
1343 .nr_to_write
= LONG_MAX
,
1344 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1346 .range_end
= LLONG_MAX
,
1349 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1350 wbc
.nr_to_write
= 0;
1353 spin_lock(&wb
->list_lock
);
1354 spin_lock(&inode
->i_lock
);
1355 ret
= writeback_single_inode(inode
, wb
, &wbc
);
1356 spin_unlock(&inode
->i_lock
);
1357 spin_unlock(&wb
->list_lock
);
1359 inode_sync_wait(inode
);
1362 EXPORT_SYMBOL(write_inode_now
);
1365 * sync_inode - write an inode and its pages to disk.
1366 * @inode: the inode to sync
1367 * @wbc: controls the writeback mode
1369 * sync_inode() will write an inode and its pages to disk. It will also
1370 * correctly update the inode on its superblock's dirty inode lists and will
1371 * update inode->i_state.
1373 * The caller must have a ref on the inode.
1375 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1377 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1380 spin_lock(&wb
->list_lock
);
1381 spin_lock(&inode
->i_lock
);
1382 ret
= writeback_single_inode(inode
, wb
, wbc
);
1383 spin_unlock(&inode
->i_lock
);
1384 spin_unlock(&wb
->list_lock
);
1387 EXPORT_SYMBOL(sync_inode
);
1390 * sync_inode_metadata - write an inode to disk
1391 * @inode: the inode to sync
1392 * @wait: wait for I/O to complete.
1394 * Write an inode to disk and adjust its dirty state after completion.
1396 * Note: only writes the actual inode, no associated data or other metadata.
1398 int sync_inode_metadata(struct inode
*inode
, int wait
)
1400 struct writeback_control wbc
= {
1401 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1402 .nr_to_write
= 0, /* metadata-only */
1405 return sync_inode(inode
, &wbc
);
1407 EXPORT_SYMBOL(sync_inode_metadata
);