drm/i915: Always flush tiling changes before accessing through the GTT
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blob1a0d54f278c4c62da4f2d34991a70c130b4eb112
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
37 struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
56 * Case 1: the batch buffer
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
65 * Let's take these a step at a time
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
92 * Case 2: The shared render buffer
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
124 * Case 3: The constant buffer
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
160 uint32_t invalidate_domains = 0, flush_domains = 0;
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= intel_ring_flag(obj->ring);
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= intel_ring_flag(ring);
211 struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
216 static struct eb_objects *
217 eb_create(int size)
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
229 eb->and = count - 1;
230 return eb;
233 static void
234 eb_reset(struct eb_objects *eb)
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
260 return NULL;
263 static void
264 eb_destroy(struct eb_objects *eb)
266 kfree(eb);
269 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
271 return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
272 obj->cache_level != I915_CACHE_NONE);
275 static int
276 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277 struct eb_objects *eb,
278 struct drm_i915_gem_relocation_entry *reloc)
280 struct drm_device *dev = obj->base.dev;
281 struct drm_gem_object *target_obj;
282 struct drm_i915_gem_object *target_i915_obj;
283 uint32_t target_offset;
284 int ret = -EINVAL;
286 /* we've already hold a reference to all valid objects */
287 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288 if (unlikely(target_obj == NULL))
289 return -ENOENT;
291 target_i915_obj = to_intel_bo(target_obj);
292 target_offset = target_i915_obj->gtt_offset;
294 /* The target buffer should have appeared before us in the
295 * exec_object list, so it should have a GTT space bound by now.
297 if (unlikely(target_offset == 0)) {
298 DRM_DEBUG("No GTT space found for object %d\n",
299 reloc->target_handle);
300 return ret;
303 /* Validate that the target is in a valid r/w GPU domain */
304 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305 DRM_DEBUG("reloc with multiple write domains: "
306 "obj %p target %d offset %d "
307 "read %08x write %08x",
308 obj, reloc->target_handle,
309 (int) reloc->offset,
310 reloc->read_domains,
311 reloc->write_domain);
312 return ret;
314 if (unlikely((reloc->write_domain | reloc->read_domains)
315 & ~I915_GEM_GPU_DOMAINS)) {
316 DRM_DEBUG("reloc with read/write non-GPU domains: "
317 "obj %p target %d offset %d "
318 "read %08x write %08x",
319 obj, reloc->target_handle,
320 (int) reloc->offset,
321 reloc->read_domains,
322 reloc->write_domain);
323 return ret;
325 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
326 reloc->write_domain != target_obj->pending_write_domain)) {
327 DRM_DEBUG("Write domain conflict: "
328 "obj %p target %d offset %d "
329 "new %08x old %08x\n",
330 obj, reloc->target_handle,
331 (int) reloc->offset,
332 reloc->write_domain,
333 target_obj->pending_write_domain);
334 return ret;
337 target_obj->pending_read_domains |= reloc->read_domains;
338 target_obj->pending_write_domain |= reloc->write_domain;
340 /* If the relocation already has the right value in it, no
341 * more work needs to be done.
343 if (target_offset == reloc->presumed_offset)
344 return 0;
346 /* Check that the relocation address is valid... */
347 if (unlikely(reloc->offset > obj->base.size - 4)) {
348 DRM_DEBUG("Relocation beyond object bounds: "
349 "obj %p target %d offset %d size %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset,
352 (int) obj->base.size);
353 return ret;
355 if (unlikely(reloc->offset & 3)) {
356 DRM_DEBUG("Relocation not 4-byte aligned: "
357 "obj %p target %d offset %d.\n",
358 obj, reloc->target_handle,
359 (int) reloc->offset);
360 return ret;
363 /* We can't wait for rendering with pagefaults disabled */
364 if (obj->active && in_atomic())
365 return -EFAULT;
367 reloc->delta += target_offset;
368 if (use_cpu_reloc(obj)) {
369 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
370 char *vaddr;
372 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
373 if (ret)
374 return ret;
376 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
377 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
378 kunmap_atomic(vaddr);
379 } else {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 uint32_t __iomem *reloc_entry;
382 void __iomem *reloc_page;
384 ret = i915_gem_object_set_to_gtt_domain(obj, true);
385 if (ret)
386 return ret;
388 ret = i915_gem_object_put_fence(obj);
389 if (ret)
390 return ret;
392 /* Map the page containing the relocation we're going to perform. */
393 reloc->offset += obj->gtt_offset;
394 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
395 reloc->offset & PAGE_MASK);
396 reloc_entry = (uint32_t __iomem *)
397 (reloc_page + (reloc->offset & ~PAGE_MASK));
398 iowrite32(reloc->delta, reloc_entry);
399 io_mapping_unmap_atomic(reloc_page);
402 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
403 * pipe_control writes because the gpu doesn't properly redirect them
404 * through the ppgtt for non_secure batchbuffers. */
405 if (unlikely(IS_GEN6(dev) &&
406 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
407 !target_i915_obj->has_global_gtt_mapping)) {
408 i915_gem_gtt_bind_object(target_i915_obj,
409 target_i915_obj->cache_level);
412 /* and update the user's relocation entry */
413 reloc->presumed_offset = target_offset;
415 return 0;
418 static int
419 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
420 struct eb_objects *eb)
422 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
423 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
424 struct drm_i915_gem_relocation_entry __user *user_relocs;
425 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 int remain, ret;
428 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
430 remain = entry->relocation_count;
431 while (remain) {
432 struct drm_i915_gem_relocation_entry *r = stack_reloc;
433 int count = remain;
434 if (count > ARRAY_SIZE(stack_reloc))
435 count = ARRAY_SIZE(stack_reloc);
436 remain -= count;
438 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
439 return -EFAULT;
441 do {
442 u64 offset = r->presumed_offset;
444 ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
445 if (ret)
446 return ret;
448 if (r->presumed_offset != offset &&
449 __copy_to_user_inatomic(&user_relocs->presumed_offset,
450 &r->presumed_offset,
451 sizeof(r->presumed_offset))) {
452 return -EFAULT;
455 user_relocs++;
456 r++;
457 } while (--count);
460 return 0;
461 #undef N_RELOC
464 static int
465 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
466 struct eb_objects *eb,
467 struct drm_i915_gem_relocation_entry *relocs)
469 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
470 int i, ret;
472 for (i = 0; i < entry->relocation_count; i++) {
473 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
474 if (ret)
475 return ret;
478 return 0;
481 static int
482 i915_gem_execbuffer_relocate(struct drm_device *dev,
483 struct eb_objects *eb,
484 struct list_head *objects)
486 struct drm_i915_gem_object *obj;
487 int ret = 0;
489 /* This is the fast path and we cannot handle a pagefault whilst
490 * holding the struct mutex lest the user pass in the relocations
491 * contained within a mmaped bo. For in such a case we, the page
492 * fault handler would call i915_gem_fault() and we would try to
493 * acquire the struct mutex again. Obviously this is bad and so
494 * lockdep complains vehemently.
496 pagefault_disable();
497 list_for_each_entry(obj, objects, exec_list) {
498 ret = i915_gem_execbuffer_relocate_object(obj, eb);
499 if (ret)
500 break;
502 pagefault_enable();
504 return ret;
507 #define __EXEC_OBJECT_HAS_FENCE (1<<31)
509 static int
510 need_reloc_mappable(struct drm_i915_gem_object *obj)
512 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
513 return entry->relocation_count && !use_cpu_reloc(obj);
516 static int
517 pin_and_fence_object(struct drm_i915_gem_object *obj,
518 struct intel_ring_buffer *ring)
520 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
521 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
522 bool need_fence, need_mappable;
523 int ret;
525 need_fence =
526 has_fenced_gpu_access &&
527 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
528 obj->tiling_mode != I915_TILING_NONE;
529 need_mappable = need_fence || need_reloc_mappable(obj);
531 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
532 if (ret)
533 return ret;
535 if (has_fenced_gpu_access) {
536 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
537 ret = i915_gem_object_get_fence(obj, ring);
538 if (ret)
539 goto err_unpin;
541 if (i915_gem_object_pin_fence(obj))
542 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
544 obj->pending_fenced_gpu_access = true;
548 entry->offset = obj->gtt_offset;
549 return 0;
551 err_unpin:
552 i915_gem_object_unpin(obj);
553 return ret;
556 static int
557 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
558 struct drm_file *file,
559 struct list_head *objects)
561 drm_i915_private_t *dev_priv = ring->dev->dev_private;
562 struct drm_i915_gem_object *obj;
563 int ret, retry;
564 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
565 struct list_head ordered_objects;
567 INIT_LIST_HEAD(&ordered_objects);
568 while (!list_empty(objects)) {
569 struct drm_i915_gem_exec_object2 *entry;
570 bool need_fence, need_mappable;
572 obj = list_first_entry(objects,
573 struct drm_i915_gem_object,
574 exec_list);
575 entry = obj->exec_entry;
577 need_fence =
578 has_fenced_gpu_access &&
579 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
580 obj->tiling_mode != I915_TILING_NONE;
581 need_mappable = need_fence || need_reloc_mappable(obj);
583 if (need_mappable)
584 list_move(&obj->exec_list, &ordered_objects);
585 else
586 list_move_tail(&obj->exec_list, &ordered_objects);
588 obj->base.pending_read_domains = 0;
589 obj->base.pending_write_domain = 0;
591 list_splice(&ordered_objects, objects);
593 /* Attempt to pin all of the buffers into the GTT.
594 * This is done in 3 phases:
596 * 1a. Unbind all objects that do not match the GTT constraints for
597 * the execbuffer (fenceable, mappable, alignment etc).
598 * 1b. Increment pin count for already bound objects.
599 * 2. Bind new objects.
600 * 3. Decrement pin count.
602 * This avoid unnecessary unbinding of later objects in order to makr
603 * room for the earlier objects *unless* we need to defragment.
605 retry = 0;
606 do {
607 ret = 0;
609 /* Unbind any ill-fitting objects or pin. */
610 list_for_each_entry(obj, objects, exec_list) {
611 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
612 bool need_fence, need_mappable;
614 if (!obj->gtt_space)
615 continue;
617 need_fence =
618 has_fenced_gpu_access &&
619 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
620 obj->tiling_mode != I915_TILING_NONE;
621 need_mappable = need_fence || need_reloc_mappable(obj);
623 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
624 (need_mappable && !obj->map_and_fenceable))
625 ret = i915_gem_object_unbind(obj);
626 else
627 ret = pin_and_fence_object(obj, ring);
628 if (ret)
629 goto err;
632 /* Bind fresh objects */
633 list_for_each_entry(obj, objects, exec_list) {
634 if (obj->gtt_space)
635 continue;
637 ret = pin_and_fence_object(obj, ring);
638 if (ret) {
639 int ret_ignore;
641 /* This can potentially raise a harmless
642 * -EINVAL if we failed to bind in the above
643 * call. It cannot raise -EINTR since we know
644 * that the bo is freshly bound and so will
645 * not need to be flushed or waited upon.
647 ret_ignore = i915_gem_object_unbind(obj);
648 (void)ret_ignore;
649 WARN_ON(obj->gtt_space);
650 break;
654 /* Decrement pin count for bound objects */
655 list_for_each_entry(obj, objects, exec_list) {
656 struct drm_i915_gem_exec_object2 *entry;
658 if (!obj->gtt_space)
659 continue;
661 entry = obj->exec_entry;
662 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
663 i915_gem_object_unpin_fence(obj);
664 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
667 i915_gem_object_unpin(obj);
669 /* ... and ensure ppgtt mapping exist if needed. */
670 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
671 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
672 obj, obj->cache_level);
674 obj->has_aliasing_ppgtt_mapping = 1;
678 if (ret != -ENOSPC || retry > 1)
679 return ret;
681 /* First attempt, just clear anything that is purgeable.
682 * Second attempt, clear the entire GTT.
684 ret = i915_gem_evict_everything(ring->dev, retry == 0);
685 if (ret)
686 return ret;
688 retry++;
689 } while (1);
691 err:
692 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
693 struct drm_i915_gem_exec_object2 *entry;
695 if (!obj->gtt_space)
696 continue;
698 entry = obj->exec_entry;
699 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
700 i915_gem_object_unpin_fence(obj);
701 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
704 i915_gem_object_unpin(obj);
707 return ret;
710 static int
711 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
712 struct drm_file *file,
713 struct intel_ring_buffer *ring,
714 struct list_head *objects,
715 struct eb_objects *eb,
716 struct drm_i915_gem_exec_object2 *exec,
717 int count)
719 struct drm_i915_gem_relocation_entry *reloc;
720 struct drm_i915_gem_object *obj;
721 int *reloc_offset;
722 int i, total, ret;
724 /* We may process another execbuffer during the unlock... */
725 while (!list_empty(objects)) {
726 obj = list_first_entry(objects,
727 struct drm_i915_gem_object,
728 exec_list);
729 list_del_init(&obj->exec_list);
730 drm_gem_object_unreference(&obj->base);
733 mutex_unlock(&dev->struct_mutex);
735 total = 0;
736 for (i = 0; i < count; i++)
737 total += exec[i].relocation_count;
739 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
740 reloc = drm_malloc_ab(total, sizeof(*reloc));
741 if (reloc == NULL || reloc_offset == NULL) {
742 drm_free_large(reloc);
743 drm_free_large(reloc_offset);
744 mutex_lock(&dev->struct_mutex);
745 return -ENOMEM;
748 total = 0;
749 for (i = 0; i < count; i++) {
750 struct drm_i915_gem_relocation_entry __user *user_relocs;
752 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
754 if (copy_from_user(reloc+total, user_relocs,
755 exec[i].relocation_count * sizeof(*reloc))) {
756 ret = -EFAULT;
757 mutex_lock(&dev->struct_mutex);
758 goto err;
761 reloc_offset[i] = total;
762 total += exec[i].relocation_count;
765 ret = i915_mutex_lock_interruptible(dev);
766 if (ret) {
767 mutex_lock(&dev->struct_mutex);
768 goto err;
771 /* reacquire the objects */
772 eb_reset(eb);
773 for (i = 0; i < count; i++) {
774 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
775 exec[i].handle));
776 if (&obj->base == NULL) {
777 DRM_DEBUG("Invalid object handle %d at index %d\n",
778 exec[i].handle, i);
779 ret = -ENOENT;
780 goto err;
783 list_add_tail(&obj->exec_list, objects);
784 obj->exec_handle = exec[i].handle;
785 obj->exec_entry = &exec[i];
786 eb_add_object(eb, obj);
789 ret = i915_gem_execbuffer_reserve(ring, file, objects);
790 if (ret)
791 goto err;
793 list_for_each_entry(obj, objects, exec_list) {
794 int offset = obj->exec_entry - exec;
795 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
796 reloc + reloc_offset[offset]);
797 if (ret)
798 goto err;
801 /* Leave the user relocations as are, this is the painfully slow path,
802 * and we want to avoid the complication of dropping the lock whilst
803 * having buffers reserved in the aperture and so causing spurious
804 * ENOSPC for random operations.
807 err:
808 drm_free_large(reloc);
809 drm_free_large(reloc_offset);
810 return ret;
813 static int
814 i915_gem_execbuffer_flush(struct drm_device *dev,
815 uint32_t invalidate_domains,
816 uint32_t flush_domains,
817 uint32_t flush_rings)
819 drm_i915_private_t *dev_priv = dev->dev_private;
820 int i, ret;
822 if (flush_domains & I915_GEM_DOMAIN_CPU)
823 intel_gtt_chipset_flush();
825 if (flush_domains & I915_GEM_DOMAIN_GTT)
826 wmb();
828 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
829 for (i = 0; i < I915_NUM_RINGS; i++)
830 if (flush_rings & (1 << i)) {
831 ret = i915_gem_flush_ring(&dev_priv->ring[i],
832 invalidate_domains,
833 flush_domains);
834 if (ret)
835 return ret;
839 return 0;
842 static int
843 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
845 u32 plane, flip_mask;
846 int ret;
848 /* Check for any pending flips. As we only maintain a flip queue depth
849 * of 1, we can simply insert a WAIT for the next display flip prior
850 * to executing the batch and avoid stalling the CPU.
853 for (plane = 0; flips >> plane; plane++) {
854 if (((flips >> plane) & 1) == 0)
855 continue;
857 if (plane)
858 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
859 else
860 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
862 ret = intel_ring_begin(ring, 2);
863 if (ret)
864 return ret;
866 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
867 intel_ring_emit(ring, MI_NOOP);
868 intel_ring_advance(ring);
871 return 0;
875 static int
876 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
877 struct list_head *objects)
879 struct drm_i915_gem_object *obj;
880 struct change_domains cd;
881 int ret;
883 memset(&cd, 0, sizeof(cd));
884 list_for_each_entry(obj, objects, exec_list)
885 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
887 if (cd.invalidate_domains | cd.flush_domains) {
888 ret = i915_gem_execbuffer_flush(ring->dev,
889 cd.invalidate_domains,
890 cd.flush_domains,
891 cd.flush_rings);
892 if (ret)
893 return ret;
896 if (cd.flips) {
897 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
898 if (ret)
899 return ret;
902 list_for_each_entry(obj, objects, exec_list) {
903 ret = i915_gem_object_sync(obj, ring);
904 if (ret)
905 return ret;
908 return 0;
911 static bool
912 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
914 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
917 static int
918 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
919 int count)
921 int i;
923 for (i = 0; i < count; i++) {
924 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
925 int length; /* limited by fault_in_pages_readable() */
927 /* First check for malicious input causing overflow */
928 if (exec[i].relocation_count >
929 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
930 return -EINVAL;
932 length = exec[i].relocation_count *
933 sizeof(struct drm_i915_gem_relocation_entry);
934 if (!access_ok(VERIFY_READ, ptr, length))
935 return -EFAULT;
937 /* we may also need to update the presumed offsets */
938 if (!access_ok(VERIFY_WRITE, ptr, length))
939 return -EFAULT;
941 if (fault_in_multipages_readable(ptr, length))
942 return -EFAULT;
945 return 0;
948 static void
949 i915_gem_execbuffer_move_to_active(struct list_head *objects,
950 struct intel_ring_buffer *ring,
951 u32 seqno)
953 struct drm_i915_gem_object *obj;
955 list_for_each_entry(obj, objects, exec_list) {
956 u32 old_read = obj->base.read_domains;
957 u32 old_write = obj->base.write_domain;
960 obj->base.read_domains = obj->base.pending_read_domains;
961 obj->base.write_domain = obj->base.pending_write_domain;
962 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
964 i915_gem_object_move_to_active(obj, ring, seqno);
965 if (obj->base.write_domain) {
966 obj->dirty = 1;
967 obj->pending_gpu_write = true;
968 list_move_tail(&obj->gpu_write_list,
969 &ring->gpu_write_list);
970 intel_mark_busy(ring->dev, obj);
973 trace_i915_gem_object_change_domain(obj, old_read, old_write);
977 static void
978 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
979 struct drm_file *file,
980 struct intel_ring_buffer *ring)
982 struct drm_i915_gem_request *request;
983 u32 invalidate;
986 * Ensure that the commands in the batch buffer are
987 * finished before the interrupt fires.
989 * The sampler always gets flushed on i965 (sigh).
991 invalidate = I915_GEM_DOMAIN_COMMAND;
992 if (INTEL_INFO(dev)->gen >= 4)
993 invalidate |= I915_GEM_DOMAIN_SAMPLER;
994 if (ring->flush(ring, invalidate, 0)) {
995 i915_gem_next_request_seqno(ring);
996 return;
999 /* Add a breadcrumb for the completion of the batch buffer */
1000 request = kzalloc(sizeof(*request), GFP_KERNEL);
1001 if (request == NULL || i915_add_request(ring, file, request)) {
1002 i915_gem_next_request_seqno(ring);
1003 kfree(request);
1007 static int
1008 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1009 struct intel_ring_buffer *ring)
1011 drm_i915_private_t *dev_priv = dev->dev_private;
1012 int ret, i;
1014 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1015 return 0;
1017 ret = intel_ring_begin(ring, 4 * 3);
1018 if (ret)
1019 return ret;
1021 for (i = 0; i < 4; i++) {
1022 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1023 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1024 intel_ring_emit(ring, 0);
1027 intel_ring_advance(ring);
1029 return 0;
1032 static int
1033 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1034 struct drm_file *file,
1035 struct drm_i915_gem_execbuffer2 *args,
1036 struct drm_i915_gem_exec_object2 *exec)
1038 drm_i915_private_t *dev_priv = dev->dev_private;
1039 struct list_head objects;
1040 struct eb_objects *eb;
1041 struct drm_i915_gem_object *batch_obj;
1042 struct drm_clip_rect *cliprects = NULL;
1043 struct intel_ring_buffer *ring;
1044 u32 exec_start, exec_len;
1045 u32 seqno;
1046 u32 mask;
1047 int ret, mode, i;
1049 if (!i915_gem_check_execbuffer(args)) {
1050 DRM_DEBUG("execbuf with invalid offset/length\n");
1051 return -EINVAL;
1054 ret = validate_exec_list(exec, args->buffer_count);
1055 if (ret)
1056 return ret;
1058 switch (args->flags & I915_EXEC_RING_MASK) {
1059 case I915_EXEC_DEFAULT:
1060 case I915_EXEC_RENDER:
1061 ring = &dev_priv->ring[RCS];
1062 break;
1063 case I915_EXEC_BSD:
1064 if (!HAS_BSD(dev)) {
1065 DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1066 return -EINVAL;
1068 ring = &dev_priv->ring[VCS];
1069 break;
1070 case I915_EXEC_BLT:
1071 if (!HAS_BLT(dev)) {
1072 DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1073 return -EINVAL;
1075 ring = &dev_priv->ring[BCS];
1076 break;
1077 default:
1078 DRM_DEBUG("execbuf with unknown ring: %d\n",
1079 (int)(args->flags & I915_EXEC_RING_MASK));
1080 return -EINVAL;
1083 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1084 mask = I915_EXEC_CONSTANTS_MASK;
1085 switch (mode) {
1086 case I915_EXEC_CONSTANTS_REL_GENERAL:
1087 case I915_EXEC_CONSTANTS_ABSOLUTE:
1088 case I915_EXEC_CONSTANTS_REL_SURFACE:
1089 if (ring == &dev_priv->ring[RCS] &&
1090 mode != dev_priv->relative_constants_mode) {
1091 if (INTEL_INFO(dev)->gen < 4)
1092 return -EINVAL;
1094 if (INTEL_INFO(dev)->gen > 5 &&
1095 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1096 return -EINVAL;
1098 /* The HW changed the meaning on this bit on gen6 */
1099 if (INTEL_INFO(dev)->gen >= 6)
1100 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1102 break;
1103 default:
1104 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1105 return -EINVAL;
1108 if (args->buffer_count < 1) {
1109 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1110 return -EINVAL;
1113 if (args->num_cliprects != 0) {
1114 if (ring != &dev_priv->ring[RCS]) {
1115 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1116 return -EINVAL;
1119 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1120 GFP_KERNEL);
1121 if (cliprects == NULL) {
1122 ret = -ENOMEM;
1123 goto pre_mutex_err;
1126 if (copy_from_user(cliprects,
1127 (struct drm_clip_rect __user *)(uintptr_t)
1128 args->cliprects_ptr,
1129 sizeof(*cliprects)*args->num_cliprects)) {
1130 ret = -EFAULT;
1131 goto pre_mutex_err;
1135 ret = i915_mutex_lock_interruptible(dev);
1136 if (ret)
1137 goto pre_mutex_err;
1139 if (dev_priv->mm.suspended) {
1140 mutex_unlock(&dev->struct_mutex);
1141 ret = -EBUSY;
1142 goto pre_mutex_err;
1145 eb = eb_create(args->buffer_count);
1146 if (eb == NULL) {
1147 mutex_unlock(&dev->struct_mutex);
1148 ret = -ENOMEM;
1149 goto pre_mutex_err;
1152 /* Look up object handles */
1153 INIT_LIST_HEAD(&objects);
1154 for (i = 0; i < args->buffer_count; i++) {
1155 struct drm_i915_gem_object *obj;
1157 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1158 exec[i].handle));
1159 if (&obj->base == NULL) {
1160 DRM_DEBUG("Invalid object handle %d at index %d\n",
1161 exec[i].handle, i);
1162 /* prevent error path from reading uninitialized data */
1163 ret = -ENOENT;
1164 goto err;
1167 if (!list_empty(&obj->exec_list)) {
1168 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1169 obj, exec[i].handle, i);
1170 ret = -EINVAL;
1171 goto err;
1174 list_add_tail(&obj->exec_list, &objects);
1175 obj->exec_handle = exec[i].handle;
1176 obj->exec_entry = &exec[i];
1177 eb_add_object(eb, obj);
1180 /* take note of the batch buffer before we might reorder the lists */
1181 batch_obj = list_entry(objects.prev,
1182 struct drm_i915_gem_object,
1183 exec_list);
1185 /* Move the objects en-masse into the GTT, evicting if necessary. */
1186 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1187 if (ret)
1188 goto err;
1190 /* The objects are in their final locations, apply the relocations. */
1191 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1192 if (ret) {
1193 if (ret == -EFAULT) {
1194 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1195 &objects, eb,
1196 exec,
1197 args->buffer_count);
1198 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1200 if (ret)
1201 goto err;
1204 /* Set the pending read domains for the batch buffer to COMMAND */
1205 if (batch_obj->base.pending_write_domain) {
1206 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1207 ret = -EINVAL;
1208 goto err;
1210 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1212 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1213 if (ret)
1214 goto err;
1216 seqno = i915_gem_next_request_seqno(ring);
1217 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1218 if (seqno < ring->sync_seqno[i]) {
1219 /* The GPU can not handle its semaphore value wrapping,
1220 * so every billion or so execbuffers, we need to stall
1221 * the GPU in order to reset the counters.
1223 ret = i915_gpu_idle(dev, true);
1224 if (ret)
1225 goto err;
1227 BUG_ON(ring->sync_seqno[i]);
1231 if (ring == &dev_priv->ring[RCS] &&
1232 mode != dev_priv->relative_constants_mode) {
1233 ret = intel_ring_begin(ring, 4);
1234 if (ret)
1235 goto err;
1237 intel_ring_emit(ring, MI_NOOP);
1238 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1239 intel_ring_emit(ring, INSTPM);
1240 intel_ring_emit(ring, mask << 16 | mode);
1241 intel_ring_advance(ring);
1243 dev_priv->relative_constants_mode = mode;
1246 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1247 ret = i915_reset_gen7_sol_offsets(dev, ring);
1248 if (ret)
1249 goto err;
1252 trace_i915_gem_ring_dispatch(ring, seqno);
1254 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1255 exec_len = args->batch_len;
1256 if (cliprects) {
1257 for (i = 0; i < args->num_cliprects; i++) {
1258 ret = i915_emit_box(dev, &cliprects[i],
1259 args->DR1, args->DR4);
1260 if (ret)
1261 goto err;
1263 ret = ring->dispatch_execbuffer(ring,
1264 exec_start, exec_len);
1265 if (ret)
1266 goto err;
1268 } else {
1269 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1270 if (ret)
1271 goto err;
1274 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1275 i915_gem_execbuffer_retire_commands(dev, file, ring);
1277 err:
1278 eb_destroy(eb);
1279 while (!list_empty(&objects)) {
1280 struct drm_i915_gem_object *obj;
1282 obj = list_first_entry(&objects,
1283 struct drm_i915_gem_object,
1284 exec_list);
1285 list_del_init(&obj->exec_list);
1286 drm_gem_object_unreference(&obj->base);
1289 mutex_unlock(&dev->struct_mutex);
1291 pre_mutex_err:
1292 kfree(cliprects);
1293 return ret;
1297 * Legacy execbuffer just creates an exec2 list from the original exec object
1298 * list array and passes it to the real function.
1301 i915_gem_execbuffer(struct drm_device *dev, void *data,
1302 struct drm_file *file)
1304 struct drm_i915_gem_execbuffer *args = data;
1305 struct drm_i915_gem_execbuffer2 exec2;
1306 struct drm_i915_gem_exec_object *exec_list = NULL;
1307 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1308 int ret, i;
1310 if (args->buffer_count < 1) {
1311 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1312 return -EINVAL;
1315 /* Copy in the exec list from userland */
1316 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1317 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1318 if (exec_list == NULL || exec2_list == NULL) {
1319 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1320 args->buffer_count);
1321 drm_free_large(exec_list);
1322 drm_free_large(exec2_list);
1323 return -ENOMEM;
1325 ret = copy_from_user(exec_list,
1326 (struct drm_i915_relocation_entry __user *)
1327 (uintptr_t) args->buffers_ptr,
1328 sizeof(*exec_list) * args->buffer_count);
1329 if (ret != 0) {
1330 DRM_DEBUG("copy %d exec entries failed %d\n",
1331 args->buffer_count, ret);
1332 drm_free_large(exec_list);
1333 drm_free_large(exec2_list);
1334 return -EFAULT;
1337 for (i = 0; i < args->buffer_count; i++) {
1338 exec2_list[i].handle = exec_list[i].handle;
1339 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1340 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1341 exec2_list[i].alignment = exec_list[i].alignment;
1342 exec2_list[i].offset = exec_list[i].offset;
1343 if (INTEL_INFO(dev)->gen < 4)
1344 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1345 else
1346 exec2_list[i].flags = 0;
1349 exec2.buffers_ptr = args->buffers_ptr;
1350 exec2.buffer_count = args->buffer_count;
1351 exec2.batch_start_offset = args->batch_start_offset;
1352 exec2.batch_len = args->batch_len;
1353 exec2.DR1 = args->DR1;
1354 exec2.DR4 = args->DR4;
1355 exec2.num_cliprects = args->num_cliprects;
1356 exec2.cliprects_ptr = args->cliprects_ptr;
1357 exec2.flags = I915_EXEC_RENDER;
1359 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1360 if (!ret) {
1361 /* Copy the new buffer offsets back to the user's exec list. */
1362 for (i = 0; i < args->buffer_count; i++)
1363 exec_list[i].offset = exec2_list[i].offset;
1364 /* ... and back out to userspace */
1365 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1366 (uintptr_t) args->buffers_ptr,
1367 exec_list,
1368 sizeof(*exec_list) * args->buffer_count);
1369 if (ret) {
1370 ret = -EFAULT;
1371 DRM_DEBUG("failed to copy %d exec entries "
1372 "back to user (%d)\n",
1373 args->buffer_count, ret);
1377 drm_free_large(exec_list);
1378 drm_free_large(exec2_list);
1379 return ret;
1383 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1384 struct drm_file *file)
1386 struct drm_i915_gem_execbuffer2 *args = data;
1387 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1388 int ret;
1390 if (args->buffer_count < 1) {
1391 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1392 return -EINVAL;
1395 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1396 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1397 if (exec2_list == NULL)
1398 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1399 args->buffer_count);
1400 if (exec2_list == NULL) {
1401 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1402 args->buffer_count);
1403 return -ENOMEM;
1405 ret = copy_from_user(exec2_list,
1406 (struct drm_i915_relocation_entry __user *)
1407 (uintptr_t) args->buffers_ptr,
1408 sizeof(*exec2_list) * args->buffer_count);
1409 if (ret != 0) {
1410 DRM_DEBUG("copy %d exec entries failed %d\n",
1411 args->buffer_count, ret);
1412 drm_free_large(exec2_list);
1413 return -EFAULT;
1416 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1417 if (!ret) {
1418 /* Copy the new buffer offsets back to the user's exec list. */
1419 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1420 (uintptr_t) args->buffers_ptr,
1421 exec2_list,
1422 sizeof(*exec2_list) * args->buffer_count);
1423 if (ret) {
1424 ret = -EFAULT;
1425 DRM_DEBUG("failed to copy %d exec entries "
1426 "back to user (%d)\n",
1427 args->buffer_count, ret);
1431 drm_free_large(exec2_list);
1432 return ret;