perf: Humanize the number of contexts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blobf416aef242c3325146c285da73f204d3f3018b4d
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly = 1;
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
68 static atomic64_t perf_event_id;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock);
76 * Architecture provided APIs - weak aliases:
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
80 return NULL;
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
86 void __weak perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
102 static void get_ctx(struct perf_event_context *ctx)
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 static void free_ctx(struct rcu_head *head)
109 struct perf_event_context *ctx;
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
115 static void put_ctx(struct perf_event_context *ctx)
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
126 static void unclone_ctx(struct perf_event_context *ctx)
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
135 * If we inherit events we want to return the parent event id
136 * to userspace.
138 static u64 primary_event_id(struct perf_event *event)
140 u64 id = event->id;
142 if (event->parent)
143 id = event->parent->id;
145 return id;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 struct perf_event_context *ctx;
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
183 rcu_read_unlock();
184 return ctx;
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
194 struct perf_event_context *ctx;
195 unsigned long flags;
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
202 return ctx;
205 static void perf_unpin_context(struct perf_event_context *ctx)
207 unsigned long flags;
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
215 static inline u64 perf_clock(void)
217 return cpu_clock(raw_smp_processor_id());
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context *ctx)
225 u64 now = perf_clock();
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event *event)
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
248 event->total_time_enabled = run_end - event->tstamp_enabled;
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
255 event->total_time_running = run_end - event->tstamp_running;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event *leader)
263 struct perf_event *event;
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
294 if (event->group_leader == event) {
295 struct list_head *list;
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
310 static void perf_group_attach(struct perf_event *event)
312 struct perf_event *group_leader = event->group_leader;
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
317 if (group_leader == event)
318 return;
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
336 * We can have double detach due to exit/hot-unplug + close.
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
347 list_del_rcu(&event->event_entry);
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
352 update_group_times(event);
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
365 static void perf_group_detach(struct perf_event *event)
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
371 * We can have double detach due to exit/hot-unplug + close.
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
376 event->attach_state &= ~PERF_ATTACH_GROUP;
379 * If this is a sibling, remove it from its group.
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
405 static void
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
411 return;
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
420 event->oncpu = -1;
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
424 ctx->nr_active--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
429 static void
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
434 struct perf_event *event;
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 return;
439 event_sched_out(group_event, cpuctx, ctx);
442 * Schedule out siblings (if any):
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
452 * Cross CPU call to remove a performance event
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
457 static void __perf_event_remove_from_context(void *info)
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
468 if (ctx->task && cpuctx->task_ctx != ctx)
469 return;
471 raw_spin_lock(&ctx->lock);
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
476 perf_disable();
478 event_sched_out(event, cpuctx, ctx);
480 list_del_event(event, ctx);
482 if (!ctx->task) {
484 * Allow more per task events with respect to the
485 * reservation:
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
492 perf_enable();
493 raw_spin_unlock(&ctx->lock);
498 * Remove the event from a task's (or a CPU's) list of events.
500 * Must be called with ctx->mutex held.
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
512 static void perf_event_remove_from_context(struct perf_event *event)
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
517 if (!task) {
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
532 raw_spin_lock_irq(&ctx->lock);
534 * If the context is active we need to retry the smp call.
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
552 * Cross CPU call to disable a performance event
554 static void __perf_event_disable(void *info)
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
567 raw_spin_lock(&ctx->lock);
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
583 raw_spin_unlock(&ctx->lock);
587 * Disable a event.
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
599 void perf_event_disable(struct perf_event *event)
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
604 if (!task) {
606 * Disable the event on the cpu that it's on
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
616 raw_spin_lock_irq(&ctx->lock);
618 * If the event is still active, we need to retry the cross-call.
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
634 raw_spin_unlock_irq(&ctx->lock);
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
648 * The new state must be visible before we turn it on in the hardware:
650 smp_wmb();
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
667 return 0;
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
677 bool txn = false;
679 if (group_event->state == PERF_EVENT_STATE_OFF)
680 return 0;
682 /* Check if group transaction availabe */
683 if (pmu->start_txn)
684 txn = true;
686 if (txn)
687 pmu->start_txn(pmu);
689 if (event_sched_in(group_event, cpuctx, ctx)) {
690 if (txn)
691 pmu->cancel_txn(pmu);
692 return -EAGAIN;
696 * Schedule in siblings as one group (if any):
698 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699 if (event_sched_in(event, cpuctx, ctx)) {
700 partial_group = event;
701 goto group_error;
705 if (!txn || !pmu->commit_txn(pmu))
706 return 0;
708 group_error:
710 * Groups can be scheduled in as one unit only, so undo any
711 * partial group before returning:
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event == partial_group)
715 break;
716 event_sched_out(event, cpuctx, ctx);
718 event_sched_out(group_event, cpuctx, ctx);
720 if (txn)
721 pmu->cancel_txn(pmu);
723 return -EAGAIN;
727 * Work out whether we can put this event group on the CPU now.
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
734 * Groups consisting entirely of software events can always go on.
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
742 if (cpuctx->exclusive)
743 return 0;
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
754 return can_add_hw;
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
768 * Cross CPU call to install and enable a performance event
770 * Must be called with ctx->mutex held
772 static void __perf_install_in_context(void *info)
774 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 struct perf_event *event = info;
776 struct perf_event_context *ctx = event->ctx;
777 struct perf_event *leader = event->group_leader;
778 int err;
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
798 * Protect the list operation against NMI by disabling the
799 * events on a global level. NOP for non NMI based events.
801 perf_disable();
803 add_event_to_ctx(event, ctx);
805 if (event->cpu != -1 && event->cpu != smp_processor_id())
806 goto unlock;
809 * Don't put the event on if it is disabled or if
810 * it is in a group and the group isn't on.
812 if (event->state != PERF_EVENT_STATE_INACTIVE ||
813 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 goto unlock;
817 * An exclusive event can't go on if there are already active
818 * hardware events, and no hardware event can go on if there
819 * is already an exclusive event on.
821 if (!group_can_go_on(event, cpuctx, 1))
822 err = -EEXIST;
823 else
824 err = event_sched_in(event, cpuctx, ctx);
826 if (err) {
828 * This event couldn't go on. If it is in a group
829 * then we have to pull the whole group off.
830 * If the event group is pinned then put it in error state.
832 if (leader != event)
833 group_sched_out(leader, cpuctx, ctx);
834 if (leader->attr.pinned) {
835 update_group_times(leader);
836 leader->state = PERF_EVENT_STATE_ERROR;
840 if (!err && !ctx->task && cpuctx->max_pertask)
841 cpuctx->max_pertask--;
843 unlock:
844 perf_enable();
846 raw_spin_unlock(&ctx->lock);
850 * Attach a performance event to a context
852 * First we add the event to the list with the hardware enable bit
853 * in event->hw_config cleared.
855 * If the event is attached to a task which is on a CPU we use a smp
856 * call to enable it in the task context. The task might have been
857 * scheduled away, but we check this in the smp call again.
859 * Must be called with ctx->mutex held.
861 static void
862 perf_install_in_context(struct perf_event_context *ctx,
863 struct perf_event *event,
864 int cpu)
866 struct task_struct *task = ctx->task;
868 if (!task) {
870 * Per cpu events are installed via an smp call and
871 * the install is always successful.
873 smp_call_function_single(cpu, __perf_install_in_context,
874 event, 1);
875 return;
878 retry:
879 task_oncpu_function_call(task, __perf_install_in_context,
880 event);
882 raw_spin_lock_irq(&ctx->lock);
884 * we need to retry the smp call.
886 if (ctx->is_active && list_empty(&event->group_entry)) {
887 raw_spin_unlock_irq(&ctx->lock);
888 goto retry;
892 * The lock prevents that this context is scheduled in so we
893 * can add the event safely, if it the call above did not
894 * succeed.
896 if (list_empty(&event->group_entry))
897 add_event_to_ctx(event, ctx);
898 raw_spin_unlock_irq(&ctx->lock);
902 * Put a event into inactive state and update time fields.
903 * Enabling the leader of a group effectively enables all
904 * the group members that aren't explicitly disabled, so we
905 * have to update their ->tstamp_enabled also.
906 * Note: this works for group members as well as group leaders
907 * since the non-leader members' sibling_lists will be empty.
909 static void __perf_event_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
912 struct perf_event *sub;
914 event->state = PERF_EVENT_STATE_INACTIVE;
915 event->tstamp_enabled = ctx->time - event->total_time_enabled;
916 list_for_each_entry(sub, &event->sibling_list, group_entry)
917 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 sub->tstamp_enabled =
919 ctx->time - sub->total_time_enabled;
923 * Cross CPU call to enable a performance event
925 static void __perf_event_enable(void *info)
927 struct perf_event *event = info;
928 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 struct perf_event_context *ctx = event->ctx;
930 struct perf_event *leader = event->group_leader;
931 int err;
934 * If this is a per-task event, need to check whether this
935 * event's task is the current task on this cpu.
937 if (ctx->task && cpuctx->task_ctx != ctx) {
938 if (cpuctx->task_ctx || ctx->task != current)
939 return;
940 cpuctx->task_ctx = ctx;
943 raw_spin_lock(&ctx->lock);
944 ctx->is_active = 1;
945 update_context_time(ctx);
947 if (event->state >= PERF_EVENT_STATE_INACTIVE)
948 goto unlock;
949 __perf_event_mark_enabled(event, ctx);
951 if (event->cpu != -1 && event->cpu != smp_processor_id())
952 goto unlock;
955 * If the event is in a group and isn't the group leader,
956 * then don't put it on unless the group is on.
958 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959 goto unlock;
961 if (!group_can_go_on(event, cpuctx, 1)) {
962 err = -EEXIST;
963 } else {
964 perf_disable();
965 if (event == leader)
966 err = group_sched_in(event, cpuctx, ctx);
967 else
968 err = event_sched_in(event, cpuctx, ctx);
969 perf_enable();
972 if (err) {
974 * If this event can't go on and it's part of a
975 * group, then the whole group has to come off.
977 if (leader != event)
978 group_sched_out(leader, cpuctx, ctx);
979 if (leader->attr.pinned) {
980 update_group_times(leader);
981 leader->state = PERF_EVENT_STATE_ERROR;
985 unlock:
986 raw_spin_unlock(&ctx->lock);
990 * Enable a event.
992 * If event->ctx is a cloned context, callers must make sure that
993 * every task struct that event->ctx->task could possibly point to
994 * remains valid. This condition is satisfied when called through
995 * perf_event_for_each_child or perf_event_for_each as described
996 * for perf_event_disable.
998 void perf_event_enable(struct perf_event *event)
1000 struct perf_event_context *ctx = event->ctx;
1001 struct task_struct *task = ctx->task;
1003 if (!task) {
1005 * Enable the event on the cpu that it's on
1007 smp_call_function_single(event->cpu, __perf_event_enable,
1008 event, 1);
1009 return;
1012 raw_spin_lock_irq(&ctx->lock);
1013 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 goto out;
1017 * If the event is in error state, clear that first.
1018 * That way, if we see the event in error state below, we
1019 * know that it has gone back into error state, as distinct
1020 * from the task having been scheduled away before the
1021 * cross-call arrived.
1023 if (event->state == PERF_EVENT_STATE_ERROR)
1024 event->state = PERF_EVENT_STATE_OFF;
1026 retry:
1027 raw_spin_unlock_irq(&ctx->lock);
1028 task_oncpu_function_call(task, __perf_event_enable, event);
1030 raw_spin_lock_irq(&ctx->lock);
1033 * If the context is active and the event is still off,
1034 * we need to retry the cross-call.
1036 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 goto retry;
1040 * Since we have the lock this context can't be scheduled
1041 * in, so we can change the state safely.
1043 if (event->state == PERF_EVENT_STATE_OFF)
1044 __perf_event_mark_enabled(event, ctx);
1046 out:
1047 raw_spin_unlock_irq(&ctx->lock);
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1053 * not supported on inherited events
1055 if (event->attr.inherit)
1056 return -EINVAL;
1058 atomic_add(refresh, &event->event_limit);
1059 perf_event_enable(event);
1061 return 0;
1064 enum event_type_t {
1065 EVENT_FLEXIBLE = 0x1,
1066 EVENT_PINNED = 0x2,
1067 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071 struct perf_cpu_context *cpuctx,
1072 enum event_type_t event_type)
1074 struct perf_event *event;
1076 raw_spin_lock(&ctx->lock);
1077 ctx->is_active = 0;
1078 if (likely(!ctx->nr_events))
1079 goto out;
1080 update_context_time(ctx);
1082 perf_disable();
1083 if (!ctx->nr_active)
1084 goto out_enable;
1086 if (event_type & EVENT_PINNED)
1087 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088 group_sched_out(event, cpuctx, ctx);
1090 if (event_type & EVENT_FLEXIBLE)
1091 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092 group_sched_out(event, cpuctx, ctx);
1094 out_enable:
1095 perf_enable();
1096 out:
1097 raw_spin_unlock(&ctx->lock);
1101 * Test whether two contexts are equivalent, i.e. whether they
1102 * have both been cloned from the same version of the same context
1103 * and they both have the same number of enabled events.
1104 * If the number of enabled events is the same, then the set
1105 * of enabled events should be the same, because these are both
1106 * inherited contexts, therefore we can't access individual events
1107 * in them directly with an fd; we can only enable/disable all
1108 * events via prctl, or enable/disable all events in a family
1109 * via ioctl, which will have the same effect on both contexts.
1111 static int context_equiv(struct perf_event_context *ctx1,
1112 struct perf_event_context *ctx2)
1114 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115 && ctx1->parent_gen == ctx2->parent_gen
1116 && !ctx1->pin_count && !ctx2->pin_count;
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120 struct perf_event *next_event)
1122 u64 value;
1124 if (!event->attr.inherit_stat)
1125 return;
1128 * Update the event value, we cannot use perf_event_read()
1129 * because we're in the middle of a context switch and have IRQs
1130 * disabled, which upsets smp_call_function_single(), however
1131 * we know the event must be on the current CPU, therefore we
1132 * don't need to use it.
1134 switch (event->state) {
1135 case PERF_EVENT_STATE_ACTIVE:
1136 event->pmu->read(event);
1137 /* fall-through */
1139 case PERF_EVENT_STATE_INACTIVE:
1140 update_event_times(event);
1141 break;
1143 default:
1144 break;
1148 * In order to keep per-task stats reliable we need to flip the event
1149 * values when we flip the contexts.
1151 value = local64_read(&next_event->count);
1152 value = local64_xchg(&event->count, value);
1153 local64_set(&next_event->count, value);
1155 swap(event->total_time_enabled, next_event->total_time_enabled);
1156 swap(event->total_time_running, next_event->total_time_running);
1159 * Since we swizzled the values, update the user visible data too.
1161 perf_event_update_userpage(event);
1162 perf_event_update_userpage(next_event);
1165 #define list_next_entry(pos, member) \
1166 list_entry(pos->member.next, typeof(*pos), member)
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169 struct perf_event_context *next_ctx)
1171 struct perf_event *event, *next_event;
1173 if (!ctx->nr_stat)
1174 return;
1176 update_context_time(ctx);
1178 event = list_first_entry(&ctx->event_list,
1179 struct perf_event, event_entry);
1181 next_event = list_first_entry(&next_ctx->event_list,
1182 struct perf_event, event_entry);
1184 while (&event->event_entry != &ctx->event_list &&
1185 &next_event->event_entry != &next_ctx->event_list) {
1187 __perf_event_sync_stat(event, next_event);
1189 event = list_next_entry(event, event_entry);
1190 next_event = list_next_entry(next_event, event_entry);
1195 * Called from scheduler to remove the events of the current task,
1196 * with interrupts disabled.
1198 * We stop each event and update the event value in event->count.
1200 * This does not protect us against NMI, but disable()
1201 * sets the disabled bit in the control field of event _before_
1202 * accessing the event control register. If a NMI hits, then it will
1203 * not restart the event.
1205 void perf_event_task_sched_out(struct task_struct *task,
1206 struct task_struct *next)
1208 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 struct perf_event_context *ctx = task->perf_event_ctxp;
1210 struct perf_event_context *next_ctx;
1211 struct perf_event_context *parent;
1212 int do_switch = 1;
1214 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1216 if (likely(!ctx || !cpuctx->task_ctx))
1217 return;
1219 rcu_read_lock();
1220 parent = rcu_dereference(ctx->parent_ctx);
1221 next_ctx = next->perf_event_ctxp;
1222 if (parent && next_ctx &&
1223 rcu_dereference(next_ctx->parent_ctx) == parent) {
1225 * Looks like the two contexts are clones, so we might be
1226 * able to optimize the context switch. We lock both
1227 * contexts and check that they are clones under the
1228 * lock (including re-checking that neither has been
1229 * uncloned in the meantime). It doesn't matter which
1230 * order we take the locks because no other cpu could
1231 * be trying to lock both of these tasks.
1233 raw_spin_lock(&ctx->lock);
1234 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235 if (context_equiv(ctx, next_ctx)) {
1237 * XXX do we need a memory barrier of sorts
1238 * wrt to rcu_dereference() of perf_event_ctxp
1240 task->perf_event_ctxp = next_ctx;
1241 next->perf_event_ctxp = ctx;
1242 ctx->task = next;
1243 next_ctx->task = task;
1244 do_switch = 0;
1246 perf_event_sync_stat(ctx, next_ctx);
1248 raw_spin_unlock(&next_ctx->lock);
1249 raw_spin_unlock(&ctx->lock);
1251 rcu_read_unlock();
1253 if (do_switch) {
1254 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 cpuctx->task_ctx = NULL;
1259 static void task_ctx_sched_out(struct perf_event_context *ctx,
1260 enum event_type_t event_type)
1262 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1264 if (!cpuctx->task_ctx)
1265 return;
1267 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1268 return;
1270 ctx_sched_out(ctx, cpuctx, event_type);
1271 cpuctx->task_ctx = NULL;
1275 * Called with IRQs disabled
1277 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1279 task_ctx_sched_out(ctx, EVENT_ALL);
1283 * Called with IRQs disabled
1285 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1286 enum event_type_t event_type)
1288 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1291 static void
1292 ctx_pinned_sched_in(struct perf_event_context *ctx,
1293 struct perf_cpu_context *cpuctx)
1295 struct perf_event *event;
1297 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1298 if (event->state <= PERF_EVENT_STATE_OFF)
1299 continue;
1300 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 continue;
1303 if (group_can_go_on(event, cpuctx, 1))
1304 group_sched_in(event, cpuctx, ctx);
1307 * If this pinned group hasn't been scheduled,
1308 * put it in error state.
1310 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1311 update_group_times(event);
1312 event->state = PERF_EVENT_STATE_ERROR;
1317 static void
1318 ctx_flexible_sched_in(struct perf_event_context *ctx,
1319 struct perf_cpu_context *cpuctx)
1321 struct perf_event *event;
1322 int can_add_hw = 1;
1324 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1325 /* Ignore events in OFF or ERROR state */
1326 if (event->state <= PERF_EVENT_STATE_OFF)
1327 continue;
1329 * Listen to the 'cpu' scheduling filter constraint
1330 * of events:
1332 if (event->cpu != -1 && event->cpu != smp_processor_id())
1333 continue;
1335 if (group_can_go_on(event, cpuctx, can_add_hw))
1336 if (group_sched_in(event, cpuctx, ctx))
1337 can_add_hw = 0;
1341 static void
1342 ctx_sched_in(struct perf_event_context *ctx,
1343 struct perf_cpu_context *cpuctx,
1344 enum event_type_t event_type)
1346 raw_spin_lock(&ctx->lock);
1347 ctx->is_active = 1;
1348 if (likely(!ctx->nr_events))
1349 goto out;
1351 ctx->timestamp = perf_clock();
1353 perf_disable();
1356 * First go through the list and put on any pinned groups
1357 * in order to give them the best chance of going on.
1359 if (event_type & EVENT_PINNED)
1360 ctx_pinned_sched_in(ctx, cpuctx);
1362 /* Then walk through the lower prio flexible groups */
1363 if (event_type & EVENT_FLEXIBLE)
1364 ctx_flexible_sched_in(ctx, cpuctx);
1366 perf_enable();
1367 out:
1368 raw_spin_unlock(&ctx->lock);
1371 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1372 enum event_type_t event_type)
1374 struct perf_event_context *ctx = &cpuctx->ctx;
1376 ctx_sched_in(ctx, cpuctx, event_type);
1379 static void task_ctx_sched_in(struct task_struct *task,
1380 enum event_type_t event_type)
1382 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1383 struct perf_event_context *ctx = task->perf_event_ctxp;
1385 if (likely(!ctx))
1386 return;
1387 if (cpuctx->task_ctx == ctx)
1388 return;
1389 ctx_sched_in(ctx, cpuctx, event_type);
1390 cpuctx->task_ctx = ctx;
1393 * Called from scheduler to add the events of the current task
1394 * with interrupts disabled.
1396 * We restore the event value and then enable it.
1398 * This does not protect us against NMI, but enable()
1399 * sets the enabled bit in the control field of event _before_
1400 * accessing the event control register. If a NMI hits, then it will
1401 * keep the event running.
1403 void perf_event_task_sched_in(struct task_struct *task)
1405 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1406 struct perf_event_context *ctx = task->perf_event_ctxp;
1408 if (likely(!ctx))
1409 return;
1411 if (cpuctx->task_ctx == ctx)
1412 return;
1414 perf_disable();
1417 * We want to keep the following priority order:
1418 * cpu pinned (that don't need to move), task pinned,
1419 * cpu flexible, task flexible.
1421 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1425 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1427 cpuctx->task_ctx = ctx;
1429 perf_enable();
1432 #define MAX_INTERRUPTS (~0ULL)
1434 static void perf_log_throttle(struct perf_event *event, int enable);
1436 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1438 u64 frequency = event->attr.sample_freq;
1439 u64 sec = NSEC_PER_SEC;
1440 u64 divisor, dividend;
1442 int count_fls, nsec_fls, frequency_fls, sec_fls;
1444 count_fls = fls64(count);
1445 nsec_fls = fls64(nsec);
1446 frequency_fls = fls64(frequency);
1447 sec_fls = 30;
1450 * We got @count in @nsec, with a target of sample_freq HZ
1451 * the target period becomes:
1453 * @count * 10^9
1454 * period = -------------------
1455 * @nsec * sample_freq
1460 * Reduce accuracy by one bit such that @a and @b converge
1461 * to a similar magnitude.
1463 #define REDUCE_FLS(a, b) \
1464 do { \
1465 if (a##_fls > b##_fls) { \
1466 a >>= 1; \
1467 a##_fls--; \
1468 } else { \
1469 b >>= 1; \
1470 b##_fls--; \
1472 } while (0)
1475 * Reduce accuracy until either term fits in a u64, then proceed with
1476 * the other, so that finally we can do a u64/u64 division.
1478 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1479 REDUCE_FLS(nsec, frequency);
1480 REDUCE_FLS(sec, count);
1483 if (count_fls + sec_fls > 64) {
1484 divisor = nsec * frequency;
1486 while (count_fls + sec_fls > 64) {
1487 REDUCE_FLS(count, sec);
1488 divisor >>= 1;
1491 dividend = count * sec;
1492 } else {
1493 dividend = count * sec;
1495 while (nsec_fls + frequency_fls > 64) {
1496 REDUCE_FLS(nsec, frequency);
1497 dividend >>= 1;
1500 divisor = nsec * frequency;
1503 if (!divisor)
1504 return dividend;
1506 return div64_u64(dividend, divisor);
1509 static void perf_event_stop(struct perf_event *event)
1511 if (!event->pmu->stop)
1512 return event->pmu->disable(event);
1514 return event->pmu->stop(event);
1517 static int perf_event_start(struct perf_event *event)
1519 if (!event->pmu->start)
1520 return event->pmu->enable(event);
1522 return event->pmu->start(event);
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1527 struct hw_perf_event *hwc = &event->hw;
1528 s64 period, sample_period;
1529 s64 delta;
1531 period = perf_calculate_period(event, nsec, count);
1533 delta = (s64)(period - hwc->sample_period);
1534 delta = (delta + 7) / 8; /* low pass filter */
1536 sample_period = hwc->sample_period + delta;
1538 if (!sample_period)
1539 sample_period = 1;
1541 hwc->sample_period = sample_period;
1543 if (local64_read(&hwc->period_left) > 8*sample_period) {
1544 perf_disable();
1545 perf_event_stop(event);
1546 local64_set(&hwc->period_left, 0);
1547 perf_event_start(event);
1548 perf_enable();
1552 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1554 struct perf_event *event;
1555 struct hw_perf_event *hwc;
1556 u64 interrupts, now;
1557 s64 delta;
1559 raw_spin_lock(&ctx->lock);
1560 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 continue;
1564 if (event->cpu != -1 && event->cpu != smp_processor_id())
1565 continue;
1567 hwc = &event->hw;
1569 interrupts = hwc->interrupts;
1570 hwc->interrupts = 0;
1573 * unthrottle events on the tick
1575 if (interrupts == MAX_INTERRUPTS) {
1576 perf_log_throttle(event, 1);
1577 perf_disable();
1578 event->pmu->unthrottle(event);
1579 perf_enable();
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1585 perf_disable();
1586 event->pmu->read(event);
1587 now = local64_read(&event->count);
1588 delta = now - hwc->freq_count_stamp;
1589 hwc->freq_count_stamp = now;
1591 if (delta > 0)
1592 perf_adjust_period(event, TICK_NSEC, delta);
1593 perf_enable();
1595 raw_spin_unlock(&ctx->lock);
1599 * Round-robin a context's events:
1601 static void rotate_ctx(struct perf_event_context *ctx)
1603 raw_spin_lock(&ctx->lock);
1605 /* Rotate the first entry last of non-pinned groups */
1606 list_rotate_left(&ctx->flexible_groups);
1608 raw_spin_unlock(&ctx->lock);
1611 void perf_event_task_tick(struct task_struct *curr)
1613 struct perf_cpu_context *cpuctx;
1614 struct perf_event_context *ctx;
1615 int rotate = 0;
1617 if (!atomic_read(&nr_events))
1618 return;
1620 cpuctx = &__get_cpu_var(perf_cpu_context);
1621 if (cpuctx->ctx.nr_events &&
1622 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1623 rotate = 1;
1625 ctx = curr->perf_event_ctxp;
1626 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1627 rotate = 1;
1629 perf_ctx_adjust_freq(&cpuctx->ctx);
1630 if (ctx)
1631 perf_ctx_adjust_freq(ctx);
1633 if (!rotate)
1634 return;
1636 perf_disable();
1637 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638 if (ctx)
1639 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1641 rotate_ctx(&cpuctx->ctx);
1642 if (ctx)
1643 rotate_ctx(ctx);
1645 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646 if (ctx)
1647 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648 perf_enable();
1651 static int event_enable_on_exec(struct perf_event *event,
1652 struct perf_event_context *ctx)
1654 if (!event->attr.enable_on_exec)
1655 return 0;
1657 event->attr.enable_on_exec = 0;
1658 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1659 return 0;
1661 __perf_event_mark_enabled(event, ctx);
1663 return 1;
1667 * Enable all of a task's events that have been marked enable-on-exec.
1668 * This expects task == current.
1670 static void perf_event_enable_on_exec(struct task_struct *task)
1672 struct perf_event_context *ctx;
1673 struct perf_event *event;
1674 unsigned long flags;
1675 int enabled = 0;
1676 int ret;
1678 local_irq_save(flags);
1679 ctx = task->perf_event_ctxp;
1680 if (!ctx || !ctx->nr_events)
1681 goto out;
1683 __perf_event_task_sched_out(ctx);
1685 raw_spin_lock(&ctx->lock);
1687 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1688 ret = event_enable_on_exec(event, ctx);
1689 if (ret)
1690 enabled = 1;
1693 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1694 ret = event_enable_on_exec(event, ctx);
1695 if (ret)
1696 enabled = 1;
1700 * Unclone this context if we enabled any event.
1702 if (enabled)
1703 unclone_ctx(ctx);
1705 raw_spin_unlock(&ctx->lock);
1707 perf_event_task_sched_in(task);
1708 out:
1709 local_irq_restore(flags);
1713 * Cross CPU call to read the hardware event
1715 static void __perf_event_read(void *info)
1717 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 struct perf_event *event = info;
1719 struct perf_event_context *ctx = event->ctx;
1722 * If this is a task context, we need to check whether it is
1723 * the current task context of this cpu. If not it has been
1724 * scheduled out before the smp call arrived. In that case
1725 * event->count would have been updated to a recent sample
1726 * when the event was scheduled out.
1728 if (ctx->task && cpuctx->task_ctx != ctx)
1729 return;
1731 raw_spin_lock(&ctx->lock);
1732 update_context_time(ctx);
1733 update_event_times(event);
1734 raw_spin_unlock(&ctx->lock);
1736 event->pmu->read(event);
1739 static inline u64 perf_event_count(struct perf_event *event)
1741 return local64_read(&event->count) + atomic64_read(&event->child_count);
1744 static u64 perf_event_read(struct perf_event *event)
1747 * If event is enabled and currently active on a CPU, update the
1748 * value in the event structure:
1750 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1751 smp_call_function_single(event->oncpu,
1752 __perf_event_read, event, 1);
1753 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1754 struct perf_event_context *ctx = event->ctx;
1755 unsigned long flags;
1757 raw_spin_lock_irqsave(&ctx->lock, flags);
1758 update_context_time(ctx);
1759 update_event_times(event);
1760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1763 return perf_event_count(event);
1767 * Callchain support
1770 struct callchain_cpus_entries {
1771 struct rcu_head rcu_head;
1772 struct perf_callchain_entry *cpu_entries[0];
1775 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1776 static atomic_t nr_callchain_events;
1777 static DEFINE_MUTEX(callchain_mutex);
1778 struct callchain_cpus_entries *callchain_cpus_entries;
1781 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1782 struct pt_regs *regs)
1786 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1787 struct pt_regs *regs)
1791 static void release_callchain_buffers_rcu(struct rcu_head *head)
1793 struct callchain_cpus_entries *entries;
1794 int cpu;
1796 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1798 for_each_possible_cpu(cpu)
1799 kfree(entries->cpu_entries[cpu]);
1801 kfree(entries);
1804 static void release_callchain_buffers(void)
1806 struct callchain_cpus_entries *entries;
1808 entries = callchain_cpus_entries;
1809 rcu_assign_pointer(callchain_cpus_entries, NULL);
1810 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1813 static int alloc_callchain_buffers(void)
1815 int cpu;
1816 int size;
1817 struct callchain_cpus_entries *entries;
1820 * We can't use the percpu allocation API for data that can be
1821 * accessed from NMI. Use a temporary manual per cpu allocation
1822 * until that gets sorted out.
1824 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1825 num_possible_cpus();
1827 entries = kzalloc(size, GFP_KERNEL);
1828 if (!entries)
1829 return -ENOMEM;
1831 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1833 for_each_possible_cpu(cpu) {
1834 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1835 cpu_to_node(cpu));
1836 if (!entries->cpu_entries[cpu])
1837 goto fail;
1840 rcu_assign_pointer(callchain_cpus_entries, entries);
1842 return 0;
1844 fail:
1845 for_each_possible_cpu(cpu)
1846 kfree(entries->cpu_entries[cpu]);
1847 kfree(entries);
1849 return -ENOMEM;
1852 static int get_callchain_buffers(void)
1854 int err = 0;
1855 int count;
1857 mutex_lock(&callchain_mutex);
1859 count = atomic_inc_return(&nr_callchain_events);
1860 if (WARN_ON_ONCE(count < 1)) {
1861 err = -EINVAL;
1862 goto exit;
1865 if (count > 1) {
1866 /* If the allocation failed, give up */
1867 if (!callchain_cpus_entries)
1868 err = -ENOMEM;
1869 goto exit;
1872 err = alloc_callchain_buffers();
1873 if (err)
1874 release_callchain_buffers();
1875 exit:
1876 mutex_unlock(&callchain_mutex);
1878 return err;
1881 static void put_callchain_buffers(void)
1883 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1884 release_callchain_buffers();
1885 mutex_unlock(&callchain_mutex);
1889 static int get_recursion_context(int *recursion)
1891 int rctx;
1893 if (in_nmi())
1894 rctx = 3;
1895 else if (in_irq())
1896 rctx = 2;
1897 else if (in_softirq())
1898 rctx = 1;
1899 else
1900 rctx = 0;
1902 if (recursion[rctx])
1903 return -1;
1905 recursion[rctx]++;
1906 barrier();
1908 return rctx;
1911 static inline void put_recursion_context(int *recursion, int rctx)
1913 barrier();
1914 recursion[rctx]--;
1917 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1919 int cpu;
1920 struct callchain_cpus_entries *entries;
1922 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1923 if (*rctx == -1)
1924 return NULL;
1926 entries = rcu_dereference(callchain_cpus_entries);
1927 if (!entries)
1928 return NULL;
1930 cpu = smp_processor_id();
1932 return &entries->cpu_entries[cpu][*rctx];
1935 static void
1936 put_callchain_entry(int rctx)
1938 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1941 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1943 int rctx;
1944 struct perf_callchain_entry *entry;
1947 entry = get_callchain_entry(&rctx);
1948 if (rctx == -1)
1949 return NULL;
1951 if (!entry)
1952 goto exit_put;
1954 entry->nr = 0;
1956 if (!user_mode(regs)) {
1957 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1958 perf_callchain_kernel(entry, regs);
1959 if (current->mm)
1960 regs = task_pt_regs(current);
1961 else
1962 regs = NULL;
1965 if (regs) {
1966 perf_callchain_store(entry, PERF_CONTEXT_USER);
1967 perf_callchain_user(entry, regs);
1970 exit_put:
1971 put_callchain_entry(rctx);
1973 return entry;
1977 * Initialize the perf_event context in a task_struct:
1979 static void
1980 __perf_event_init_context(struct perf_event_context *ctx,
1981 struct task_struct *task)
1983 raw_spin_lock_init(&ctx->lock);
1984 mutex_init(&ctx->mutex);
1985 INIT_LIST_HEAD(&ctx->pinned_groups);
1986 INIT_LIST_HEAD(&ctx->flexible_groups);
1987 INIT_LIST_HEAD(&ctx->event_list);
1988 atomic_set(&ctx->refcount, 1);
1989 ctx->task = task;
1992 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1994 struct perf_event_context *ctx;
1995 struct perf_cpu_context *cpuctx;
1996 struct task_struct *task;
1997 unsigned long flags;
1998 int err;
2000 if (pid == -1 && cpu != -1) {
2001 /* Must be root to operate on a CPU event: */
2002 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2003 return ERR_PTR(-EACCES);
2005 if (cpu < 0 || cpu >= nr_cpumask_bits)
2006 return ERR_PTR(-EINVAL);
2009 * We could be clever and allow to attach a event to an
2010 * offline CPU and activate it when the CPU comes up, but
2011 * that's for later.
2013 if (!cpu_online(cpu))
2014 return ERR_PTR(-ENODEV);
2016 cpuctx = &per_cpu(perf_cpu_context, cpu);
2017 ctx = &cpuctx->ctx;
2018 get_ctx(ctx);
2020 return ctx;
2023 rcu_read_lock();
2024 if (!pid)
2025 task = current;
2026 else
2027 task = find_task_by_vpid(pid);
2028 if (task)
2029 get_task_struct(task);
2030 rcu_read_unlock();
2032 if (!task)
2033 return ERR_PTR(-ESRCH);
2036 * Can't attach events to a dying task.
2038 err = -ESRCH;
2039 if (task->flags & PF_EXITING)
2040 goto errout;
2042 /* Reuse ptrace permission checks for now. */
2043 err = -EACCES;
2044 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2045 goto errout;
2047 retry:
2048 ctx = perf_lock_task_context(task, &flags);
2049 if (ctx) {
2050 unclone_ctx(ctx);
2051 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2054 if (!ctx) {
2055 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2056 err = -ENOMEM;
2057 if (!ctx)
2058 goto errout;
2059 __perf_event_init_context(ctx, task);
2060 get_ctx(ctx);
2061 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2063 * We raced with some other task; use
2064 * the context they set.
2066 kfree(ctx);
2067 goto retry;
2069 get_task_struct(task);
2072 put_task_struct(task);
2073 return ctx;
2075 errout:
2076 put_task_struct(task);
2077 return ERR_PTR(err);
2080 static void perf_event_free_filter(struct perf_event *event);
2082 static void free_event_rcu(struct rcu_head *head)
2084 struct perf_event *event;
2086 event = container_of(head, struct perf_event, rcu_head);
2087 if (event->ns)
2088 put_pid_ns(event->ns);
2089 perf_event_free_filter(event);
2090 kfree(event);
2093 static void perf_pending_sync(struct perf_event *event);
2094 static void perf_buffer_put(struct perf_buffer *buffer);
2096 static void free_event(struct perf_event *event)
2098 perf_pending_sync(event);
2100 if (!event->parent) {
2101 atomic_dec(&nr_events);
2102 if (event->attr.mmap || event->attr.mmap_data)
2103 atomic_dec(&nr_mmap_events);
2104 if (event->attr.comm)
2105 atomic_dec(&nr_comm_events);
2106 if (event->attr.task)
2107 atomic_dec(&nr_task_events);
2108 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2109 put_callchain_buffers();
2112 if (event->buffer) {
2113 perf_buffer_put(event->buffer);
2114 event->buffer = NULL;
2117 if (event->destroy)
2118 event->destroy(event);
2120 put_ctx(event->ctx);
2121 call_rcu(&event->rcu_head, free_event_rcu);
2124 int perf_event_release_kernel(struct perf_event *event)
2126 struct perf_event_context *ctx = event->ctx;
2129 * Remove from the PMU, can't get re-enabled since we got
2130 * here because the last ref went.
2132 perf_event_disable(event);
2134 WARN_ON_ONCE(ctx->parent_ctx);
2136 * There are two ways this annotation is useful:
2138 * 1) there is a lock recursion from perf_event_exit_task
2139 * see the comment there.
2141 * 2) there is a lock-inversion with mmap_sem through
2142 * perf_event_read_group(), which takes faults while
2143 * holding ctx->mutex, however this is called after
2144 * the last filedesc died, so there is no possibility
2145 * to trigger the AB-BA case.
2147 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2148 raw_spin_lock_irq(&ctx->lock);
2149 perf_group_detach(event);
2150 list_del_event(event, ctx);
2151 raw_spin_unlock_irq(&ctx->lock);
2152 mutex_unlock(&ctx->mutex);
2154 mutex_lock(&event->owner->perf_event_mutex);
2155 list_del_init(&event->owner_entry);
2156 mutex_unlock(&event->owner->perf_event_mutex);
2157 put_task_struct(event->owner);
2159 free_event(event);
2161 return 0;
2163 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2166 * Called when the last reference to the file is gone.
2168 static int perf_release(struct inode *inode, struct file *file)
2170 struct perf_event *event = file->private_data;
2172 file->private_data = NULL;
2174 return perf_event_release_kernel(event);
2177 static int perf_event_read_size(struct perf_event *event)
2179 int entry = sizeof(u64); /* value */
2180 int size = 0;
2181 int nr = 1;
2183 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2184 size += sizeof(u64);
2186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2187 size += sizeof(u64);
2189 if (event->attr.read_format & PERF_FORMAT_ID)
2190 entry += sizeof(u64);
2192 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2193 nr += event->group_leader->nr_siblings;
2194 size += sizeof(u64);
2197 size += entry * nr;
2199 return size;
2202 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2204 struct perf_event *child;
2205 u64 total = 0;
2207 *enabled = 0;
2208 *running = 0;
2210 mutex_lock(&event->child_mutex);
2211 total += perf_event_read(event);
2212 *enabled += event->total_time_enabled +
2213 atomic64_read(&event->child_total_time_enabled);
2214 *running += event->total_time_running +
2215 atomic64_read(&event->child_total_time_running);
2217 list_for_each_entry(child, &event->child_list, child_list) {
2218 total += perf_event_read(child);
2219 *enabled += child->total_time_enabled;
2220 *running += child->total_time_running;
2222 mutex_unlock(&event->child_mutex);
2224 return total;
2226 EXPORT_SYMBOL_GPL(perf_event_read_value);
2228 static int perf_event_read_group(struct perf_event *event,
2229 u64 read_format, char __user *buf)
2231 struct perf_event *leader = event->group_leader, *sub;
2232 int n = 0, size = 0, ret = -EFAULT;
2233 struct perf_event_context *ctx = leader->ctx;
2234 u64 values[5];
2235 u64 count, enabled, running;
2237 mutex_lock(&ctx->mutex);
2238 count = perf_event_read_value(leader, &enabled, &running);
2240 values[n++] = 1 + leader->nr_siblings;
2241 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2242 values[n++] = enabled;
2243 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2244 values[n++] = running;
2245 values[n++] = count;
2246 if (read_format & PERF_FORMAT_ID)
2247 values[n++] = primary_event_id(leader);
2249 size = n * sizeof(u64);
2251 if (copy_to_user(buf, values, size))
2252 goto unlock;
2254 ret = size;
2256 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2257 n = 0;
2259 values[n++] = perf_event_read_value(sub, &enabled, &running);
2260 if (read_format & PERF_FORMAT_ID)
2261 values[n++] = primary_event_id(sub);
2263 size = n * sizeof(u64);
2265 if (copy_to_user(buf + ret, values, size)) {
2266 ret = -EFAULT;
2267 goto unlock;
2270 ret += size;
2272 unlock:
2273 mutex_unlock(&ctx->mutex);
2275 return ret;
2278 static int perf_event_read_one(struct perf_event *event,
2279 u64 read_format, char __user *buf)
2281 u64 enabled, running;
2282 u64 values[4];
2283 int n = 0;
2285 values[n++] = perf_event_read_value(event, &enabled, &running);
2286 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2287 values[n++] = enabled;
2288 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2289 values[n++] = running;
2290 if (read_format & PERF_FORMAT_ID)
2291 values[n++] = primary_event_id(event);
2293 if (copy_to_user(buf, values, n * sizeof(u64)))
2294 return -EFAULT;
2296 return n * sizeof(u64);
2300 * Read the performance event - simple non blocking version for now
2302 static ssize_t
2303 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2305 u64 read_format = event->attr.read_format;
2306 int ret;
2309 * Return end-of-file for a read on a event that is in
2310 * error state (i.e. because it was pinned but it couldn't be
2311 * scheduled on to the CPU at some point).
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 return 0;
2316 if (count < perf_event_read_size(event))
2317 return -ENOSPC;
2319 WARN_ON_ONCE(event->ctx->parent_ctx);
2320 if (read_format & PERF_FORMAT_GROUP)
2321 ret = perf_event_read_group(event, read_format, buf);
2322 else
2323 ret = perf_event_read_one(event, read_format, buf);
2325 return ret;
2328 static ssize_t
2329 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2331 struct perf_event *event = file->private_data;
2333 return perf_read_hw(event, buf, count);
2336 static unsigned int perf_poll(struct file *file, poll_table *wait)
2338 struct perf_event *event = file->private_data;
2339 struct perf_buffer *buffer;
2340 unsigned int events = POLL_HUP;
2342 rcu_read_lock();
2343 buffer = rcu_dereference(event->buffer);
2344 if (buffer)
2345 events = atomic_xchg(&buffer->poll, 0);
2346 rcu_read_unlock();
2348 poll_wait(file, &event->waitq, wait);
2350 return events;
2353 static void perf_event_reset(struct perf_event *event)
2355 (void)perf_event_read(event);
2356 local64_set(&event->count, 0);
2357 perf_event_update_userpage(event);
2361 * Holding the top-level event's child_mutex means that any
2362 * descendant process that has inherited this event will block
2363 * in sync_child_event if it goes to exit, thus satisfying the
2364 * task existence requirements of perf_event_enable/disable.
2366 static void perf_event_for_each_child(struct perf_event *event,
2367 void (*func)(struct perf_event *))
2369 struct perf_event *child;
2371 WARN_ON_ONCE(event->ctx->parent_ctx);
2372 mutex_lock(&event->child_mutex);
2373 func(event);
2374 list_for_each_entry(child, &event->child_list, child_list)
2375 func(child);
2376 mutex_unlock(&event->child_mutex);
2379 static void perf_event_for_each(struct perf_event *event,
2380 void (*func)(struct perf_event *))
2382 struct perf_event_context *ctx = event->ctx;
2383 struct perf_event *sibling;
2385 WARN_ON_ONCE(ctx->parent_ctx);
2386 mutex_lock(&ctx->mutex);
2387 event = event->group_leader;
2389 perf_event_for_each_child(event, func);
2390 func(event);
2391 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2392 perf_event_for_each_child(event, func);
2393 mutex_unlock(&ctx->mutex);
2396 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2398 struct perf_event_context *ctx = event->ctx;
2399 unsigned long size;
2400 int ret = 0;
2401 u64 value;
2403 if (!event->attr.sample_period)
2404 return -EINVAL;
2406 size = copy_from_user(&value, arg, sizeof(value));
2407 if (size != sizeof(value))
2408 return -EFAULT;
2410 if (!value)
2411 return -EINVAL;
2413 raw_spin_lock_irq(&ctx->lock);
2414 if (event->attr.freq) {
2415 if (value > sysctl_perf_event_sample_rate) {
2416 ret = -EINVAL;
2417 goto unlock;
2420 event->attr.sample_freq = value;
2421 } else {
2422 event->attr.sample_period = value;
2423 event->hw.sample_period = value;
2425 unlock:
2426 raw_spin_unlock_irq(&ctx->lock);
2428 return ret;
2431 static const struct file_operations perf_fops;
2433 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2435 struct file *file;
2437 file = fget_light(fd, fput_needed);
2438 if (!file)
2439 return ERR_PTR(-EBADF);
2441 if (file->f_op != &perf_fops) {
2442 fput_light(file, *fput_needed);
2443 *fput_needed = 0;
2444 return ERR_PTR(-EBADF);
2447 return file->private_data;
2450 static int perf_event_set_output(struct perf_event *event,
2451 struct perf_event *output_event);
2452 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2454 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2456 struct perf_event *event = file->private_data;
2457 void (*func)(struct perf_event *);
2458 u32 flags = arg;
2460 switch (cmd) {
2461 case PERF_EVENT_IOC_ENABLE:
2462 func = perf_event_enable;
2463 break;
2464 case PERF_EVENT_IOC_DISABLE:
2465 func = perf_event_disable;
2466 break;
2467 case PERF_EVENT_IOC_RESET:
2468 func = perf_event_reset;
2469 break;
2471 case PERF_EVENT_IOC_REFRESH:
2472 return perf_event_refresh(event, arg);
2474 case PERF_EVENT_IOC_PERIOD:
2475 return perf_event_period(event, (u64 __user *)arg);
2477 case PERF_EVENT_IOC_SET_OUTPUT:
2479 struct perf_event *output_event = NULL;
2480 int fput_needed = 0;
2481 int ret;
2483 if (arg != -1) {
2484 output_event = perf_fget_light(arg, &fput_needed);
2485 if (IS_ERR(output_event))
2486 return PTR_ERR(output_event);
2489 ret = perf_event_set_output(event, output_event);
2490 if (output_event)
2491 fput_light(output_event->filp, fput_needed);
2493 return ret;
2496 case PERF_EVENT_IOC_SET_FILTER:
2497 return perf_event_set_filter(event, (void __user *)arg);
2499 default:
2500 return -ENOTTY;
2503 if (flags & PERF_IOC_FLAG_GROUP)
2504 perf_event_for_each(event, func);
2505 else
2506 perf_event_for_each_child(event, func);
2508 return 0;
2511 int perf_event_task_enable(void)
2513 struct perf_event *event;
2515 mutex_lock(&current->perf_event_mutex);
2516 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2517 perf_event_for_each_child(event, perf_event_enable);
2518 mutex_unlock(&current->perf_event_mutex);
2520 return 0;
2523 int perf_event_task_disable(void)
2525 struct perf_event *event;
2527 mutex_lock(&current->perf_event_mutex);
2528 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2529 perf_event_for_each_child(event, perf_event_disable);
2530 mutex_unlock(&current->perf_event_mutex);
2532 return 0;
2535 #ifndef PERF_EVENT_INDEX_OFFSET
2536 # define PERF_EVENT_INDEX_OFFSET 0
2537 #endif
2539 static int perf_event_index(struct perf_event *event)
2541 if (event->state != PERF_EVENT_STATE_ACTIVE)
2542 return 0;
2544 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2548 * Callers need to ensure there can be no nesting of this function, otherwise
2549 * the seqlock logic goes bad. We can not serialize this because the arch
2550 * code calls this from NMI context.
2552 void perf_event_update_userpage(struct perf_event *event)
2554 struct perf_event_mmap_page *userpg;
2555 struct perf_buffer *buffer;
2557 rcu_read_lock();
2558 buffer = rcu_dereference(event->buffer);
2559 if (!buffer)
2560 goto unlock;
2562 userpg = buffer->user_page;
2565 * Disable preemption so as to not let the corresponding user-space
2566 * spin too long if we get preempted.
2568 preempt_disable();
2569 ++userpg->lock;
2570 barrier();
2571 userpg->index = perf_event_index(event);
2572 userpg->offset = perf_event_count(event);
2573 if (event->state == PERF_EVENT_STATE_ACTIVE)
2574 userpg->offset -= local64_read(&event->hw.prev_count);
2576 userpg->time_enabled = event->total_time_enabled +
2577 atomic64_read(&event->child_total_time_enabled);
2579 userpg->time_running = event->total_time_running +
2580 atomic64_read(&event->child_total_time_running);
2582 barrier();
2583 ++userpg->lock;
2584 preempt_enable();
2585 unlock:
2586 rcu_read_unlock();
2589 static unsigned long perf_data_size(struct perf_buffer *buffer);
2591 static void
2592 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2594 long max_size = perf_data_size(buffer);
2596 if (watermark)
2597 buffer->watermark = min(max_size, watermark);
2599 if (!buffer->watermark)
2600 buffer->watermark = max_size / 2;
2602 if (flags & PERF_BUFFER_WRITABLE)
2603 buffer->writable = 1;
2605 atomic_set(&buffer->refcount, 1);
2608 #ifndef CONFIG_PERF_USE_VMALLOC
2611 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2614 static struct page *
2615 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2617 if (pgoff > buffer->nr_pages)
2618 return NULL;
2620 if (pgoff == 0)
2621 return virt_to_page(buffer->user_page);
2623 return virt_to_page(buffer->data_pages[pgoff - 1]);
2626 static void *perf_mmap_alloc_page(int cpu)
2628 struct page *page;
2629 int node;
2631 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2632 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2633 if (!page)
2634 return NULL;
2636 return page_address(page);
2639 static struct perf_buffer *
2640 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2642 struct perf_buffer *buffer;
2643 unsigned long size;
2644 int i;
2646 size = sizeof(struct perf_buffer);
2647 size += nr_pages * sizeof(void *);
2649 buffer = kzalloc(size, GFP_KERNEL);
2650 if (!buffer)
2651 goto fail;
2653 buffer->user_page = perf_mmap_alloc_page(cpu);
2654 if (!buffer->user_page)
2655 goto fail_user_page;
2657 for (i = 0; i < nr_pages; i++) {
2658 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2659 if (!buffer->data_pages[i])
2660 goto fail_data_pages;
2663 buffer->nr_pages = nr_pages;
2665 perf_buffer_init(buffer, watermark, flags);
2667 return buffer;
2669 fail_data_pages:
2670 for (i--; i >= 0; i--)
2671 free_page((unsigned long)buffer->data_pages[i]);
2673 free_page((unsigned long)buffer->user_page);
2675 fail_user_page:
2676 kfree(buffer);
2678 fail:
2679 return NULL;
2682 static void perf_mmap_free_page(unsigned long addr)
2684 struct page *page = virt_to_page((void *)addr);
2686 page->mapping = NULL;
2687 __free_page(page);
2690 static void perf_buffer_free(struct perf_buffer *buffer)
2692 int i;
2694 perf_mmap_free_page((unsigned long)buffer->user_page);
2695 for (i = 0; i < buffer->nr_pages; i++)
2696 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2697 kfree(buffer);
2700 static inline int page_order(struct perf_buffer *buffer)
2702 return 0;
2705 #else
2708 * Back perf_mmap() with vmalloc memory.
2710 * Required for architectures that have d-cache aliasing issues.
2713 static inline int page_order(struct perf_buffer *buffer)
2715 return buffer->page_order;
2718 static struct page *
2719 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2721 if (pgoff > (1UL << page_order(buffer)))
2722 return NULL;
2724 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2727 static void perf_mmap_unmark_page(void *addr)
2729 struct page *page = vmalloc_to_page(addr);
2731 page->mapping = NULL;
2734 static void perf_buffer_free_work(struct work_struct *work)
2736 struct perf_buffer *buffer;
2737 void *base;
2738 int i, nr;
2740 buffer = container_of(work, struct perf_buffer, work);
2741 nr = 1 << page_order(buffer);
2743 base = buffer->user_page;
2744 for (i = 0; i < nr + 1; i++)
2745 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2747 vfree(base);
2748 kfree(buffer);
2751 static void perf_buffer_free(struct perf_buffer *buffer)
2753 schedule_work(&buffer->work);
2756 static struct perf_buffer *
2757 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2759 struct perf_buffer *buffer;
2760 unsigned long size;
2761 void *all_buf;
2763 size = sizeof(struct perf_buffer);
2764 size += sizeof(void *);
2766 buffer = kzalloc(size, GFP_KERNEL);
2767 if (!buffer)
2768 goto fail;
2770 INIT_WORK(&buffer->work, perf_buffer_free_work);
2772 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2773 if (!all_buf)
2774 goto fail_all_buf;
2776 buffer->user_page = all_buf;
2777 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2778 buffer->page_order = ilog2(nr_pages);
2779 buffer->nr_pages = 1;
2781 perf_buffer_init(buffer, watermark, flags);
2783 return buffer;
2785 fail_all_buf:
2786 kfree(buffer);
2788 fail:
2789 return NULL;
2792 #endif
2794 static unsigned long perf_data_size(struct perf_buffer *buffer)
2796 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2799 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2801 struct perf_event *event = vma->vm_file->private_data;
2802 struct perf_buffer *buffer;
2803 int ret = VM_FAULT_SIGBUS;
2805 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2806 if (vmf->pgoff == 0)
2807 ret = 0;
2808 return ret;
2811 rcu_read_lock();
2812 buffer = rcu_dereference(event->buffer);
2813 if (!buffer)
2814 goto unlock;
2816 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2817 goto unlock;
2819 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2820 if (!vmf->page)
2821 goto unlock;
2823 get_page(vmf->page);
2824 vmf->page->mapping = vma->vm_file->f_mapping;
2825 vmf->page->index = vmf->pgoff;
2827 ret = 0;
2828 unlock:
2829 rcu_read_unlock();
2831 return ret;
2834 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2836 struct perf_buffer *buffer;
2838 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2839 perf_buffer_free(buffer);
2842 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2844 struct perf_buffer *buffer;
2846 rcu_read_lock();
2847 buffer = rcu_dereference(event->buffer);
2848 if (buffer) {
2849 if (!atomic_inc_not_zero(&buffer->refcount))
2850 buffer = NULL;
2852 rcu_read_unlock();
2854 return buffer;
2857 static void perf_buffer_put(struct perf_buffer *buffer)
2859 if (!atomic_dec_and_test(&buffer->refcount))
2860 return;
2862 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2865 static void perf_mmap_open(struct vm_area_struct *vma)
2867 struct perf_event *event = vma->vm_file->private_data;
2869 atomic_inc(&event->mmap_count);
2872 static void perf_mmap_close(struct vm_area_struct *vma)
2874 struct perf_event *event = vma->vm_file->private_data;
2876 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2877 unsigned long size = perf_data_size(event->buffer);
2878 struct user_struct *user = event->mmap_user;
2879 struct perf_buffer *buffer = event->buffer;
2881 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2882 vma->vm_mm->locked_vm -= event->mmap_locked;
2883 rcu_assign_pointer(event->buffer, NULL);
2884 mutex_unlock(&event->mmap_mutex);
2886 perf_buffer_put(buffer);
2887 free_uid(user);
2891 static const struct vm_operations_struct perf_mmap_vmops = {
2892 .open = perf_mmap_open,
2893 .close = perf_mmap_close,
2894 .fault = perf_mmap_fault,
2895 .page_mkwrite = perf_mmap_fault,
2898 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2900 struct perf_event *event = file->private_data;
2901 unsigned long user_locked, user_lock_limit;
2902 struct user_struct *user = current_user();
2903 unsigned long locked, lock_limit;
2904 struct perf_buffer *buffer;
2905 unsigned long vma_size;
2906 unsigned long nr_pages;
2907 long user_extra, extra;
2908 int ret = 0, flags = 0;
2911 * Don't allow mmap() of inherited per-task counters. This would
2912 * create a performance issue due to all children writing to the
2913 * same buffer.
2915 if (event->cpu == -1 && event->attr.inherit)
2916 return -EINVAL;
2918 if (!(vma->vm_flags & VM_SHARED))
2919 return -EINVAL;
2921 vma_size = vma->vm_end - vma->vm_start;
2922 nr_pages = (vma_size / PAGE_SIZE) - 1;
2925 * If we have buffer pages ensure they're a power-of-two number, so we
2926 * can do bitmasks instead of modulo.
2928 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2929 return -EINVAL;
2931 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2932 return -EINVAL;
2934 if (vma->vm_pgoff != 0)
2935 return -EINVAL;
2937 WARN_ON_ONCE(event->ctx->parent_ctx);
2938 mutex_lock(&event->mmap_mutex);
2939 if (event->buffer) {
2940 if (event->buffer->nr_pages == nr_pages)
2941 atomic_inc(&event->buffer->refcount);
2942 else
2943 ret = -EINVAL;
2944 goto unlock;
2947 user_extra = nr_pages + 1;
2948 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2951 * Increase the limit linearly with more CPUs:
2953 user_lock_limit *= num_online_cpus();
2955 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2957 extra = 0;
2958 if (user_locked > user_lock_limit)
2959 extra = user_locked - user_lock_limit;
2961 lock_limit = rlimit(RLIMIT_MEMLOCK);
2962 lock_limit >>= PAGE_SHIFT;
2963 locked = vma->vm_mm->locked_vm + extra;
2965 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2966 !capable(CAP_IPC_LOCK)) {
2967 ret = -EPERM;
2968 goto unlock;
2971 WARN_ON(event->buffer);
2973 if (vma->vm_flags & VM_WRITE)
2974 flags |= PERF_BUFFER_WRITABLE;
2976 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2977 event->cpu, flags);
2978 if (!buffer) {
2979 ret = -ENOMEM;
2980 goto unlock;
2982 rcu_assign_pointer(event->buffer, buffer);
2984 atomic_long_add(user_extra, &user->locked_vm);
2985 event->mmap_locked = extra;
2986 event->mmap_user = get_current_user();
2987 vma->vm_mm->locked_vm += event->mmap_locked;
2989 unlock:
2990 if (!ret)
2991 atomic_inc(&event->mmap_count);
2992 mutex_unlock(&event->mmap_mutex);
2994 vma->vm_flags |= VM_RESERVED;
2995 vma->vm_ops = &perf_mmap_vmops;
2997 return ret;
3000 static int perf_fasync(int fd, struct file *filp, int on)
3002 struct inode *inode = filp->f_path.dentry->d_inode;
3003 struct perf_event *event = filp->private_data;
3004 int retval;
3006 mutex_lock(&inode->i_mutex);
3007 retval = fasync_helper(fd, filp, on, &event->fasync);
3008 mutex_unlock(&inode->i_mutex);
3010 if (retval < 0)
3011 return retval;
3013 return 0;
3016 static const struct file_operations perf_fops = {
3017 .llseek = no_llseek,
3018 .release = perf_release,
3019 .read = perf_read,
3020 .poll = perf_poll,
3021 .unlocked_ioctl = perf_ioctl,
3022 .compat_ioctl = perf_ioctl,
3023 .mmap = perf_mmap,
3024 .fasync = perf_fasync,
3028 * Perf event wakeup
3030 * If there's data, ensure we set the poll() state and publish everything
3031 * to user-space before waking everybody up.
3034 void perf_event_wakeup(struct perf_event *event)
3036 wake_up_all(&event->waitq);
3038 if (event->pending_kill) {
3039 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3040 event->pending_kill = 0;
3045 * Pending wakeups
3047 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3049 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3050 * single linked list and use cmpxchg() to add entries lockless.
3053 static void perf_pending_event(struct perf_pending_entry *entry)
3055 struct perf_event *event = container_of(entry,
3056 struct perf_event, pending);
3058 if (event->pending_disable) {
3059 event->pending_disable = 0;
3060 __perf_event_disable(event);
3063 if (event->pending_wakeup) {
3064 event->pending_wakeup = 0;
3065 perf_event_wakeup(event);
3069 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3071 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3072 PENDING_TAIL,
3075 static void perf_pending_queue(struct perf_pending_entry *entry,
3076 void (*func)(struct perf_pending_entry *))
3078 struct perf_pending_entry **head;
3080 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3081 return;
3083 entry->func = func;
3085 head = &get_cpu_var(perf_pending_head);
3087 do {
3088 entry->next = *head;
3089 } while (cmpxchg(head, entry->next, entry) != entry->next);
3091 set_perf_event_pending();
3093 put_cpu_var(perf_pending_head);
3096 static int __perf_pending_run(void)
3098 struct perf_pending_entry *list;
3099 int nr = 0;
3101 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3102 while (list != PENDING_TAIL) {
3103 void (*func)(struct perf_pending_entry *);
3104 struct perf_pending_entry *entry = list;
3106 list = list->next;
3108 func = entry->func;
3109 entry->next = NULL;
3111 * Ensure we observe the unqueue before we issue the wakeup,
3112 * so that we won't be waiting forever.
3113 * -- see perf_not_pending().
3115 smp_wmb();
3117 func(entry);
3118 nr++;
3121 return nr;
3124 static inline int perf_not_pending(struct perf_event *event)
3127 * If we flush on whatever cpu we run, there is a chance we don't
3128 * need to wait.
3130 get_cpu();
3131 __perf_pending_run();
3132 put_cpu();
3135 * Ensure we see the proper queue state before going to sleep
3136 * so that we do not miss the wakeup. -- see perf_pending_handle()
3138 smp_rmb();
3139 return event->pending.next == NULL;
3142 static void perf_pending_sync(struct perf_event *event)
3144 wait_event(event->waitq, perf_not_pending(event));
3147 void perf_event_do_pending(void)
3149 __perf_pending_run();
3153 * We assume there is only KVM supporting the callbacks.
3154 * Later on, we might change it to a list if there is
3155 * another virtualization implementation supporting the callbacks.
3157 struct perf_guest_info_callbacks *perf_guest_cbs;
3159 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3161 perf_guest_cbs = cbs;
3162 return 0;
3164 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3166 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3168 perf_guest_cbs = NULL;
3169 return 0;
3171 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3174 * Output
3176 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3177 unsigned long offset, unsigned long head)
3179 unsigned long mask;
3181 if (!buffer->writable)
3182 return true;
3184 mask = perf_data_size(buffer) - 1;
3186 offset = (offset - tail) & mask;
3187 head = (head - tail) & mask;
3189 if ((int)(head - offset) < 0)
3190 return false;
3192 return true;
3195 static void perf_output_wakeup(struct perf_output_handle *handle)
3197 atomic_set(&handle->buffer->poll, POLL_IN);
3199 if (handle->nmi) {
3200 handle->event->pending_wakeup = 1;
3201 perf_pending_queue(&handle->event->pending,
3202 perf_pending_event);
3203 } else
3204 perf_event_wakeup(handle->event);
3208 * We need to ensure a later event_id doesn't publish a head when a former
3209 * event isn't done writing. However since we need to deal with NMIs we
3210 * cannot fully serialize things.
3212 * We only publish the head (and generate a wakeup) when the outer-most
3213 * event completes.
3215 static void perf_output_get_handle(struct perf_output_handle *handle)
3217 struct perf_buffer *buffer = handle->buffer;
3219 preempt_disable();
3220 local_inc(&buffer->nest);
3221 handle->wakeup = local_read(&buffer->wakeup);
3224 static void perf_output_put_handle(struct perf_output_handle *handle)
3226 struct perf_buffer *buffer = handle->buffer;
3227 unsigned long head;
3229 again:
3230 head = local_read(&buffer->head);
3233 * IRQ/NMI can happen here, which means we can miss a head update.
3236 if (!local_dec_and_test(&buffer->nest))
3237 goto out;
3240 * Publish the known good head. Rely on the full barrier implied
3241 * by atomic_dec_and_test() order the buffer->head read and this
3242 * write.
3244 buffer->user_page->data_head = head;
3247 * Now check if we missed an update, rely on the (compiler)
3248 * barrier in atomic_dec_and_test() to re-read buffer->head.
3250 if (unlikely(head != local_read(&buffer->head))) {
3251 local_inc(&buffer->nest);
3252 goto again;
3255 if (handle->wakeup != local_read(&buffer->wakeup))
3256 perf_output_wakeup(handle);
3258 out:
3259 preempt_enable();
3262 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3263 const void *buf, unsigned int len)
3265 do {
3266 unsigned long size = min_t(unsigned long, handle->size, len);
3268 memcpy(handle->addr, buf, size);
3270 len -= size;
3271 handle->addr += size;
3272 buf += size;
3273 handle->size -= size;
3274 if (!handle->size) {
3275 struct perf_buffer *buffer = handle->buffer;
3277 handle->page++;
3278 handle->page &= buffer->nr_pages - 1;
3279 handle->addr = buffer->data_pages[handle->page];
3280 handle->size = PAGE_SIZE << page_order(buffer);
3282 } while (len);
3285 int perf_output_begin(struct perf_output_handle *handle,
3286 struct perf_event *event, unsigned int size,
3287 int nmi, int sample)
3289 struct perf_buffer *buffer;
3290 unsigned long tail, offset, head;
3291 int have_lost;
3292 struct {
3293 struct perf_event_header header;
3294 u64 id;
3295 u64 lost;
3296 } lost_event;
3298 rcu_read_lock();
3300 * For inherited events we send all the output towards the parent.
3302 if (event->parent)
3303 event = event->parent;
3305 buffer = rcu_dereference(event->buffer);
3306 if (!buffer)
3307 goto out;
3309 handle->buffer = buffer;
3310 handle->event = event;
3311 handle->nmi = nmi;
3312 handle->sample = sample;
3314 if (!buffer->nr_pages)
3315 goto out;
3317 have_lost = local_read(&buffer->lost);
3318 if (have_lost)
3319 size += sizeof(lost_event);
3321 perf_output_get_handle(handle);
3323 do {
3325 * Userspace could choose to issue a mb() before updating the
3326 * tail pointer. So that all reads will be completed before the
3327 * write is issued.
3329 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3330 smp_rmb();
3331 offset = head = local_read(&buffer->head);
3332 head += size;
3333 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3334 goto fail;
3335 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3337 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3338 local_add(buffer->watermark, &buffer->wakeup);
3340 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3341 handle->page &= buffer->nr_pages - 1;
3342 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3343 handle->addr = buffer->data_pages[handle->page];
3344 handle->addr += handle->size;
3345 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3347 if (have_lost) {
3348 lost_event.header.type = PERF_RECORD_LOST;
3349 lost_event.header.misc = 0;
3350 lost_event.header.size = sizeof(lost_event);
3351 lost_event.id = event->id;
3352 lost_event.lost = local_xchg(&buffer->lost, 0);
3354 perf_output_put(handle, lost_event);
3357 return 0;
3359 fail:
3360 local_inc(&buffer->lost);
3361 perf_output_put_handle(handle);
3362 out:
3363 rcu_read_unlock();
3365 return -ENOSPC;
3368 void perf_output_end(struct perf_output_handle *handle)
3370 struct perf_event *event = handle->event;
3371 struct perf_buffer *buffer = handle->buffer;
3373 int wakeup_events = event->attr.wakeup_events;
3375 if (handle->sample && wakeup_events) {
3376 int events = local_inc_return(&buffer->events);
3377 if (events >= wakeup_events) {
3378 local_sub(wakeup_events, &buffer->events);
3379 local_inc(&buffer->wakeup);
3383 perf_output_put_handle(handle);
3384 rcu_read_unlock();
3387 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3390 * only top level events have the pid namespace they were created in
3392 if (event->parent)
3393 event = event->parent;
3395 return task_tgid_nr_ns(p, event->ns);
3398 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3401 * only top level events have the pid namespace they were created in
3403 if (event->parent)
3404 event = event->parent;
3406 return task_pid_nr_ns(p, event->ns);
3409 static void perf_output_read_one(struct perf_output_handle *handle,
3410 struct perf_event *event)
3412 u64 read_format = event->attr.read_format;
3413 u64 values[4];
3414 int n = 0;
3416 values[n++] = perf_event_count(event);
3417 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3418 values[n++] = event->total_time_enabled +
3419 atomic64_read(&event->child_total_time_enabled);
3421 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3422 values[n++] = event->total_time_running +
3423 atomic64_read(&event->child_total_time_running);
3425 if (read_format & PERF_FORMAT_ID)
3426 values[n++] = primary_event_id(event);
3428 perf_output_copy(handle, values, n * sizeof(u64));
3432 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3434 static void perf_output_read_group(struct perf_output_handle *handle,
3435 struct perf_event *event)
3437 struct perf_event *leader = event->group_leader, *sub;
3438 u64 read_format = event->attr.read_format;
3439 u64 values[5];
3440 int n = 0;
3442 values[n++] = 1 + leader->nr_siblings;
3444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3445 values[n++] = leader->total_time_enabled;
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3448 values[n++] = leader->total_time_running;
3450 if (leader != event)
3451 leader->pmu->read(leader);
3453 values[n++] = perf_event_count(leader);
3454 if (read_format & PERF_FORMAT_ID)
3455 values[n++] = primary_event_id(leader);
3457 perf_output_copy(handle, values, n * sizeof(u64));
3459 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3460 n = 0;
3462 if (sub != event)
3463 sub->pmu->read(sub);
3465 values[n++] = perf_event_count(sub);
3466 if (read_format & PERF_FORMAT_ID)
3467 values[n++] = primary_event_id(sub);
3469 perf_output_copy(handle, values, n * sizeof(u64));
3473 static void perf_output_read(struct perf_output_handle *handle,
3474 struct perf_event *event)
3476 if (event->attr.read_format & PERF_FORMAT_GROUP)
3477 perf_output_read_group(handle, event);
3478 else
3479 perf_output_read_one(handle, event);
3482 void perf_output_sample(struct perf_output_handle *handle,
3483 struct perf_event_header *header,
3484 struct perf_sample_data *data,
3485 struct perf_event *event)
3487 u64 sample_type = data->type;
3489 perf_output_put(handle, *header);
3491 if (sample_type & PERF_SAMPLE_IP)
3492 perf_output_put(handle, data->ip);
3494 if (sample_type & PERF_SAMPLE_TID)
3495 perf_output_put(handle, data->tid_entry);
3497 if (sample_type & PERF_SAMPLE_TIME)
3498 perf_output_put(handle, data->time);
3500 if (sample_type & PERF_SAMPLE_ADDR)
3501 perf_output_put(handle, data->addr);
3503 if (sample_type & PERF_SAMPLE_ID)
3504 perf_output_put(handle, data->id);
3506 if (sample_type & PERF_SAMPLE_STREAM_ID)
3507 perf_output_put(handle, data->stream_id);
3509 if (sample_type & PERF_SAMPLE_CPU)
3510 perf_output_put(handle, data->cpu_entry);
3512 if (sample_type & PERF_SAMPLE_PERIOD)
3513 perf_output_put(handle, data->period);
3515 if (sample_type & PERF_SAMPLE_READ)
3516 perf_output_read(handle, event);
3518 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3519 if (data->callchain) {
3520 int size = 1;
3522 if (data->callchain)
3523 size += data->callchain->nr;
3525 size *= sizeof(u64);
3527 perf_output_copy(handle, data->callchain, size);
3528 } else {
3529 u64 nr = 0;
3530 perf_output_put(handle, nr);
3534 if (sample_type & PERF_SAMPLE_RAW) {
3535 if (data->raw) {
3536 perf_output_put(handle, data->raw->size);
3537 perf_output_copy(handle, data->raw->data,
3538 data->raw->size);
3539 } else {
3540 struct {
3541 u32 size;
3542 u32 data;
3543 } raw = {
3544 .size = sizeof(u32),
3545 .data = 0,
3547 perf_output_put(handle, raw);
3552 void perf_prepare_sample(struct perf_event_header *header,
3553 struct perf_sample_data *data,
3554 struct perf_event *event,
3555 struct pt_regs *regs)
3557 u64 sample_type = event->attr.sample_type;
3559 data->type = sample_type;
3561 header->type = PERF_RECORD_SAMPLE;
3562 header->size = sizeof(*header);
3564 header->misc = 0;
3565 header->misc |= perf_misc_flags(regs);
3567 if (sample_type & PERF_SAMPLE_IP) {
3568 data->ip = perf_instruction_pointer(regs);
3570 header->size += sizeof(data->ip);
3573 if (sample_type & PERF_SAMPLE_TID) {
3574 /* namespace issues */
3575 data->tid_entry.pid = perf_event_pid(event, current);
3576 data->tid_entry.tid = perf_event_tid(event, current);
3578 header->size += sizeof(data->tid_entry);
3581 if (sample_type & PERF_SAMPLE_TIME) {
3582 data->time = perf_clock();
3584 header->size += sizeof(data->time);
3587 if (sample_type & PERF_SAMPLE_ADDR)
3588 header->size += sizeof(data->addr);
3590 if (sample_type & PERF_SAMPLE_ID) {
3591 data->id = primary_event_id(event);
3593 header->size += sizeof(data->id);
3596 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3597 data->stream_id = event->id;
3599 header->size += sizeof(data->stream_id);
3602 if (sample_type & PERF_SAMPLE_CPU) {
3603 data->cpu_entry.cpu = raw_smp_processor_id();
3604 data->cpu_entry.reserved = 0;
3606 header->size += sizeof(data->cpu_entry);
3609 if (sample_type & PERF_SAMPLE_PERIOD)
3610 header->size += sizeof(data->period);
3612 if (sample_type & PERF_SAMPLE_READ)
3613 header->size += perf_event_read_size(event);
3615 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3616 int size = 1;
3618 data->callchain = perf_callchain(regs);
3620 if (data->callchain)
3621 size += data->callchain->nr;
3623 header->size += size * sizeof(u64);
3626 if (sample_type & PERF_SAMPLE_RAW) {
3627 int size = sizeof(u32);
3629 if (data->raw)
3630 size += data->raw->size;
3631 else
3632 size += sizeof(u32);
3634 WARN_ON_ONCE(size & (sizeof(u64)-1));
3635 header->size += size;
3639 static void perf_event_output(struct perf_event *event, int nmi,
3640 struct perf_sample_data *data,
3641 struct pt_regs *regs)
3643 struct perf_output_handle handle;
3644 struct perf_event_header header;
3646 /* protect the callchain buffers */
3647 rcu_read_lock();
3649 perf_prepare_sample(&header, data, event, regs);
3651 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3652 goto exit;
3654 perf_output_sample(&handle, &header, data, event);
3656 perf_output_end(&handle);
3658 exit:
3659 rcu_read_unlock();
3663 * read event_id
3666 struct perf_read_event {
3667 struct perf_event_header header;
3669 u32 pid;
3670 u32 tid;
3673 static void
3674 perf_event_read_event(struct perf_event *event,
3675 struct task_struct *task)
3677 struct perf_output_handle handle;
3678 struct perf_read_event read_event = {
3679 .header = {
3680 .type = PERF_RECORD_READ,
3681 .misc = 0,
3682 .size = sizeof(read_event) + perf_event_read_size(event),
3684 .pid = perf_event_pid(event, task),
3685 .tid = perf_event_tid(event, task),
3687 int ret;
3689 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3690 if (ret)
3691 return;
3693 perf_output_put(&handle, read_event);
3694 perf_output_read(&handle, event);
3696 perf_output_end(&handle);
3700 * task tracking -- fork/exit
3702 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3705 struct perf_task_event {
3706 struct task_struct *task;
3707 struct perf_event_context *task_ctx;
3709 struct {
3710 struct perf_event_header header;
3712 u32 pid;
3713 u32 ppid;
3714 u32 tid;
3715 u32 ptid;
3716 u64 time;
3717 } event_id;
3720 static void perf_event_task_output(struct perf_event *event,
3721 struct perf_task_event *task_event)
3723 struct perf_output_handle handle;
3724 struct task_struct *task = task_event->task;
3725 int size, ret;
3727 size = task_event->event_id.header.size;
3728 ret = perf_output_begin(&handle, event, size, 0, 0);
3730 if (ret)
3731 return;
3733 task_event->event_id.pid = perf_event_pid(event, task);
3734 task_event->event_id.ppid = perf_event_pid(event, current);
3736 task_event->event_id.tid = perf_event_tid(event, task);
3737 task_event->event_id.ptid = perf_event_tid(event, current);
3739 perf_output_put(&handle, task_event->event_id);
3741 perf_output_end(&handle);
3744 static int perf_event_task_match(struct perf_event *event)
3746 if (event->state < PERF_EVENT_STATE_INACTIVE)
3747 return 0;
3749 if (event->cpu != -1 && event->cpu != smp_processor_id())
3750 return 0;
3752 if (event->attr.comm || event->attr.mmap ||
3753 event->attr.mmap_data || event->attr.task)
3754 return 1;
3756 return 0;
3759 static void perf_event_task_ctx(struct perf_event_context *ctx,
3760 struct perf_task_event *task_event)
3762 struct perf_event *event;
3764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3765 if (perf_event_task_match(event))
3766 perf_event_task_output(event, task_event);
3770 static void perf_event_task_event(struct perf_task_event *task_event)
3772 struct perf_cpu_context *cpuctx;
3773 struct perf_event_context *ctx = task_event->task_ctx;
3775 rcu_read_lock();
3776 cpuctx = &get_cpu_var(perf_cpu_context);
3777 perf_event_task_ctx(&cpuctx->ctx, task_event);
3778 if (!ctx)
3779 ctx = rcu_dereference(current->perf_event_ctxp);
3780 if (ctx)
3781 perf_event_task_ctx(ctx, task_event);
3782 put_cpu_var(perf_cpu_context);
3783 rcu_read_unlock();
3786 static void perf_event_task(struct task_struct *task,
3787 struct perf_event_context *task_ctx,
3788 int new)
3790 struct perf_task_event task_event;
3792 if (!atomic_read(&nr_comm_events) &&
3793 !atomic_read(&nr_mmap_events) &&
3794 !atomic_read(&nr_task_events))
3795 return;
3797 task_event = (struct perf_task_event){
3798 .task = task,
3799 .task_ctx = task_ctx,
3800 .event_id = {
3801 .header = {
3802 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3803 .misc = 0,
3804 .size = sizeof(task_event.event_id),
3806 /* .pid */
3807 /* .ppid */
3808 /* .tid */
3809 /* .ptid */
3810 .time = perf_clock(),
3814 perf_event_task_event(&task_event);
3817 void perf_event_fork(struct task_struct *task)
3819 perf_event_task(task, NULL, 1);
3823 * comm tracking
3826 struct perf_comm_event {
3827 struct task_struct *task;
3828 char *comm;
3829 int comm_size;
3831 struct {
3832 struct perf_event_header header;
3834 u32 pid;
3835 u32 tid;
3836 } event_id;
3839 static void perf_event_comm_output(struct perf_event *event,
3840 struct perf_comm_event *comm_event)
3842 struct perf_output_handle handle;
3843 int size = comm_event->event_id.header.size;
3844 int ret = perf_output_begin(&handle, event, size, 0, 0);
3846 if (ret)
3847 return;
3849 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3850 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3852 perf_output_put(&handle, comm_event->event_id);
3853 perf_output_copy(&handle, comm_event->comm,
3854 comm_event->comm_size);
3855 perf_output_end(&handle);
3858 static int perf_event_comm_match(struct perf_event *event)
3860 if (event->state < PERF_EVENT_STATE_INACTIVE)
3861 return 0;
3863 if (event->cpu != -1 && event->cpu != smp_processor_id())
3864 return 0;
3866 if (event->attr.comm)
3867 return 1;
3869 return 0;
3872 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3873 struct perf_comm_event *comm_event)
3875 struct perf_event *event;
3877 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3878 if (perf_event_comm_match(event))
3879 perf_event_comm_output(event, comm_event);
3883 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3885 struct perf_cpu_context *cpuctx;
3886 struct perf_event_context *ctx;
3887 unsigned int size;
3888 char comm[TASK_COMM_LEN];
3890 memset(comm, 0, sizeof(comm));
3891 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3892 size = ALIGN(strlen(comm)+1, sizeof(u64));
3894 comm_event->comm = comm;
3895 comm_event->comm_size = size;
3897 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3899 rcu_read_lock();
3900 cpuctx = &get_cpu_var(perf_cpu_context);
3901 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3902 ctx = rcu_dereference(current->perf_event_ctxp);
3903 if (ctx)
3904 perf_event_comm_ctx(ctx, comm_event);
3905 put_cpu_var(perf_cpu_context);
3906 rcu_read_unlock();
3909 void perf_event_comm(struct task_struct *task)
3911 struct perf_comm_event comm_event;
3913 if (task->perf_event_ctxp)
3914 perf_event_enable_on_exec(task);
3916 if (!atomic_read(&nr_comm_events))
3917 return;
3919 comm_event = (struct perf_comm_event){
3920 .task = task,
3921 /* .comm */
3922 /* .comm_size */
3923 .event_id = {
3924 .header = {
3925 .type = PERF_RECORD_COMM,
3926 .misc = 0,
3927 /* .size */
3929 /* .pid */
3930 /* .tid */
3934 perf_event_comm_event(&comm_event);
3938 * mmap tracking
3941 struct perf_mmap_event {
3942 struct vm_area_struct *vma;
3944 const char *file_name;
3945 int file_size;
3947 struct {
3948 struct perf_event_header header;
3950 u32 pid;
3951 u32 tid;
3952 u64 start;
3953 u64 len;
3954 u64 pgoff;
3955 } event_id;
3958 static void perf_event_mmap_output(struct perf_event *event,
3959 struct perf_mmap_event *mmap_event)
3961 struct perf_output_handle handle;
3962 int size = mmap_event->event_id.header.size;
3963 int ret = perf_output_begin(&handle, event, size, 0, 0);
3965 if (ret)
3966 return;
3968 mmap_event->event_id.pid = perf_event_pid(event, current);
3969 mmap_event->event_id.tid = perf_event_tid(event, current);
3971 perf_output_put(&handle, mmap_event->event_id);
3972 perf_output_copy(&handle, mmap_event->file_name,
3973 mmap_event->file_size);
3974 perf_output_end(&handle);
3977 static int perf_event_mmap_match(struct perf_event *event,
3978 struct perf_mmap_event *mmap_event,
3979 int executable)
3981 if (event->state < PERF_EVENT_STATE_INACTIVE)
3982 return 0;
3984 if (event->cpu != -1 && event->cpu != smp_processor_id())
3985 return 0;
3987 if ((!executable && event->attr.mmap_data) ||
3988 (executable && event->attr.mmap))
3989 return 1;
3991 return 0;
3994 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3995 struct perf_mmap_event *mmap_event,
3996 int executable)
3998 struct perf_event *event;
4000 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4001 if (perf_event_mmap_match(event, mmap_event, executable))
4002 perf_event_mmap_output(event, mmap_event);
4006 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4008 struct perf_cpu_context *cpuctx;
4009 struct perf_event_context *ctx;
4010 struct vm_area_struct *vma = mmap_event->vma;
4011 struct file *file = vma->vm_file;
4012 unsigned int size;
4013 char tmp[16];
4014 char *buf = NULL;
4015 const char *name;
4017 memset(tmp, 0, sizeof(tmp));
4019 if (file) {
4021 * d_path works from the end of the buffer backwards, so we
4022 * need to add enough zero bytes after the string to handle
4023 * the 64bit alignment we do later.
4025 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4026 if (!buf) {
4027 name = strncpy(tmp, "//enomem", sizeof(tmp));
4028 goto got_name;
4030 name = d_path(&file->f_path, buf, PATH_MAX);
4031 if (IS_ERR(name)) {
4032 name = strncpy(tmp, "//toolong", sizeof(tmp));
4033 goto got_name;
4035 } else {
4036 if (arch_vma_name(mmap_event->vma)) {
4037 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4038 sizeof(tmp));
4039 goto got_name;
4042 if (!vma->vm_mm) {
4043 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4044 goto got_name;
4045 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4046 vma->vm_end >= vma->vm_mm->brk) {
4047 name = strncpy(tmp, "[heap]", sizeof(tmp));
4048 goto got_name;
4049 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4050 vma->vm_end >= vma->vm_mm->start_stack) {
4051 name = strncpy(tmp, "[stack]", sizeof(tmp));
4052 goto got_name;
4055 name = strncpy(tmp, "//anon", sizeof(tmp));
4056 goto got_name;
4059 got_name:
4060 size = ALIGN(strlen(name)+1, sizeof(u64));
4062 mmap_event->file_name = name;
4063 mmap_event->file_size = size;
4065 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4067 rcu_read_lock();
4068 cpuctx = &get_cpu_var(perf_cpu_context);
4069 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4070 ctx = rcu_dereference(current->perf_event_ctxp);
4071 if (ctx)
4072 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4073 put_cpu_var(perf_cpu_context);
4074 rcu_read_unlock();
4076 kfree(buf);
4079 void perf_event_mmap(struct vm_area_struct *vma)
4081 struct perf_mmap_event mmap_event;
4083 if (!atomic_read(&nr_mmap_events))
4084 return;
4086 mmap_event = (struct perf_mmap_event){
4087 .vma = vma,
4088 /* .file_name */
4089 /* .file_size */
4090 .event_id = {
4091 .header = {
4092 .type = PERF_RECORD_MMAP,
4093 .misc = PERF_RECORD_MISC_USER,
4094 /* .size */
4096 /* .pid */
4097 /* .tid */
4098 .start = vma->vm_start,
4099 .len = vma->vm_end - vma->vm_start,
4100 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4104 perf_event_mmap_event(&mmap_event);
4108 * IRQ throttle logging
4111 static void perf_log_throttle(struct perf_event *event, int enable)
4113 struct perf_output_handle handle;
4114 int ret;
4116 struct {
4117 struct perf_event_header header;
4118 u64 time;
4119 u64 id;
4120 u64 stream_id;
4121 } throttle_event = {
4122 .header = {
4123 .type = PERF_RECORD_THROTTLE,
4124 .misc = 0,
4125 .size = sizeof(throttle_event),
4127 .time = perf_clock(),
4128 .id = primary_event_id(event),
4129 .stream_id = event->id,
4132 if (enable)
4133 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4135 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4136 if (ret)
4137 return;
4139 perf_output_put(&handle, throttle_event);
4140 perf_output_end(&handle);
4144 * Generic event overflow handling, sampling.
4147 static int __perf_event_overflow(struct perf_event *event, int nmi,
4148 int throttle, struct perf_sample_data *data,
4149 struct pt_regs *regs)
4151 int events = atomic_read(&event->event_limit);
4152 struct hw_perf_event *hwc = &event->hw;
4153 int ret = 0;
4155 throttle = (throttle && event->pmu->unthrottle != NULL);
4157 if (!throttle) {
4158 hwc->interrupts++;
4159 } else {
4160 if (hwc->interrupts != MAX_INTERRUPTS) {
4161 hwc->interrupts++;
4162 if (HZ * hwc->interrupts >
4163 (u64)sysctl_perf_event_sample_rate) {
4164 hwc->interrupts = MAX_INTERRUPTS;
4165 perf_log_throttle(event, 0);
4166 ret = 1;
4168 } else {
4170 * Keep re-disabling events even though on the previous
4171 * pass we disabled it - just in case we raced with a
4172 * sched-in and the event got enabled again:
4174 ret = 1;
4178 if (event->attr.freq) {
4179 u64 now = perf_clock();
4180 s64 delta = now - hwc->freq_time_stamp;
4182 hwc->freq_time_stamp = now;
4184 if (delta > 0 && delta < 2*TICK_NSEC)
4185 perf_adjust_period(event, delta, hwc->last_period);
4189 * XXX event_limit might not quite work as expected on inherited
4190 * events
4193 event->pending_kill = POLL_IN;
4194 if (events && atomic_dec_and_test(&event->event_limit)) {
4195 ret = 1;
4196 event->pending_kill = POLL_HUP;
4197 if (nmi) {
4198 event->pending_disable = 1;
4199 perf_pending_queue(&event->pending,
4200 perf_pending_event);
4201 } else
4202 perf_event_disable(event);
4205 if (event->overflow_handler)
4206 event->overflow_handler(event, nmi, data, regs);
4207 else
4208 perf_event_output(event, nmi, data, regs);
4210 return ret;
4213 int perf_event_overflow(struct perf_event *event, int nmi,
4214 struct perf_sample_data *data,
4215 struct pt_regs *regs)
4217 return __perf_event_overflow(event, nmi, 1, data, regs);
4221 * Generic software event infrastructure
4225 * We directly increment event->count and keep a second value in
4226 * event->hw.period_left to count intervals. This period event
4227 * is kept in the range [-sample_period, 0] so that we can use the
4228 * sign as trigger.
4231 static u64 perf_swevent_set_period(struct perf_event *event)
4233 struct hw_perf_event *hwc = &event->hw;
4234 u64 period = hwc->last_period;
4235 u64 nr, offset;
4236 s64 old, val;
4238 hwc->last_period = hwc->sample_period;
4240 again:
4241 old = val = local64_read(&hwc->period_left);
4242 if (val < 0)
4243 return 0;
4245 nr = div64_u64(period + val, period);
4246 offset = nr * period;
4247 val -= offset;
4248 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4249 goto again;
4251 return nr;
4254 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4255 int nmi, struct perf_sample_data *data,
4256 struct pt_regs *regs)
4258 struct hw_perf_event *hwc = &event->hw;
4259 int throttle = 0;
4261 data->period = event->hw.last_period;
4262 if (!overflow)
4263 overflow = perf_swevent_set_period(event);
4265 if (hwc->interrupts == MAX_INTERRUPTS)
4266 return;
4268 for (; overflow; overflow--) {
4269 if (__perf_event_overflow(event, nmi, throttle,
4270 data, regs)) {
4272 * We inhibit the overflow from happening when
4273 * hwc->interrupts == MAX_INTERRUPTS.
4275 break;
4277 throttle = 1;
4281 static void perf_swevent_add(struct perf_event *event, u64 nr,
4282 int nmi, struct perf_sample_data *data,
4283 struct pt_regs *regs)
4285 struct hw_perf_event *hwc = &event->hw;
4287 local64_add(nr, &event->count);
4289 if (!regs)
4290 return;
4292 if (!hwc->sample_period)
4293 return;
4295 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4296 return perf_swevent_overflow(event, 1, nmi, data, regs);
4298 if (local64_add_negative(nr, &hwc->period_left))
4299 return;
4301 perf_swevent_overflow(event, 0, nmi, data, regs);
4304 static int perf_exclude_event(struct perf_event *event,
4305 struct pt_regs *regs)
4307 if (regs) {
4308 if (event->attr.exclude_user && user_mode(regs))
4309 return 1;
4311 if (event->attr.exclude_kernel && !user_mode(regs))
4312 return 1;
4315 return 0;
4318 static int perf_swevent_match(struct perf_event *event,
4319 enum perf_type_id type,
4320 u32 event_id,
4321 struct perf_sample_data *data,
4322 struct pt_regs *regs)
4324 if (event->attr.type != type)
4325 return 0;
4327 if (event->attr.config != event_id)
4328 return 0;
4330 if (perf_exclude_event(event, regs))
4331 return 0;
4333 return 1;
4336 static inline u64 swevent_hash(u64 type, u32 event_id)
4338 u64 val = event_id | (type << 32);
4340 return hash_64(val, SWEVENT_HLIST_BITS);
4343 static inline struct hlist_head *
4344 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4346 u64 hash = swevent_hash(type, event_id);
4348 return &hlist->heads[hash];
4351 /* For the read side: events when they trigger */
4352 static inline struct hlist_head *
4353 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4355 struct swevent_hlist *hlist;
4357 hlist = rcu_dereference(ctx->swevent_hlist);
4358 if (!hlist)
4359 return NULL;
4361 return __find_swevent_head(hlist, type, event_id);
4364 /* For the event head insertion and removal in the hlist */
4365 static inline struct hlist_head *
4366 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4368 struct swevent_hlist *hlist;
4369 u32 event_id = event->attr.config;
4370 u64 type = event->attr.type;
4373 * Event scheduling is always serialized against hlist allocation
4374 * and release. Which makes the protected version suitable here.
4375 * The context lock guarantees that.
4377 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4378 lockdep_is_held(&event->ctx->lock));
4379 if (!hlist)
4380 return NULL;
4382 return __find_swevent_head(hlist, type, event_id);
4385 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4386 u64 nr, int nmi,
4387 struct perf_sample_data *data,
4388 struct pt_regs *regs)
4390 struct perf_cpu_context *cpuctx;
4391 struct perf_event *event;
4392 struct hlist_node *node;
4393 struct hlist_head *head;
4395 cpuctx = &__get_cpu_var(perf_cpu_context);
4397 rcu_read_lock();
4399 head = find_swevent_head_rcu(cpuctx, type, event_id);
4401 if (!head)
4402 goto end;
4404 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4405 if (perf_swevent_match(event, type, event_id, data, regs))
4406 perf_swevent_add(event, nr, nmi, data, regs);
4408 end:
4409 rcu_read_unlock();
4412 int perf_swevent_get_recursion_context(void)
4414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4416 return get_recursion_context(cpuctx->recursion);
4418 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4420 void inline perf_swevent_put_recursion_context(int rctx)
4422 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4424 put_recursion_context(cpuctx->recursion, rctx);
4427 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4428 struct pt_regs *regs, u64 addr)
4430 struct perf_sample_data data;
4431 int rctx;
4433 preempt_disable_notrace();
4434 rctx = perf_swevent_get_recursion_context();
4435 if (rctx < 0)
4436 return;
4438 perf_sample_data_init(&data, addr);
4440 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4442 perf_swevent_put_recursion_context(rctx);
4443 preempt_enable_notrace();
4446 static void perf_swevent_read(struct perf_event *event)
4450 static int perf_swevent_enable(struct perf_event *event)
4452 struct hw_perf_event *hwc = &event->hw;
4453 struct perf_cpu_context *cpuctx;
4454 struct hlist_head *head;
4456 cpuctx = &__get_cpu_var(perf_cpu_context);
4458 if (hwc->sample_period) {
4459 hwc->last_period = hwc->sample_period;
4460 perf_swevent_set_period(event);
4463 head = find_swevent_head(cpuctx, event);
4464 if (WARN_ON_ONCE(!head))
4465 return -EINVAL;
4467 hlist_add_head_rcu(&event->hlist_entry, head);
4469 return 0;
4472 static void perf_swevent_disable(struct perf_event *event)
4474 hlist_del_rcu(&event->hlist_entry);
4477 static void perf_swevent_void(struct perf_event *event)
4481 static int perf_swevent_int(struct perf_event *event)
4483 return 0;
4486 static const struct pmu perf_ops_generic = {
4487 .enable = perf_swevent_enable,
4488 .disable = perf_swevent_disable,
4489 .start = perf_swevent_int,
4490 .stop = perf_swevent_void,
4491 .read = perf_swevent_read,
4492 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4496 * hrtimer based swevent callback
4499 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4501 enum hrtimer_restart ret = HRTIMER_RESTART;
4502 struct perf_sample_data data;
4503 struct pt_regs *regs;
4504 struct perf_event *event;
4505 u64 period;
4507 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4508 event->pmu->read(event);
4510 perf_sample_data_init(&data, 0);
4511 data.period = event->hw.last_period;
4512 regs = get_irq_regs();
4514 if (regs && !perf_exclude_event(event, regs)) {
4515 if (!(event->attr.exclude_idle && current->pid == 0))
4516 if (perf_event_overflow(event, 0, &data, regs))
4517 ret = HRTIMER_NORESTART;
4520 period = max_t(u64, 10000, event->hw.sample_period);
4521 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4523 return ret;
4526 static void perf_swevent_start_hrtimer(struct perf_event *event)
4528 struct hw_perf_event *hwc = &event->hw;
4530 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4531 hwc->hrtimer.function = perf_swevent_hrtimer;
4532 if (hwc->sample_period) {
4533 u64 period;
4535 if (hwc->remaining) {
4536 if (hwc->remaining < 0)
4537 period = 10000;
4538 else
4539 period = hwc->remaining;
4540 hwc->remaining = 0;
4541 } else {
4542 period = max_t(u64, 10000, hwc->sample_period);
4544 __hrtimer_start_range_ns(&hwc->hrtimer,
4545 ns_to_ktime(period), 0,
4546 HRTIMER_MODE_REL, 0);
4550 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4552 struct hw_perf_event *hwc = &event->hw;
4554 if (hwc->sample_period) {
4555 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4556 hwc->remaining = ktime_to_ns(remaining);
4558 hrtimer_cancel(&hwc->hrtimer);
4563 * Software event: cpu wall time clock
4566 static void cpu_clock_perf_event_update(struct perf_event *event)
4568 int cpu = raw_smp_processor_id();
4569 s64 prev;
4570 u64 now;
4572 now = cpu_clock(cpu);
4573 prev = local64_xchg(&event->hw.prev_count, now);
4574 local64_add(now - prev, &event->count);
4577 static int cpu_clock_perf_event_enable(struct perf_event *event)
4579 struct hw_perf_event *hwc = &event->hw;
4580 int cpu = raw_smp_processor_id();
4582 local64_set(&hwc->prev_count, cpu_clock(cpu));
4583 perf_swevent_start_hrtimer(event);
4585 return 0;
4588 static void cpu_clock_perf_event_disable(struct perf_event *event)
4590 perf_swevent_cancel_hrtimer(event);
4591 cpu_clock_perf_event_update(event);
4594 static void cpu_clock_perf_event_read(struct perf_event *event)
4596 cpu_clock_perf_event_update(event);
4599 static const struct pmu perf_ops_cpu_clock = {
4600 .enable = cpu_clock_perf_event_enable,
4601 .disable = cpu_clock_perf_event_disable,
4602 .read = cpu_clock_perf_event_read,
4606 * Software event: task time clock
4609 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4611 u64 prev;
4612 s64 delta;
4614 prev = local64_xchg(&event->hw.prev_count, now);
4615 delta = now - prev;
4616 local64_add(delta, &event->count);
4619 static int task_clock_perf_event_enable(struct perf_event *event)
4621 struct hw_perf_event *hwc = &event->hw;
4622 u64 now;
4624 now = event->ctx->time;
4626 local64_set(&hwc->prev_count, now);
4628 perf_swevent_start_hrtimer(event);
4630 return 0;
4633 static void task_clock_perf_event_disable(struct perf_event *event)
4635 perf_swevent_cancel_hrtimer(event);
4636 task_clock_perf_event_update(event, event->ctx->time);
4640 static void task_clock_perf_event_read(struct perf_event *event)
4642 u64 time;
4644 if (!in_nmi()) {
4645 update_context_time(event->ctx);
4646 time = event->ctx->time;
4647 } else {
4648 u64 now = perf_clock();
4649 u64 delta = now - event->ctx->timestamp;
4650 time = event->ctx->time + delta;
4653 task_clock_perf_event_update(event, time);
4656 static const struct pmu perf_ops_task_clock = {
4657 .enable = task_clock_perf_event_enable,
4658 .disable = task_clock_perf_event_disable,
4659 .read = task_clock_perf_event_read,
4662 /* Deref the hlist from the update side */
4663 static inline struct swevent_hlist *
4664 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4666 return rcu_dereference_protected(cpuctx->swevent_hlist,
4667 lockdep_is_held(&cpuctx->hlist_mutex));
4670 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4672 struct swevent_hlist *hlist;
4674 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4675 kfree(hlist);
4678 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4680 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4682 if (!hlist)
4683 return;
4685 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4686 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4689 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4691 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4693 mutex_lock(&cpuctx->hlist_mutex);
4695 if (!--cpuctx->hlist_refcount)
4696 swevent_hlist_release(cpuctx);
4698 mutex_unlock(&cpuctx->hlist_mutex);
4701 static void swevent_hlist_put(struct perf_event *event)
4703 int cpu;
4705 if (event->cpu != -1) {
4706 swevent_hlist_put_cpu(event, event->cpu);
4707 return;
4710 for_each_possible_cpu(cpu)
4711 swevent_hlist_put_cpu(event, cpu);
4714 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4716 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4717 int err = 0;
4719 mutex_lock(&cpuctx->hlist_mutex);
4721 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4722 struct swevent_hlist *hlist;
4724 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4725 if (!hlist) {
4726 err = -ENOMEM;
4727 goto exit;
4729 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4731 cpuctx->hlist_refcount++;
4732 exit:
4733 mutex_unlock(&cpuctx->hlist_mutex);
4735 return err;
4738 static int swevent_hlist_get(struct perf_event *event)
4740 int err;
4741 int cpu, failed_cpu;
4743 if (event->cpu != -1)
4744 return swevent_hlist_get_cpu(event, event->cpu);
4746 get_online_cpus();
4747 for_each_possible_cpu(cpu) {
4748 err = swevent_hlist_get_cpu(event, cpu);
4749 if (err) {
4750 failed_cpu = cpu;
4751 goto fail;
4754 put_online_cpus();
4756 return 0;
4757 fail:
4758 for_each_possible_cpu(cpu) {
4759 if (cpu == failed_cpu)
4760 break;
4761 swevent_hlist_put_cpu(event, cpu);
4764 put_online_cpus();
4765 return err;
4768 #ifdef CONFIG_EVENT_TRACING
4770 static const struct pmu perf_ops_tracepoint = {
4771 .enable = perf_trace_enable,
4772 .disable = perf_trace_disable,
4773 .start = perf_swevent_int,
4774 .stop = perf_swevent_void,
4775 .read = perf_swevent_read,
4776 .unthrottle = perf_swevent_void,
4779 static int perf_tp_filter_match(struct perf_event *event,
4780 struct perf_sample_data *data)
4782 void *record = data->raw->data;
4784 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4785 return 1;
4786 return 0;
4789 static int perf_tp_event_match(struct perf_event *event,
4790 struct perf_sample_data *data,
4791 struct pt_regs *regs)
4794 * All tracepoints are from kernel-space.
4796 if (event->attr.exclude_kernel)
4797 return 0;
4799 if (!perf_tp_filter_match(event, data))
4800 return 0;
4802 return 1;
4805 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4806 struct pt_regs *regs, struct hlist_head *head, int rctx)
4808 struct perf_sample_data data;
4809 struct perf_event *event;
4810 struct hlist_node *node;
4812 struct perf_raw_record raw = {
4813 .size = entry_size,
4814 .data = record,
4817 perf_sample_data_init(&data, addr);
4818 data.raw = &raw;
4820 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4821 if (perf_tp_event_match(event, &data, regs))
4822 perf_swevent_add(event, count, 1, &data, regs);
4825 perf_swevent_put_recursion_context(rctx);
4827 EXPORT_SYMBOL_GPL(perf_tp_event);
4829 static void tp_perf_event_destroy(struct perf_event *event)
4831 perf_trace_destroy(event);
4834 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4836 int err;
4839 * Raw tracepoint data is a severe data leak, only allow root to
4840 * have these.
4842 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4843 perf_paranoid_tracepoint_raw() &&
4844 !capable(CAP_SYS_ADMIN))
4845 return ERR_PTR(-EPERM);
4847 err = perf_trace_init(event);
4848 if (err)
4849 return NULL;
4851 event->destroy = tp_perf_event_destroy;
4853 return &perf_ops_tracepoint;
4856 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4858 char *filter_str;
4859 int ret;
4861 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4862 return -EINVAL;
4864 filter_str = strndup_user(arg, PAGE_SIZE);
4865 if (IS_ERR(filter_str))
4866 return PTR_ERR(filter_str);
4868 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4870 kfree(filter_str);
4871 return ret;
4874 static void perf_event_free_filter(struct perf_event *event)
4876 ftrace_profile_free_filter(event);
4879 #else
4881 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4883 return NULL;
4886 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4888 return -ENOENT;
4891 static void perf_event_free_filter(struct perf_event *event)
4895 #endif /* CONFIG_EVENT_TRACING */
4897 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4898 static void bp_perf_event_destroy(struct perf_event *event)
4900 release_bp_slot(event);
4903 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4905 int err;
4907 err = register_perf_hw_breakpoint(bp);
4908 if (err)
4909 return ERR_PTR(err);
4911 bp->destroy = bp_perf_event_destroy;
4913 return &perf_ops_bp;
4916 void perf_bp_event(struct perf_event *bp, void *data)
4918 struct perf_sample_data sample;
4919 struct pt_regs *regs = data;
4921 perf_sample_data_init(&sample, bp->attr.bp_addr);
4923 if (!perf_exclude_event(bp, regs))
4924 perf_swevent_add(bp, 1, 1, &sample, regs);
4926 #else
4927 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4929 return NULL;
4932 void perf_bp_event(struct perf_event *bp, void *regs)
4935 #endif
4937 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4939 static void sw_perf_event_destroy(struct perf_event *event)
4941 u64 event_id = event->attr.config;
4943 WARN_ON(event->parent);
4945 atomic_dec(&perf_swevent_enabled[event_id]);
4946 swevent_hlist_put(event);
4949 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4951 const struct pmu *pmu = NULL;
4952 u64 event_id = event->attr.config;
4955 * Software events (currently) can't in general distinguish
4956 * between user, kernel and hypervisor events.
4957 * However, context switches and cpu migrations are considered
4958 * to be kernel events, and page faults are never hypervisor
4959 * events.
4961 switch (event_id) {
4962 case PERF_COUNT_SW_CPU_CLOCK:
4963 pmu = &perf_ops_cpu_clock;
4965 break;
4966 case PERF_COUNT_SW_TASK_CLOCK:
4968 * If the user instantiates this as a per-cpu event,
4969 * use the cpu_clock event instead.
4971 if (event->ctx->task)
4972 pmu = &perf_ops_task_clock;
4973 else
4974 pmu = &perf_ops_cpu_clock;
4976 break;
4977 case PERF_COUNT_SW_PAGE_FAULTS:
4978 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4979 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4980 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4981 case PERF_COUNT_SW_CPU_MIGRATIONS:
4982 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4983 case PERF_COUNT_SW_EMULATION_FAULTS:
4984 if (!event->parent) {
4985 int err;
4987 err = swevent_hlist_get(event);
4988 if (err)
4989 return ERR_PTR(err);
4991 atomic_inc(&perf_swevent_enabled[event_id]);
4992 event->destroy = sw_perf_event_destroy;
4994 pmu = &perf_ops_generic;
4995 break;
4998 return pmu;
5002 * Allocate and initialize a event structure
5004 static struct perf_event *
5005 perf_event_alloc(struct perf_event_attr *attr,
5006 int cpu,
5007 struct perf_event_context *ctx,
5008 struct perf_event *group_leader,
5009 struct perf_event *parent_event,
5010 perf_overflow_handler_t overflow_handler,
5011 gfp_t gfpflags)
5013 const struct pmu *pmu;
5014 struct perf_event *event;
5015 struct hw_perf_event *hwc;
5016 long err;
5018 event = kzalloc(sizeof(*event), gfpflags);
5019 if (!event)
5020 return ERR_PTR(-ENOMEM);
5023 * Single events are their own group leaders, with an
5024 * empty sibling list:
5026 if (!group_leader)
5027 group_leader = event;
5029 mutex_init(&event->child_mutex);
5030 INIT_LIST_HEAD(&event->child_list);
5032 INIT_LIST_HEAD(&event->group_entry);
5033 INIT_LIST_HEAD(&event->event_entry);
5034 INIT_LIST_HEAD(&event->sibling_list);
5035 init_waitqueue_head(&event->waitq);
5037 mutex_init(&event->mmap_mutex);
5039 event->cpu = cpu;
5040 event->attr = *attr;
5041 event->group_leader = group_leader;
5042 event->pmu = NULL;
5043 event->ctx = ctx;
5044 event->oncpu = -1;
5046 event->parent = parent_event;
5048 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5049 event->id = atomic64_inc_return(&perf_event_id);
5051 event->state = PERF_EVENT_STATE_INACTIVE;
5053 if (!overflow_handler && parent_event)
5054 overflow_handler = parent_event->overflow_handler;
5056 event->overflow_handler = overflow_handler;
5058 if (attr->disabled)
5059 event->state = PERF_EVENT_STATE_OFF;
5061 pmu = NULL;
5063 hwc = &event->hw;
5064 hwc->sample_period = attr->sample_period;
5065 if (attr->freq && attr->sample_freq)
5066 hwc->sample_period = 1;
5067 hwc->last_period = hwc->sample_period;
5069 local64_set(&hwc->period_left, hwc->sample_period);
5072 * we currently do not support PERF_FORMAT_GROUP on inherited events
5074 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5075 goto done;
5077 switch (attr->type) {
5078 case PERF_TYPE_RAW:
5079 case PERF_TYPE_HARDWARE:
5080 case PERF_TYPE_HW_CACHE:
5081 pmu = hw_perf_event_init(event);
5082 break;
5084 case PERF_TYPE_SOFTWARE:
5085 pmu = sw_perf_event_init(event);
5086 break;
5088 case PERF_TYPE_TRACEPOINT:
5089 pmu = tp_perf_event_init(event);
5090 break;
5092 case PERF_TYPE_BREAKPOINT:
5093 pmu = bp_perf_event_init(event);
5094 break;
5097 default:
5098 break;
5100 done:
5101 err = 0;
5102 if (!pmu)
5103 err = -EINVAL;
5104 else if (IS_ERR(pmu))
5105 err = PTR_ERR(pmu);
5107 if (err) {
5108 if (event->ns)
5109 put_pid_ns(event->ns);
5110 kfree(event);
5111 return ERR_PTR(err);
5114 event->pmu = pmu;
5116 if (!event->parent) {
5117 atomic_inc(&nr_events);
5118 if (event->attr.mmap || event->attr.mmap_data)
5119 atomic_inc(&nr_mmap_events);
5120 if (event->attr.comm)
5121 atomic_inc(&nr_comm_events);
5122 if (event->attr.task)
5123 atomic_inc(&nr_task_events);
5124 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5125 err = get_callchain_buffers();
5126 if (err) {
5127 free_event(event);
5128 return ERR_PTR(err);
5133 return event;
5136 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5137 struct perf_event_attr *attr)
5139 u32 size;
5140 int ret;
5142 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5143 return -EFAULT;
5146 * zero the full structure, so that a short copy will be nice.
5148 memset(attr, 0, sizeof(*attr));
5150 ret = get_user(size, &uattr->size);
5151 if (ret)
5152 return ret;
5154 if (size > PAGE_SIZE) /* silly large */
5155 goto err_size;
5157 if (!size) /* abi compat */
5158 size = PERF_ATTR_SIZE_VER0;
5160 if (size < PERF_ATTR_SIZE_VER0)
5161 goto err_size;
5164 * If we're handed a bigger struct than we know of,
5165 * ensure all the unknown bits are 0 - i.e. new
5166 * user-space does not rely on any kernel feature
5167 * extensions we dont know about yet.
5169 if (size > sizeof(*attr)) {
5170 unsigned char __user *addr;
5171 unsigned char __user *end;
5172 unsigned char val;
5174 addr = (void __user *)uattr + sizeof(*attr);
5175 end = (void __user *)uattr + size;
5177 for (; addr < end; addr++) {
5178 ret = get_user(val, addr);
5179 if (ret)
5180 return ret;
5181 if (val)
5182 goto err_size;
5184 size = sizeof(*attr);
5187 ret = copy_from_user(attr, uattr, size);
5188 if (ret)
5189 return -EFAULT;
5192 * If the type exists, the corresponding creation will verify
5193 * the attr->config.
5195 if (attr->type >= PERF_TYPE_MAX)
5196 return -EINVAL;
5198 if (attr->__reserved_1)
5199 return -EINVAL;
5201 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5202 return -EINVAL;
5204 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5205 return -EINVAL;
5207 out:
5208 return ret;
5210 err_size:
5211 put_user(sizeof(*attr), &uattr->size);
5212 ret = -E2BIG;
5213 goto out;
5216 static int
5217 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5219 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5220 int ret = -EINVAL;
5222 if (!output_event)
5223 goto set;
5225 /* don't allow circular references */
5226 if (event == output_event)
5227 goto out;
5230 * Don't allow cross-cpu buffers
5232 if (output_event->cpu != event->cpu)
5233 goto out;
5236 * If its not a per-cpu buffer, it must be the same task.
5238 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5239 goto out;
5241 set:
5242 mutex_lock(&event->mmap_mutex);
5243 /* Can't redirect output if we've got an active mmap() */
5244 if (atomic_read(&event->mmap_count))
5245 goto unlock;
5247 if (output_event) {
5248 /* get the buffer we want to redirect to */
5249 buffer = perf_buffer_get(output_event);
5250 if (!buffer)
5251 goto unlock;
5254 old_buffer = event->buffer;
5255 rcu_assign_pointer(event->buffer, buffer);
5256 ret = 0;
5257 unlock:
5258 mutex_unlock(&event->mmap_mutex);
5260 if (old_buffer)
5261 perf_buffer_put(old_buffer);
5262 out:
5263 return ret;
5267 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5269 * @attr_uptr: event_id type attributes for monitoring/sampling
5270 * @pid: target pid
5271 * @cpu: target cpu
5272 * @group_fd: group leader event fd
5274 SYSCALL_DEFINE5(perf_event_open,
5275 struct perf_event_attr __user *, attr_uptr,
5276 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5278 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5279 struct perf_event_attr attr;
5280 struct perf_event_context *ctx;
5281 struct file *event_file = NULL;
5282 struct file *group_file = NULL;
5283 int event_fd;
5284 int fput_needed = 0;
5285 int err;
5287 /* for future expandability... */
5288 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5289 return -EINVAL;
5291 err = perf_copy_attr(attr_uptr, &attr);
5292 if (err)
5293 return err;
5295 if (!attr.exclude_kernel) {
5296 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5297 return -EACCES;
5300 if (attr.freq) {
5301 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5302 return -EINVAL;
5305 event_fd = get_unused_fd_flags(O_RDWR);
5306 if (event_fd < 0)
5307 return event_fd;
5310 * Get the target context (task or percpu):
5312 ctx = find_get_context(pid, cpu);
5313 if (IS_ERR(ctx)) {
5314 err = PTR_ERR(ctx);
5315 goto err_fd;
5318 if (group_fd != -1) {
5319 group_leader = perf_fget_light(group_fd, &fput_needed);
5320 if (IS_ERR(group_leader)) {
5321 err = PTR_ERR(group_leader);
5322 goto err_put_context;
5324 group_file = group_leader->filp;
5325 if (flags & PERF_FLAG_FD_OUTPUT)
5326 output_event = group_leader;
5327 if (flags & PERF_FLAG_FD_NO_GROUP)
5328 group_leader = NULL;
5332 * Look up the group leader (we will attach this event to it):
5334 if (group_leader) {
5335 err = -EINVAL;
5338 * Do not allow a recursive hierarchy (this new sibling
5339 * becoming part of another group-sibling):
5341 if (group_leader->group_leader != group_leader)
5342 goto err_put_context;
5344 * Do not allow to attach to a group in a different
5345 * task or CPU context:
5347 if (group_leader->ctx != ctx)
5348 goto err_put_context;
5350 * Only a group leader can be exclusive or pinned
5352 if (attr.exclusive || attr.pinned)
5353 goto err_put_context;
5356 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5357 NULL, NULL, GFP_KERNEL);
5358 if (IS_ERR(event)) {
5359 err = PTR_ERR(event);
5360 goto err_put_context;
5363 if (output_event) {
5364 err = perf_event_set_output(event, output_event);
5365 if (err)
5366 goto err_free_put_context;
5369 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5370 if (IS_ERR(event_file)) {
5371 err = PTR_ERR(event_file);
5372 goto err_free_put_context;
5375 event->filp = event_file;
5376 WARN_ON_ONCE(ctx->parent_ctx);
5377 mutex_lock(&ctx->mutex);
5378 perf_install_in_context(ctx, event, cpu);
5379 ++ctx->generation;
5380 mutex_unlock(&ctx->mutex);
5382 event->owner = current;
5383 get_task_struct(current);
5384 mutex_lock(&current->perf_event_mutex);
5385 list_add_tail(&event->owner_entry, &current->perf_event_list);
5386 mutex_unlock(&current->perf_event_mutex);
5389 * Drop the reference on the group_event after placing the
5390 * new event on the sibling_list. This ensures destruction
5391 * of the group leader will find the pointer to itself in
5392 * perf_group_detach().
5394 fput_light(group_file, fput_needed);
5395 fd_install(event_fd, event_file);
5396 return event_fd;
5398 err_free_put_context:
5399 free_event(event);
5400 err_put_context:
5401 fput_light(group_file, fput_needed);
5402 put_ctx(ctx);
5403 err_fd:
5404 put_unused_fd(event_fd);
5405 return err;
5409 * perf_event_create_kernel_counter
5411 * @attr: attributes of the counter to create
5412 * @cpu: cpu in which the counter is bound
5413 * @pid: task to profile
5415 struct perf_event *
5416 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5417 pid_t pid,
5418 perf_overflow_handler_t overflow_handler)
5420 struct perf_event *event;
5421 struct perf_event_context *ctx;
5422 int err;
5425 * Get the target context (task or percpu):
5428 ctx = find_get_context(pid, cpu);
5429 if (IS_ERR(ctx)) {
5430 err = PTR_ERR(ctx);
5431 goto err_exit;
5434 event = perf_event_alloc(attr, cpu, ctx, NULL,
5435 NULL, overflow_handler, GFP_KERNEL);
5436 if (IS_ERR(event)) {
5437 err = PTR_ERR(event);
5438 goto err_put_context;
5441 event->filp = NULL;
5442 WARN_ON_ONCE(ctx->parent_ctx);
5443 mutex_lock(&ctx->mutex);
5444 perf_install_in_context(ctx, event, cpu);
5445 ++ctx->generation;
5446 mutex_unlock(&ctx->mutex);
5448 event->owner = current;
5449 get_task_struct(current);
5450 mutex_lock(&current->perf_event_mutex);
5451 list_add_tail(&event->owner_entry, &current->perf_event_list);
5452 mutex_unlock(&current->perf_event_mutex);
5454 return event;
5456 err_put_context:
5457 put_ctx(ctx);
5458 err_exit:
5459 return ERR_PTR(err);
5461 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5464 * inherit a event from parent task to child task:
5466 static struct perf_event *
5467 inherit_event(struct perf_event *parent_event,
5468 struct task_struct *parent,
5469 struct perf_event_context *parent_ctx,
5470 struct task_struct *child,
5471 struct perf_event *group_leader,
5472 struct perf_event_context *child_ctx)
5474 struct perf_event *child_event;
5477 * Instead of creating recursive hierarchies of events,
5478 * we link inherited events back to the original parent,
5479 * which has a filp for sure, which we use as the reference
5480 * count:
5482 if (parent_event->parent)
5483 parent_event = parent_event->parent;
5485 child_event = perf_event_alloc(&parent_event->attr,
5486 parent_event->cpu, child_ctx,
5487 group_leader, parent_event,
5488 NULL, GFP_KERNEL);
5489 if (IS_ERR(child_event))
5490 return child_event;
5491 get_ctx(child_ctx);
5494 * Make the child state follow the state of the parent event,
5495 * not its attr.disabled bit. We hold the parent's mutex,
5496 * so we won't race with perf_event_{en, dis}able_family.
5498 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5499 child_event->state = PERF_EVENT_STATE_INACTIVE;
5500 else
5501 child_event->state = PERF_EVENT_STATE_OFF;
5503 if (parent_event->attr.freq) {
5504 u64 sample_period = parent_event->hw.sample_period;
5505 struct hw_perf_event *hwc = &child_event->hw;
5507 hwc->sample_period = sample_period;
5508 hwc->last_period = sample_period;
5510 local64_set(&hwc->period_left, sample_period);
5513 child_event->overflow_handler = parent_event->overflow_handler;
5516 * Link it up in the child's context:
5518 add_event_to_ctx(child_event, child_ctx);
5521 * Get a reference to the parent filp - we will fput it
5522 * when the child event exits. This is safe to do because
5523 * we are in the parent and we know that the filp still
5524 * exists and has a nonzero count:
5526 atomic_long_inc(&parent_event->filp->f_count);
5529 * Link this into the parent event's child list
5531 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5532 mutex_lock(&parent_event->child_mutex);
5533 list_add_tail(&child_event->child_list, &parent_event->child_list);
5534 mutex_unlock(&parent_event->child_mutex);
5536 return child_event;
5539 static int inherit_group(struct perf_event *parent_event,
5540 struct task_struct *parent,
5541 struct perf_event_context *parent_ctx,
5542 struct task_struct *child,
5543 struct perf_event_context *child_ctx)
5545 struct perf_event *leader;
5546 struct perf_event *sub;
5547 struct perf_event *child_ctr;
5549 leader = inherit_event(parent_event, parent, parent_ctx,
5550 child, NULL, child_ctx);
5551 if (IS_ERR(leader))
5552 return PTR_ERR(leader);
5553 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5554 child_ctr = inherit_event(sub, parent, parent_ctx,
5555 child, leader, child_ctx);
5556 if (IS_ERR(child_ctr))
5557 return PTR_ERR(child_ctr);
5559 return 0;
5562 static void sync_child_event(struct perf_event *child_event,
5563 struct task_struct *child)
5565 struct perf_event *parent_event = child_event->parent;
5566 u64 child_val;
5568 if (child_event->attr.inherit_stat)
5569 perf_event_read_event(child_event, child);
5571 child_val = perf_event_count(child_event);
5574 * Add back the child's count to the parent's count:
5576 atomic64_add(child_val, &parent_event->child_count);
5577 atomic64_add(child_event->total_time_enabled,
5578 &parent_event->child_total_time_enabled);
5579 atomic64_add(child_event->total_time_running,
5580 &parent_event->child_total_time_running);
5583 * Remove this event from the parent's list
5585 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5586 mutex_lock(&parent_event->child_mutex);
5587 list_del_init(&child_event->child_list);
5588 mutex_unlock(&parent_event->child_mutex);
5591 * Release the parent event, if this was the last
5592 * reference to it.
5594 fput(parent_event->filp);
5597 static void
5598 __perf_event_exit_task(struct perf_event *child_event,
5599 struct perf_event_context *child_ctx,
5600 struct task_struct *child)
5602 struct perf_event *parent_event;
5604 perf_event_remove_from_context(child_event);
5606 parent_event = child_event->parent;
5608 * It can happen that parent exits first, and has events
5609 * that are still around due to the child reference. These
5610 * events need to be zapped - but otherwise linger.
5612 if (parent_event) {
5613 sync_child_event(child_event, child);
5614 free_event(child_event);
5619 * When a child task exits, feed back event values to parent events.
5621 void perf_event_exit_task(struct task_struct *child)
5623 struct perf_event *child_event, *tmp;
5624 struct perf_event_context *child_ctx;
5625 unsigned long flags;
5627 if (likely(!child->perf_event_ctxp)) {
5628 perf_event_task(child, NULL, 0);
5629 return;
5632 local_irq_save(flags);
5634 * We can't reschedule here because interrupts are disabled,
5635 * and either child is current or it is a task that can't be
5636 * scheduled, so we are now safe from rescheduling changing
5637 * our context.
5639 child_ctx = child->perf_event_ctxp;
5640 __perf_event_task_sched_out(child_ctx);
5643 * Take the context lock here so that if find_get_context is
5644 * reading child->perf_event_ctxp, we wait until it has
5645 * incremented the context's refcount before we do put_ctx below.
5647 raw_spin_lock(&child_ctx->lock);
5648 child->perf_event_ctxp = NULL;
5650 * If this context is a clone; unclone it so it can't get
5651 * swapped to another process while we're removing all
5652 * the events from it.
5654 unclone_ctx(child_ctx);
5655 update_context_time(child_ctx);
5656 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5659 * Report the task dead after unscheduling the events so that we
5660 * won't get any samples after PERF_RECORD_EXIT. We can however still
5661 * get a few PERF_RECORD_READ events.
5663 perf_event_task(child, child_ctx, 0);
5666 * We can recurse on the same lock type through:
5668 * __perf_event_exit_task()
5669 * sync_child_event()
5670 * fput(parent_event->filp)
5671 * perf_release()
5672 * mutex_lock(&ctx->mutex)
5674 * But since its the parent context it won't be the same instance.
5676 mutex_lock(&child_ctx->mutex);
5678 again:
5679 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5680 group_entry)
5681 __perf_event_exit_task(child_event, child_ctx, child);
5683 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5684 group_entry)
5685 __perf_event_exit_task(child_event, child_ctx, child);
5688 * If the last event was a group event, it will have appended all
5689 * its siblings to the list, but we obtained 'tmp' before that which
5690 * will still point to the list head terminating the iteration.
5692 if (!list_empty(&child_ctx->pinned_groups) ||
5693 !list_empty(&child_ctx->flexible_groups))
5694 goto again;
5696 mutex_unlock(&child_ctx->mutex);
5698 put_ctx(child_ctx);
5701 static void perf_free_event(struct perf_event *event,
5702 struct perf_event_context *ctx)
5704 struct perf_event *parent = event->parent;
5706 if (WARN_ON_ONCE(!parent))
5707 return;
5709 mutex_lock(&parent->child_mutex);
5710 list_del_init(&event->child_list);
5711 mutex_unlock(&parent->child_mutex);
5713 fput(parent->filp);
5715 perf_group_detach(event);
5716 list_del_event(event, ctx);
5717 free_event(event);
5721 * free an unexposed, unused context as created by inheritance by
5722 * init_task below, used by fork() in case of fail.
5724 void perf_event_free_task(struct task_struct *task)
5726 struct perf_event_context *ctx = task->perf_event_ctxp;
5727 struct perf_event *event, *tmp;
5729 if (!ctx)
5730 return;
5732 mutex_lock(&ctx->mutex);
5733 again:
5734 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5735 perf_free_event(event, ctx);
5737 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5738 group_entry)
5739 perf_free_event(event, ctx);
5741 if (!list_empty(&ctx->pinned_groups) ||
5742 !list_empty(&ctx->flexible_groups))
5743 goto again;
5745 mutex_unlock(&ctx->mutex);
5747 put_ctx(ctx);
5750 static int
5751 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5752 struct perf_event_context *parent_ctx,
5753 struct task_struct *child,
5754 int *inherited_all)
5756 int ret;
5757 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5759 if (!event->attr.inherit) {
5760 *inherited_all = 0;
5761 return 0;
5764 if (!child_ctx) {
5766 * This is executed from the parent task context, so
5767 * inherit events that have been marked for cloning.
5768 * First allocate and initialize a context for the
5769 * child.
5772 child_ctx = kzalloc(sizeof(struct perf_event_context),
5773 GFP_KERNEL);
5774 if (!child_ctx)
5775 return -ENOMEM;
5777 __perf_event_init_context(child_ctx, child);
5778 child->perf_event_ctxp = child_ctx;
5779 get_task_struct(child);
5782 ret = inherit_group(event, parent, parent_ctx,
5783 child, child_ctx);
5785 if (ret)
5786 *inherited_all = 0;
5788 return ret;
5793 * Initialize the perf_event context in task_struct
5795 int perf_event_init_task(struct task_struct *child)
5797 struct perf_event_context *child_ctx, *parent_ctx;
5798 struct perf_event_context *cloned_ctx;
5799 struct perf_event *event;
5800 struct task_struct *parent = current;
5801 int inherited_all = 1;
5802 int ret = 0;
5804 child->perf_event_ctxp = NULL;
5806 mutex_init(&child->perf_event_mutex);
5807 INIT_LIST_HEAD(&child->perf_event_list);
5809 if (likely(!parent->perf_event_ctxp))
5810 return 0;
5813 * If the parent's context is a clone, pin it so it won't get
5814 * swapped under us.
5816 parent_ctx = perf_pin_task_context(parent);
5819 * No need to check if parent_ctx != NULL here; since we saw
5820 * it non-NULL earlier, the only reason for it to become NULL
5821 * is if we exit, and since we're currently in the middle of
5822 * a fork we can't be exiting at the same time.
5826 * Lock the parent list. No need to lock the child - not PID
5827 * hashed yet and not running, so nobody can access it.
5829 mutex_lock(&parent_ctx->mutex);
5832 * We dont have to disable NMIs - we are only looking at
5833 * the list, not manipulating it:
5835 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5836 ret = inherit_task_group(event, parent, parent_ctx, child,
5837 &inherited_all);
5838 if (ret)
5839 break;
5842 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5843 ret = inherit_task_group(event, parent, parent_ctx, child,
5844 &inherited_all);
5845 if (ret)
5846 break;
5849 child_ctx = child->perf_event_ctxp;
5851 if (child_ctx && inherited_all) {
5853 * Mark the child context as a clone of the parent
5854 * context, or of whatever the parent is a clone of.
5855 * Note that if the parent is a clone, it could get
5856 * uncloned at any point, but that doesn't matter
5857 * because the list of events and the generation
5858 * count can't have changed since we took the mutex.
5860 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5861 if (cloned_ctx) {
5862 child_ctx->parent_ctx = cloned_ctx;
5863 child_ctx->parent_gen = parent_ctx->parent_gen;
5864 } else {
5865 child_ctx->parent_ctx = parent_ctx;
5866 child_ctx->parent_gen = parent_ctx->generation;
5868 get_ctx(child_ctx->parent_ctx);
5871 mutex_unlock(&parent_ctx->mutex);
5873 perf_unpin_context(parent_ctx);
5875 return ret;
5878 static void __init perf_event_init_all_cpus(void)
5880 int cpu;
5881 struct perf_cpu_context *cpuctx;
5883 for_each_possible_cpu(cpu) {
5884 cpuctx = &per_cpu(perf_cpu_context, cpu);
5885 mutex_init(&cpuctx->hlist_mutex);
5886 __perf_event_init_context(&cpuctx->ctx, NULL);
5890 static void __cpuinit perf_event_init_cpu(int cpu)
5892 struct perf_cpu_context *cpuctx;
5894 cpuctx = &per_cpu(perf_cpu_context, cpu);
5896 spin_lock(&perf_resource_lock);
5897 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5898 spin_unlock(&perf_resource_lock);
5900 mutex_lock(&cpuctx->hlist_mutex);
5901 if (cpuctx->hlist_refcount > 0) {
5902 struct swevent_hlist *hlist;
5904 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5905 WARN_ON_ONCE(!hlist);
5906 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5908 mutex_unlock(&cpuctx->hlist_mutex);
5911 #ifdef CONFIG_HOTPLUG_CPU
5912 static void __perf_event_exit_cpu(void *info)
5914 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5915 struct perf_event_context *ctx = &cpuctx->ctx;
5916 struct perf_event *event, *tmp;
5918 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5919 __perf_event_remove_from_context(event);
5920 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5921 __perf_event_remove_from_context(event);
5923 static void perf_event_exit_cpu(int cpu)
5925 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5926 struct perf_event_context *ctx = &cpuctx->ctx;
5928 mutex_lock(&cpuctx->hlist_mutex);
5929 swevent_hlist_release(cpuctx);
5930 mutex_unlock(&cpuctx->hlist_mutex);
5932 mutex_lock(&ctx->mutex);
5933 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5934 mutex_unlock(&ctx->mutex);
5936 #else
5937 static inline void perf_event_exit_cpu(int cpu) { }
5938 #endif
5940 static int __cpuinit
5941 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5943 unsigned int cpu = (long)hcpu;
5945 switch (action) {
5947 case CPU_UP_PREPARE:
5948 case CPU_UP_PREPARE_FROZEN:
5949 perf_event_init_cpu(cpu);
5950 break;
5952 case CPU_DOWN_PREPARE:
5953 case CPU_DOWN_PREPARE_FROZEN:
5954 perf_event_exit_cpu(cpu);
5955 break;
5957 default:
5958 break;
5961 return NOTIFY_OK;
5965 * This has to have a higher priority than migration_notifier in sched.c.
5967 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5968 .notifier_call = perf_cpu_notify,
5969 .priority = 20,
5972 void __init perf_event_init(void)
5974 perf_event_init_all_cpus();
5975 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5976 (void *)(long)smp_processor_id());
5977 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5978 (void *)(long)smp_processor_id());
5979 register_cpu_notifier(&perf_cpu_nb);
5982 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5983 struct sysdev_class_attribute *attr,
5984 char *buf)
5986 return sprintf(buf, "%d\n", perf_reserved_percpu);
5989 static ssize_t
5990 perf_set_reserve_percpu(struct sysdev_class *class,
5991 struct sysdev_class_attribute *attr,
5992 const char *buf,
5993 size_t count)
5995 struct perf_cpu_context *cpuctx;
5996 unsigned long val;
5997 int err, cpu, mpt;
5999 err = strict_strtoul(buf, 10, &val);
6000 if (err)
6001 return err;
6002 if (val > perf_max_events)
6003 return -EINVAL;
6005 spin_lock(&perf_resource_lock);
6006 perf_reserved_percpu = val;
6007 for_each_online_cpu(cpu) {
6008 cpuctx = &per_cpu(perf_cpu_context, cpu);
6009 raw_spin_lock_irq(&cpuctx->ctx.lock);
6010 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
6011 perf_max_events - perf_reserved_percpu);
6012 cpuctx->max_pertask = mpt;
6013 raw_spin_unlock_irq(&cpuctx->ctx.lock);
6015 spin_unlock(&perf_resource_lock);
6017 return count;
6020 static ssize_t perf_show_overcommit(struct sysdev_class *class,
6021 struct sysdev_class_attribute *attr,
6022 char *buf)
6024 return sprintf(buf, "%d\n", perf_overcommit);
6027 static ssize_t
6028 perf_set_overcommit(struct sysdev_class *class,
6029 struct sysdev_class_attribute *attr,
6030 const char *buf, size_t count)
6032 unsigned long val;
6033 int err;
6035 err = strict_strtoul(buf, 10, &val);
6036 if (err)
6037 return err;
6038 if (val > 1)
6039 return -EINVAL;
6041 spin_lock(&perf_resource_lock);
6042 perf_overcommit = val;
6043 spin_unlock(&perf_resource_lock);
6045 return count;
6048 static SYSDEV_CLASS_ATTR(
6049 reserve_percpu,
6050 0644,
6051 perf_show_reserve_percpu,
6052 perf_set_reserve_percpu
6055 static SYSDEV_CLASS_ATTR(
6056 overcommit,
6057 0644,
6058 perf_show_overcommit,
6059 perf_set_overcommit
6062 static struct attribute *perfclass_attrs[] = {
6063 &attr_reserve_percpu.attr,
6064 &attr_overcommit.attr,
6065 NULL
6068 static struct attribute_group perfclass_attr_group = {
6069 .attrs = perfclass_attrs,
6070 .name = "perf_events",
6073 static int __init perf_event_sysfs_init(void)
6075 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
6076 &perfclass_attr_group);
6078 device_initcall(perf_event_sysfs_init);