splice: remove i_mutex locking in splice_from_pipe()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blobf88614d4a928c035f2c2ff743ad21038f0ebe67b
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
63 goto out_unlock;
66 * If we succeeded in removing the mapping, set LRU flag
67 * and return good.
69 if (remove_mapping(mapping, page)) {
70 buf->flags |= PIPE_BUF_FLAG_LRU;
71 return 0;
76 * Raced with truncate or failed to remove page from current
77 * address space, unlock and return failure.
79 out_unlock:
80 unlock_page(page);
81 return 1;
84 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
85 struct pipe_buffer *buf)
87 page_cache_release(buf->page);
88 buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 * Check whether the contents of buf is OK to access. Since the content
93 * is a page cache page, IO may be in flight.
95 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
96 struct pipe_buffer *buf)
98 struct page *page = buf->page;
99 int err;
101 if (!PageUptodate(page)) {
102 lock_page(page);
105 * Page got truncated/unhashed. This will cause a 0-byte
106 * splice, if this is the first page.
108 if (!page->mapping) {
109 err = -ENODATA;
110 goto error;
114 * Uh oh, read-error from disk.
116 if (!PageUptodate(page)) {
117 err = -EIO;
118 goto error;
122 * Page is ok afterall, we are done.
124 unlock_page(page);
127 return 0;
128 error:
129 unlock_page(page);
130 return err;
133 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
134 .can_merge = 0,
135 .map = generic_pipe_buf_map,
136 .unmap = generic_pipe_buf_unmap,
137 .confirm = page_cache_pipe_buf_confirm,
138 .release = page_cache_pipe_buf_release,
139 .steal = page_cache_pipe_buf_steal,
140 .get = generic_pipe_buf_get,
143 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
144 struct pipe_buffer *buf)
146 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
147 return 1;
149 buf->flags |= PIPE_BUF_FLAG_LRU;
150 return generic_pipe_buf_steal(pipe, buf);
153 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
154 .can_merge = 0,
155 .map = generic_pipe_buf_map,
156 .unmap = generic_pipe_buf_unmap,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
164 * splice_to_pipe - fill passed data into a pipe
165 * @pipe: pipe to fill
166 * @spd: data to fill
168 * Description:
169 * @spd contains a map of pages and len/offset tuples, along with
170 * the struct pipe_buf_operations associated with these pages. This
171 * function will link that data to the pipe.
174 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
175 struct splice_pipe_desc *spd)
177 unsigned int spd_pages = spd->nr_pages;
178 int ret, do_wakeup, page_nr;
180 ret = 0;
181 do_wakeup = 0;
182 page_nr = 0;
184 if (pipe->inode)
185 mutex_lock(&pipe->inode->i_mutex);
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 if (pipe->inode) {
248 mutex_unlock(&pipe->inode->i_mutex);
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
258 while (page_nr < spd_pages)
259 spd->spd_release(spd, page_nr++);
261 return ret;
264 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 page_cache_release(spd->pages[i]);
269 static int
270 __generic_file_splice_read(struct file *in, loff_t *ppos,
271 struct pipe_inode_info *pipe, size_t len,
272 unsigned int flags)
274 struct address_space *mapping = in->f_mapping;
275 unsigned int loff, nr_pages, req_pages;
276 struct page *pages[PIPE_BUFFERS];
277 struct partial_page partial[PIPE_BUFFERS];
278 struct page *page;
279 pgoff_t index, end_index;
280 loff_t isize;
281 int error, page_nr;
282 struct splice_pipe_desc spd = {
283 .pages = pages,
284 .partial = partial,
285 .flags = flags,
286 .ops = &page_cache_pipe_buf_ops,
287 .spd_release = spd_release_page,
290 index = *ppos >> PAGE_CACHE_SHIFT;
291 loff = *ppos & ~PAGE_CACHE_MASK;
292 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
293 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
296 * Lookup the (hopefully) full range of pages we need.
298 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
299 index += spd.nr_pages;
302 * If find_get_pages_contig() returned fewer pages than we needed,
303 * readahead/allocate the rest and fill in the holes.
305 if (spd.nr_pages < nr_pages)
306 page_cache_sync_readahead(mapping, &in->f_ra, in,
307 index, req_pages - spd.nr_pages);
309 error = 0;
310 while (spd.nr_pages < nr_pages) {
312 * Page could be there, find_get_pages_contig() breaks on
313 * the first hole.
315 page = find_get_page(mapping, index);
316 if (!page) {
318 * page didn't exist, allocate one.
320 page = page_cache_alloc_cold(mapping);
321 if (!page)
322 break;
324 error = add_to_page_cache_lru(page, mapping, index,
325 mapping_gfp_mask(mapping));
326 if (unlikely(error)) {
327 page_cache_release(page);
328 if (error == -EEXIST)
329 continue;
330 break;
333 * add_to_page_cache() locks the page, unlock it
334 * to avoid convoluting the logic below even more.
336 unlock_page(page);
339 pages[spd.nr_pages++] = page;
340 index++;
344 * Now loop over the map and see if we need to start IO on any
345 * pages, fill in the partial map, etc.
347 index = *ppos >> PAGE_CACHE_SHIFT;
348 nr_pages = spd.nr_pages;
349 spd.nr_pages = 0;
350 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
351 unsigned int this_len;
353 if (!len)
354 break;
357 * this_len is the max we'll use from this page
359 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
360 page = pages[page_nr];
362 if (PageReadahead(page))
363 page_cache_async_readahead(mapping, &in->f_ra, in,
364 page, index, req_pages - page_nr);
367 * If the page isn't uptodate, we may need to start io on it
369 if (!PageUptodate(page)) {
371 * If in nonblock mode then dont block on waiting
372 * for an in-flight io page
374 if (flags & SPLICE_F_NONBLOCK) {
375 if (!trylock_page(page)) {
376 error = -EAGAIN;
377 break;
379 } else
380 lock_page(page);
383 * Page was truncated, or invalidated by the
384 * filesystem. Redo the find/create, but this time the
385 * page is kept locked, so there's no chance of another
386 * race with truncate/invalidate.
388 if (!page->mapping) {
389 unlock_page(page);
390 page = find_or_create_page(mapping, index,
391 mapping_gfp_mask(mapping));
393 if (!page) {
394 error = -ENOMEM;
395 break;
397 page_cache_release(pages[page_nr]);
398 pages[page_nr] = page;
401 * page was already under io and is now done, great
403 if (PageUptodate(page)) {
404 unlock_page(page);
405 goto fill_it;
409 * need to read in the page
411 error = mapping->a_ops->readpage(in, page);
412 if (unlikely(error)) {
414 * We really should re-lookup the page here,
415 * but it complicates things a lot. Instead
416 * lets just do what we already stored, and
417 * we'll get it the next time we are called.
419 if (error == AOP_TRUNCATED_PAGE)
420 error = 0;
422 break;
425 fill_it:
427 * i_size must be checked after PageUptodate.
429 isize = i_size_read(mapping->host);
430 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
431 if (unlikely(!isize || index > end_index))
432 break;
435 * if this is the last page, see if we need to shrink
436 * the length and stop
438 if (end_index == index) {
439 unsigned int plen;
442 * max good bytes in this page
444 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
445 if (plen <= loff)
446 break;
449 * force quit after adding this page
451 this_len = min(this_len, plen - loff);
452 len = this_len;
455 partial[page_nr].offset = loff;
456 partial[page_nr].len = this_len;
457 len -= this_len;
458 loff = 0;
459 spd.nr_pages++;
460 index++;
464 * Release any pages at the end, if we quit early. 'page_nr' is how far
465 * we got, 'nr_pages' is how many pages are in the map.
467 while (page_nr < nr_pages)
468 page_cache_release(pages[page_nr++]);
469 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471 if (spd.nr_pages)
472 return splice_to_pipe(pipe, &spd);
474 return error;
478 * generic_file_splice_read - splice data from file to a pipe
479 * @in: file to splice from
480 * @ppos: position in @in
481 * @pipe: pipe to splice to
482 * @len: number of bytes to splice
483 * @flags: splice modifier flags
485 * Description:
486 * Will read pages from given file and fill them into a pipe. Can be
487 * used as long as the address_space operations for the source implements
488 * a readpage() hook.
491 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
492 struct pipe_inode_info *pipe, size_t len,
493 unsigned int flags)
495 loff_t isize, left;
496 int ret;
498 isize = i_size_read(in->f_mapping->host);
499 if (unlikely(*ppos >= isize))
500 return 0;
502 left = isize - *ppos;
503 if (unlikely(left < len))
504 len = left;
506 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
507 if (ret > 0)
508 *ppos += ret;
510 return ret;
513 EXPORT_SYMBOL(generic_file_splice_read);
516 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
517 * using sendpage(). Return the number of bytes sent.
519 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
520 struct pipe_buffer *buf, struct splice_desc *sd)
522 struct file *file = sd->u.file;
523 loff_t pos = sd->pos;
524 int ret, more;
526 ret = buf->ops->confirm(pipe, buf);
527 if (!ret) {
528 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
530 ret = file->f_op->sendpage(file, buf->page, buf->offset,
531 sd->len, &pos, more);
534 return ret;
538 * This is a little more tricky than the file -> pipe splicing. There are
539 * basically three cases:
541 * - Destination page already exists in the address space and there
542 * are users of it. For that case we have no other option that
543 * copying the data. Tough luck.
544 * - Destination page already exists in the address space, but there
545 * are no users of it. Make sure it's uptodate, then drop it. Fall
546 * through to last case.
547 * - Destination page does not exist, we can add the pipe page to
548 * the page cache and avoid the copy.
550 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
551 * sd->flags), we attempt to migrate pages from the pipe to the output
552 * file address space page cache. This is possible if no one else has
553 * the pipe page referenced outside of the pipe and page cache. If
554 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
555 * a new page in the output file page cache and fill/dirty that.
557 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
558 struct splice_desc *sd)
560 struct file *file = sd->u.file;
561 struct address_space *mapping = file->f_mapping;
562 unsigned int offset, this_len;
563 struct page *page;
564 void *fsdata;
565 int ret;
568 * make sure the data in this buffer is uptodate
570 ret = buf->ops->confirm(pipe, buf);
571 if (unlikely(ret))
572 return ret;
574 offset = sd->pos & ~PAGE_CACHE_MASK;
576 this_len = sd->len;
577 if (this_len + offset > PAGE_CACHE_SIZE)
578 this_len = PAGE_CACHE_SIZE - offset;
580 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
581 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
582 if (unlikely(ret))
583 goto out;
585 if (buf->page != page) {
587 * Careful, ->map() uses KM_USER0!
589 char *src = buf->ops->map(pipe, buf, 1);
590 char *dst = kmap_atomic(page, KM_USER1);
592 memcpy(dst + offset, src + buf->offset, this_len);
593 flush_dcache_page(page);
594 kunmap_atomic(dst, KM_USER1);
595 buf->ops->unmap(pipe, buf, src);
597 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
598 page, fsdata);
599 out:
600 return ret;
603 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
605 smp_mb();
606 if (waitqueue_active(&pipe->wait))
607 wake_up_interruptible(&pipe->wait);
608 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
612 * splice_from_pipe_feed - feed available data from a pipe to a file
613 * @pipe: pipe to splice from
614 * @sd: information to @actor
615 * @actor: handler that splices the data
617 * Description:
619 * This function loops over the pipe and calls @actor to do the
620 * actual moving of a single struct pipe_buffer to the desired
621 * destination. It returns when there's no more buffers left in
622 * the pipe or if the requested number of bytes (@sd->total_len)
623 * have been copied. It returns a positive number (one) if the
624 * pipe needs to be filled with more data, zero if the required
625 * number of bytes have been copied and -errno on error.
627 * This, together with splice_from_pipe_{begin,end,next}, may be
628 * used to implement the functionality of __splice_from_pipe() when
629 * locking is required around copying the pipe buffers to the
630 * destination.
632 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
633 splice_actor *actor)
635 int ret;
637 while (pipe->nrbufs) {
638 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
639 const struct pipe_buf_operations *ops = buf->ops;
641 sd->len = buf->len;
642 if (sd->len > sd->total_len)
643 sd->len = sd->total_len;
645 ret = actor(pipe, buf, sd);
646 if (ret <= 0) {
647 if (ret == -ENODATA)
648 ret = 0;
649 return ret;
651 buf->offset += ret;
652 buf->len -= ret;
654 sd->num_spliced += ret;
655 sd->len -= ret;
656 sd->pos += ret;
657 sd->total_len -= ret;
659 if (!buf->len) {
660 buf->ops = NULL;
661 ops->release(pipe, buf);
662 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
663 pipe->nrbufs--;
664 if (pipe->inode)
665 sd->need_wakeup = true;
668 if (!sd->total_len)
669 return 0;
672 return 1;
674 EXPORT_SYMBOL(splice_from_pipe_feed);
677 * splice_from_pipe_next - wait for some data to splice from
678 * @pipe: pipe to splice from
679 * @sd: information about the splice operation
681 * Description:
682 * This function will wait for some data and return a positive
683 * value (one) if pipe buffers are available. It will return zero
684 * or -errno if no more data needs to be spliced.
686 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
688 while (!pipe->nrbufs) {
689 if (!pipe->writers)
690 return 0;
692 if (!pipe->waiting_writers && sd->num_spliced)
693 return 0;
695 if (sd->flags & SPLICE_F_NONBLOCK)
696 return -EAGAIN;
698 if (signal_pending(current))
699 return -ERESTARTSYS;
701 if (sd->need_wakeup) {
702 wakeup_pipe_writers(pipe);
703 sd->need_wakeup = false;
706 pipe_wait(pipe);
709 return 1;
711 EXPORT_SYMBOL(splice_from_pipe_next);
714 * splice_from_pipe_begin - start splicing from pipe
715 * @pipe: pipe to splice from
717 * Description:
718 * This function should be called before a loop containing
719 * splice_from_pipe_next() and splice_from_pipe_feed() to
720 * initialize the necessary fields of @sd.
722 void splice_from_pipe_begin(struct splice_desc *sd)
724 sd->num_spliced = 0;
725 sd->need_wakeup = false;
727 EXPORT_SYMBOL(splice_from_pipe_begin);
730 * splice_from_pipe_end - finish splicing from pipe
731 * @pipe: pipe to splice from
732 * @sd: information about the splice operation
734 * Description:
735 * This function will wake up pipe writers if necessary. It should
736 * be called after a loop containing splice_from_pipe_next() and
737 * splice_from_pipe_feed().
739 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
741 if (sd->need_wakeup)
742 wakeup_pipe_writers(pipe);
744 EXPORT_SYMBOL(splice_from_pipe_end);
747 * __splice_from_pipe - splice data from a pipe to given actor
748 * @pipe: pipe to splice from
749 * @sd: information to @actor
750 * @actor: handler that splices the data
752 * Description:
753 * This function does little more than loop over the pipe and call
754 * @actor to do the actual moving of a single struct pipe_buffer to
755 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
756 * pipe_to_user.
759 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
760 splice_actor *actor)
762 int ret;
764 splice_from_pipe_begin(sd);
765 do {
766 ret = splice_from_pipe_next(pipe, sd);
767 if (ret > 0)
768 ret = splice_from_pipe_feed(pipe, sd, actor);
769 } while (ret > 0);
770 splice_from_pipe_end(pipe, sd);
772 return sd->num_spliced ? sd->num_spliced : ret;
774 EXPORT_SYMBOL(__splice_from_pipe);
777 * splice_from_pipe - splice data from a pipe to a file
778 * @pipe: pipe to splice from
779 * @out: file to splice to
780 * @ppos: position in @out
781 * @len: how many bytes to splice
782 * @flags: splice modifier flags
783 * @actor: handler that splices the data
785 * Description:
786 * See __splice_from_pipe. This function locks the pipe inode,
787 * otherwise it's identical to __splice_from_pipe().
790 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
791 loff_t *ppos, size_t len, unsigned int flags,
792 splice_actor *actor)
794 ssize_t ret;
795 struct splice_desc sd = {
796 .total_len = len,
797 .flags = flags,
798 .pos = *ppos,
799 .u.file = out,
802 if (pipe->inode)
803 mutex_lock(&pipe->inode->i_mutex);
804 ret = __splice_from_pipe(pipe, &sd, actor);
805 if (pipe->inode)
806 mutex_unlock(&pipe->inode->i_mutex);
808 return ret;
812 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
813 * @pipe: pipe info
814 * @out: file to write to
815 * @ppos: position in @out
816 * @len: number of bytes to splice
817 * @flags: splice modifier flags
819 * Description:
820 * Will either move or copy pages (determined by @flags options) from
821 * the given pipe inode to the given file. The caller is responsible
822 * for acquiring i_mutex on both inodes.
825 ssize_t
826 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
827 loff_t *ppos, size_t len, unsigned int flags)
829 struct address_space *mapping = out->f_mapping;
830 struct inode *inode = mapping->host;
831 struct splice_desc sd = {
832 .total_len = len,
833 .flags = flags,
834 .pos = *ppos,
835 .u.file = out,
837 ssize_t ret;
838 int err;
840 err = file_remove_suid(out);
841 if (unlikely(err))
842 return err;
844 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
845 if (ret > 0) {
846 unsigned long nr_pages;
848 *ppos += ret;
849 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
852 * If file or inode is SYNC and we actually wrote some data,
853 * sync it.
855 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
856 err = generic_osync_inode(inode, mapping,
857 OSYNC_METADATA|OSYNC_DATA);
859 if (err)
860 ret = err;
862 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
865 return ret;
868 EXPORT_SYMBOL(generic_file_splice_write_nolock);
871 * generic_file_splice_write - splice data from a pipe to a file
872 * @pipe: pipe info
873 * @out: file to write to
874 * @ppos: position in @out
875 * @len: number of bytes to splice
876 * @flags: splice modifier flags
878 * Description:
879 * Will either move or copy pages (determined by @flags options) from
880 * the given pipe inode to the given file.
883 ssize_t
884 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
885 loff_t *ppos, size_t len, unsigned int flags)
887 struct address_space *mapping = out->f_mapping;
888 struct inode *inode = mapping->host;
889 struct splice_desc sd = {
890 .total_len = len,
891 .flags = flags,
892 .pos = *ppos,
893 .u.file = out,
895 ssize_t ret;
897 WARN_ON(S_ISFIFO(inode->i_mode));
898 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
899 ret = file_remove_suid(out);
900 if (likely(!ret)) {
901 if (pipe->inode)
902 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
903 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
904 if (pipe->inode)
905 mutex_unlock(&pipe->inode->i_mutex);
907 mutex_unlock(&inode->i_mutex);
908 if (ret > 0) {
909 unsigned long nr_pages;
911 *ppos += ret;
912 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
915 * If file or inode is SYNC and we actually wrote some data,
916 * sync it.
918 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
919 int err;
921 mutex_lock(&inode->i_mutex);
922 err = generic_osync_inode(inode, mapping,
923 OSYNC_METADATA|OSYNC_DATA);
924 mutex_unlock(&inode->i_mutex);
926 if (err)
927 ret = err;
929 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
932 return ret;
935 EXPORT_SYMBOL(generic_file_splice_write);
938 * generic_splice_sendpage - splice data from a pipe to a socket
939 * @pipe: pipe to splice from
940 * @out: socket to write to
941 * @ppos: position in @out
942 * @len: number of bytes to splice
943 * @flags: splice modifier flags
945 * Description:
946 * Will send @len bytes from the pipe to a network socket. No data copying
947 * is involved.
950 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags)
953 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
956 EXPORT_SYMBOL(generic_splice_sendpage);
959 * Attempt to initiate a splice from pipe to file.
961 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
962 loff_t *ppos, size_t len, unsigned int flags)
964 int ret;
966 if (unlikely(!out->f_op || !out->f_op->splice_write))
967 return -EINVAL;
969 if (unlikely(!(out->f_mode & FMODE_WRITE)))
970 return -EBADF;
972 if (unlikely(out->f_flags & O_APPEND))
973 return -EINVAL;
975 ret = rw_verify_area(WRITE, out, ppos, len);
976 if (unlikely(ret < 0))
977 return ret;
979 return out->f_op->splice_write(pipe, out, ppos, len, flags);
983 * Attempt to initiate a splice from a file to a pipe.
985 static long do_splice_to(struct file *in, loff_t *ppos,
986 struct pipe_inode_info *pipe, size_t len,
987 unsigned int flags)
989 int ret;
991 if (unlikely(!in->f_op || !in->f_op->splice_read))
992 return -EINVAL;
994 if (unlikely(!(in->f_mode & FMODE_READ)))
995 return -EBADF;
997 ret = rw_verify_area(READ, in, ppos, len);
998 if (unlikely(ret < 0))
999 return ret;
1001 return in->f_op->splice_read(in, ppos, pipe, len, flags);
1005 * splice_direct_to_actor - splices data directly between two non-pipes
1006 * @in: file to splice from
1007 * @sd: actor information on where to splice to
1008 * @actor: handles the data splicing
1010 * Description:
1011 * This is a special case helper to splice directly between two
1012 * points, without requiring an explicit pipe. Internally an allocated
1013 * pipe is cached in the process, and reused during the lifetime of
1014 * that process.
1017 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1018 splice_direct_actor *actor)
1020 struct pipe_inode_info *pipe;
1021 long ret, bytes;
1022 umode_t i_mode;
1023 size_t len;
1024 int i, flags;
1027 * We require the input being a regular file, as we don't want to
1028 * randomly drop data for eg socket -> socket splicing. Use the
1029 * piped splicing for that!
1031 i_mode = in->f_path.dentry->d_inode->i_mode;
1032 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1033 return -EINVAL;
1036 * neither in nor out is a pipe, setup an internal pipe attached to
1037 * 'out' and transfer the wanted data from 'in' to 'out' through that
1039 pipe = current->splice_pipe;
1040 if (unlikely(!pipe)) {
1041 pipe = alloc_pipe_info(NULL);
1042 if (!pipe)
1043 return -ENOMEM;
1046 * We don't have an immediate reader, but we'll read the stuff
1047 * out of the pipe right after the splice_to_pipe(). So set
1048 * PIPE_READERS appropriately.
1050 pipe->readers = 1;
1052 current->splice_pipe = pipe;
1056 * Do the splice.
1058 ret = 0;
1059 bytes = 0;
1060 len = sd->total_len;
1061 flags = sd->flags;
1064 * Don't block on output, we have to drain the direct pipe.
1066 sd->flags &= ~SPLICE_F_NONBLOCK;
1068 while (len) {
1069 size_t read_len;
1070 loff_t pos = sd->pos, prev_pos = pos;
1072 ret = do_splice_to(in, &pos, pipe, len, flags);
1073 if (unlikely(ret <= 0))
1074 goto out_release;
1076 read_len = ret;
1077 sd->total_len = read_len;
1080 * NOTE: nonblocking mode only applies to the input. We
1081 * must not do the output in nonblocking mode as then we
1082 * could get stuck data in the internal pipe:
1084 ret = actor(pipe, sd);
1085 if (unlikely(ret <= 0)) {
1086 sd->pos = prev_pos;
1087 goto out_release;
1090 bytes += ret;
1091 len -= ret;
1092 sd->pos = pos;
1094 if (ret < read_len) {
1095 sd->pos = prev_pos + ret;
1096 goto out_release;
1100 done:
1101 pipe->nrbufs = pipe->curbuf = 0;
1102 file_accessed(in);
1103 return bytes;
1105 out_release:
1107 * If we did an incomplete transfer we must release
1108 * the pipe buffers in question:
1110 for (i = 0; i < PIPE_BUFFERS; i++) {
1111 struct pipe_buffer *buf = pipe->bufs + i;
1113 if (buf->ops) {
1114 buf->ops->release(pipe, buf);
1115 buf->ops = NULL;
1119 if (!bytes)
1120 bytes = ret;
1122 goto done;
1124 EXPORT_SYMBOL(splice_direct_to_actor);
1126 static int direct_splice_actor(struct pipe_inode_info *pipe,
1127 struct splice_desc *sd)
1129 struct file *file = sd->u.file;
1131 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1135 * do_splice_direct - splices data directly between two files
1136 * @in: file to splice from
1137 * @ppos: input file offset
1138 * @out: file to splice to
1139 * @len: number of bytes to splice
1140 * @flags: splice modifier flags
1142 * Description:
1143 * For use by do_sendfile(). splice can easily emulate sendfile, but
1144 * doing it in the application would incur an extra system call
1145 * (splice in + splice out, as compared to just sendfile()). So this helper
1146 * can splice directly through a process-private pipe.
1149 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1150 size_t len, unsigned int flags)
1152 struct splice_desc sd = {
1153 .len = len,
1154 .total_len = len,
1155 .flags = flags,
1156 .pos = *ppos,
1157 .u.file = out,
1159 long ret;
1161 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1162 if (ret > 0)
1163 *ppos = sd.pos;
1165 return ret;
1169 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1170 * location, so checking ->i_pipe is not enough to verify that this is a
1171 * pipe.
1173 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1175 if (S_ISFIFO(inode->i_mode))
1176 return inode->i_pipe;
1178 return NULL;
1182 * Determine where to splice to/from.
1184 static long do_splice(struct file *in, loff_t __user *off_in,
1185 struct file *out, loff_t __user *off_out,
1186 size_t len, unsigned int flags)
1188 struct pipe_inode_info *pipe;
1189 loff_t offset, *off;
1190 long ret;
1192 pipe = pipe_info(in->f_path.dentry->d_inode);
1193 if (pipe) {
1194 if (off_in)
1195 return -ESPIPE;
1196 if (off_out) {
1197 if (out->f_op->llseek == no_llseek)
1198 return -EINVAL;
1199 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1200 return -EFAULT;
1201 off = &offset;
1202 } else
1203 off = &out->f_pos;
1205 ret = do_splice_from(pipe, out, off, len, flags);
1207 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1208 ret = -EFAULT;
1210 return ret;
1213 pipe = pipe_info(out->f_path.dentry->d_inode);
1214 if (pipe) {
1215 if (off_out)
1216 return -ESPIPE;
1217 if (off_in) {
1218 if (in->f_op->llseek == no_llseek)
1219 return -EINVAL;
1220 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1221 return -EFAULT;
1222 off = &offset;
1223 } else
1224 off = &in->f_pos;
1226 ret = do_splice_to(in, off, pipe, len, flags);
1228 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1229 ret = -EFAULT;
1231 return ret;
1234 return -EINVAL;
1238 * Map an iov into an array of pages and offset/length tupples. With the
1239 * partial_page structure, we can map several non-contiguous ranges into
1240 * our ones pages[] map instead of splitting that operation into pieces.
1241 * Could easily be exported as a generic helper for other users, in which
1242 * case one would probably want to add a 'max_nr_pages' parameter as well.
1244 static int get_iovec_page_array(const struct iovec __user *iov,
1245 unsigned int nr_vecs, struct page **pages,
1246 struct partial_page *partial, int aligned)
1248 int buffers = 0, error = 0;
1250 while (nr_vecs) {
1251 unsigned long off, npages;
1252 struct iovec entry;
1253 void __user *base;
1254 size_t len;
1255 int i;
1257 error = -EFAULT;
1258 if (copy_from_user(&entry, iov, sizeof(entry)))
1259 break;
1261 base = entry.iov_base;
1262 len = entry.iov_len;
1265 * Sanity check this iovec. 0 read succeeds.
1267 error = 0;
1268 if (unlikely(!len))
1269 break;
1270 error = -EFAULT;
1271 if (!access_ok(VERIFY_READ, base, len))
1272 break;
1275 * Get this base offset and number of pages, then map
1276 * in the user pages.
1278 off = (unsigned long) base & ~PAGE_MASK;
1281 * If asked for alignment, the offset must be zero and the
1282 * length a multiple of the PAGE_SIZE.
1284 error = -EINVAL;
1285 if (aligned && (off || len & ~PAGE_MASK))
1286 break;
1288 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1289 if (npages > PIPE_BUFFERS - buffers)
1290 npages = PIPE_BUFFERS - buffers;
1292 error = get_user_pages_fast((unsigned long)base, npages,
1293 0, &pages[buffers]);
1295 if (unlikely(error <= 0))
1296 break;
1299 * Fill this contiguous range into the partial page map.
1301 for (i = 0; i < error; i++) {
1302 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1304 partial[buffers].offset = off;
1305 partial[buffers].len = plen;
1307 off = 0;
1308 len -= plen;
1309 buffers++;
1313 * We didn't complete this iov, stop here since it probably
1314 * means we have to move some of this into a pipe to
1315 * be able to continue.
1317 if (len)
1318 break;
1321 * Don't continue if we mapped fewer pages than we asked for,
1322 * or if we mapped the max number of pages that we have
1323 * room for.
1325 if (error < npages || buffers == PIPE_BUFFERS)
1326 break;
1328 nr_vecs--;
1329 iov++;
1332 if (buffers)
1333 return buffers;
1335 return error;
1338 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1339 struct splice_desc *sd)
1341 char *src;
1342 int ret;
1344 ret = buf->ops->confirm(pipe, buf);
1345 if (unlikely(ret))
1346 return ret;
1349 * See if we can use the atomic maps, by prefaulting in the
1350 * pages and doing an atomic copy
1352 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1353 src = buf->ops->map(pipe, buf, 1);
1354 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1355 sd->len);
1356 buf->ops->unmap(pipe, buf, src);
1357 if (!ret) {
1358 ret = sd->len;
1359 goto out;
1364 * No dice, use slow non-atomic map and copy
1366 src = buf->ops->map(pipe, buf, 0);
1368 ret = sd->len;
1369 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1370 ret = -EFAULT;
1372 buf->ops->unmap(pipe, buf, src);
1373 out:
1374 if (ret > 0)
1375 sd->u.userptr += ret;
1376 return ret;
1380 * For lack of a better implementation, implement vmsplice() to userspace
1381 * as a simple copy of the pipes pages to the user iov.
1383 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1384 unsigned long nr_segs, unsigned int flags)
1386 struct pipe_inode_info *pipe;
1387 struct splice_desc sd;
1388 ssize_t size;
1389 int error;
1390 long ret;
1392 pipe = pipe_info(file->f_path.dentry->d_inode);
1393 if (!pipe)
1394 return -EBADF;
1396 if (pipe->inode)
1397 mutex_lock(&pipe->inode->i_mutex);
1399 error = ret = 0;
1400 while (nr_segs) {
1401 void __user *base;
1402 size_t len;
1405 * Get user address base and length for this iovec.
1407 error = get_user(base, &iov->iov_base);
1408 if (unlikely(error))
1409 break;
1410 error = get_user(len, &iov->iov_len);
1411 if (unlikely(error))
1412 break;
1415 * Sanity check this iovec. 0 read succeeds.
1417 if (unlikely(!len))
1418 break;
1419 if (unlikely(!base)) {
1420 error = -EFAULT;
1421 break;
1424 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1425 error = -EFAULT;
1426 break;
1429 sd.len = 0;
1430 sd.total_len = len;
1431 sd.flags = flags;
1432 sd.u.userptr = base;
1433 sd.pos = 0;
1435 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1436 if (size < 0) {
1437 if (!ret)
1438 ret = size;
1440 break;
1443 ret += size;
1445 if (size < len)
1446 break;
1448 nr_segs--;
1449 iov++;
1452 if (pipe->inode)
1453 mutex_unlock(&pipe->inode->i_mutex);
1455 if (!ret)
1456 ret = error;
1458 return ret;
1462 * vmsplice splices a user address range into a pipe. It can be thought of
1463 * as splice-from-memory, where the regular splice is splice-from-file (or
1464 * to file). In both cases the output is a pipe, naturally.
1466 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1467 unsigned long nr_segs, unsigned int flags)
1469 struct pipe_inode_info *pipe;
1470 struct page *pages[PIPE_BUFFERS];
1471 struct partial_page partial[PIPE_BUFFERS];
1472 struct splice_pipe_desc spd = {
1473 .pages = pages,
1474 .partial = partial,
1475 .flags = flags,
1476 .ops = &user_page_pipe_buf_ops,
1477 .spd_release = spd_release_page,
1480 pipe = pipe_info(file->f_path.dentry->d_inode);
1481 if (!pipe)
1482 return -EBADF;
1484 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1485 flags & SPLICE_F_GIFT);
1486 if (spd.nr_pages <= 0)
1487 return spd.nr_pages;
1489 return splice_to_pipe(pipe, &spd);
1493 * Note that vmsplice only really supports true splicing _from_ user memory
1494 * to a pipe, not the other way around. Splicing from user memory is a simple
1495 * operation that can be supported without any funky alignment restrictions
1496 * or nasty vm tricks. We simply map in the user memory and fill them into
1497 * a pipe. The reverse isn't quite as easy, though. There are two possible
1498 * solutions for that:
1500 * - memcpy() the data internally, at which point we might as well just
1501 * do a regular read() on the buffer anyway.
1502 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1503 * has restriction limitations on both ends of the pipe).
1505 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1508 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1509 unsigned long, nr_segs, unsigned int, flags)
1511 struct file *file;
1512 long error;
1513 int fput;
1515 if (unlikely(nr_segs > UIO_MAXIOV))
1516 return -EINVAL;
1517 else if (unlikely(!nr_segs))
1518 return 0;
1520 error = -EBADF;
1521 file = fget_light(fd, &fput);
1522 if (file) {
1523 if (file->f_mode & FMODE_WRITE)
1524 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1525 else if (file->f_mode & FMODE_READ)
1526 error = vmsplice_to_user(file, iov, nr_segs, flags);
1528 fput_light(file, fput);
1531 return error;
1534 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1535 int, fd_out, loff_t __user *, off_out,
1536 size_t, len, unsigned int, flags)
1538 long error;
1539 struct file *in, *out;
1540 int fput_in, fput_out;
1542 if (unlikely(!len))
1543 return 0;
1545 error = -EBADF;
1546 in = fget_light(fd_in, &fput_in);
1547 if (in) {
1548 if (in->f_mode & FMODE_READ) {
1549 out = fget_light(fd_out, &fput_out);
1550 if (out) {
1551 if (out->f_mode & FMODE_WRITE)
1552 error = do_splice(in, off_in,
1553 out, off_out,
1554 len, flags);
1555 fput_light(out, fput_out);
1559 fput_light(in, fput_in);
1562 return error;
1566 * Make sure there's data to read. Wait for input if we can, otherwise
1567 * return an appropriate error.
1569 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1571 int ret;
1574 * Check ->nrbufs without the inode lock first. This function
1575 * is speculative anyways, so missing one is ok.
1577 if (pipe->nrbufs)
1578 return 0;
1580 ret = 0;
1581 mutex_lock(&pipe->inode->i_mutex);
1583 while (!pipe->nrbufs) {
1584 if (signal_pending(current)) {
1585 ret = -ERESTARTSYS;
1586 break;
1588 if (!pipe->writers)
1589 break;
1590 if (!pipe->waiting_writers) {
1591 if (flags & SPLICE_F_NONBLOCK) {
1592 ret = -EAGAIN;
1593 break;
1596 pipe_wait(pipe);
1599 mutex_unlock(&pipe->inode->i_mutex);
1600 return ret;
1604 * Make sure there's writeable room. Wait for room if we can, otherwise
1605 * return an appropriate error.
1607 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1609 int ret;
1612 * Check ->nrbufs without the inode lock first. This function
1613 * is speculative anyways, so missing one is ok.
1615 if (pipe->nrbufs < PIPE_BUFFERS)
1616 return 0;
1618 ret = 0;
1619 mutex_lock(&pipe->inode->i_mutex);
1621 while (pipe->nrbufs >= PIPE_BUFFERS) {
1622 if (!pipe->readers) {
1623 send_sig(SIGPIPE, current, 0);
1624 ret = -EPIPE;
1625 break;
1627 if (flags & SPLICE_F_NONBLOCK) {
1628 ret = -EAGAIN;
1629 break;
1631 if (signal_pending(current)) {
1632 ret = -ERESTARTSYS;
1633 break;
1635 pipe->waiting_writers++;
1636 pipe_wait(pipe);
1637 pipe->waiting_writers--;
1640 mutex_unlock(&pipe->inode->i_mutex);
1641 return ret;
1645 * Link contents of ipipe to opipe.
1647 static int link_pipe(struct pipe_inode_info *ipipe,
1648 struct pipe_inode_info *opipe,
1649 size_t len, unsigned int flags)
1651 struct pipe_buffer *ibuf, *obuf;
1652 int ret = 0, i = 0, nbuf;
1655 * Potential ABBA deadlock, work around it by ordering lock
1656 * grabbing by inode address. Otherwise two different processes
1657 * could deadlock (one doing tee from A -> B, the other from B -> A).
1659 inode_double_lock(ipipe->inode, opipe->inode);
1661 do {
1662 if (!opipe->readers) {
1663 send_sig(SIGPIPE, current, 0);
1664 if (!ret)
1665 ret = -EPIPE;
1666 break;
1670 * If we have iterated all input buffers or ran out of
1671 * output room, break.
1673 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1674 break;
1676 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1677 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1680 * Get a reference to this pipe buffer,
1681 * so we can copy the contents over.
1683 ibuf->ops->get(ipipe, ibuf);
1685 obuf = opipe->bufs + nbuf;
1686 *obuf = *ibuf;
1689 * Don't inherit the gift flag, we need to
1690 * prevent multiple steals of this page.
1692 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1694 if (obuf->len > len)
1695 obuf->len = len;
1697 opipe->nrbufs++;
1698 ret += obuf->len;
1699 len -= obuf->len;
1700 i++;
1701 } while (len);
1704 * return EAGAIN if we have the potential of some data in the
1705 * future, otherwise just return 0
1707 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1708 ret = -EAGAIN;
1710 inode_double_unlock(ipipe->inode, opipe->inode);
1713 * If we put data in the output pipe, wakeup any potential readers.
1715 if (ret > 0) {
1716 smp_mb();
1717 if (waitqueue_active(&opipe->wait))
1718 wake_up_interruptible(&opipe->wait);
1719 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1722 return ret;
1726 * This is a tee(1) implementation that works on pipes. It doesn't copy
1727 * any data, it simply references the 'in' pages on the 'out' pipe.
1728 * The 'flags' used are the SPLICE_F_* variants, currently the only
1729 * applicable one is SPLICE_F_NONBLOCK.
1731 static long do_tee(struct file *in, struct file *out, size_t len,
1732 unsigned int flags)
1734 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1735 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1736 int ret = -EINVAL;
1739 * Duplicate the contents of ipipe to opipe without actually
1740 * copying the data.
1742 if (ipipe && opipe && ipipe != opipe) {
1744 * Keep going, unless we encounter an error. The ipipe/opipe
1745 * ordering doesn't really matter.
1747 ret = link_ipipe_prep(ipipe, flags);
1748 if (!ret) {
1749 ret = link_opipe_prep(opipe, flags);
1750 if (!ret)
1751 ret = link_pipe(ipipe, opipe, len, flags);
1755 return ret;
1758 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1760 struct file *in;
1761 int error, fput_in;
1763 if (unlikely(!len))
1764 return 0;
1766 error = -EBADF;
1767 in = fget_light(fdin, &fput_in);
1768 if (in) {
1769 if (in->f_mode & FMODE_READ) {
1770 int fput_out;
1771 struct file *out = fget_light(fdout, &fput_out);
1773 if (out) {
1774 if (out->f_mode & FMODE_WRITE)
1775 error = do_tee(in, out, len, flags);
1776 fput_light(out, fput_out);
1779 fput_light(in, fput_in);
1782 return error;