1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct statistics_general_data
{
74 u32 beacon_silence_rssi_a
;
75 u32 beacon_silence_rssi_b
;
76 u32 beacon_silence_rssi_c
;
82 int iwl_send_calib_results(struct iwl_priv
*priv
)
87 struct iwl_host_cmd hcmd
= {
88 .id
= REPLY_PHY_CALIBRATION_CMD
,
89 .meta
.flags
= CMD_SIZE_HUGE
,
92 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
93 if ((BIT(i
) & priv
->hw_params
.calib_init_cfg
) &&
94 priv
->calib_results
[i
].buf
) {
95 hcmd
.len
= priv
->calib_results
[i
].buf_len
;
96 hcmd
.data
= priv
->calib_results
[i
].buf
;
97 ret
= iwl_send_cmd_sync(priv
, &hcmd
);
105 IWL_ERR(priv
, "Error %d iteration %d\n", ret
, i
);
108 EXPORT_SYMBOL(iwl_send_calib_results
);
110 int iwl_calib_set(struct iwl_calib_result
*res
, const u8
*buf
, int len
)
112 if (res
->buf_len
!= len
) {
114 res
->buf
= kzalloc(len
, GFP_ATOMIC
);
116 if (unlikely(res
->buf
== NULL
))
120 memcpy(res
->buf
, buf
, len
);
123 EXPORT_SYMBOL(iwl_calib_set
);
125 void iwl_calib_free_results(struct iwl_priv
*priv
)
129 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
130 kfree(priv
->calib_results
[i
].buf
);
131 priv
->calib_results
[i
].buf
= NULL
;
132 priv
->calib_results
[i
].buf_len
= 0;
136 /*****************************************************************************
137 * RUNTIME calibrations framework
138 *****************************************************************************/
140 /* "false alarms" are signals that our DSP tries to lock onto,
141 * but then determines that they are either noise, or transmissions
142 * from a distant wireless network (also "noise", really) that get
143 * "stepped on" by stronger transmissions within our own network.
144 * This algorithm attempts to set a sensitivity level that is high
145 * enough to receive all of our own network traffic, but not so
146 * high that our DSP gets too busy trying to lock onto non-network
148 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
151 struct statistics_general_data
*rx_info
)
155 u8 max_silence_rssi
= 0;
157 u8 silence_rssi_a
= 0;
158 u8 silence_rssi_b
= 0;
159 u8 silence_rssi_c
= 0;
162 /* "false_alarms" values below are cross-multiplications to assess the
163 * numbers of false alarms within the measured period of actual Rx
164 * (Rx is off when we're txing), vs the min/max expected false alarms
165 * (some should be expected if rx is sensitive enough) in a
166 * hypothetical listening period of 200 time units (TU), 204.8 msec:
168 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
171 u32 false_alarms
= norm_fa
* 200 * 1024;
172 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
173 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
174 struct iwl_sensitivity_data
*data
= NULL
;
175 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
177 data
= &(priv
->sensitivity_data
);
179 data
->nrg_auto_corr_silence_diff
= 0;
181 /* Find max silence rssi among all 3 receivers.
182 * This is background noise, which may include transmissions from other
183 * networks, measured during silence before our network's beacon */
184 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
185 ALL_BAND_FILTER
) >> 8);
186 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
187 ALL_BAND_FILTER
) >> 8);
188 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
189 ALL_BAND_FILTER
) >> 8);
191 val
= max(silence_rssi_b
, silence_rssi_c
);
192 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
194 /* Store silence rssi in 20-beacon history table */
195 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
196 data
->nrg_silence_idx
++;
197 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
198 data
->nrg_silence_idx
= 0;
200 /* Find max silence rssi across 20 beacon history */
201 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
202 val
= data
->nrg_silence_rssi
[i
];
203 silence_ref
= max(silence_ref
, val
);
205 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
206 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
209 /* Find max rx energy (min value!) among all 3 receivers,
210 * measured during beacon frame.
211 * Save it in 10-beacon history table. */
212 i
= data
->nrg_energy_idx
;
213 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
214 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
216 data
->nrg_energy_idx
++;
217 if (data
->nrg_energy_idx
>= 10)
218 data
->nrg_energy_idx
= 0;
220 /* Find min rx energy (max value) across 10 beacon history.
221 * This is the minimum signal level that we want to receive well.
222 * Add backoff (margin so we don't miss slightly lower energy frames).
223 * This establishes an upper bound (min value) for energy threshold. */
224 max_nrg_cck
= data
->nrg_value
[0];
225 for (i
= 1; i
< 10; i
++)
226 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
229 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
230 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
231 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
233 /* Count number of consecutive beacons with fewer-than-desired
235 if (false_alarms
< min_false_alarms
)
236 data
->num_in_cck_no_fa
++;
238 data
->num_in_cck_no_fa
= 0;
239 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
240 data
->num_in_cck_no_fa
);
242 /* If we got too many false alarms this time, reduce sensitivity */
243 if ((false_alarms
> max_false_alarms
) &&
244 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
245 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
246 false_alarms
, max_false_alarms
);
247 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
248 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
249 /* Store for "fewer than desired" on later beacon */
250 data
->nrg_silence_ref
= silence_ref
;
252 /* increase energy threshold (reduce nrg value)
253 * to decrease sensitivity */
254 if (data
->nrg_th_cck
>
255 (ranges
->max_nrg_cck
+ NRG_STEP_CCK
))
256 data
->nrg_th_cck
= data
->nrg_th_cck
259 data
->nrg_th_cck
= ranges
->max_nrg_cck
;
260 /* Else if we got fewer than desired, increase sensitivity */
261 } else if (false_alarms
< min_false_alarms
) {
262 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
264 /* Compare silence level with silence level for most recent
265 * healthy number or too many false alarms */
266 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
269 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
270 false_alarms
, min_false_alarms
,
271 data
->nrg_auto_corr_silence_diff
);
273 /* Increase value to increase sensitivity, but only if:
274 * 1a) previous beacon did *not* have *too many* false alarms
275 * 1b) AND there's a significant difference in Rx levels
276 * from a previous beacon with too many, or healthy # FAs
277 * OR 2) We've seen a lot of beacons (100) with too few
279 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
280 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
281 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
283 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
284 /* Increase nrg value to increase sensitivity */
285 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
286 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
288 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
291 /* Else we got a healthy number of false alarms, keep status quo */
293 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
294 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
296 /* Store for use in "fewer than desired" with later beacon */
297 data
->nrg_silence_ref
= silence_ref
;
299 /* If previous beacon had too many false alarms,
300 * give it some extra margin by reducing sensitivity again
301 * (but don't go below measured energy of desired Rx) */
302 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
303 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
304 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
305 data
->nrg_th_cck
-= NRG_MARGIN
;
307 data
->nrg_th_cck
= max_nrg_cck
;
311 /* Make sure the energy threshold does not go above the measured
312 * energy of the desired Rx signals (reduced by backoff margin),
313 * or else we might start missing Rx frames.
314 * Lower value is higher energy, so we use max()!
316 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
317 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
319 data
->nrg_prev_state
= data
->nrg_curr_state
;
321 /* Auto-correlation CCK algorithm */
322 if (false_alarms
> min_false_alarms
) {
324 /* increase auto_corr values to decrease sensitivity
325 * so the DSP won't be disturbed by the noise
327 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
328 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
330 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
331 data
->auto_corr_cck
=
332 min((u32
)ranges
->auto_corr_max_cck
, val
);
334 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
335 data
->auto_corr_cck_mrc
=
336 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
337 } else if ((false_alarms
< min_false_alarms
) &&
338 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
339 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
341 /* Decrease auto_corr values to increase sensitivity */
342 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
343 data
->auto_corr_cck
=
344 max((u32
)ranges
->auto_corr_min_cck
, val
);
345 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
346 data
->auto_corr_cck_mrc
=
347 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
354 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
359 u32 false_alarms
= norm_fa
* 200 * 1024;
360 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
361 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
362 struct iwl_sensitivity_data
*data
= NULL
;
363 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
365 data
= &(priv
->sensitivity_data
);
367 /* If we got too many false alarms this time, reduce sensitivity */
368 if (false_alarms
> max_false_alarms
) {
370 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
371 false_alarms
, max_false_alarms
);
373 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
374 data
->auto_corr_ofdm
=
375 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
377 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
378 data
->auto_corr_ofdm_mrc
=
379 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
381 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
382 data
->auto_corr_ofdm_x1
=
383 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
385 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
386 data
->auto_corr_ofdm_mrc_x1
=
387 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
390 /* Else if we got fewer than desired, increase sensitivity */
391 else if (false_alarms
< min_false_alarms
) {
393 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
394 false_alarms
, min_false_alarms
);
396 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
397 data
->auto_corr_ofdm
=
398 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
400 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
401 data
->auto_corr_ofdm_mrc
=
402 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
404 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
405 data
->auto_corr_ofdm_x1
=
406 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
408 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
409 data
->auto_corr_ofdm_mrc_x1
=
410 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
412 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
413 min_false_alarms
, false_alarms
, max_false_alarms
);
418 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
419 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
422 struct iwl_sensitivity_cmd cmd
;
423 struct iwl_sensitivity_data
*data
= NULL
;
424 struct iwl_host_cmd cmd_out
= {
425 .id
= SENSITIVITY_CMD
,
426 .len
= sizeof(struct iwl_sensitivity_cmd
),
427 .meta
.flags
= CMD_ASYNC
,
431 data
= &(priv
->sensitivity_data
);
433 memset(&cmd
, 0, sizeof(cmd
));
435 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
436 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
437 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
438 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
439 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
440 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
441 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
442 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
444 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
445 cpu_to_le16((u16
)data
->auto_corr_cck
);
446 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
447 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
449 cmd
.table
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
450 cpu_to_le16((u16
)data
->nrg_th_cck
);
451 cmd
.table
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
452 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
454 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
456 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
458 cmd
.table
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
461 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
463 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
466 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
467 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
470 /* Update uCode's "work" table, and copy it to DSP */
471 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
473 /* Don't send command to uCode if nothing has changed */
474 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
475 sizeof(u16
)*HD_TABLE_SIZE
)) {
476 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
480 /* Copy table for comparison next time */
481 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
482 sizeof(u16
)*HD_TABLE_SIZE
);
484 ret
= iwl_send_cmd(priv
, &cmd_out
);
486 IWL_ERR(priv
, "SENSITIVITY_CMD failed\n");
491 void iwl_init_sensitivity(struct iwl_priv
*priv
)
495 struct iwl_sensitivity_data
*data
= NULL
;
496 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
498 if (priv
->disable_sens_cal
)
501 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
503 /* Clear driver's sensitivity algo data */
504 data
= &(priv
->sensitivity_data
);
509 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
511 data
->num_in_cck_no_fa
= 0;
512 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
513 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
514 data
->nrg_silence_ref
= 0;
515 data
->nrg_silence_idx
= 0;
516 data
->nrg_energy_idx
= 0;
518 for (i
= 0; i
< 10; i
++)
519 data
->nrg_value
[i
] = 0;
521 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
522 data
->nrg_silence_rssi
[i
] = 0;
524 data
->auto_corr_ofdm
= 90;
525 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
526 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
527 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
528 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
529 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
530 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
531 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
533 data
->last_bad_plcp_cnt_ofdm
= 0;
534 data
->last_fa_cnt_ofdm
= 0;
535 data
->last_bad_plcp_cnt_cck
= 0;
536 data
->last_fa_cnt_cck
= 0;
538 ret
|= iwl_sensitivity_write(priv
);
539 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
541 EXPORT_SYMBOL(iwl_init_sensitivity
);
543 void iwl_sensitivity_calibration(struct iwl_priv
*priv
,
544 struct iwl_notif_statistics
*resp
)
553 struct iwl_sensitivity_data
*data
= NULL
;
554 struct statistics_rx_non_phy
*rx_info
= &(resp
->rx
.general
);
555 struct statistics_rx
*statistics
= &(resp
->rx
);
557 struct statistics_general_data statis
;
559 if (priv
->disable_sens_cal
)
562 data
= &(priv
->sensitivity_data
);
564 if (!iwl_is_associated(priv
)) {
565 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
569 spin_lock_irqsave(&priv
->lock
, flags
);
570 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
571 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
572 spin_unlock_irqrestore(&priv
->lock
, flags
);
576 /* Extract Statistics: */
577 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
578 fa_cck
= le32_to_cpu(statistics
->cck
.false_alarm_cnt
);
579 fa_ofdm
= le32_to_cpu(statistics
->ofdm
.false_alarm_cnt
);
580 bad_plcp_cck
= le32_to_cpu(statistics
->cck
.plcp_err
);
581 bad_plcp_ofdm
= le32_to_cpu(statistics
->ofdm
.plcp_err
);
583 statis
.beacon_silence_rssi_a
=
584 le32_to_cpu(statistics
->general
.beacon_silence_rssi_a
);
585 statis
.beacon_silence_rssi_b
=
586 le32_to_cpu(statistics
->general
.beacon_silence_rssi_b
);
587 statis
.beacon_silence_rssi_c
=
588 le32_to_cpu(statistics
->general
.beacon_silence_rssi_c
);
589 statis
.beacon_energy_a
=
590 le32_to_cpu(statistics
->general
.beacon_energy_a
);
591 statis
.beacon_energy_b
=
592 le32_to_cpu(statistics
->general
.beacon_energy_b
);
593 statis
.beacon_energy_c
=
594 le32_to_cpu(statistics
->general
.beacon_energy_c
);
596 spin_unlock_irqrestore(&priv
->lock
, flags
);
598 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
600 if (!rx_enable_time
) {
601 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0! \n");
605 /* These statistics increase monotonically, and do not reset
606 * at each beacon. Calculate difference from last value, or just
607 * use the new statistics value if it has reset or wrapped around. */
608 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
609 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
611 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
612 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
615 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
616 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
618 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
619 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
622 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
623 data
->last_fa_cnt_ofdm
= fa_ofdm
;
625 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
626 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
629 if (data
->last_fa_cnt_cck
> fa_cck
)
630 data
->last_fa_cnt_cck
= fa_cck
;
632 fa_cck
-= data
->last_fa_cnt_cck
;
633 data
->last_fa_cnt_cck
+= fa_cck
;
636 /* Total aborted signal locks */
637 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
638 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
640 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
641 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
643 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
644 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
645 iwl_sensitivity_write(priv
);
649 EXPORT_SYMBOL(iwl_sensitivity_calibration
);
652 * Accumulate 20 beacons of signal and noise statistics for each of
653 * 3 receivers/antennas/rx-chains, then figure out:
654 * 1) Which antennas are connected.
655 * 2) Differential rx gain settings to balance the 3 receivers.
657 void iwl_chain_noise_calibration(struct iwl_priv
*priv
,
658 struct iwl_notif_statistics
*stat_resp
)
660 struct iwl_chain_noise_data
*data
= NULL
;
668 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
669 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
671 u16 max_average_sig_antenna_i
;
672 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
673 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
675 u16 rxon_chnum
= INITIALIZATION_VALUE
;
676 u16 stat_chnum
= INITIALIZATION_VALUE
;
679 u32 active_chains
= 0;
682 struct statistics_rx_non_phy
*rx_info
= &(stat_resp
->rx
.general
);
684 if (priv
->disable_chain_noise_cal
)
687 data
= &(priv
->chain_noise_data
);
689 /* Accumulate just the first 20 beacons after the first association,
690 * then we're done forever. */
691 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
692 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
693 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
697 spin_lock_irqsave(&priv
->lock
, flags
);
698 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
699 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
700 spin_unlock_irqrestore(&priv
->lock
, flags
);
704 rxon_band24
= !!(priv
->staging_rxon
.flags
& RXON_FLG_BAND_24G_MSK
);
705 rxon_chnum
= le16_to_cpu(priv
->staging_rxon
.channel
);
706 stat_band24
= !!(stat_resp
->flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
707 stat_chnum
= le32_to_cpu(stat_resp
->flag
) >> 16;
709 /* Make sure we accumulate data for just the associated channel
710 * (even if scanning). */
711 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
712 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
713 rxon_chnum
, rxon_band24
);
714 spin_unlock_irqrestore(&priv
->lock
, flags
);
718 /* Accumulate beacon statistics values across 20 beacons */
719 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
721 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
723 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
726 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
727 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
728 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
730 spin_unlock_irqrestore(&priv
->lock
, flags
);
732 data
->beacon_count
++;
734 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
735 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
736 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
738 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
739 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
740 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
742 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
743 rxon_chnum
, rxon_band24
, data
->beacon_count
);
744 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
745 chain_sig_a
, chain_sig_b
, chain_sig_c
);
746 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
747 chain_noise_a
, chain_noise_b
, chain_noise_c
);
749 /* If this is the 20th beacon, determine:
750 * 1) Disconnected antennas (using signal strengths)
751 * 2) Differential gain (using silence noise) to balance receivers */
752 if (data
->beacon_count
!= CAL_NUM_OF_BEACONS
)
755 /* Analyze signal for disconnected antenna */
756 average_sig
[0] = (data
->chain_signal_a
) / CAL_NUM_OF_BEACONS
;
757 average_sig
[1] = (data
->chain_signal_b
) / CAL_NUM_OF_BEACONS
;
758 average_sig
[2] = (data
->chain_signal_c
) / CAL_NUM_OF_BEACONS
;
760 if (average_sig
[0] >= average_sig
[1]) {
761 max_average_sig
= average_sig
[0];
762 max_average_sig_antenna_i
= 0;
763 active_chains
= (1 << max_average_sig_antenna_i
);
765 max_average_sig
= average_sig
[1];
766 max_average_sig_antenna_i
= 1;
767 active_chains
= (1 << max_average_sig_antenna_i
);
770 if (average_sig
[2] >= max_average_sig
) {
771 max_average_sig
= average_sig
[2];
772 max_average_sig_antenna_i
= 2;
773 active_chains
= (1 << max_average_sig_antenna_i
);
776 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
777 average_sig
[0], average_sig
[1], average_sig
[2]);
778 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
779 max_average_sig
, max_average_sig_antenna_i
);
781 /* Compare signal strengths for all 3 receivers. */
782 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
783 if (i
!= max_average_sig_antenna_i
) {
784 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
786 /* If signal is very weak, compared with
787 * strongest, mark it as disconnected. */
788 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
789 data
->disconn_array
[i
] = 1;
791 active_chains
|= (1 << i
);
792 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
793 "disconn_array[i] = %d\n",
794 i
, rssi_delta
, data
->disconn_array
[i
]);
799 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
800 /* loops on all the bits of
801 * priv->hw_setting.valid_tx_ant */
802 u8 ant_msk
= (1 << i
);
803 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
807 if (data
->disconn_array
[i
] == 0)
808 /* there is a Tx antenna connected */
810 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
811 data
->disconn_array
[i
]) {
812 /* This is the last TX antenna and is also
813 * disconnected connect it anyway */
814 data
->disconn_array
[i
] = 0;
815 active_chains
|= ant_msk
;
816 IWL_DEBUG_CALIB(priv
, "All Tx chains are disconnected W/A - "
817 "declare %d as connected\n", i
);
822 /* Save for use within RXON, TX, SCAN commands, etc. */
823 priv
->chain_noise_data
.active_chains
= active_chains
;
824 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
827 /* Analyze noise for rx balance */
828 average_noise
[0] = ((data
->chain_noise_a
)/CAL_NUM_OF_BEACONS
);
829 average_noise
[1] = ((data
->chain_noise_b
)/CAL_NUM_OF_BEACONS
);
830 average_noise
[2] = ((data
->chain_noise_c
)/CAL_NUM_OF_BEACONS
);
832 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
833 if (!(data
->disconn_array
[i
]) &&
834 (average_noise
[i
] <= min_average_noise
)) {
835 /* This means that chain i is active and has
836 * lower noise values so far: */
837 min_average_noise
= average_noise
[i
];
838 min_average_noise_antenna_i
= i
;
842 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
843 average_noise
[0], average_noise
[1],
846 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
847 min_average_noise
, min_average_noise_antenna_i
);
849 if (priv
->cfg
->ops
->utils
->gain_computation
)
850 priv
->cfg
->ops
->utils
->gain_computation(priv
, average_noise
,
851 min_average_noise_antenna_i
, min_average_noise
);
853 /* Some power changes may have been made during the calibration.
854 * Update and commit the RXON
856 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
857 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
859 data
->state
= IWL_CHAIN_NOISE_DONE
;
860 iwl_power_update_mode(priv
, 0);
862 EXPORT_SYMBOL(iwl_chain_noise_calibration
);
865 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
868 memset(&(priv
->sensitivity_data
), 0,
869 sizeof(struct iwl_sensitivity_data
));
870 memset(&(priv
->chain_noise_data
), 0,
871 sizeof(struct iwl_chain_noise_data
));
872 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
873 priv
->chain_noise_data
.delta_gain_code
[i
] =
874 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
876 /* Ask for statistics now, the uCode will send notification
877 * periodically after association */
878 iwl_send_statistics_request(priv
, CMD_ASYNC
);
880 EXPORT_SYMBOL(iwl_reset_run_time_calib
);