3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113 #include <linux/debugobjects.h>
115 #include <asm/cacheflush.h>
116 #include <asm/tlbflush.h>
117 #include <asm/page.h>
120 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129 #ifdef CONFIG_DEBUG_SLAB
132 #define FORCED_DEBUG 1
136 #define FORCED_DEBUG 0
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
141 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * ARCH_KMALLOC_MINALIGN allows that.
151 * Note that increasing this value may disable some debug features.
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #ifndef ARCH_SLAB_MINALIGN
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
164 #define ARCH_SLAB_MINALIGN 0
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 /* Legal flag mask for kmem_cache_create(). */
173 # define CREATE_MASK (SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
191 * Bufctl's are used for linking objs within a slab
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t
;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head
;
247 struct kmem_cache
*cachep
;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount
;
267 unsigned int touched
;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init
{
282 struct array_cache cache
;
283 void *entries
[BOOT_CPUCACHE_ENTRIES
];
287 * The slab lists for all objects.
290 struct list_head slabs_partial
; /* partial list first, better asm code */
291 struct list_head slabs_full
;
292 struct list_head slabs_free
;
293 unsigned long free_objects
;
294 unsigned int free_limit
;
295 unsigned int colour_next
; /* Per-node cache coloring */
296 spinlock_t list_lock
;
297 struct array_cache
*shared
; /* shared per node */
298 struct array_cache
**alien
; /* on other nodes */
299 unsigned long next_reap
; /* updated without locking */
300 int free_touched
; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
307 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
308 #define CACHE_CACHE 0
309 #define SIZE_AC MAX_NUMNODES
310 #define SIZE_L3 (2 * MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache
*cache
,
313 struct kmem_list3
*l3
, int tofree
);
314 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
316 static int enable_cpucache(struct kmem_cache
*cachep
);
317 static void cache_reap(struct work_struct
*unused
);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline
int index_of(const size_t size
)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size
)) {
335 #include <linux/kmalloc_sizes.h>
343 static int slab_early_init
= 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3
*parent
)
350 INIT_LIST_HEAD(&parent
->slabs_full
);
351 INIT_LIST_HEAD(&parent
->slabs_partial
);
352 INIT_LIST_HEAD(&parent
->slabs_free
);
353 parent
->shared
= NULL
;
354 parent
->alien
= NULL
;
355 parent
->colour_next
= 0;
356 spin_lock_init(&parent
->list_lock
);
357 parent
->free_objects
= 0;
358 parent
->free_touched
= 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache
*array
[NR_CPUS
];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount
;
388 unsigned int buffer_size
;
389 u32 reciprocal_buffer_size
;
390 /* 3) touched by every alloc & free from the backend */
392 unsigned int flags
; /* constant flags */
393 unsigned int num
; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder
;
399 /* force GFP flags, e.g. GFP_DMA */
402 size_t colour
; /* cache colouring range */
403 unsigned int colour_off
; /* colour offset */
404 struct kmem_cache
*slabp_cache
;
405 unsigned int slab_size
;
406 unsigned int dflags
; /* dynamic flags */
408 /* constructor func */
409 void (*ctor
)(void *obj
);
411 /* 5) cache creation/removal */
413 struct list_head next
;
417 unsigned long num_active
;
418 unsigned long num_allocations
;
419 unsigned long high_mark
;
421 unsigned long reaped
;
422 unsigned long errors
;
423 unsigned long max_freeable
;
424 unsigned long node_allocs
;
425 unsigned long node_frees
;
426 unsigned long node_overflow
;
434 * If debugging is enabled, then the allocator can add additional
435 * fields and/or padding to every object. buffer_size contains the total
436 * object size including these internal fields, the following two
437 * variables contain the offset to the user object and its size.
443 * We put nodelists[] at the end of kmem_cache, because we want to size
444 * this array to nr_node_ids slots instead of MAX_NUMNODES
445 * (see kmem_cache_init())
446 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
447 * is statically defined, so we reserve the max number of nodes.
449 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
451 * Do not add fields after nodelists[]
455 #define CFLGS_OFF_SLAB (0x80000000UL)
456 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458 #define BATCHREFILL_LIMIT 16
460 * Optimization question: fewer reaps means less probability for unnessary
461 * cpucache drain/refill cycles.
463 * OTOH the cpuarrays can contain lots of objects,
464 * which could lock up otherwise freeable slabs.
466 #define REAPTIMEOUT_CPUC (2*HZ)
467 #define REAPTIMEOUT_LIST3 (4*HZ)
470 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
471 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
472 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
473 #define STATS_INC_GROWN(x) ((x)->grown++)
474 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
475 #define STATS_SET_HIGH(x) \
477 if ((x)->num_active > (x)->high_mark) \
478 (x)->high_mark = (x)->num_active; \
480 #define STATS_INC_ERR(x) ((x)->errors++)
481 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
482 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
483 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
484 #define STATS_SET_FREEABLE(x, i) \
486 if ((x)->max_freeable < i) \
487 (x)->max_freeable = i; \
489 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
490 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
491 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
492 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #define STATS_INC_ACTIVE(x) do { } while (0)
495 #define STATS_DEC_ACTIVE(x) do { } while (0)
496 #define STATS_INC_ALLOCED(x) do { } while (0)
497 #define STATS_INC_GROWN(x) do { } while (0)
498 #define STATS_ADD_REAPED(x,y) do { } while (0)
499 #define STATS_SET_HIGH(x) do { } while (0)
500 #define STATS_INC_ERR(x) do { } while (0)
501 #define STATS_INC_NODEALLOCS(x) do { } while (0)
502 #define STATS_INC_NODEFREES(x) do { } while (0)
503 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
504 #define STATS_SET_FREEABLE(x, i) do { } while (0)
505 #define STATS_INC_ALLOCHIT(x) do { } while (0)
506 #define STATS_INC_ALLOCMISS(x) do { } while (0)
507 #define STATS_INC_FREEHIT(x) do { } while (0)
508 #define STATS_INC_FREEMISS(x) do { } while (0)
514 * memory layout of objects:
516 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
517 * the end of an object is aligned with the end of the real
518 * allocation. Catches writes behind the end of the allocation.
519 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * cachep->obj_offset: The real object.
522 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
523 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
524 * [BYTES_PER_WORD long]
526 static int obj_offset(struct kmem_cache
*cachep
)
528 return cachep
->obj_offset
;
531 static int obj_size(struct kmem_cache
*cachep
)
533 return cachep
->obj_size
;
536 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
538 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
539 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
540 sizeof(unsigned long long));
543 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
545 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
546 if (cachep
->flags
& SLAB_STORE_USER
)
547 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
548 sizeof(unsigned long long) -
550 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
551 sizeof(unsigned long long));
554 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
556 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
557 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
562 #define obj_offset(x) 0
563 #define obj_size(cachep) (cachep->buffer_size)
564 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
565 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571 * Do not go above this order unless 0 objects fit into the slab.
573 #define BREAK_GFP_ORDER_HI 1
574 #define BREAK_GFP_ORDER_LO 0
575 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
578 * Functions for storing/retrieving the cachep and or slab from the page
579 * allocator. These are used to find the slab an obj belongs to. With kfree(),
580 * these are used to find the cache which an obj belongs to.
582 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
584 page
->lru
.next
= (struct list_head
*)cache
;
587 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
589 page
= compound_head(page
);
590 BUG_ON(!PageSlab(page
));
591 return (struct kmem_cache
*)page
->lru
.next
;
594 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
596 page
->lru
.prev
= (struct list_head
*)slab
;
599 static inline struct slab
*page_get_slab(struct page
*page
)
601 BUG_ON(!PageSlab(page
));
602 return (struct slab
*)page
->lru
.prev
;
605 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
607 struct page
*page
= virt_to_head_page(obj
);
608 return page_get_cache(page
);
611 static inline struct slab
*virt_to_slab(const void *obj
)
613 struct page
*page
= virt_to_head_page(obj
);
614 return page_get_slab(page
);
617 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
620 return slab
->s_mem
+ cache
->buffer_size
* idx
;
624 * We want to avoid an expensive divide : (offset / cache->buffer_size)
625 * Using the fact that buffer_size is a constant for a particular cache,
626 * we can replace (offset / cache->buffer_size) by
627 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
630 const struct slab
*slab
, void *obj
)
632 u32 offset
= (obj
- slab
->s_mem
);
633 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes
[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
645 EXPORT_SYMBOL(malloc_sizes
);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
653 static struct cache_names __initdata cache_names
[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
660 static struct arraycache_init initarray_cache __initdata
=
661 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
662 static struct arraycache_init initarray_generic
=
663 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache
= {
668 .limit
= BOOT_CPUCACHE_ENTRIES
,
670 .buffer_size
= sizeof(struct kmem_cache
),
671 .name
= "kmem_cache",
674 #define BAD_ALIEN_MAGIC 0x01020304ul
676 #ifdef CONFIG_LOCKDEP
679 * Slab sometimes uses the kmalloc slabs to store the slab headers
680 * for other slabs "off slab".
681 * The locking for this is tricky in that it nests within the locks
682 * of all other slabs in a few places; to deal with this special
683 * locking we put on-slab caches into a separate lock-class.
685 * We set lock class for alien array caches which are up during init.
686 * The lock annotation will be lost if all cpus of a node goes down and
687 * then comes back up during hotplug
689 static struct lock_class_key on_slab_l3_key
;
690 static struct lock_class_key on_slab_alc_key
;
692 static inline void init_lock_keys(void)
696 struct cache_sizes
*s
= malloc_sizes
;
698 while (s
->cs_size
!= ULONG_MAX
) {
700 struct array_cache
**alc
;
702 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
703 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
705 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
708 * FIXME: This check for BAD_ALIEN_MAGIC
709 * should go away when common slab code is taught to
710 * work even without alien caches.
711 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
712 * for alloc_alien_cache,
714 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
718 lockdep_set_class(&alc
[r
]->lock
,
726 static inline void init_lock_keys(void)
732 * Guard access to the cache-chain.
734 static DEFINE_MUTEX(cache_chain_mutex
);
735 static struct list_head cache_chain
;
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
749 * used by boot code to determine if it can use slab based allocator
751 int slab_is_available(void)
753 return g_cpucache_up
== FULL
;
756 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
758 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
760 return cachep
->array
[smp_processor_id()];
763 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
766 struct cache_sizes
*csizep
= malloc_sizes
;
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
773 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
776 return ZERO_SIZE_PTR
;
778 while (size
> csizep
->cs_size
)
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
786 #ifdef CONFIG_ZONE_DMA
787 if (unlikely(gfpflags
& GFP_DMA
))
788 return csizep
->cs_dmacachep
;
790 return csizep
->cs_cachep
;
793 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
795 return __find_general_cachep(size
, gfpflags
);
798 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
800 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
804 * Calculate the number of objects and left-over bytes for a given buffer size.
806 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
807 size_t align
, int flags
, size_t *left_over
,
812 size_t slab_size
= PAGE_SIZE
<< gfporder
;
815 * The slab management structure can be either off the slab or
816 * on it. For the latter case, the memory allocated for a
820 * - One kmem_bufctl_t for each object
821 * - Padding to respect alignment of @align
822 * - @buffer_size bytes for each object
824 * If the slab management structure is off the slab, then the
825 * alignment will already be calculated into the size. Because
826 * the slabs are all pages aligned, the objects will be at the
827 * correct alignment when allocated.
829 if (flags
& CFLGS_OFF_SLAB
) {
831 nr_objs
= slab_size
/ buffer_size
;
833 if (nr_objs
> SLAB_LIMIT
)
834 nr_objs
= SLAB_LIMIT
;
837 * Ignore padding for the initial guess. The padding
838 * is at most @align-1 bytes, and @buffer_size is at
839 * least @align. In the worst case, this result will
840 * be one greater than the number of objects that fit
841 * into the memory allocation when taking the padding
844 nr_objs
= (slab_size
- sizeof(struct slab
)) /
845 (buffer_size
+ sizeof(kmem_bufctl_t
));
848 * This calculated number will be either the right
849 * amount, or one greater than what we want.
851 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
855 if (nr_objs
> SLAB_LIMIT
)
856 nr_objs
= SLAB_LIMIT
;
858 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
861 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
864 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
866 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
869 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
870 function
, cachep
->name
, msg
);
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
882 static int use_alien_caches __read_mostly
= 1;
883 static int numa_platform __read_mostly
= 1;
884 static int __init
noaliencache_setup(char *s
)
886 use_alien_caches
= 0;
889 __setup("noaliencache", noaliencache_setup
);
893 * Special reaping functions for NUMA systems called from cache_reap().
894 * These take care of doing round robin flushing of alien caches (containing
895 * objects freed on different nodes from which they were allocated) and the
896 * flushing of remote pcps by calling drain_node_pages.
898 static DEFINE_PER_CPU(unsigned long, reap_node
);
900 static void init_reap_node(int cpu
)
904 node
= next_node(cpu_to_node(cpu
), node_online_map
);
905 if (node
== MAX_NUMNODES
)
906 node
= first_node(node_online_map
);
908 per_cpu(reap_node
, cpu
) = node
;
911 static void next_reap_node(void)
913 int node
= __get_cpu_var(reap_node
);
915 node
= next_node(node
, node_online_map
);
916 if (unlikely(node
>= MAX_NUMNODES
))
917 node
= first_node(node_online_map
);
918 __get_cpu_var(reap_node
) = node
;
922 #define init_reap_node(cpu) do { } while (0)
923 #define next_reap_node(void) do { } while (0)
927 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
928 * via the workqueue/eventd.
929 * Add the CPU number into the expiration time to minimize the possibility of
930 * the CPUs getting into lockstep and contending for the global cache chain
933 static void __cpuinit
start_cpu_timer(int cpu
)
935 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
938 * When this gets called from do_initcalls via cpucache_init(),
939 * init_workqueues() has already run, so keventd will be setup
942 if (keventd_up() && reap_work
->work
.func
== NULL
) {
944 INIT_DELAYED_WORK(reap_work
, cache_reap
);
945 schedule_delayed_work_on(cpu
, reap_work
,
946 __round_jiffies_relative(HZ
, cpu
));
950 static struct array_cache
*alloc_arraycache(int node
, int entries
,
953 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
954 struct array_cache
*nc
= NULL
;
956 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
960 nc
->batchcount
= batchcount
;
962 spin_lock_init(&nc
->lock
);
968 * Transfer objects in one arraycache to another.
969 * Locking must be handled by the caller.
971 * Return the number of entries transferred.
973 static int transfer_objects(struct array_cache
*to
,
974 struct array_cache
*from
, unsigned int max
)
976 /* Figure out how many entries to transfer */
977 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
982 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
993 #define drain_alien_cache(cachep, alien) do { } while (0)
994 #define reap_alien(cachep, l3) do { } while (0)
996 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
998 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1001 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1005 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1010 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1016 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1017 gfp_t flags
, int nodeid
)
1022 #else /* CONFIG_NUMA */
1024 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1025 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1027 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1029 struct array_cache
**ac_ptr
;
1030 int memsize
= sizeof(void *) * nr_node_ids
;
1035 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1038 if (i
== node
|| !node_online(i
)) {
1042 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1044 for (i
--; i
>= 0; i
--)
1054 static void free_alien_cache(struct array_cache
**ac_ptr
)
1065 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1066 struct array_cache
*ac
, int node
)
1068 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1071 spin_lock(&rl3
->list_lock
);
1073 * Stuff objects into the remote nodes shared array first.
1074 * That way we could avoid the overhead of putting the objects
1075 * into the free lists and getting them back later.
1078 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1080 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1082 spin_unlock(&rl3
->list_lock
);
1087 * Called from cache_reap() to regularly drain alien caches round robin.
1089 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1091 int node
= __get_cpu_var(reap_node
);
1094 struct array_cache
*ac
= l3
->alien
[node
];
1096 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1097 __drain_alien_cache(cachep
, ac
, node
);
1098 spin_unlock_irq(&ac
->lock
);
1103 static void drain_alien_cache(struct kmem_cache
*cachep
,
1104 struct array_cache
**alien
)
1107 struct array_cache
*ac
;
1108 unsigned long flags
;
1110 for_each_online_node(i
) {
1113 spin_lock_irqsave(&ac
->lock
, flags
);
1114 __drain_alien_cache(cachep
, ac
, i
);
1115 spin_unlock_irqrestore(&ac
->lock
, flags
);
1120 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1122 struct slab
*slabp
= virt_to_slab(objp
);
1123 int nodeid
= slabp
->nodeid
;
1124 struct kmem_list3
*l3
;
1125 struct array_cache
*alien
= NULL
;
1128 node
= numa_node_id();
1131 * Make sure we are not freeing a object from another node to the array
1132 * cache on this cpu.
1134 if (likely(slabp
->nodeid
== node
))
1137 l3
= cachep
->nodelists
[node
];
1138 STATS_INC_NODEFREES(cachep
);
1139 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1140 alien
= l3
->alien
[nodeid
];
1141 spin_lock(&alien
->lock
);
1142 if (unlikely(alien
->avail
== alien
->limit
)) {
1143 STATS_INC_ACOVERFLOW(cachep
);
1144 __drain_alien_cache(cachep
, alien
, nodeid
);
1146 alien
->entry
[alien
->avail
++] = objp
;
1147 spin_unlock(&alien
->lock
);
1149 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1150 free_block(cachep
, &objp
, 1, nodeid
);
1151 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1157 static void __cpuinit
cpuup_canceled(long cpu
)
1159 struct kmem_cache
*cachep
;
1160 struct kmem_list3
*l3
= NULL
;
1161 int node
= cpu_to_node(cpu
);
1162 node_to_cpumask_ptr(mask
, node
);
1164 list_for_each_entry(cachep
, &cache_chain
, next
) {
1165 struct array_cache
*nc
;
1166 struct array_cache
*shared
;
1167 struct array_cache
**alien
;
1169 /* cpu is dead; no one can alloc from it. */
1170 nc
= cachep
->array
[cpu
];
1171 cachep
->array
[cpu
] = NULL
;
1172 l3
= cachep
->nodelists
[node
];
1175 goto free_array_cache
;
1177 spin_lock_irq(&l3
->list_lock
);
1179 /* Free limit for this kmem_list3 */
1180 l3
->free_limit
-= cachep
->batchcount
;
1182 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1184 if (!cpus_empty(*mask
)) {
1185 spin_unlock_irq(&l3
->list_lock
);
1186 goto free_array_cache
;
1189 shared
= l3
->shared
;
1191 free_block(cachep
, shared
->entry
,
1192 shared
->avail
, node
);
1199 spin_unlock_irq(&l3
->list_lock
);
1203 drain_alien_cache(cachep
, alien
);
1204 free_alien_cache(alien
);
1210 * In the previous loop, all the objects were freed to
1211 * the respective cache's slabs, now we can go ahead and
1212 * shrink each nodelist to its limit.
1214 list_for_each_entry(cachep
, &cache_chain
, next
) {
1215 l3
= cachep
->nodelists
[node
];
1218 drain_freelist(cachep
, l3
, l3
->free_objects
);
1222 static int __cpuinit
cpuup_prepare(long cpu
)
1224 struct kmem_cache
*cachep
;
1225 struct kmem_list3
*l3
= NULL
;
1226 int node
= cpu_to_node(cpu
);
1227 const int memsize
= sizeof(struct kmem_list3
);
1230 * We need to do this right in the beginning since
1231 * alloc_arraycache's are going to use this list.
1232 * kmalloc_node allows us to add the slab to the right
1233 * kmem_list3 and not this cpu's kmem_list3
1236 list_for_each_entry(cachep
, &cache_chain
, next
) {
1238 * Set up the size64 kmemlist for cpu before we can
1239 * begin anything. Make sure some other cpu on this
1240 * node has not already allocated this
1242 if (!cachep
->nodelists
[node
]) {
1243 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1246 kmem_list3_init(l3
);
1247 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1248 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1251 * The l3s don't come and go as CPUs come and
1252 * go. cache_chain_mutex is sufficient
1255 cachep
->nodelists
[node
] = l3
;
1258 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1259 cachep
->nodelists
[node
]->free_limit
=
1260 (1 + nr_cpus_node(node
)) *
1261 cachep
->batchcount
+ cachep
->num
;
1262 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1266 * Now we can go ahead with allocating the shared arrays and
1269 list_for_each_entry(cachep
, &cache_chain
, next
) {
1270 struct array_cache
*nc
;
1271 struct array_cache
*shared
= NULL
;
1272 struct array_cache
**alien
= NULL
;
1274 nc
= alloc_arraycache(node
, cachep
->limit
,
1275 cachep
->batchcount
);
1278 if (cachep
->shared
) {
1279 shared
= alloc_arraycache(node
,
1280 cachep
->shared
* cachep
->batchcount
,
1287 if (use_alien_caches
) {
1288 alien
= alloc_alien_cache(node
, cachep
->limit
);
1295 cachep
->array
[cpu
] = nc
;
1296 l3
= cachep
->nodelists
[node
];
1299 spin_lock_irq(&l3
->list_lock
);
1302 * We are serialised from CPU_DEAD or
1303 * CPU_UP_CANCELLED by the cpucontrol lock
1305 l3
->shared
= shared
;
1314 spin_unlock_irq(&l3
->list_lock
);
1316 free_alien_cache(alien
);
1320 cpuup_canceled(cpu
);
1324 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1325 unsigned long action
, void *hcpu
)
1327 long cpu
= (long)hcpu
;
1331 case CPU_UP_PREPARE
:
1332 case CPU_UP_PREPARE_FROZEN
:
1333 mutex_lock(&cache_chain_mutex
);
1334 err
= cpuup_prepare(cpu
);
1335 mutex_unlock(&cache_chain_mutex
);
1338 case CPU_ONLINE_FROZEN
:
1339 start_cpu_timer(cpu
);
1341 #ifdef CONFIG_HOTPLUG_CPU
1342 case CPU_DOWN_PREPARE
:
1343 case CPU_DOWN_PREPARE_FROZEN
:
1345 * Shutdown cache reaper. Note that the cache_chain_mutex is
1346 * held so that if cache_reap() is invoked it cannot do
1347 * anything expensive but will only modify reap_work
1348 * and reschedule the timer.
1350 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1351 /* Now the cache_reaper is guaranteed to be not running. */
1352 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1354 case CPU_DOWN_FAILED
:
1355 case CPU_DOWN_FAILED_FROZEN
:
1356 start_cpu_timer(cpu
);
1359 case CPU_DEAD_FROZEN
:
1361 * Even if all the cpus of a node are down, we don't free the
1362 * kmem_list3 of any cache. This to avoid a race between
1363 * cpu_down, and a kmalloc allocation from another cpu for
1364 * memory from the node of the cpu going down. The list3
1365 * structure is usually allocated from kmem_cache_create() and
1366 * gets destroyed at kmem_cache_destroy().
1370 case CPU_UP_CANCELED
:
1371 case CPU_UP_CANCELED_FROZEN
:
1372 mutex_lock(&cache_chain_mutex
);
1373 cpuup_canceled(cpu
);
1374 mutex_unlock(&cache_chain_mutex
);
1377 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1380 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1381 &cpuup_callback
, NULL
, 0
1385 * swap the static kmem_list3 with kmalloced memory
1387 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1390 struct kmem_list3
*ptr
;
1392 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1395 local_irq_disable();
1396 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1398 * Do not assume that spinlocks can be initialized via memcpy:
1400 spin_lock_init(&ptr
->list_lock
);
1402 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1403 cachep
->nodelists
[nodeid
] = ptr
;
1408 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1409 * size of kmem_list3.
1411 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1415 for_each_online_node(node
) {
1416 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1417 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1419 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1427 void __init
kmem_cache_init(void)
1430 struct cache_sizes
*sizes
;
1431 struct cache_names
*names
;
1436 if (num_possible_nodes() == 1) {
1437 use_alien_caches
= 0;
1441 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1442 kmem_list3_init(&initkmem_list3
[i
]);
1443 if (i
< MAX_NUMNODES
)
1444 cache_cache
.nodelists
[i
] = NULL
;
1446 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1449 * Fragmentation resistance on low memory - only use bigger
1450 * page orders on machines with more than 32MB of memory.
1452 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1453 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1455 /* Bootstrap is tricky, because several objects are allocated
1456 * from caches that do not exist yet:
1457 * 1) initialize the cache_cache cache: it contains the struct
1458 * kmem_cache structures of all caches, except cache_cache itself:
1459 * cache_cache is statically allocated.
1460 * Initially an __init data area is used for the head array and the
1461 * kmem_list3 structures, it's replaced with a kmalloc allocated
1462 * array at the end of the bootstrap.
1463 * 2) Create the first kmalloc cache.
1464 * The struct kmem_cache for the new cache is allocated normally.
1465 * An __init data area is used for the head array.
1466 * 3) Create the remaining kmalloc caches, with minimally sized
1468 * 4) Replace the __init data head arrays for cache_cache and the first
1469 * kmalloc cache with kmalloc allocated arrays.
1470 * 5) Replace the __init data for kmem_list3 for cache_cache and
1471 * the other cache's with kmalloc allocated memory.
1472 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1475 node
= numa_node_id();
1477 /* 1) create the cache_cache */
1478 INIT_LIST_HEAD(&cache_chain
);
1479 list_add(&cache_cache
.next
, &cache_chain
);
1480 cache_cache
.colour_off
= cache_line_size();
1481 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1482 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1485 * struct kmem_cache size depends on nr_node_ids, which
1486 * can be less than MAX_NUMNODES.
1488 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1489 nr_node_ids
* sizeof(struct kmem_list3
*);
1491 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1493 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1495 cache_cache
.reciprocal_buffer_size
=
1496 reciprocal_value(cache_cache
.buffer_size
);
1498 for (order
= 0; order
< MAX_ORDER
; order
++) {
1499 cache_estimate(order
, cache_cache
.buffer_size
,
1500 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1501 if (cache_cache
.num
)
1504 BUG_ON(!cache_cache
.num
);
1505 cache_cache
.gfporder
= order
;
1506 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1507 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1508 sizeof(struct slab
), cache_line_size());
1510 /* 2+3) create the kmalloc caches */
1511 sizes
= malloc_sizes
;
1512 names
= cache_names
;
1515 * Initialize the caches that provide memory for the array cache and the
1516 * kmem_list3 structures first. Without this, further allocations will
1520 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1521 sizes
[INDEX_AC
].cs_size
,
1522 ARCH_KMALLOC_MINALIGN
,
1523 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1526 if (INDEX_AC
!= INDEX_L3
) {
1527 sizes
[INDEX_L3
].cs_cachep
=
1528 kmem_cache_create(names
[INDEX_L3
].name
,
1529 sizes
[INDEX_L3
].cs_size
,
1530 ARCH_KMALLOC_MINALIGN
,
1531 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1535 slab_early_init
= 0;
1537 while (sizes
->cs_size
!= ULONG_MAX
) {
1539 * For performance, all the general caches are L1 aligned.
1540 * This should be particularly beneficial on SMP boxes, as it
1541 * eliminates "false sharing".
1542 * Note for systems short on memory removing the alignment will
1543 * allow tighter packing of the smaller caches.
1545 if (!sizes
->cs_cachep
) {
1546 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1548 ARCH_KMALLOC_MINALIGN
,
1549 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1552 #ifdef CONFIG_ZONE_DMA
1553 sizes
->cs_dmacachep
= kmem_cache_create(
1556 ARCH_KMALLOC_MINALIGN
,
1557 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1564 /* 4) Replace the bootstrap head arrays */
1566 struct array_cache
*ptr
;
1568 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1570 local_irq_disable();
1571 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1572 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1573 sizeof(struct arraycache_init
));
1575 * Do not assume that spinlocks can be initialized via memcpy:
1577 spin_lock_init(&ptr
->lock
);
1579 cache_cache
.array
[smp_processor_id()] = ptr
;
1582 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1584 local_irq_disable();
1585 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1586 != &initarray_generic
.cache
);
1587 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1588 sizeof(struct arraycache_init
));
1590 * Do not assume that spinlocks can be initialized via memcpy:
1592 spin_lock_init(&ptr
->lock
);
1594 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1598 /* 5) Replace the bootstrap kmem_list3's */
1602 for_each_online_node(nid
) {
1603 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1605 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1606 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1608 if (INDEX_AC
!= INDEX_L3
) {
1609 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1610 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1615 /* 6) resize the head arrays to their final sizes */
1617 struct kmem_cache
*cachep
;
1618 mutex_lock(&cache_chain_mutex
);
1619 list_for_each_entry(cachep
, &cache_chain
, next
)
1620 if (enable_cpucache(cachep
))
1622 mutex_unlock(&cache_chain_mutex
);
1625 /* Annotate slab for lockdep -- annotate the malloc caches */
1630 g_cpucache_up
= FULL
;
1633 * Register a cpu startup notifier callback that initializes
1634 * cpu_cache_get for all new cpus
1636 register_cpu_notifier(&cpucache_notifier
);
1639 * The reap timers are started later, with a module init call: That part
1640 * of the kernel is not yet operational.
1644 static int __init
cpucache_init(void)
1649 * Register the timers that return unneeded pages to the page allocator
1651 for_each_online_cpu(cpu
)
1652 start_cpu_timer(cpu
);
1655 __initcall(cpucache_init
);
1658 * Interface to system's page allocator. No need to hold the cache-lock.
1660 * If we requested dmaable memory, we will get it. Even if we
1661 * did not request dmaable memory, we might get it, but that
1662 * would be relatively rare and ignorable.
1664 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1672 * Nommu uses slab's for process anonymous memory allocations, and thus
1673 * requires __GFP_COMP to properly refcount higher order allocations
1675 flags
|= __GFP_COMP
;
1678 flags
|= cachep
->gfpflags
;
1679 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1680 flags
|= __GFP_RECLAIMABLE
;
1682 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1686 nr_pages
= (1 << cachep
->gfporder
);
1687 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1688 add_zone_page_state(page_zone(page
),
1689 NR_SLAB_RECLAIMABLE
, nr_pages
);
1691 add_zone_page_state(page_zone(page
),
1692 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1693 for (i
= 0; i
< nr_pages
; i
++)
1694 __SetPageSlab(page
+ i
);
1695 return page_address(page
);
1699 * Interface to system's page release.
1701 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1703 unsigned long i
= (1 << cachep
->gfporder
);
1704 struct page
*page
= virt_to_page(addr
);
1705 const unsigned long nr_freed
= i
;
1707 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1708 sub_zone_page_state(page_zone(page
),
1709 NR_SLAB_RECLAIMABLE
, nr_freed
);
1711 sub_zone_page_state(page_zone(page
),
1712 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1714 BUG_ON(!PageSlab(page
));
1715 __ClearPageSlab(page
);
1718 if (current
->reclaim_state
)
1719 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1720 free_pages((unsigned long)addr
, cachep
->gfporder
);
1723 static void kmem_rcu_free(struct rcu_head
*head
)
1725 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1726 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1728 kmem_freepages(cachep
, slab_rcu
->addr
);
1729 if (OFF_SLAB(cachep
))
1730 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1735 #ifdef CONFIG_DEBUG_PAGEALLOC
1736 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1737 unsigned long caller
)
1739 int size
= obj_size(cachep
);
1741 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1743 if (size
< 5 * sizeof(unsigned long))
1746 *addr
++ = 0x12345678;
1748 *addr
++ = smp_processor_id();
1749 size
-= 3 * sizeof(unsigned long);
1751 unsigned long *sptr
= &caller
;
1752 unsigned long svalue
;
1754 while (!kstack_end(sptr
)) {
1756 if (kernel_text_address(svalue
)) {
1758 size
-= sizeof(unsigned long);
1759 if (size
<= sizeof(unsigned long))
1765 *addr
++ = 0x87654321;
1769 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1771 int size
= obj_size(cachep
);
1772 addr
= &((char *)addr
)[obj_offset(cachep
)];
1774 memset(addr
, val
, size
);
1775 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1778 static void dump_line(char *data
, int offset
, int limit
)
1781 unsigned char error
= 0;
1784 printk(KERN_ERR
"%03x:", offset
);
1785 for (i
= 0; i
< limit
; i
++) {
1786 if (data
[offset
+ i
] != POISON_FREE
) {
1787 error
= data
[offset
+ i
];
1790 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1794 if (bad_count
== 1) {
1795 error
^= POISON_FREE
;
1796 if (!(error
& (error
- 1))) {
1797 printk(KERN_ERR
"Single bit error detected. Probably "
1800 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1803 printk(KERN_ERR
"Run a memory test tool.\n");
1812 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1817 if (cachep
->flags
& SLAB_RED_ZONE
) {
1818 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1819 *dbg_redzone1(cachep
, objp
),
1820 *dbg_redzone2(cachep
, objp
));
1823 if (cachep
->flags
& SLAB_STORE_USER
) {
1824 printk(KERN_ERR
"Last user: [<%p>]",
1825 *dbg_userword(cachep
, objp
));
1826 print_symbol("(%s)",
1827 (unsigned long)*dbg_userword(cachep
, objp
));
1830 realobj
= (char *)objp
+ obj_offset(cachep
);
1831 size
= obj_size(cachep
);
1832 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1835 if (i
+ limit
> size
)
1837 dump_line(realobj
, i
, limit
);
1841 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1847 realobj
= (char *)objp
+ obj_offset(cachep
);
1848 size
= obj_size(cachep
);
1850 for (i
= 0; i
< size
; i
++) {
1851 char exp
= POISON_FREE
;
1854 if (realobj
[i
] != exp
) {
1860 "Slab corruption: %s start=%p, len=%d\n",
1861 cachep
->name
, realobj
, size
);
1862 print_objinfo(cachep
, objp
, 0);
1864 /* Hexdump the affected line */
1867 if (i
+ limit
> size
)
1869 dump_line(realobj
, i
, limit
);
1872 /* Limit to 5 lines */
1878 /* Print some data about the neighboring objects, if they
1881 struct slab
*slabp
= virt_to_slab(objp
);
1884 objnr
= obj_to_index(cachep
, slabp
, objp
);
1886 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1887 realobj
= (char *)objp
+ obj_offset(cachep
);
1888 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1890 print_objinfo(cachep
, objp
, 2);
1892 if (objnr
+ 1 < cachep
->num
) {
1893 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1894 realobj
= (char *)objp
+ obj_offset(cachep
);
1895 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1897 print_objinfo(cachep
, objp
, 2);
1904 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1907 for (i
= 0; i
< cachep
->num
; i
++) {
1908 void *objp
= index_to_obj(cachep
, slabp
, i
);
1910 if (cachep
->flags
& SLAB_POISON
) {
1911 #ifdef CONFIG_DEBUG_PAGEALLOC
1912 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1914 kernel_map_pages(virt_to_page(objp
),
1915 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1917 check_poison_obj(cachep
, objp
);
1919 check_poison_obj(cachep
, objp
);
1922 if (cachep
->flags
& SLAB_RED_ZONE
) {
1923 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1924 slab_error(cachep
, "start of a freed object "
1926 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1927 slab_error(cachep
, "end of a freed object "
1933 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1939 * slab_destroy - destroy and release all objects in a slab
1940 * @cachep: cache pointer being destroyed
1941 * @slabp: slab pointer being destroyed
1943 * Destroy all the objs in a slab, and release the mem back to the system.
1944 * Before calling the slab must have been unlinked from the cache. The
1945 * cache-lock is not held/needed.
1947 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1949 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1951 slab_destroy_debugcheck(cachep
, slabp
);
1952 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1953 struct slab_rcu
*slab_rcu
;
1955 slab_rcu
= (struct slab_rcu
*)slabp
;
1956 slab_rcu
->cachep
= cachep
;
1957 slab_rcu
->addr
= addr
;
1958 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1960 kmem_freepages(cachep
, addr
);
1961 if (OFF_SLAB(cachep
))
1962 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1966 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1969 struct kmem_list3
*l3
;
1971 for_each_online_cpu(i
)
1972 kfree(cachep
->array
[i
]);
1974 /* NUMA: free the list3 structures */
1975 for_each_online_node(i
) {
1976 l3
= cachep
->nodelists
[i
];
1979 free_alien_cache(l3
->alien
);
1983 kmem_cache_free(&cache_cache
, cachep
);
1988 * calculate_slab_order - calculate size (page order) of slabs
1989 * @cachep: pointer to the cache that is being created
1990 * @size: size of objects to be created in this cache.
1991 * @align: required alignment for the objects.
1992 * @flags: slab allocation flags
1994 * Also calculates the number of objects per slab.
1996 * This could be made much more intelligent. For now, try to avoid using
1997 * high order pages for slabs. When the gfp() functions are more friendly
1998 * towards high-order requests, this should be changed.
2000 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2001 size_t size
, size_t align
, unsigned long flags
)
2003 unsigned long offslab_limit
;
2004 size_t left_over
= 0;
2007 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2011 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2015 if (flags
& CFLGS_OFF_SLAB
) {
2017 * Max number of objs-per-slab for caches which
2018 * use off-slab slabs. Needed to avoid a possible
2019 * looping condition in cache_grow().
2021 offslab_limit
= size
- sizeof(struct slab
);
2022 offslab_limit
/= sizeof(kmem_bufctl_t
);
2024 if (num
> offslab_limit
)
2028 /* Found something acceptable - save it away */
2030 cachep
->gfporder
= gfporder
;
2031 left_over
= remainder
;
2034 * A VFS-reclaimable slab tends to have most allocations
2035 * as GFP_NOFS and we really don't want to have to be allocating
2036 * higher-order pages when we are unable to shrink dcache.
2038 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2042 * Large number of objects is good, but very large slabs are
2043 * currently bad for the gfp()s.
2045 if (gfporder
>= slab_break_gfp_order
)
2049 * Acceptable internal fragmentation?
2051 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2057 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2059 if (g_cpucache_up
== FULL
)
2060 return enable_cpucache(cachep
);
2062 if (g_cpucache_up
== NONE
) {
2064 * Note: the first kmem_cache_create must create the cache
2065 * that's used by kmalloc(24), otherwise the creation of
2066 * further caches will BUG().
2068 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2071 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2072 * the first cache, then we need to set up all its list3s,
2073 * otherwise the creation of further caches will BUG().
2075 set_up_list3s(cachep
, SIZE_AC
);
2076 if (INDEX_AC
== INDEX_L3
)
2077 g_cpucache_up
= PARTIAL_L3
;
2079 g_cpucache_up
= PARTIAL_AC
;
2081 cachep
->array
[smp_processor_id()] =
2082 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2084 if (g_cpucache_up
== PARTIAL_AC
) {
2085 set_up_list3s(cachep
, SIZE_L3
);
2086 g_cpucache_up
= PARTIAL_L3
;
2089 for_each_online_node(node
) {
2090 cachep
->nodelists
[node
] =
2091 kmalloc_node(sizeof(struct kmem_list3
),
2093 BUG_ON(!cachep
->nodelists
[node
]);
2094 kmem_list3_init(cachep
->nodelists
[node
]);
2098 cachep
->nodelists
[numa_node_id()]->next_reap
=
2099 jiffies
+ REAPTIMEOUT_LIST3
+
2100 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2102 cpu_cache_get(cachep
)->avail
= 0;
2103 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2104 cpu_cache_get(cachep
)->batchcount
= 1;
2105 cpu_cache_get(cachep
)->touched
= 0;
2106 cachep
->batchcount
= 1;
2107 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2112 * kmem_cache_create - Create a cache.
2113 * @name: A string which is used in /proc/slabinfo to identify this cache.
2114 * @size: The size of objects to be created in this cache.
2115 * @align: The required alignment for the objects.
2116 * @flags: SLAB flags
2117 * @ctor: A constructor for the objects.
2119 * Returns a ptr to the cache on success, NULL on failure.
2120 * Cannot be called within a int, but can be interrupted.
2121 * The @ctor is run when new pages are allocated by the cache.
2123 * @name must be valid until the cache is destroyed. This implies that
2124 * the module calling this has to destroy the cache before getting unloaded.
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2139 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2140 unsigned long flags
, void (*ctor
)(void *))
2142 size_t left_over
, slab_size
, ralign
;
2143 struct kmem_cache
*cachep
= NULL
, *pc
;
2146 * Sanity checks... these are all serious usage bugs.
2148 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2149 size
> KMALLOC_MAX_SIZE
) {
2150 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2156 * We use cache_chain_mutex to ensure a consistent view of
2157 * cpu_online_map as well. Please see cpuup_callback
2160 mutex_lock(&cache_chain_mutex
);
2162 list_for_each_entry(pc
, &cache_chain
, next
) {
2167 * This happens when the module gets unloaded and doesn't
2168 * destroy its slab cache and no-one else reuses the vmalloc
2169 * area of the module. Print a warning.
2171 res
= probe_kernel_address(pc
->name
, tmp
);
2174 "SLAB: cache with size %d has lost its name\n",
2179 if (!strcmp(pc
->name
, name
)) {
2181 "kmem_cache_create: duplicate cache %s\n", name
);
2188 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2191 * Enable redzoning and last user accounting, except for caches with
2192 * large objects, if the increased size would increase the object size
2193 * above the next power of two: caches with object sizes just above a
2194 * power of two have a significant amount of internal fragmentation.
2196 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2197 2 * sizeof(unsigned long long)))
2198 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2199 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2200 flags
|= SLAB_POISON
;
2202 if (flags
& SLAB_DESTROY_BY_RCU
)
2203 BUG_ON(flags
& SLAB_POISON
);
2206 * Always checks flags, a caller might be expecting debug support which
2209 BUG_ON(flags
& ~CREATE_MASK
);
2212 * Check that size is in terms of words. This is needed to avoid
2213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2216 if (size
& (BYTES_PER_WORD
- 1)) {
2217 size
+= (BYTES_PER_WORD
- 1);
2218 size
&= ~(BYTES_PER_WORD
- 1);
2221 /* calculate the final buffer alignment: */
2223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags
& SLAB_HWCACHE_ALIGN
) {
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2230 ralign
= cache_line_size();
2231 while (size
<= ralign
/ 2)
2234 ralign
= BYTES_PER_WORD
;
2238 * Redzoning and user store require word alignment or possibly larger.
2239 * Note this will be overridden by architecture or caller mandated
2240 * alignment if either is greater than BYTES_PER_WORD.
2242 if (flags
& SLAB_STORE_USER
)
2243 ralign
= BYTES_PER_WORD
;
2245 if (flags
& SLAB_RED_ZONE
) {
2246 ralign
= REDZONE_ALIGN
;
2247 /* If redzoning, ensure that the second redzone is suitably
2248 * aligned, by adjusting the object size accordingly. */
2249 size
+= REDZONE_ALIGN
- 1;
2250 size
&= ~(REDZONE_ALIGN
- 1);
2253 /* 2) arch mandated alignment */
2254 if (ralign
< ARCH_SLAB_MINALIGN
) {
2255 ralign
= ARCH_SLAB_MINALIGN
;
2257 /* 3) caller mandated alignment */
2258 if (ralign
< align
) {
2261 /* disable debug if necessary */
2262 if (ralign
> __alignof__(unsigned long long))
2263 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2269 /* Get cache's description obj. */
2270 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2275 cachep
->obj_size
= size
;
2278 * Both debugging options require word-alignment which is calculated
2281 if (flags
& SLAB_RED_ZONE
) {
2282 /* add space for red zone words */
2283 cachep
->obj_offset
+= sizeof(unsigned long long);
2284 size
+= 2 * sizeof(unsigned long long);
2286 if (flags
& SLAB_STORE_USER
) {
2287 /* user store requires one word storage behind the end of
2288 * the real object. But if the second red zone needs to be
2289 * aligned to 64 bits, we must allow that much space.
2291 if (flags
& SLAB_RED_ZONE
)
2292 size
+= REDZONE_ALIGN
;
2294 size
+= BYTES_PER_WORD
;
2296 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2297 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2298 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2299 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2306 * Determine if the slab management is 'on' or 'off' slab.
2307 * (bootstrapping cannot cope with offslab caches so don't do
2310 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2312 * Size is large, assume best to place the slab management obj
2313 * off-slab (should allow better packing of objs).
2315 flags
|= CFLGS_OFF_SLAB
;
2317 size
= ALIGN(size
, align
);
2319 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2323 "kmem_cache_create: couldn't create cache %s.\n", name
);
2324 kmem_cache_free(&cache_cache
, cachep
);
2328 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2329 + sizeof(struct slab
), align
);
2332 * If the slab has been placed off-slab, and we have enough space then
2333 * move it on-slab. This is at the expense of any extra colouring.
2335 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2336 flags
&= ~CFLGS_OFF_SLAB
;
2337 left_over
-= slab_size
;
2340 if (flags
& CFLGS_OFF_SLAB
) {
2341 /* really off slab. No need for manual alignment */
2343 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2346 cachep
->colour_off
= cache_line_size();
2347 /* Offset must be a multiple of the alignment. */
2348 if (cachep
->colour_off
< align
)
2349 cachep
->colour_off
= align
;
2350 cachep
->colour
= left_over
/ cachep
->colour_off
;
2351 cachep
->slab_size
= slab_size
;
2352 cachep
->flags
= flags
;
2353 cachep
->gfpflags
= 0;
2354 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2355 cachep
->gfpflags
|= GFP_DMA
;
2356 cachep
->buffer_size
= size
;
2357 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2359 if (flags
& CFLGS_OFF_SLAB
) {
2360 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2362 * This is a possibility for one of the malloc_sizes caches.
2363 * But since we go off slab only for object size greater than
2364 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2365 * this should not happen at all.
2366 * But leave a BUG_ON for some lucky dude.
2368 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2370 cachep
->ctor
= ctor
;
2371 cachep
->name
= name
;
2373 if (setup_cpu_cache(cachep
)) {
2374 __kmem_cache_destroy(cachep
);
2379 /* cache setup completed, link it into the list */
2380 list_add(&cachep
->next
, &cache_chain
);
2382 if (!cachep
&& (flags
& SLAB_PANIC
))
2383 panic("kmem_cache_create(): failed to create slab `%s'\n",
2385 mutex_unlock(&cache_chain_mutex
);
2389 EXPORT_SYMBOL(kmem_cache_create
);
2392 static void check_irq_off(void)
2394 BUG_ON(!irqs_disabled());
2397 static void check_irq_on(void)
2399 BUG_ON(irqs_disabled());
2402 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2406 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2410 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2414 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2419 #define check_irq_off() do { } while(0)
2420 #define check_irq_on() do { } while(0)
2421 #define check_spinlock_acquired(x) do { } while(0)
2422 #define check_spinlock_acquired_node(x, y) do { } while(0)
2425 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2426 struct array_cache
*ac
,
2427 int force
, int node
);
2429 static void do_drain(void *arg
)
2431 struct kmem_cache
*cachep
= arg
;
2432 struct array_cache
*ac
;
2433 int node
= numa_node_id();
2436 ac
= cpu_cache_get(cachep
);
2437 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2438 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2439 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2443 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2445 struct kmem_list3
*l3
;
2448 on_each_cpu(do_drain
, cachep
, 1);
2450 for_each_online_node(node
) {
2451 l3
= cachep
->nodelists
[node
];
2452 if (l3
&& l3
->alien
)
2453 drain_alien_cache(cachep
, l3
->alien
);
2456 for_each_online_node(node
) {
2457 l3
= cachep
->nodelists
[node
];
2459 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2464 * Remove slabs from the list of free slabs.
2465 * Specify the number of slabs to drain in tofree.
2467 * Returns the actual number of slabs released.
2469 static int drain_freelist(struct kmem_cache
*cache
,
2470 struct kmem_list3
*l3
, int tofree
)
2472 struct list_head
*p
;
2477 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2479 spin_lock_irq(&l3
->list_lock
);
2480 p
= l3
->slabs_free
.prev
;
2481 if (p
== &l3
->slabs_free
) {
2482 spin_unlock_irq(&l3
->list_lock
);
2486 slabp
= list_entry(p
, struct slab
, list
);
2488 BUG_ON(slabp
->inuse
);
2490 list_del(&slabp
->list
);
2492 * Safe to drop the lock. The slab is no longer linked
2495 l3
->free_objects
-= cache
->num
;
2496 spin_unlock_irq(&l3
->list_lock
);
2497 slab_destroy(cache
, slabp
);
2504 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2505 static int __cache_shrink(struct kmem_cache
*cachep
)
2508 struct kmem_list3
*l3
;
2510 drain_cpu_caches(cachep
);
2513 for_each_online_node(i
) {
2514 l3
= cachep
->nodelists
[i
];
2518 drain_freelist(cachep
, l3
, l3
->free_objects
);
2520 ret
+= !list_empty(&l3
->slabs_full
) ||
2521 !list_empty(&l3
->slabs_partial
);
2523 return (ret
? 1 : 0);
2527 * kmem_cache_shrink - Shrink a cache.
2528 * @cachep: The cache to shrink.
2530 * Releases as many slabs as possible for a cache.
2531 * To help debugging, a zero exit status indicates all slabs were released.
2533 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2536 BUG_ON(!cachep
|| in_interrupt());
2539 mutex_lock(&cache_chain_mutex
);
2540 ret
= __cache_shrink(cachep
);
2541 mutex_unlock(&cache_chain_mutex
);
2545 EXPORT_SYMBOL(kmem_cache_shrink
);
2548 * kmem_cache_destroy - delete a cache
2549 * @cachep: the cache to destroy
2551 * Remove a &struct kmem_cache object from the slab cache.
2553 * It is expected this function will be called by a module when it is
2554 * unloaded. This will remove the cache completely, and avoid a duplicate
2555 * cache being allocated each time a module is loaded and unloaded, if the
2556 * module doesn't have persistent in-kernel storage across loads and unloads.
2558 * The cache must be empty before calling this function.
2560 * The caller must guarantee that noone will allocate memory from the cache
2561 * during the kmem_cache_destroy().
2563 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2565 BUG_ON(!cachep
|| in_interrupt());
2567 /* Find the cache in the chain of caches. */
2569 mutex_lock(&cache_chain_mutex
);
2571 * the chain is never empty, cache_cache is never destroyed
2573 list_del(&cachep
->next
);
2574 if (__cache_shrink(cachep
)) {
2575 slab_error(cachep
, "Can't free all objects");
2576 list_add(&cachep
->next
, &cache_chain
);
2577 mutex_unlock(&cache_chain_mutex
);
2582 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2585 __kmem_cache_destroy(cachep
);
2586 mutex_unlock(&cache_chain_mutex
);
2589 EXPORT_SYMBOL(kmem_cache_destroy
);
2592 * Get the memory for a slab management obj.
2593 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2594 * always come from malloc_sizes caches. The slab descriptor cannot
2595 * come from the same cache which is getting created because,
2596 * when we are searching for an appropriate cache for these
2597 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2598 * If we are creating a malloc_sizes cache here it would not be visible to
2599 * kmem_find_general_cachep till the initialization is complete.
2600 * Hence we cannot have slabp_cache same as the original cache.
2602 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2603 int colour_off
, gfp_t local_flags
,
2608 if (OFF_SLAB(cachep
)) {
2609 /* Slab management obj is off-slab. */
2610 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2611 local_flags
& ~GFP_THISNODE
, nodeid
);
2615 slabp
= objp
+ colour_off
;
2616 colour_off
+= cachep
->slab_size
;
2619 slabp
->colouroff
= colour_off
;
2620 slabp
->s_mem
= objp
+ colour_off
;
2621 slabp
->nodeid
= nodeid
;
2626 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2628 return (kmem_bufctl_t
*) (slabp
+ 1);
2631 static void cache_init_objs(struct kmem_cache
*cachep
,
2636 for (i
= 0; i
< cachep
->num
; i
++) {
2637 void *objp
= index_to_obj(cachep
, slabp
, i
);
2639 /* need to poison the objs? */
2640 if (cachep
->flags
& SLAB_POISON
)
2641 poison_obj(cachep
, objp
, POISON_FREE
);
2642 if (cachep
->flags
& SLAB_STORE_USER
)
2643 *dbg_userword(cachep
, objp
) = NULL
;
2645 if (cachep
->flags
& SLAB_RED_ZONE
) {
2646 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2647 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2650 * Constructors are not allowed to allocate memory from the same
2651 * cache which they are a constructor for. Otherwise, deadlock.
2652 * They must also be threaded.
2654 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2655 cachep
->ctor(objp
+ obj_offset(cachep
));
2657 if (cachep
->flags
& SLAB_RED_ZONE
) {
2658 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2659 slab_error(cachep
, "constructor overwrote the"
2660 " end of an object");
2661 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2662 slab_error(cachep
, "constructor overwrote the"
2663 " start of an object");
2665 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2666 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2667 kernel_map_pages(virt_to_page(objp
),
2668 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2673 slab_bufctl(slabp
)[i
] = i
+ 1;
2675 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2678 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2680 if (CONFIG_ZONE_DMA_FLAG
) {
2681 if (flags
& GFP_DMA
)
2682 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2684 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2688 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2691 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2695 next
= slab_bufctl(slabp
)[slabp
->free
];
2697 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2698 WARN_ON(slabp
->nodeid
!= nodeid
);
2705 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2706 void *objp
, int nodeid
)
2708 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2711 /* Verify that the slab belongs to the intended node */
2712 WARN_ON(slabp
->nodeid
!= nodeid
);
2714 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2715 printk(KERN_ERR
"slab: double free detected in cache "
2716 "'%s', objp %p\n", cachep
->name
, objp
);
2720 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2721 slabp
->free
= objnr
;
2726 * Map pages beginning at addr to the given cache and slab. This is required
2727 * for the slab allocator to be able to lookup the cache and slab of a
2728 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2730 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2736 page
= virt_to_page(addr
);
2739 if (likely(!PageCompound(page
)))
2740 nr_pages
<<= cache
->gfporder
;
2743 page_set_cache(page
, cache
);
2744 page_set_slab(page
, slab
);
2746 } while (--nr_pages
);
2750 * Grow (by 1) the number of slabs within a cache. This is called by
2751 * kmem_cache_alloc() when there are no active objs left in a cache.
2753 static int cache_grow(struct kmem_cache
*cachep
,
2754 gfp_t flags
, int nodeid
, void *objp
)
2759 struct kmem_list3
*l3
;
2762 * Be lazy and only check for valid flags here, keeping it out of the
2763 * critical path in kmem_cache_alloc().
2765 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2766 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2768 /* Take the l3 list lock to change the colour_next on this node */
2770 l3
= cachep
->nodelists
[nodeid
];
2771 spin_lock(&l3
->list_lock
);
2773 /* Get colour for the slab, and cal the next value. */
2774 offset
= l3
->colour_next
;
2776 if (l3
->colour_next
>= cachep
->colour
)
2777 l3
->colour_next
= 0;
2778 spin_unlock(&l3
->list_lock
);
2780 offset
*= cachep
->colour_off
;
2782 if (local_flags
& __GFP_WAIT
)
2786 * The test for missing atomic flag is performed here, rather than
2787 * the more obvious place, simply to reduce the critical path length
2788 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2789 * will eventually be caught here (where it matters).
2791 kmem_flagcheck(cachep
, flags
);
2794 * Get mem for the objs. Attempt to allocate a physical page from
2798 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2802 /* Get slab management. */
2803 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2804 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2808 slab_map_pages(cachep
, slabp
, objp
);
2810 cache_init_objs(cachep
, slabp
);
2812 if (local_flags
& __GFP_WAIT
)
2813 local_irq_disable();
2815 spin_lock(&l3
->list_lock
);
2817 /* Make slab active. */
2818 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2819 STATS_INC_GROWN(cachep
);
2820 l3
->free_objects
+= cachep
->num
;
2821 spin_unlock(&l3
->list_lock
);
2824 kmem_freepages(cachep
, objp
);
2826 if (local_flags
& __GFP_WAIT
)
2827 local_irq_disable();
2834 * Perform extra freeing checks:
2835 * - detect bad pointers.
2836 * - POISON/RED_ZONE checking
2838 static void kfree_debugcheck(const void *objp
)
2840 if (!virt_addr_valid(objp
)) {
2841 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2842 (unsigned long)objp
);
2847 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2849 unsigned long long redzone1
, redzone2
;
2851 redzone1
= *dbg_redzone1(cache
, obj
);
2852 redzone2
= *dbg_redzone2(cache
, obj
);
2857 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2860 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2861 slab_error(cache
, "double free detected");
2863 slab_error(cache
, "memory outside object was overwritten");
2865 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2866 obj
, redzone1
, redzone2
);
2869 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2876 BUG_ON(virt_to_cache(objp
) != cachep
);
2878 objp
-= obj_offset(cachep
);
2879 kfree_debugcheck(objp
);
2880 page
= virt_to_head_page(objp
);
2882 slabp
= page_get_slab(page
);
2884 if (cachep
->flags
& SLAB_RED_ZONE
) {
2885 verify_redzone_free(cachep
, objp
);
2886 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2887 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2889 if (cachep
->flags
& SLAB_STORE_USER
)
2890 *dbg_userword(cachep
, objp
) = caller
;
2892 objnr
= obj_to_index(cachep
, slabp
, objp
);
2894 BUG_ON(objnr
>= cachep
->num
);
2895 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2897 #ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2900 if (cachep
->flags
& SLAB_POISON
) {
2901 #ifdef CONFIG_DEBUG_PAGEALLOC
2902 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2903 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2904 kernel_map_pages(virt_to_page(objp
),
2905 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2907 poison_obj(cachep
, objp
, POISON_FREE
);
2910 poison_obj(cachep
, objp
, POISON_FREE
);
2916 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2921 /* Check slab's freelist to see if this obj is there. */
2922 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2924 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2927 if (entries
!= cachep
->num
- slabp
->inuse
) {
2929 printk(KERN_ERR
"slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2933 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2936 printk("\n%03x:", i
);
2937 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2944 #define kfree_debugcheck(x) do { } while(0)
2945 #define cache_free_debugcheck(x,objp,z) (objp)
2946 #define check_slabp(x,y) do { } while(0)
2949 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2952 struct kmem_list3
*l3
;
2953 struct array_cache
*ac
;
2958 node
= numa_node_id();
2959 ac
= cpu_cache_get(cachep
);
2960 batchcount
= ac
->batchcount
;
2961 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2963 * If there was little recent activity on this cache, then
2964 * perform only a partial refill. Otherwise we could generate
2967 batchcount
= BATCHREFILL_LIMIT
;
2969 l3
= cachep
->nodelists
[node
];
2971 BUG_ON(ac
->avail
> 0 || !l3
);
2972 spin_lock(&l3
->list_lock
);
2974 /* See if we can refill from the shared array */
2975 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2978 while (batchcount
> 0) {
2979 struct list_head
*entry
;
2981 /* Get slab alloc is to come from. */
2982 entry
= l3
->slabs_partial
.next
;
2983 if (entry
== &l3
->slabs_partial
) {
2984 l3
->free_touched
= 1;
2985 entry
= l3
->slabs_free
.next
;
2986 if (entry
== &l3
->slabs_free
)
2990 slabp
= list_entry(entry
, struct slab
, list
);
2991 check_slabp(cachep
, slabp
);
2992 check_spinlock_acquired(cachep
);
2995 * The slab was either on partial or free list so
2996 * there must be at least one object available for
2999 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
3001 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3002 STATS_INC_ALLOCED(cachep
);
3003 STATS_INC_ACTIVE(cachep
);
3004 STATS_SET_HIGH(cachep
);
3006 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3009 check_slabp(cachep
, slabp
);
3011 /* move slabp to correct slabp list: */
3012 list_del(&slabp
->list
);
3013 if (slabp
->free
== BUFCTL_END
)
3014 list_add(&slabp
->list
, &l3
->slabs_full
);
3016 list_add(&slabp
->list
, &l3
->slabs_partial
);
3020 l3
->free_objects
-= ac
->avail
;
3022 spin_unlock(&l3
->list_lock
);
3024 if (unlikely(!ac
->avail
)) {
3026 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3028 /* cache_grow can reenable interrupts, then ac could change. */
3029 ac
= cpu_cache_get(cachep
);
3030 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3033 if (!ac
->avail
) /* objects refilled by interrupt? */
3037 return ac
->entry
[--ac
->avail
];
3040 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3043 might_sleep_if(flags
& __GFP_WAIT
);
3045 kmem_flagcheck(cachep
, flags
);
3050 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3051 gfp_t flags
, void *objp
, void *caller
)
3055 if (cachep
->flags
& SLAB_POISON
) {
3056 #ifdef CONFIG_DEBUG_PAGEALLOC
3057 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3058 kernel_map_pages(virt_to_page(objp
),
3059 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3061 check_poison_obj(cachep
, objp
);
3063 check_poison_obj(cachep
, objp
);
3065 poison_obj(cachep
, objp
, POISON_INUSE
);
3067 if (cachep
->flags
& SLAB_STORE_USER
)
3068 *dbg_userword(cachep
, objp
) = caller
;
3070 if (cachep
->flags
& SLAB_RED_ZONE
) {
3071 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3072 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3073 slab_error(cachep
, "double free, or memory outside"
3074 " object was overwritten");
3076 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3077 objp
, *dbg_redzone1(cachep
, objp
),
3078 *dbg_redzone2(cachep
, objp
));
3080 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3081 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3083 #ifdef CONFIG_DEBUG_SLAB_LEAK
3088 slabp
= page_get_slab(virt_to_head_page(objp
));
3089 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3090 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3093 objp
+= obj_offset(cachep
);
3094 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3096 #if ARCH_SLAB_MINALIGN
3097 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3098 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3099 objp
, ARCH_SLAB_MINALIGN
);
3105 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108 #ifdef CONFIG_FAILSLAB
3110 static struct failslab_attr
{
3112 struct fault_attr attr
;
3114 u32 ignore_gfp_wait
;
3115 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3116 struct dentry
*ignore_gfp_wait_file
;
3120 .attr
= FAULT_ATTR_INITIALIZER
,
3121 .ignore_gfp_wait
= 1,
3124 static int __init
setup_failslab(char *str
)
3126 return setup_fault_attr(&failslab
.attr
, str
);
3128 __setup("failslab=", setup_failslab
);
3130 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3132 if (cachep
== &cache_cache
)
3134 if (flags
& __GFP_NOFAIL
)
3136 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3139 return should_fail(&failslab
.attr
, obj_size(cachep
));
3142 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3144 static int __init
failslab_debugfs(void)
3146 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3150 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3153 dir
= failslab
.attr
.dentries
.dir
;
3155 failslab
.ignore_gfp_wait_file
=
3156 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3157 &failslab
.ignore_gfp_wait
);
3159 if (!failslab
.ignore_gfp_wait_file
) {
3161 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3162 cleanup_fault_attr_dentries(&failslab
.attr
);
3168 late_initcall(failslab_debugfs
);
3170 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3172 #else /* CONFIG_FAILSLAB */
3174 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3179 #endif /* CONFIG_FAILSLAB */
3181 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3184 struct array_cache
*ac
;
3188 ac
= cpu_cache_get(cachep
);
3189 if (likely(ac
->avail
)) {
3190 STATS_INC_ALLOCHIT(cachep
);
3192 objp
= ac
->entry
[--ac
->avail
];
3194 STATS_INC_ALLOCMISS(cachep
);
3195 objp
= cache_alloc_refill(cachep
, flags
);
3202 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3204 * If we are in_interrupt, then process context, including cpusets and
3205 * mempolicy, may not apply and should not be used for allocation policy.
3207 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3209 int nid_alloc
, nid_here
;
3211 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3213 nid_alloc
= nid_here
= numa_node_id();
3214 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3215 nid_alloc
= cpuset_mem_spread_node();
3216 else if (current
->mempolicy
)
3217 nid_alloc
= slab_node(current
->mempolicy
);
3218 if (nid_alloc
!= nid_here
)
3219 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3224 * Fallback function if there was no memory available and no objects on a
3225 * certain node and fall back is permitted. First we scan all the
3226 * available nodelists for available objects. If that fails then we
3227 * perform an allocation without specifying a node. This allows the page
3228 * allocator to do its reclaim / fallback magic. We then insert the
3229 * slab into the proper nodelist and then allocate from it.
3231 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3233 struct zonelist
*zonelist
;
3237 enum zone_type high_zoneidx
= gfp_zone(flags
);
3241 if (flags
& __GFP_THISNODE
)
3244 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3245 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3249 * Look through allowed nodes for objects available
3250 * from existing per node queues.
3252 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3253 nid
= zone_to_nid(zone
);
3255 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3256 cache
->nodelists
[nid
] &&
3257 cache
->nodelists
[nid
]->free_objects
) {
3258 obj
= ____cache_alloc_node(cache
,
3259 flags
| GFP_THISNODE
, nid
);
3267 * This allocation will be performed within the constraints
3268 * of the current cpuset / memory policy requirements.
3269 * We may trigger various forms of reclaim on the allowed
3270 * set and go into memory reserves if necessary.
3272 if (local_flags
& __GFP_WAIT
)
3274 kmem_flagcheck(cache
, flags
);
3275 obj
= kmem_getpages(cache
, local_flags
, -1);
3276 if (local_flags
& __GFP_WAIT
)
3277 local_irq_disable();
3280 * Insert into the appropriate per node queues
3282 nid
= page_to_nid(virt_to_page(obj
));
3283 if (cache_grow(cache
, flags
, nid
, obj
)) {
3284 obj
= ____cache_alloc_node(cache
,
3285 flags
| GFP_THISNODE
, nid
);
3288 * Another processor may allocate the
3289 * objects in the slab since we are
3290 * not holding any locks.
3294 /* cache_grow already freed obj */
3303 * A interface to enable slab creation on nodeid
3305 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3308 struct list_head
*entry
;
3310 struct kmem_list3
*l3
;
3314 l3
= cachep
->nodelists
[nodeid
];
3319 spin_lock(&l3
->list_lock
);
3320 entry
= l3
->slabs_partial
.next
;
3321 if (entry
== &l3
->slabs_partial
) {
3322 l3
->free_touched
= 1;
3323 entry
= l3
->slabs_free
.next
;
3324 if (entry
== &l3
->slabs_free
)
3328 slabp
= list_entry(entry
, struct slab
, list
);
3329 check_spinlock_acquired_node(cachep
, nodeid
);
3330 check_slabp(cachep
, slabp
);
3332 STATS_INC_NODEALLOCS(cachep
);
3333 STATS_INC_ACTIVE(cachep
);
3334 STATS_SET_HIGH(cachep
);
3336 BUG_ON(slabp
->inuse
== cachep
->num
);
3338 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3339 check_slabp(cachep
, slabp
);
3341 /* move slabp to correct slabp list: */
3342 list_del(&slabp
->list
);
3344 if (slabp
->free
== BUFCTL_END
)
3345 list_add(&slabp
->list
, &l3
->slabs_full
);
3347 list_add(&slabp
->list
, &l3
->slabs_partial
);
3349 spin_unlock(&l3
->list_lock
);
3353 spin_unlock(&l3
->list_lock
);
3354 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3358 return fallback_alloc(cachep
, flags
);
3365 * kmem_cache_alloc_node - Allocate an object on the specified node
3366 * @cachep: The cache to allocate from.
3367 * @flags: See kmalloc().
3368 * @nodeid: node number of the target node.
3369 * @caller: return address of caller, used for debug information
3371 * Identical to kmem_cache_alloc but it will allocate memory on the given
3372 * node, which can improve the performance for cpu bound structures.
3374 * Fallback to other node is possible if __GFP_THISNODE is not set.
3376 static __always_inline
void *
3377 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3380 unsigned long save_flags
;
3383 if (should_failslab(cachep
, flags
))
3386 cache_alloc_debugcheck_before(cachep
, flags
);
3387 local_irq_save(save_flags
);
3389 if (unlikely(nodeid
== -1))
3390 nodeid
= numa_node_id();
3392 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3393 /* Node not bootstrapped yet */
3394 ptr
= fallback_alloc(cachep
, flags
);
3398 if (nodeid
== numa_node_id()) {
3400 * Use the locally cached objects if possible.
3401 * However ____cache_alloc does not allow fallback
3402 * to other nodes. It may fail while we still have
3403 * objects on other nodes available.
3405 ptr
= ____cache_alloc(cachep
, flags
);
3409 /* ___cache_alloc_node can fall back to other nodes */
3410 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3412 local_irq_restore(save_flags
);
3413 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3415 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3416 memset(ptr
, 0, obj_size(cachep
));
3421 static __always_inline
void *
3422 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3426 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3427 objp
= alternate_node_alloc(cache
, flags
);
3431 objp
= ____cache_alloc(cache
, flags
);
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3438 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3445 static __always_inline
void *
3446 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3448 return ____cache_alloc(cachep
, flags
);
3451 #endif /* CONFIG_NUMA */
3453 static __always_inline
void *
3454 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3456 unsigned long save_flags
;
3459 if (should_failslab(cachep
, flags
))
3462 cache_alloc_debugcheck_before(cachep
, flags
);
3463 local_irq_save(save_flags
);
3464 objp
= __do_cache_alloc(cachep
, flags
);
3465 local_irq_restore(save_flags
);
3466 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3469 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3470 memset(objp
, 0, obj_size(cachep
));
3476 * Caller needs to acquire correct kmem_list's list_lock
3478 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3482 struct kmem_list3
*l3
;
3484 for (i
= 0; i
< nr_objects
; i
++) {
3485 void *objp
= objpp
[i
];
3488 slabp
= virt_to_slab(objp
);
3489 l3
= cachep
->nodelists
[node
];
3490 list_del(&slabp
->list
);
3491 check_spinlock_acquired_node(cachep
, node
);
3492 check_slabp(cachep
, slabp
);
3493 slab_put_obj(cachep
, slabp
, objp
, node
);
3494 STATS_DEC_ACTIVE(cachep
);
3496 check_slabp(cachep
, slabp
);
3498 /* fixup slab chains */
3499 if (slabp
->inuse
== 0) {
3500 if (l3
->free_objects
> l3
->free_limit
) {
3501 l3
->free_objects
-= cachep
->num
;
3502 /* No need to drop any previously held
3503 * lock here, even if we have a off-slab slab
3504 * descriptor it is guaranteed to come from
3505 * a different cache, refer to comments before
3508 slab_destroy(cachep
, slabp
);
3510 list_add(&slabp
->list
, &l3
->slabs_free
);
3513 /* Unconditionally move a slab to the end of the
3514 * partial list on free - maximum time for the
3515 * other objects to be freed, too.
3517 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3522 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3525 struct kmem_list3
*l3
;
3526 int node
= numa_node_id();
3528 batchcount
= ac
->batchcount
;
3530 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3533 l3
= cachep
->nodelists
[node
];
3534 spin_lock(&l3
->list_lock
);
3536 struct array_cache
*shared_array
= l3
->shared
;
3537 int max
= shared_array
->limit
- shared_array
->avail
;
3539 if (batchcount
> max
)
3541 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3542 ac
->entry
, sizeof(void *) * batchcount
);
3543 shared_array
->avail
+= batchcount
;
3548 free_block(cachep
, ac
->entry
, batchcount
, node
);
3553 struct list_head
*p
;
3555 p
= l3
->slabs_free
.next
;
3556 while (p
!= &(l3
->slabs_free
)) {
3559 slabp
= list_entry(p
, struct slab
, list
);
3560 BUG_ON(slabp
->inuse
);
3565 STATS_SET_FREEABLE(cachep
, i
);
3568 spin_unlock(&l3
->list_lock
);
3569 ac
->avail
-= batchcount
;
3570 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3574 * Release an obj back to its cache. If the obj has a constructed state, it must
3575 * be in this state _before_ it is released. Called with disabled ints.
3577 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3579 struct array_cache
*ac
= cpu_cache_get(cachep
);
3582 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3585 * Skip calling cache_free_alien() when the platform is not numa.
3586 * This will avoid cache misses that happen while accessing slabp (which
3587 * is per page memory reference) to get nodeid. Instead use a global
3588 * variable to skip the call, which is mostly likely to be present in
3591 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3594 if (likely(ac
->avail
< ac
->limit
)) {
3595 STATS_INC_FREEHIT(cachep
);
3596 ac
->entry
[ac
->avail
++] = objp
;
3599 STATS_INC_FREEMISS(cachep
);
3600 cache_flusharray(cachep
, ac
);
3601 ac
->entry
[ac
->avail
++] = objp
;
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3613 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3615 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3617 EXPORT_SYMBOL(kmem_cache_alloc
);
3620 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3621 * @cachep: the cache we're checking against
3622 * @ptr: pointer to validate
3624 * This verifies that the untrusted pointer looks sane;
3625 * it is _not_ a guarantee that the pointer is actually
3626 * part of the slab cache in question, but it at least
3627 * validates that the pointer can be dereferenced and
3628 * looks half-way sane.
3630 * Currently only used for dentry validation.
3632 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3634 unsigned long addr
= (unsigned long)ptr
;
3635 unsigned long min_addr
= PAGE_OFFSET
;
3636 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3637 unsigned long size
= cachep
->buffer_size
;
3640 if (unlikely(addr
< min_addr
))
3642 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3644 if (unlikely(addr
& align_mask
))
3646 if (unlikely(!kern_addr_valid(addr
)))
3648 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3650 page
= virt_to_page(ptr
);
3651 if (unlikely(!PageSlab(page
)))
3653 if (unlikely(page_get_cache(page
) != cachep
))
3661 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3663 return __cache_alloc_node(cachep
, flags
, nodeid
,
3664 __builtin_return_address(0));
3666 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3668 static __always_inline
void *
3669 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3671 struct kmem_cache
*cachep
;
3673 cachep
= kmem_find_general_cachep(size
, flags
);
3674 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3676 return kmem_cache_alloc_node(cachep
, flags
, node
);
3679 #ifdef CONFIG_DEBUG_SLAB
3680 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3682 return __do_kmalloc_node(size
, flags
, node
,
3683 __builtin_return_address(0));
3685 EXPORT_SYMBOL(__kmalloc_node
);
3687 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3688 int node
, void *caller
)
3690 return __do_kmalloc_node(size
, flags
, node
, caller
);
3692 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3694 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3696 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3698 EXPORT_SYMBOL(__kmalloc_node
);
3699 #endif /* CONFIG_DEBUG_SLAB */
3700 #endif /* CONFIG_NUMA */
3703 * __do_kmalloc - allocate memory
3704 * @size: how many bytes of memory are required.
3705 * @flags: the type of memory to allocate (see kmalloc).
3706 * @caller: function caller for debug tracking of the caller
3708 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3711 struct kmem_cache
*cachep
;
3713 /* If you want to save a few bytes .text space: replace
3715 * Then kmalloc uses the uninlined functions instead of the inline
3718 cachep
= __find_general_cachep(size
, flags
);
3719 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3721 return __cache_alloc(cachep
, flags
, caller
);
3725 #ifdef CONFIG_DEBUG_SLAB
3726 void *__kmalloc(size_t size
, gfp_t flags
)
3728 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3730 EXPORT_SYMBOL(__kmalloc
);
3732 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3734 return __do_kmalloc(size
, flags
, caller
);
3736 EXPORT_SYMBOL(__kmalloc_track_caller
);
3739 void *__kmalloc(size_t size
, gfp_t flags
)
3741 return __do_kmalloc(size
, flags
, NULL
);
3743 EXPORT_SYMBOL(__kmalloc
);
3747 * kmem_cache_free - Deallocate an object
3748 * @cachep: The cache the allocation was from.
3749 * @objp: The previously allocated object.
3751 * Free an object which was previously allocated from this
3754 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3756 unsigned long flags
;
3758 local_irq_save(flags
);
3759 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3760 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3761 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3762 __cache_free(cachep
, objp
);
3763 local_irq_restore(flags
);
3765 EXPORT_SYMBOL(kmem_cache_free
);
3768 * kfree - free previously allocated memory
3769 * @objp: pointer returned by kmalloc.
3771 * If @objp is NULL, no operation is performed.
3773 * Don't free memory not originally allocated by kmalloc()
3774 * or you will run into trouble.
3776 void kfree(const void *objp
)
3778 struct kmem_cache
*c
;
3779 unsigned long flags
;
3781 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3783 local_irq_save(flags
);
3784 kfree_debugcheck(objp
);
3785 c
= virt_to_cache(objp
);
3786 debug_check_no_locks_freed(objp
, obj_size(c
));
3787 debug_check_no_obj_freed(objp
, obj_size(c
));
3788 __cache_free(c
, (void *)objp
);
3789 local_irq_restore(flags
);
3791 EXPORT_SYMBOL(kfree
);
3793 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3795 return obj_size(cachep
);
3797 EXPORT_SYMBOL(kmem_cache_size
);
3799 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3801 return cachep
->name
;
3803 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3806 * This initializes kmem_list3 or resizes various caches for all nodes.
3808 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3811 struct kmem_list3
*l3
;
3812 struct array_cache
*new_shared
;
3813 struct array_cache
**new_alien
= NULL
;
3815 for_each_online_node(node
) {
3817 if (use_alien_caches
) {
3818 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3824 if (cachep
->shared
) {
3825 new_shared
= alloc_arraycache(node
,
3826 cachep
->shared
*cachep
->batchcount
,
3829 free_alien_cache(new_alien
);
3834 l3
= cachep
->nodelists
[node
];
3836 struct array_cache
*shared
= l3
->shared
;
3838 spin_lock_irq(&l3
->list_lock
);
3841 free_block(cachep
, shared
->entry
,
3842 shared
->avail
, node
);
3844 l3
->shared
= new_shared
;
3846 l3
->alien
= new_alien
;
3849 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3850 cachep
->batchcount
+ cachep
->num
;
3851 spin_unlock_irq(&l3
->list_lock
);
3853 free_alien_cache(new_alien
);
3856 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3858 free_alien_cache(new_alien
);
3863 kmem_list3_init(l3
);
3864 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3865 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3866 l3
->shared
= new_shared
;
3867 l3
->alien
= new_alien
;
3868 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3869 cachep
->batchcount
+ cachep
->num
;
3870 cachep
->nodelists
[node
] = l3
;
3875 if (!cachep
->next
.next
) {
3876 /* Cache is not active yet. Roll back what we did */
3879 if (cachep
->nodelists
[node
]) {
3880 l3
= cachep
->nodelists
[node
];
3883 free_alien_cache(l3
->alien
);
3885 cachep
->nodelists
[node
] = NULL
;
3893 struct ccupdate_struct
{
3894 struct kmem_cache
*cachep
;
3895 struct array_cache
*new[NR_CPUS
];
3898 static void do_ccupdate_local(void *info
)
3900 struct ccupdate_struct
*new = info
;
3901 struct array_cache
*old
;
3904 old
= cpu_cache_get(new->cachep
);
3906 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3907 new->new[smp_processor_id()] = old
;
3910 /* Always called with the cache_chain_mutex held */
3911 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3912 int batchcount
, int shared
)
3914 struct ccupdate_struct
*new;
3917 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3921 for_each_online_cpu(i
) {
3922 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3925 for (i
--; i
>= 0; i
--)
3931 new->cachep
= cachep
;
3933 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3936 cachep
->batchcount
= batchcount
;
3937 cachep
->limit
= limit
;
3938 cachep
->shared
= shared
;
3940 for_each_online_cpu(i
) {
3941 struct array_cache
*ccold
= new->new[i
];
3944 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3945 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3946 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3950 return alloc_kmemlist(cachep
);
3953 /* Called with cache_chain_mutex held always */
3954 static int enable_cpucache(struct kmem_cache
*cachep
)
3960 * The head array serves three purposes:
3961 * - create a LIFO ordering, i.e. return objects that are cache-warm
3962 * - reduce the number of spinlock operations.
3963 * - reduce the number of linked list operations on the slab and
3964 * bufctl chains: array operations are cheaper.
3965 * The numbers are guessed, we should auto-tune as described by
3968 if (cachep
->buffer_size
> 131072)
3970 else if (cachep
->buffer_size
> PAGE_SIZE
)
3972 else if (cachep
->buffer_size
> 1024)
3974 else if (cachep
->buffer_size
> 256)
3980 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3981 * allocation behaviour: Most allocs on one cpu, most free operations
3982 * on another cpu. For these cases, an efficient object passing between
3983 * cpus is necessary. This is provided by a shared array. The array
3984 * replaces Bonwick's magazine layer.
3985 * On uniprocessor, it's functionally equivalent (but less efficient)
3986 * to a larger limit. Thus disabled by default.
3989 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3994 * With debugging enabled, large batchcount lead to excessively long
3995 * periods with disabled local interrupts. Limit the batchcount
4000 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4002 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4003 cachep
->name
, -err
);
4008 * Drain an array if it contains any elements taking the l3 lock only if
4009 * necessary. Note that the l3 listlock also protects the array_cache
4010 * if drain_array() is used on the shared array.
4012 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4013 struct array_cache
*ac
, int force
, int node
)
4017 if (!ac
|| !ac
->avail
)
4019 if (ac
->touched
&& !force
) {
4022 spin_lock_irq(&l3
->list_lock
);
4024 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4025 if (tofree
> ac
->avail
)
4026 tofree
= (ac
->avail
+ 1) / 2;
4027 free_block(cachep
, ac
->entry
, tofree
, node
);
4028 ac
->avail
-= tofree
;
4029 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4030 sizeof(void *) * ac
->avail
);
4032 spin_unlock_irq(&l3
->list_lock
);
4037 * cache_reap - Reclaim memory from caches.
4038 * @w: work descriptor
4040 * Called from workqueue/eventd every few seconds.
4042 * - clear the per-cpu caches for this CPU.
4043 * - return freeable pages to the main free memory pool.
4045 * If we cannot acquire the cache chain mutex then just give up - we'll try
4046 * again on the next iteration.
4048 static void cache_reap(struct work_struct
*w
)
4050 struct kmem_cache
*searchp
;
4051 struct kmem_list3
*l3
;
4052 int node
= numa_node_id();
4053 struct delayed_work
*work
=
4054 container_of(w
, struct delayed_work
, work
);
4056 if (!mutex_trylock(&cache_chain_mutex
))
4057 /* Give up. Setup the next iteration. */
4060 list_for_each_entry(searchp
, &cache_chain
, next
) {
4064 * We only take the l3 lock if absolutely necessary and we
4065 * have established with reasonable certainty that
4066 * we can do some work if the lock was obtained.
4068 l3
= searchp
->nodelists
[node
];
4070 reap_alien(searchp
, l3
);
4072 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4075 * These are racy checks but it does not matter
4076 * if we skip one check or scan twice.
4078 if (time_after(l3
->next_reap
, jiffies
))
4081 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4083 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4085 if (l3
->free_touched
)
4086 l3
->free_touched
= 0;
4090 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4091 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4092 STATS_ADD_REAPED(searchp
, freed
);
4098 mutex_unlock(&cache_chain_mutex
);
4101 /* Set up the next iteration */
4102 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4105 #ifdef CONFIG_SLABINFO
4107 static void print_slabinfo_header(struct seq_file
*m
)
4110 * Output format version, so at least we can change it
4111 * without _too_ many complaints.
4114 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4116 seq_puts(m
, "slabinfo - version: 2.1\n");
4118 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4119 "<objperslab> <pagesperslab>");
4120 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4121 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4123 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4124 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4125 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4130 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4134 mutex_lock(&cache_chain_mutex
);
4136 print_slabinfo_header(m
);
4138 return seq_list_start(&cache_chain
, *pos
);
4141 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4143 return seq_list_next(p
, &cache_chain
, pos
);
4146 static void s_stop(struct seq_file
*m
, void *p
)
4148 mutex_unlock(&cache_chain_mutex
);
4151 static int s_show(struct seq_file
*m
, void *p
)
4153 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4155 unsigned long active_objs
;
4156 unsigned long num_objs
;
4157 unsigned long active_slabs
= 0;
4158 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4162 struct kmem_list3
*l3
;
4166 for_each_online_node(node
) {
4167 l3
= cachep
->nodelists
[node
];
4172 spin_lock_irq(&l3
->list_lock
);
4174 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4175 if (slabp
->inuse
!= cachep
->num
&& !error
)
4176 error
= "slabs_full accounting error";
4177 active_objs
+= cachep
->num
;
4180 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4181 if (slabp
->inuse
== cachep
->num
&& !error
)
4182 error
= "slabs_partial inuse accounting error";
4183 if (!slabp
->inuse
&& !error
)
4184 error
= "slabs_partial/inuse accounting error";
4185 active_objs
+= slabp
->inuse
;
4188 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4189 if (slabp
->inuse
&& !error
)
4190 error
= "slabs_free/inuse accounting error";
4193 free_objects
+= l3
->free_objects
;
4195 shared_avail
+= l3
->shared
->avail
;
4197 spin_unlock_irq(&l3
->list_lock
);
4199 num_slabs
+= active_slabs
;
4200 num_objs
= num_slabs
* cachep
->num
;
4201 if (num_objs
- active_objs
!= free_objects
&& !error
)
4202 error
= "free_objects accounting error";
4204 name
= cachep
->name
;
4206 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4208 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4209 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4210 cachep
->num
, (1 << cachep
->gfporder
));
4211 seq_printf(m
, " : tunables %4u %4u %4u",
4212 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4213 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4214 active_slabs
, num_slabs
, shared_avail
);
4217 unsigned long high
= cachep
->high_mark
;
4218 unsigned long allocs
= cachep
->num_allocations
;
4219 unsigned long grown
= cachep
->grown
;
4220 unsigned long reaped
= cachep
->reaped
;
4221 unsigned long errors
= cachep
->errors
;
4222 unsigned long max_freeable
= cachep
->max_freeable
;
4223 unsigned long node_allocs
= cachep
->node_allocs
;
4224 unsigned long node_frees
= cachep
->node_frees
;
4225 unsigned long overflows
= cachep
->node_overflow
;
4227 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4228 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4229 reaped
, errors
, max_freeable
, node_allocs
,
4230 node_frees
, overflows
);
4234 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4235 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4236 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4237 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4239 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4240 allochit
, allocmiss
, freehit
, freemiss
);
4248 * slabinfo_op - iterator that generates /proc/slabinfo
4257 * num-pages-per-slab
4258 * + further values on SMP and with statistics enabled
4261 const struct seq_operations slabinfo_op
= {
4268 #define MAX_SLABINFO_WRITE 128
4270 * slabinfo_write - Tuning for the slab allocator
4272 * @buffer: user buffer
4273 * @count: data length
4276 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4277 size_t count
, loff_t
*ppos
)
4279 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4280 int limit
, batchcount
, shared
, res
;
4281 struct kmem_cache
*cachep
;
4283 if (count
> MAX_SLABINFO_WRITE
)
4285 if (copy_from_user(&kbuf
, buffer
, count
))
4287 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4289 tmp
= strchr(kbuf
, ' ');
4294 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4297 /* Find the cache in the chain of caches. */
4298 mutex_lock(&cache_chain_mutex
);
4300 list_for_each_entry(cachep
, &cache_chain
, next
) {
4301 if (!strcmp(cachep
->name
, kbuf
)) {
4302 if (limit
< 1 || batchcount
< 1 ||
4303 batchcount
> limit
|| shared
< 0) {
4306 res
= do_tune_cpucache(cachep
, limit
,
4307 batchcount
, shared
);
4312 mutex_unlock(&cache_chain_mutex
);
4318 #ifdef CONFIG_DEBUG_SLAB_LEAK
4320 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4322 mutex_lock(&cache_chain_mutex
);
4323 return seq_list_start(&cache_chain
, *pos
);
4326 static inline int add_caller(unsigned long *n
, unsigned long v
)
4336 unsigned long *q
= p
+ 2 * i
;
4350 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4356 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4362 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4363 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4365 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4370 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4372 #ifdef CONFIG_KALLSYMS
4373 unsigned long offset
, size
;
4374 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4376 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4377 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4379 seq_printf(m
, " [%s]", modname
);
4383 seq_printf(m
, "%p", (void *)address
);
4386 static int leaks_show(struct seq_file
*m
, void *p
)
4388 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4390 struct kmem_list3
*l3
;
4392 unsigned long *n
= m
->private;
4396 if (!(cachep
->flags
& SLAB_STORE_USER
))
4398 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4401 /* OK, we can do it */
4405 for_each_online_node(node
) {
4406 l3
= cachep
->nodelists
[node
];
4411 spin_lock_irq(&l3
->list_lock
);
4413 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4414 handle_slab(n
, cachep
, slabp
);
4415 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4416 handle_slab(n
, cachep
, slabp
);
4417 spin_unlock_irq(&l3
->list_lock
);
4419 name
= cachep
->name
;
4421 /* Increase the buffer size */
4422 mutex_unlock(&cache_chain_mutex
);
4423 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4425 /* Too bad, we are really out */
4427 mutex_lock(&cache_chain_mutex
);
4430 *(unsigned long *)m
->private = n
[0] * 2;
4432 mutex_lock(&cache_chain_mutex
);
4433 /* Now make sure this entry will be retried */
4437 for (i
= 0; i
< n
[1]; i
++) {
4438 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4439 show_symbol(m
, n
[2*i
+2]);
4446 const struct seq_operations slabstats_op
= {
4447 .start
= leaks_start
,
4456 * ksize - get the actual amount of memory allocated for a given object
4457 * @objp: Pointer to the object
4459 * kmalloc may internally round up allocations and return more memory
4460 * than requested. ksize() can be used to determine the actual amount of
4461 * memory allocated. The caller may use this additional memory, even though
4462 * a smaller amount of memory was initially specified with the kmalloc call.
4463 * The caller must guarantee that objp points to a valid object previously
4464 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4465 * must not be freed during the duration of the call.
4467 size_t ksize(const void *objp
)
4470 if (unlikely(objp
== ZERO_SIZE_PTR
))
4473 return obj_size(virt_to_cache(objp
));