2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 unsigned long max_huge_pages
;
27 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
28 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
29 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock
);
35 static void clear_huge_page(struct page
*page
, unsigned long addr
)
40 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
42 clear_user_highpage(page
+ i
, addr
);
46 static void copy_huge_page(struct page
*dst
, struct page
*src
,
52 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
54 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
);
58 static void enqueue_huge_page(struct page
*page
)
60 int nid
= page_to_nid(page
);
61 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
63 free_huge_pages_node
[nid
]++;
66 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
67 unsigned long address
)
69 int nid
= numa_node_id();
70 struct page
*page
= NULL
;
71 struct zonelist
*zonelist
= huge_zonelist(vma
, address
);
74 for (z
= zonelist
->zones
; *z
; z
++) {
75 nid
= zone_to_nid(*z
);
76 if (cpuset_zone_allowed(*z
, GFP_HIGHUSER
) &&
77 !list_empty(&hugepage_freelists
[nid
]))
82 page
= list_entry(hugepage_freelists
[nid
].next
,
86 free_huge_pages_node
[nid
]--;
91 static void free_huge_page(struct page
*page
)
93 BUG_ON(page_count(page
));
95 INIT_LIST_HEAD(&page
->lru
);
97 spin_lock(&hugetlb_lock
);
98 enqueue_huge_page(page
);
99 spin_unlock(&hugetlb_lock
);
102 static int alloc_fresh_huge_page(void)
106 page
= alloc_pages_node(nid
, GFP_HIGHUSER
|__GFP_COMP
|__GFP_NOWARN
,
108 nid
= next_node(nid
, node_online_map
);
109 if (nid
== MAX_NUMNODES
)
110 nid
= first_node(node_online_map
);
112 page
[1].lru
.next
= (void *)free_huge_page
; /* dtor */
113 spin_lock(&hugetlb_lock
);
115 nr_huge_pages_node
[page_to_nid(page
)]++;
116 spin_unlock(&hugetlb_lock
);
117 put_page(page
); /* free it into the hugepage allocator */
123 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
128 spin_lock(&hugetlb_lock
);
129 if (vma
->vm_flags
& VM_MAYSHARE
)
131 else if (free_huge_pages
<= resv_huge_pages
)
134 page
= dequeue_huge_page(vma
, addr
);
138 spin_unlock(&hugetlb_lock
);
139 set_page_refcounted(page
);
143 spin_unlock(&hugetlb_lock
);
147 static int __init
hugetlb_init(void)
151 if (HPAGE_SHIFT
== 0)
154 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
155 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
157 for (i
= 0; i
< max_huge_pages
; ++i
) {
158 if (!alloc_fresh_huge_page())
161 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
162 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
165 module_init(hugetlb_init
);
167 static int __init
hugetlb_setup(char *s
)
169 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
173 __setup("hugepages=", hugetlb_setup
);
176 static void update_and_free_page(struct page
*page
)
180 nr_huge_pages_node
[page_to_nid(page
)]--;
181 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
182 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
183 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
184 1 << PG_private
| 1<< PG_writeback
);
186 page
[1].lru
.next
= NULL
;
187 set_page_refcounted(page
);
188 __free_pages(page
, HUGETLB_PAGE_ORDER
);
191 #ifdef CONFIG_HIGHMEM
192 static void try_to_free_low(unsigned long count
)
196 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
197 struct page
*page
, *next
;
198 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
199 if (PageHighMem(page
))
201 list_del(&page
->lru
);
202 update_and_free_page(page
);
204 free_huge_pages_node
[page_to_nid(page
)]--;
205 if (count
>= nr_huge_pages
)
211 static inline void try_to_free_low(unsigned long count
)
216 static unsigned long set_max_huge_pages(unsigned long count
)
218 while (count
> nr_huge_pages
) {
219 if (!alloc_fresh_huge_page())
220 return nr_huge_pages
;
222 if (count
>= nr_huge_pages
)
223 return nr_huge_pages
;
225 spin_lock(&hugetlb_lock
);
226 count
= max(count
, resv_huge_pages
);
227 try_to_free_low(count
);
228 while (count
< nr_huge_pages
) {
229 struct page
*page
= dequeue_huge_page(NULL
, 0);
232 update_and_free_page(page
);
234 spin_unlock(&hugetlb_lock
);
235 return nr_huge_pages
;
238 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
239 struct file
*file
, void __user
*buffer
,
240 size_t *length
, loff_t
*ppos
)
242 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
243 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
246 #endif /* CONFIG_SYSCTL */
248 int hugetlb_report_meminfo(char *buf
)
251 "HugePages_Total: %5lu\n"
252 "HugePages_Free: %5lu\n"
253 "HugePages_Rsvd: %5lu\n"
254 "Hugepagesize: %5lu kB\n",
261 int hugetlb_report_node_meminfo(int nid
, char *buf
)
264 "Node %d HugePages_Total: %5u\n"
265 "Node %d HugePages_Free: %5u\n",
266 nid
, nr_huge_pages_node
[nid
],
267 nid
, free_huge_pages_node
[nid
]);
270 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
271 unsigned long hugetlb_total_pages(void)
273 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
277 * We cannot handle pagefaults against hugetlb pages at all. They cause
278 * handle_mm_fault() to try to instantiate regular-sized pages in the
279 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
282 static struct page
*hugetlb_nopage(struct vm_area_struct
*vma
,
283 unsigned long address
, int *unused
)
289 struct vm_operations_struct hugetlb_vm_ops
= {
290 .nopage
= hugetlb_nopage
,
293 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
300 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
302 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
304 entry
= pte_mkyoung(entry
);
305 entry
= pte_mkhuge(entry
);
310 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
311 unsigned long address
, pte_t
*ptep
)
315 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
316 ptep_set_access_flags(vma
, address
, ptep
, entry
, 1);
317 update_mmu_cache(vma
, address
, entry
);
318 lazy_mmu_prot_update(entry
);
322 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
323 struct vm_area_struct
*vma
)
325 pte_t
*src_pte
, *dst_pte
, entry
;
326 struct page
*ptepage
;
330 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
332 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
333 src_pte
= huge_pte_offset(src
, addr
);
336 dst_pte
= huge_pte_alloc(dst
, addr
);
339 spin_lock(&dst
->page_table_lock
);
340 spin_lock(&src
->page_table_lock
);
341 if (!pte_none(*src_pte
)) {
343 ptep_set_wrprotect(src
, addr
, src_pte
);
345 ptepage
= pte_page(entry
);
347 add_mm_counter(dst
, file_rss
, HPAGE_SIZE
/ PAGE_SIZE
);
348 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
350 spin_unlock(&src
->page_table_lock
);
351 spin_unlock(&dst
->page_table_lock
);
359 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
362 struct mm_struct
*mm
= vma
->vm_mm
;
363 unsigned long address
;
368 LIST_HEAD(page_list
);
370 WARN_ON(!is_vm_hugetlb_page(vma
));
371 BUG_ON(start
& ~HPAGE_MASK
);
372 BUG_ON(end
& ~HPAGE_MASK
);
374 spin_lock(&mm
->page_table_lock
);
376 /* Update high watermark before we lower rss */
377 update_hiwater_rss(mm
);
379 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
380 ptep
= huge_pte_offset(mm
, address
);
384 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
388 page
= pte_page(pte
);
389 list_add(&page
->lru
, &page_list
);
390 add_mm_counter(mm
, file_rss
, (int) -(HPAGE_SIZE
/ PAGE_SIZE
));
393 spin_unlock(&mm
->page_table_lock
);
394 flush_tlb_range(vma
, start
, end
);
395 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
396 list_del(&page
->lru
);
401 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
405 * It is undesirable to test vma->vm_file as it should be non-null
406 * for valid hugetlb area. However, vm_file will be NULL in the error
407 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
408 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
409 * to clean up. Since no pte has actually been setup, it is safe to
410 * do nothing in this case.
413 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
414 __unmap_hugepage_range(vma
, start
, end
);
415 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
419 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
420 unsigned long address
, pte_t
*ptep
, pte_t pte
)
422 struct page
*old_page
, *new_page
;
425 old_page
= pte_page(pte
);
427 /* If no-one else is actually using this page, avoid the copy
428 * and just make the page writable */
429 avoidcopy
= (page_count(old_page
) == 1);
431 set_huge_ptep_writable(vma
, address
, ptep
);
432 return VM_FAULT_MINOR
;
435 page_cache_get(old_page
);
436 new_page
= alloc_huge_page(vma
, address
);
439 page_cache_release(old_page
);
443 spin_unlock(&mm
->page_table_lock
);
444 copy_huge_page(new_page
, old_page
, address
);
445 spin_lock(&mm
->page_table_lock
);
447 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
448 if (likely(pte_same(*ptep
, pte
))) {
450 set_huge_pte_at(mm
, address
, ptep
,
451 make_huge_pte(vma
, new_page
, 1));
452 /* Make the old page be freed below */
455 page_cache_release(new_page
);
456 page_cache_release(old_page
);
457 return VM_FAULT_MINOR
;
460 int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
461 unsigned long address
, pte_t
*ptep
, int write_access
)
463 int ret
= VM_FAULT_SIGBUS
;
467 struct address_space
*mapping
;
470 mapping
= vma
->vm_file
->f_mapping
;
471 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
472 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
475 * Use page lock to guard against racing truncation
476 * before we get page_table_lock.
479 page
= find_lock_page(mapping
, idx
);
481 if (hugetlb_get_quota(mapping
))
483 page
= alloc_huge_page(vma
, address
);
485 hugetlb_put_quota(mapping
);
489 clear_huge_page(page
, address
);
491 if (vma
->vm_flags
& VM_SHARED
) {
494 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
497 hugetlb_put_quota(mapping
);
506 spin_lock(&mm
->page_table_lock
);
507 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
511 ret
= VM_FAULT_MINOR
;
512 if (!pte_none(*ptep
))
515 add_mm_counter(mm
, file_rss
, HPAGE_SIZE
/ PAGE_SIZE
);
516 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
517 && (vma
->vm_flags
& VM_SHARED
)));
518 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
520 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
521 /* Optimization, do the COW without a second fault */
522 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
525 spin_unlock(&mm
->page_table_lock
);
531 spin_unlock(&mm
->page_table_lock
);
532 hugetlb_put_quota(mapping
);
538 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
539 unsigned long address
, int write_access
)
544 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
546 ptep
= huge_pte_alloc(mm
, address
);
551 * Serialize hugepage allocation and instantiation, so that we don't
552 * get spurious allocation failures if two CPUs race to instantiate
553 * the same page in the page cache.
555 mutex_lock(&hugetlb_instantiation_mutex
);
557 if (pte_none(entry
)) {
558 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
559 mutex_unlock(&hugetlb_instantiation_mutex
);
563 ret
= VM_FAULT_MINOR
;
565 spin_lock(&mm
->page_table_lock
);
566 /* Check for a racing update before calling hugetlb_cow */
567 if (likely(pte_same(entry
, *ptep
)))
568 if (write_access
&& !pte_write(entry
))
569 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
570 spin_unlock(&mm
->page_table_lock
);
571 mutex_unlock(&hugetlb_instantiation_mutex
);
576 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
577 struct page
**pages
, struct vm_area_struct
**vmas
,
578 unsigned long *position
, int *length
, int i
)
580 unsigned long pfn_offset
;
581 unsigned long vaddr
= *position
;
582 int remainder
= *length
;
584 spin_lock(&mm
->page_table_lock
);
585 while (vaddr
< vma
->vm_end
&& remainder
) {
590 * Some archs (sparc64, sh*) have multiple pte_ts to
591 * each hugepage. We have to make * sure we get the
592 * first, for the page indexing below to work.
594 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
596 if (!pte
|| pte_none(*pte
)) {
599 spin_unlock(&mm
->page_table_lock
);
600 ret
= hugetlb_fault(mm
, vma
, vaddr
, 0);
601 spin_lock(&mm
->page_table_lock
);
602 if (ret
== VM_FAULT_MINOR
)
611 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
612 page
= pte_page(*pte
);
616 pages
[i
] = page
+ pfn_offset
;
626 if (vaddr
< vma
->vm_end
&& remainder
&&
627 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
629 * We use pfn_offset to avoid touching the pageframes
630 * of this compound page.
635 spin_unlock(&mm
->page_table_lock
);
642 void hugetlb_change_protection(struct vm_area_struct
*vma
,
643 unsigned long address
, unsigned long end
, pgprot_t newprot
)
645 struct mm_struct
*mm
= vma
->vm_mm
;
646 unsigned long start
= address
;
650 BUG_ON(address
>= end
);
651 flush_cache_range(vma
, address
, end
);
653 spin_lock(&mm
->page_table_lock
);
654 for (; address
< end
; address
+= HPAGE_SIZE
) {
655 ptep
= huge_pte_offset(mm
, address
);
658 if (!pte_none(*ptep
)) {
659 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
660 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
661 set_huge_pte_at(mm
, address
, ptep
, pte
);
662 lazy_mmu_prot_update(pte
);
665 spin_unlock(&mm
->page_table_lock
);
667 flush_tlb_range(vma
, start
, end
);
671 struct list_head link
;
676 static long region_add(struct list_head
*head
, long f
, long t
)
678 struct file_region
*rg
, *nrg
, *trg
;
680 /* Locate the region we are either in or before. */
681 list_for_each_entry(rg
, head
, link
)
685 /* Round our left edge to the current segment if it encloses us. */
689 /* Check for and consume any regions we now overlap with. */
691 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
692 if (&rg
->link
== head
)
697 /* If this area reaches higher then extend our area to
698 * include it completely. If this is not the first area
699 * which we intend to reuse, free it. */
712 static long region_chg(struct list_head
*head
, long f
, long t
)
714 struct file_region
*rg
, *nrg
;
717 /* Locate the region we are before or in. */
718 list_for_each_entry(rg
, head
, link
)
722 /* If we are below the current region then a new region is required.
723 * Subtle, allocate a new region at the position but make it zero
724 * size such that we can guarentee to record the reservation. */
725 if (&rg
->link
== head
|| t
< rg
->from
) {
726 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
731 INIT_LIST_HEAD(&nrg
->link
);
732 list_add(&nrg
->link
, rg
->link
.prev
);
737 /* Round our left edge to the current segment if it encloses us. */
742 /* Check for and consume any regions we now overlap with. */
743 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
744 if (&rg
->link
== head
)
749 /* We overlap with this area, if it extends futher than
750 * us then we must extend ourselves. Account for its
751 * existing reservation. */
756 chg
-= rg
->to
- rg
->from
;
761 static long region_truncate(struct list_head
*head
, long end
)
763 struct file_region
*rg
, *trg
;
766 /* Locate the region we are either in or before. */
767 list_for_each_entry(rg
, head
, link
)
770 if (&rg
->link
== head
)
773 /* If we are in the middle of a region then adjust it. */
774 if (end
> rg
->from
) {
777 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
780 /* Drop any remaining regions. */
781 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
782 if (&rg
->link
== head
)
784 chg
+= rg
->to
- rg
->from
;
791 static int hugetlb_acct_memory(long delta
)
795 spin_lock(&hugetlb_lock
);
796 if ((delta
+ resv_huge_pages
) <= free_huge_pages
) {
797 resv_huge_pages
+= delta
;
800 spin_unlock(&hugetlb_lock
);
804 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
808 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
811 ret
= hugetlb_acct_memory(chg
);
814 region_add(&inode
->i_mapping
->private_list
, from
, to
);
818 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
820 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
821 hugetlb_acct_memory(freed
- chg
);