2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
41 int perf_max_events __read_mostly
= 1;
42 static int perf_reserved_percpu __read_mostly
;
43 static int perf_overcommit __read_mostly
= 1;
45 static atomic_t nr_events __read_mostly
;
46 static atomic_t nr_mmap_events __read_mostly
;
47 static atomic_t nr_comm_events __read_mostly
;
48 static atomic_t nr_task_events __read_mostly
;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly
= 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid
> -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid
> 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid
> 1;
74 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
81 static atomic64_t perf_event_id
;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock
);
89 * Architecture provided APIs - weak aliases:
91 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
96 void __weak
hw_perf_disable(void) { barrier(); }
97 void __weak
hw_perf_enable(void) { barrier(); }
99 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
100 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
103 hw_perf_group_sched_in(struct perf_event
*group_leader
,
104 struct perf_cpu_context
*cpuctx
,
105 struct perf_event_context
*ctx
, int cpu
)
110 void __weak
perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count
);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count
)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count
);
124 void perf_disable(void)
130 void perf_enable(void)
136 static void get_ctx(struct perf_event_context
*ctx
)
138 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
141 static void free_ctx(struct rcu_head
*head
)
143 struct perf_event_context
*ctx
;
145 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
149 static void put_ctx(struct perf_event_context
*ctx
)
151 if (atomic_dec_and_test(&ctx
->refcount
)) {
153 put_ctx(ctx
->parent_ctx
);
155 put_task_struct(ctx
->task
);
156 call_rcu(&ctx
->rcu_head
, free_ctx
);
160 static void unclone_ctx(struct perf_event_context
*ctx
)
162 if (ctx
->parent_ctx
) {
163 put_ctx(ctx
->parent_ctx
);
164 ctx
->parent_ctx
= NULL
;
169 * If we inherit events we want to return the parent event id
172 static u64
primary_event_id(struct perf_event
*event
)
177 id
= event
->parent
->id
;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context
*
188 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
190 struct perf_event_context
*ctx
;
194 ctx
= rcu_dereference(task
->perf_event_ctxp
);
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
207 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
208 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
213 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
228 struct perf_event_context
*ctx
;
231 ctx
= perf_lock_task_context(task
, &flags
);
234 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
239 static void perf_unpin_context(struct perf_event_context
*ctx
)
243 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
245 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
249 static inline u64
perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context
*ctx
)
259 u64 now
= perf_clock();
261 ctx
->time
+= now
- ctx
->timestamp
;
262 ctx
->timestamp
= now
;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event
*event
)
270 struct perf_event_context
*ctx
= event
->ctx
;
273 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
274 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
280 run_end
= event
->tstamp_stopped
;
282 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
284 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
285 run_end
= event
->tstamp_stopped
;
289 event
->total_time_running
= run_end
- event
->tstamp_running
;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
297 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
299 struct perf_event
*group_leader
= event
->group_leader
;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader
== event
)
307 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
309 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
310 group_leader
->nr_siblings
++;
313 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
315 if (event
->attr
.inherit_stat
)
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
324 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
326 struct perf_event
*sibling
, *tmp
;
328 if (list_empty(&event
->group_entry
))
331 if (event
->attr
.inherit_stat
)
334 list_del_init(&event
->group_entry
);
335 list_del_rcu(&event
->event_entry
);
337 if (event
->group_leader
!= event
)
338 event
->group_leader
->nr_siblings
--;
340 update_event_times(event
);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
349 if (event
->state
> PERF_EVENT_STATE_OFF
)
350 event
->state
= PERF_EVENT_STATE_OFF
;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
359 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
360 sibling
->group_leader
= sibling
;
365 event_sched_out(struct perf_event
*event
,
366 struct perf_cpu_context
*cpuctx
,
367 struct perf_event_context
*ctx
)
369 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
372 event
->state
= PERF_EVENT_STATE_INACTIVE
;
373 if (event
->pending_disable
) {
374 event
->pending_disable
= 0;
375 event
->state
= PERF_EVENT_STATE_OFF
;
377 event
->tstamp_stopped
= ctx
->time
;
378 event
->pmu
->disable(event
);
381 if (!is_software_event(event
))
382 cpuctx
->active_oncpu
--;
384 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
385 cpuctx
->exclusive
= 0;
389 group_sched_out(struct perf_event
*group_event
,
390 struct perf_cpu_context
*cpuctx
,
391 struct perf_event_context
*ctx
)
393 struct perf_event
*event
;
395 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
398 event_sched_out(group_event
, cpuctx
, ctx
);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
404 event_sched_out(event
, cpuctx
, ctx
);
406 if (group_event
->attr
.exclusive
)
407 cpuctx
->exclusive
= 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info
)
418 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
419 struct perf_event
*event
= info
;
420 struct perf_event_context
*ctx
= event
->ctx
;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
430 raw_spin_lock(&ctx
->lock
);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
437 event_sched_out(event
, cpuctx
, ctx
);
439 list_del_event(event
, ctx
);
443 * Allow more per task events with respect to the
446 cpuctx
->max_pertask
=
447 min(perf_max_events
- ctx
->nr_events
,
448 perf_max_events
- perf_reserved_percpu
);
452 raw_spin_unlock(&ctx
->lock
);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event
*event
)
473 struct perf_event_context
*ctx
= event
->ctx
;
474 struct task_struct
*task
= ctx
->task
;
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event
->cpu
,
482 __perf_event_remove_from_context
,
488 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
491 raw_spin_lock_irq(&ctx
->lock
);
493 * If the context is active we need to retry the smp call.
495 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
496 raw_spin_unlock_irq(&ctx
->lock
);
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
505 if (!list_empty(&event
->group_entry
))
506 list_del_event(event
, ctx
);
507 raw_spin_unlock_irq(&ctx
->lock
);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event
*leader
)
515 struct perf_event
*event
;
517 update_event_times(leader
);
518 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
519 update_event_times(event
);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info
)
527 struct perf_event
*event
= info
;
528 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
529 struct perf_event_context
*ctx
= event
->ctx
;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
538 raw_spin_lock(&ctx
->lock
);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
545 update_context_time(ctx
);
546 update_group_times(event
);
547 if (event
== event
->group_leader
)
548 group_sched_out(event
, cpuctx
, ctx
);
550 event_sched_out(event
, cpuctx
, ctx
);
551 event
->state
= PERF_EVENT_STATE_OFF
;
554 raw_spin_unlock(&ctx
->lock
);
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event
*event
)
572 struct perf_event_context
*ctx
= event
->ctx
;
573 struct task_struct
*task
= ctx
->task
;
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event
->cpu
, __perf_event_disable
,
585 task_oncpu_function_call(task
, __perf_event_disable
, event
);
587 raw_spin_lock_irq(&ctx
->lock
);
589 * If the event is still active, we need to retry the cross-call.
591 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
592 raw_spin_unlock_irq(&ctx
->lock
);
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
601 update_group_times(event
);
602 event
->state
= PERF_EVENT_STATE_OFF
;
605 raw_spin_unlock_irq(&ctx
->lock
);
609 event_sched_in(struct perf_event
*event
,
610 struct perf_cpu_context
*cpuctx
,
611 struct perf_event_context
*ctx
,
614 if (event
->state
<= PERF_EVENT_STATE_OFF
)
617 event
->state
= PERF_EVENT_STATE_ACTIVE
;
618 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
624 if (event
->pmu
->enable(event
)) {
625 event
->state
= PERF_EVENT_STATE_INACTIVE
;
630 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
632 if (!is_software_event(event
))
633 cpuctx
->active_oncpu
++;
636 if (event
->attr
.exclusive
)
637 cpuctx
->exclusive
= 1;
643 group_sched_in(struct perf_event
*group_event
,
644 struct perf_cpu_context
*cpuctx
,
645 struct perf_event_context
*ctx
,
648 struct perf_event
*event
, *partial_group
;
651 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
654 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
656 return ret
< 0 ? ret
: 0;
658 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
665 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
666 partial_group
= event
;
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
679 if (event
== partial_group
)
681 event_sched_out(event
, cpuctx
, ctx
);
683 event_sched_out(group_event
, cpuctx
, ctx
);
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event
*leader
)
694 struct perf_event
*event
;
696 if (!is_software_event(leader
))
699 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
700 if (!is_software_event(event
))
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event
*event
,
710 struct perf_cpu_context
*cpuctx
,
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event
))
719 * If an exclusive group is already on, no other hardware
722 if (cpuctx
->exclusive
)
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
731 * Otherwise, try to add it if all previous groups were able
737 static void add_event_to_ctx(struct perf_event
*event
,
738 struct perf_event_context
*ctx
)
740 list_add_event(event
, ctx
);
741 event
->tstamp_enabled
= ctx
->time
;
742 event
->tstamp_running
= ctx
->time
;
743 event
->tstamp_stopped
= ctx
->time
;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info
)
753 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
754 struct perf_event
*event
= info
;
755 struct perf_event_context
*ctx
= event
->ctx
;
756 struct perf_event
*leader
= event
->group_leader
;
757 int cpu
= smp_processor_id();
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
768 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
770 cpuctx
->task_ctx
= ctx
;
773 raw_spin_lock(&ctx
->lock
);
775 update_context_time(ctx
);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
783 add_event_to_ctx(event
, ctx
);
785 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
792 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
793 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
801 if (!group_can_go_on(event
, cpuctx
, 1))
804 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
813 group_sched_out(leader
, cpuctx
, ctx
);
814 if (leader
->attr
.pinned
) {
815 update_group_times(leader
);
816 leader
->state
= PERF_EVENT_STATE_ERROR
;
820 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
821 cpuctx
->max_pertask
--;
826 raw_spin_unlock(&ctx
->lock
);
830 * Attach a performance event to a context
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
839 * Must be called with ctx->mutex held.
842 perf_install_in_context(struct perf_event_context
*ctx
,
843 struct perf_event
*event
,
846 struct task_struct
*task
= ctx
->task
;
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
853 smp_call_function_single(cpu
, __perf_install_in_context
,
859 task_oncpu_function_call(task
, __perf_install_in_context
,
862 raw_spin_lock_irq(&ctx
->lock
);
864 * we need to retry the smp call.
866 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
867 raw_spin_unlock_irq(&ctx
->lock
);
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
876 if (list_empty(&event
->group_entry
))
877 add_event_to_ctx(event
, ctx
);
878 raw_spin_unlock_irq(&ctx
->lock
);
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
889 static void __perf_event_mark_enabled(struct perf_event
*event
,
890 struct perf_event_context
*ctx
)
892 struct perf_event
*sub
;
894 event
->state
= PERF_EVENT_STATE_INACTIVE
;
895 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
896 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
897 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
898 sub
->tstamp_enabled
=
899 ctx
->time
- sub
->total_time_enabled
;
903 * Cross CPU call to enable a performance event
905 static void __perf_event_enable(void *info
)
907 struct perf_event
*event
= info
;
908 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
909 struct perf_event_context
*ctx
= event
->ctx
;
910 struct perf_event
*leader
= event
->group_leader
;
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
917 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
918 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
920 cpuctx
->task_ctx
= ctx
;
923 raw_spin_lock(&ctx
->lock
);
925 update_context_time(ctx
);
927 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
929 __perf_event_mark_enabled(event
, ctx
);
931 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
938 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
941 if (!group_can_go_on(event
, cpuctx
, 1)) {
946 err
= group_sched_in(event
, cpuctx
, ctx
,
949 err
= event_sched_in(event
, cpuctx
, ctx
,
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
960 group_sched_out(leader
, cpuctx
, ctx
);
961 if (leader
->attr
.pinned
) {
962 update_group_times(leader
);
963 leader
->state
= PERF_EVENT_STATE_ERROR
;
968 raw_spin_unlock(&ctx
->lock
);
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
980 void perf_event_enable(struct perf_event
*event
)
982 struct perf_event_context
*ctx
= event
->ctx
;
983 struct task_struct
*task
= ctx
->task
;
987 * Enable the event on the cpu that it's on
989 smp_call_function_single(event
->cpu
, __perf_event_enable
,
994 raw_spin_lock_irq(&ctx
->lock
);
995 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1005 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1006 event
->state
= PERF_EVENT_STATE_OFF
;
1009 raw_spin_unlock_irq(&ctx
->lock
);
1010 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1012 raw_spin_lock_irq(&ctx
->lock
);
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1018 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1025 if (event
->state
== PERF_EVENT_STATE_OFF
)
1026 __perf_event_mark_enabled(event
, ctx
);
1029 raw_spin_unlock_irq(&ctx
->lock
);
1032 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1035 * not supported on inherited events
1037 if (event
->attr
.inherit
)
1040 atomic_add(refresh
, &event
->event_limit
);
1041 perf_event_enable(event
);
1046 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1047 struct perf_cpu_context
*cpuctx
)
1049 struct perf_event
*event
;
1051 raw_spin_lock(&ctx
->lock
);
1053 if (likely(!ctx
->nr_events
))
1055 update_context_time(ctx
);
1058 if (ctx
->nr_active
) {
1059 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1060 group_sched_out(event
, cpuctx
, ctx
);
1064 raw_spin_unlock(&ctx
->lock
);
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1078 static int context_equiv(struct perf_event_context
*ctx1
,
1079 struct perf_event_context
*ctx2
)
1081 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1082 && ctx1
->parent_gen
== ctx2
->parent_gen
1083 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1086 static void __perf_event_sync_stat(struct perf_event
*event
,
1087 struct perf_event
*next_event
)
1091 if (!event
->attr
.inherit_stat
)
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1101 switch (event
->state
) {
1102 case PERF_EVENT_STATE_ACTIVE
:
1103 event
->pmu
->read(event
);
1106 case PERF_EVENT_STATE_INACTIVE
:
1107 update_event_times(event
);
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1118 value
= atomic64_read(&next_event
->count
);
1119 value
= atomic64_xchg(&event
->count
, value
);
1120 atomic64_set(&next_event
->count
, value
);
1122 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1123 swap(event
->total_time_running
, next_event
->total_time_running
);
1126 * Since we swizzled the values, update the user visible data too.
1128 perf_event_update_userpage(event
);
1129 perf_event_update_userpage(next_event
);
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1135 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1136 struct perf_event_context
*next_ctx
)
1138 struct perf_event
*event
, *next_event
;
1143 update_context_time(ctx
);
1145 event
= list_first_entry(&ctx
->event_list
,
1146 struct perf_event
, event_entry
);
1148 next_event
= list_first_entry(&next_ctx
->event_list
,
1149 struct perf_event
, event_entry
);
1151 while (&event
->event_entry
!= &ctx
->event_list
&&
1152 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1154 __perf_event_sync_stat(event
, next_event
);
1156 event
= list_next_entry(event
, event_entry
);
1157 next_event
= list_next_entry(next_event
, event_entry
);
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1165 * We stop each event and update the event value in event->count.
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1172 void perf_event_task_sched_out(struct task_struct
*task
,
1173 struct task_struct
*next
, int cpu
)
1175 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1176 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1177 struct perf_event_context
*next_ctx
;
1178 struct perf_event_context
*parent
;
1179 struct pt_regs
*regs
;
1182 regs
= task_pt_regs(task
);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1185 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1189 parent
= rcu_dereference(ctx
->parent_ctx
);
1190 next_ctx
= next
->perf_event_ctxp
;
1191 if (parent
&& next_ctx
&&
1192 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1202 raw_spin_lock(&ctx
->lock
);
1203 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1204 if (context_equiv(ctx
, next_ctx
)) {
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1209 task
->perf_event_ctxp
= next_ctx
;
1210 next
->perf_event_ctxp
= ctx
;
1212 next_ctx
->task
= task
;
1215 perf_event_sync_stat(ctx
, next_ctx
);
1217 raw_spin_unlock(&next_ctx
->lock
);
1218 raw_spin_unlock(&ctx
->lock
);
1223 __perf_event_sched_out(ctx
, cpuctx
);
1224 cpuctx
->task_ctx
= NULL
;
1229 * Called with IRQs disabled
1231 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1233 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1235 if (!cpuctx
->task_ctx
)
1238 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1241 __perf_event_sched_out(ctx
, cpuctx
);
1242 cpuctx
->task_ctx
= NULL
;
1246 * Called with IRQs disabled
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1250 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1254 __perf_event_sched_in(struct perf_event_context
*ctx
,
1255 struct perf_cpu_context
*cpuctx
, int cpu
)
1257 struct perf_event
*event
;
1260 raw_spin_lock(&ctx
->lock
);
1262 if (likely(!ctx
->nr_events
))
1265 ctx
->timestamp
= perf_clock();
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1273 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1274 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1275 !event
->attr
.pinned
)
1277 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1280 if (group_can_go_on(event
, cpuctx
, 1))
1281 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1287 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1288 update_group_times(event
);
1289 event
->state
= PERF_EVENT_STATE_ERROR
;
1293 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1298 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1303 * Listen to the 'cpu' scheduling filter constraint
1306 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1309 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1310 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1315 raw_spin_unlock(&ctx
->lock
);
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1322 * We restore the event value and then enable it.
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1329 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1331 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1332 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1336 if (cpuctx
->task_ctx
== ctx
)
1338 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1339 cpuctx
->task_ctx
= ctx
;
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1344 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1346 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1349 #define MAX_INTERRUPTS (~0ULL)
1351 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1353 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1355 struct hw_perf_event
*hwc
= &event
->hw
;
1356 u64 period
, sample_period
;
1359 events
*= hwc
->sample_period
;
1360 period
= div64_u64(events
, event
->attr
.sample_freq
);
1362 delta
= (s64
)(period
- hwc
->sample_period
);
1363 delta
= (delta
+ 7) / 8; /* low pass filter */
1365 sample_period
= hwc
->sample_period
+ delta
;
1370 hwc
->sample_period
= sample_period
;
1373 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1375 struct perf_event
*event
;
1376 struct hw_perf_event
*hwc
;
1377 u64 interrupts
, freq
;
1379 raw_spin_lock(&ctx
->lock
);
1380 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1381 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1384 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1389 interrupts
= hwc
->interrupts
;
1390 hwc
->interrupts
= 0;
1393 * unthrottle events on the tick
1395 if (interrupts
== MAX_INTERRUPTS
) {
1396 perf_log_throttle(event
, 1);
1397 event
->pmu
->unthrottle(event
);
1398 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1401 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1405 * if the specified freq < HZ then we need to skip ticks
1407 if (event
->attr
.sample_freq
< HZ
) {
1408 freq
= event
->attr
.sample_freq
;
1410 hwc
->freq_count
+= freq
;
1411 hwc
->freq_interrupts
+= interrupts
;
1413 if (hwc
->freq_count
< HZ
)
1416 interrupts
= hwc
->freq_interrupts
;
1417 hwc
->freq_interrupts
= 0;
1418 hwc
->freq_count
-= HZ
;
1422 perf_adjust_period(event
, freq
* interrupts
);
1425 * In order to avoid being stalled by an (accidental) huge
1426 * sample period, force reset the sample period if we didn't
1427 * get any events in this freq period.
1431 event
->pmu
->disable(event
);
1432 atomic64_set(&hwc
->period_left
, 0);
1433 event
->pmu
->enable(event
);
1437 raw_spin_unlock(&ctx
->lock
);
1441 * Round-robin a context's events:
1443 static void rotate_ctx(struct perf_event_context
*ctx
)
1445 struct perf_event
*event
;
1447 if (!ctx
->nr_events
)
1450 raw_spin_lock(&ctx
->lock
);
1452 * Rotate the first entry last (works just fine for group events too):
1455 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1456 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1461 raw_spin_unlock(&ctx
->lock
);
1464 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1466 struct perf_cpu_context
*cpuctx
;
1467 struct perf_event_context
*ctx
;
1469 if (!atomic_read(&nr_events
))
1472 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1473 ctx
= curr
->perf_event_ctxp
;
1475 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1477 perf_ctx_adjust_freq(ctx
);
1479 perf_event_cpu_sched_out(cpuctx
);
1481 __perf_event_task_sched_out(ctx
);
1483 rotate_ctx(&cpuctx
->ctx
);
1487 perf_event_cpu_sched_in(cpuctx
, cpu
);
1489 perf_event_task_sched_in(curr
, cpu
);
1493 * Enable all of a task's events that have been marked enable-on-exec.
1494 * This expects task == current.
1496 static void perf_event_enable_on_exec(struct task_struct
*task
)
1498 struct perf_event_context
*ctx
;
1499 struct perf_event
*event
;
1500 unsigned long flags
;
1503 local_irq_save(flags
);
1504 ctx
= task
->perf_event_ctxp
;
1505 if (!ctx
|| !ctx
->nr_events
)
1508 __perf_event_task_sched_out(ctx
);
1510 raw_spin_lock(&ctx
->lock
);
1512 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1513 if (!event
->attr
.enable_on_exec
)
1515 event
->attr
.enable_on_exec
= 0;
1516 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1518 __perf_event_mark_enabled(event
, ctx
);
1523 * Unclone this context if we enabled any event.
1528 raw_spin_unlock(&ctx
->lock
);
1530 perf_event_task_sched_in(task
, smp_processor_id());
1532 local_irq_restore(flags
);
1536 * Cross CPU call to read the hardware event
1538 static void __perf_event_read(void *info
)
1540 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1541 struct perf_event
*event
= info
;
1542 struct perf_event_context
*ctx
= event
->ctx
;
1545 * If this is a task context, we need to check whether it is
1546 * the current task context of this cpu. If not it has been
1547 * scheduled out before the smp call arrived. In that case
1548 * event->count would have been updated to a recent sample
1549 * when the event was scheduled out.
1551 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1554 raw_spin_lock(&ctx
->lock
);
1555 update_context_time(ctx
);
1556 update_event_times(event
);
1557 raw_spin_unlock(&ctx
->lock
);
1559 event
->pmu
->read(event
);
1562 static u64
perf_event_read(struct perf_event
*event
)
1565 * If event is enabled and currently active on a CPU, update the
1566 * value in the event structure:
1568 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1569 smp_call_function_single(event
->oncpu
,
1570 __perf_event_read
, event
, 1);
1571 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1572 struct perf_event_context
*ctx
= event
->ctx
;
1573 unsigned long flags
;
1575 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1576 update_context_time(ctx
);
1577 update_event_times(event
);
1578 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1581 return atomic64_read(&event
->count
);
1585 * Initialize the perf_event context in a task_struct:
1588 __perf_event_init_context(struct perf_event_context
*ctx
,
1589 struct task_struct
*task
)
1591 raw_spin_lock_init(&ctx
->lock
);
1592 mutex_init(&ctx
->mutex
);
1593 INIT_LIST_HEAD(&ctx
->group_list
);
1594 INIT_LIST_HEAD(&ctx
->event_list
);
1595 atomic_set(&ctx
->refcount
, 1);
1599 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1601 struct perf_event_context
*ctx
;
1602 struct perf_cpu_context
*cpuctx
;
1603 struct task_struct
*task
;
1604 unsigned long flags
;
1607 if (pid
== -1 && cpu
!= -1) {
1608 /* Must be root to operate on a CPU event: */
1609 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1610 return ERR_PTR(-EACCES
);
1612 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1613 return ERR_PTR(-EINVAL
);
1616 * We could be clever and allow to attach a event to an
1617 * offline CPU and activate it when the CPU comes up, but
1620 if (!cpu_online(cpu
))
1621 return ERR_PTR(-ENODEV
);
1623 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1634 task
= find_task_by_vpid(pid
);
1636 get_task_struct(task
);
1640 return ERR_PTR(-ESRCH
);
1643 * Can't attach events to a dying task.
1646 if (task
->flags
& PF_EXITING
)
1649 /* Reuse ptrace permission checks for now. */
1651 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1655 ctx
= perf_lock_task_context(task
, &flags
);
1658 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1662 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1666 __perf_event_init_context(ctx
, task
);
1668 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1670 * We raced with some other task; use
1671 * the context they set.
1676 get_task_struct(task
);
1679 put_task_struct(task
);
1683 put_task_struct(task
);
1684 return ERR_PTR(err
);
1687 static void perf_event_free_filter(struct perf_event
*event
);
1689 static void free_event_rcu(struct rcu_head
*head
)
1691 struct perf_event
*event
;
1693 event
= container_of(head
, struct perf_event
, rcu_head
);
1695 put_pid_ns(event
->ns
);
1696 perf_event_free_filter(event
);
1700 static void perf_pending_sync(struct perf_event
*event
);
1702 static void free_event(struct perf_event
*event
)
1704 perf_pending_sync(event
);
1706 if (!event
->parent
) {
1707 atomic_dec(&nr_events
);
1708 if (event
->attr
.mmap
)
1709 atomic_dec(&nr_mmap_events
);
1710 if (event
->attr
.comm
)
1711 atomic_dec(&nr_comm_events
);
1712 if (event
->attr
.task
)
1713 atomic_dec(&nr_task_events
);
1716 if (event
->output
) {
1717 fput(event
->output
->filp
);
1718 event
->output
= NULL
;
1722 event
->destroy(event
);
1724 put_ctx(event
->ctx
);
1725 call_rcu(&event
->rcu_head
, free_event_rcu
);
1728 int perf_event_release_kernel(struct perf_event
*event
)
1730 struct perf_event_context
*ctx
= event
->ctx
;
1732 WARN_ON_ONCE(ctx
->parent_ctx
);
1733 mutex_lock(&ctx
->mutex
);
1734 perf_event_remove_from_context(event
);
1735 mutex_unlock(&ctx
->mutex
);
1737 mutex_lock(&event
->owner
->perf_event_mutex
);
1738 list_del_init(&event
->owner_entry
);
1739 mutex_unlock(&event
->owner
->perf_event_mutex
);
1740 put_task_struct(event
->owner
);
1746 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1749 * Called when the last reference to the file is gone.
1751 static int perf_release(struct inode
*inode
, struct file
*file
)
1753 struct perf_event
*event
= file
->private_data
;
1755 file
->private_data
= NULL
;
1757 return perf_event_release_kernel(event
);
1760 static int perf_event_read_size(struct perf_event
*event
)
1762 int entry
= sizeof(u64
); /* value */
1766 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1767 size
+= sizeof(u64
);
1769 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1770 size
+= sizeof(u64
);
1772 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1773 entry
+= sizeof(u64
);
1775 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1776 nr
+= event
->group_leader
->nr_siblings
;
1777 size
+= sizeof(u64
);
1785 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1787 struct perf_event
*child
;
1793 mutex_lock(&event
->child_mutex
);
1794 total
+= perf_event_read(event
);
1795 *enabled
+= event
->total_time_enabled
+
1796 atomic64_read(&event
->child_total_time_enabled
);
1797 *running
+= event
->total_time_running
+
1798 atomic64_read(&event
->child_total_time_running
);
1800 list_for_each_entry(child
, &event
->child_list
, child_list
) {
1801 total
+= perf_event_read(child
);
1802 *enabled
+= child
->total_time_enabled
;
1803 *running
+= child
->total_time_running
;
1805 mutex_unlock(&event
->child_mutex
);
1809 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1811 static int perf_event_read_group(struct perf_event
*event
,
1812 u64 read_format
, char __user
*buf
)
1814 struct perf_event
*leader
= event
->group_leader
, *sub
;
1815 int n
= 0, size
= 0, ret
= -EFAULT
;
1816 struct perf_event_context
*ctx
= leader
->ctx
;
1818 u64 count
, enabled
, running
;
1820 mutex_lock(&ctx
->mutex
);
1821 count
= perf_event_read_value(leader
, &enabled
, &running
);
1823 values
[n
++] = 1 + leader
->nr_siblings
;
1824 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1825 values
[n
++] = enabled
;
1826 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1827 values
[n
++] = running
;
1828 values
[n
++] = count
;
1829 if (read_format
& PERF_FORMAT_ID
)
1830 values
[n
++] = primary_event_id(leader
);
1832 size
= n
* sizeof(u64
);
1834 if (copy_to_user(buf
, values
, size
))
1839 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1842 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
1843 if (read_format
& PERF_FORMAT_ID
)
1844 values
[n
++] = primary_event_id(sub
);
1846 size
= n
* sizeof(u64
);
1848 if (copy_to_user(buf
+ ret
, values
, size
)) {
1856 mutex_unlock(&ctx
->mutex
);
1861 static int perf_event_read_one(struct perf_event
*event
,
1862 u64 read_format
, char __user
*buf
)
1864 u64 enabled
, running
;
1868 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
1869 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1870 values
[n
++] = enabled
;
1871 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1872 values
[n
++] = running
;
1873 if (read_format
& PERF_FORMAT_ID
)
1874 values
[n
++] = primary_event_id(event
);
1876 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1879 return n
* sizeof(u64
);
1883 * Read the performance event - simple non blocking version for now
1886 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1888 u64 read_format
= event
->attr
.read_format
;
1892 * Return end-of-file for a read on a event that is in
1893 * error state (i.e. because it was pinned but it couldn't be
1894 * scheduled on to the CPU at some point).
1896 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1899 if (count
< perf_event_read_size(event
))
1902 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1903 if (read_format
& PERF_FORMAT_GROUP
)
1904 ret
= perf_event_read_group(event
, read_format
, buf
);
1906 ret
= perf_event_read_one(event
, read_format
, buf
);
1912 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1914 struct perf_event
*event
= file
->private_data
;
1916 return perf_read_hw(event
, buf
, count
);
1919 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1921 struct perf_event
*event
= file
->private_data
;
1922 struct perf_mmap_data
*data
;
1923 unsigned int events
= POLL_HUP
;
1926 data
= rcu_dereference(event
->data
);
1928 events
= atomic_xchg(&data
->poll
, 0);
1931 poll_wait(file
, &event
->waitq
, wait
);
1936 static void perf_event_reset(struct perf_event
*event
)
1938 (void)perf_event_read(event
);
1939 atomic64_set(&event
->count
, 0);
1940 perf_event_update_userpage(event
);
1944 * Holding the top-level event's child_mutex means that any
1945 * descendant process that has inherited this event will block
1946 * in sync_child_event if it goes to exit, thus satisfying the
1947 * task existence requirements of perf_event_enable/disable.
1949 static void perf_event_for_each_child(struct perf_event
*event
,
1950 void (*func
)(struct perf_event
*))
1952 struct perf_event
*child
;
1954 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1955 mutex_lock(&event
->child_mutex
);
1957 list_for_each_entry(child
, &event
->child_list
, child_list
)
1959 mutex_unlock(&event
->child_mutex
);
1962 static void perf_event_for_each(struct perf_event
*event
,
1963 void (*func
)(struct perf_event
*))
1965 struct perf_event_context
*ctx
= event
->ctx
;
1966 struct perf_event
*sibling
;
1968 WARN_ON_ONCE(ctx
->parent_ctx
);
1969 mutex_lock(&ctx
->mutex
);
1970 event
= event
->group_leader
;
1972 perf_event_for_each_child(event
, func
);
1974 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1975 perf_event_for_each_child(event
, func
);
1976 mutex_unlock(&ctx
->mutex
);
1979 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1981 struct perf_event_context
*ctx
= event
->ctx
;
1986 if (!event
->attr
.sample_period
)
1989 size
= copy_from_user(&value
, arg
, sizeof(value
));
1990 if (size
!= sizeof(value
))
1996 raw_spin_lock_irq(&ctx
->lock
);
1997 if (event
->attr
.freq
) {
1998 if (value
> sysctl_perf_event_sample_rate
) {
2003 event
->attr
.sample_freq
= value
;
2005 event
->attr
.sample_period
= value
;
2006 event
->hw
.sample_period
= value
;
2009 raw_spin_unlock_irq(&ctx
->lock
);
2014 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2015 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2017 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2019 struct perf_event
*event
= file
->private_data
;
2020 void (*func
)(struct perf_event
*);
2024 case PERF_EVENT_IOC_ENABLE
:
2025 func
= perf_event_enable
;
2027 case PERF_EVENT_IOC_DISABLE
:
2028 func
= perf_event_disable
;
2030 case PERF_EVENT_IOC_RESET
:
2031 func
= perf_event_reset
;
2034 case PERF_EVENT_IOC_REFRESH
:
2035 return perf_event_refresh(event
, arg
);
2037 case PERF_EVENT_IOC_PERIOD
:
2038 return perf_event_period(event
, (u64 __user
*)arg
);
2040 case PERF_EVENT_IOC_SET_OUTPUT
:
2041 return perf_event_set_output(event
, arg
);
2043 case PERF_EVENT_IOC_SET_FILTER
:
2044 return perf_event_set_filter(event
, (void __user
*)arg
);
2050 if (flags
& PERF_IOC_FLAG_GROUP
)
2051 perf_event_for_each(event
, func
);
2053 perf_event_for_each_child(event
, func
);
2058 int perf_event_task_enable(void)
2060 struct perf_event
*event
;
2062 mutex_lock(¤t
->perf_event_mutex
);
2063 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2064 perf_event_for_each_child(event
, perf_event_enable
);
2065 mutex_unlock(¤t
->perf_event_mutex
);
2070 int perf_event_task_disable(void)
2072 struct perf_event
*event
;
2074 mutex_lock(¤t
->perf_event_mutex
);
2075 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2076 perf_event_for_each_child(event
, perf_event_disable
);
2077 mutex_unlock(¤t
->perf_event_mutex
);
2082 #ifndef PERF_EVENT_INDEX_OFFSET
2083 # define PERF_EVENT_INDEX_OFFSET 0
2086 static int perf_event_index(struct perf_event
*event
)
2088 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2091 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2095 * Callers need to ensure there can be no nesting of this function, otherwise
2096 * the seqlock logic goes bad. We can not serialize this because the arch
2097 * code calls this from NMI context.
2099 void perf_event_update_userpage(struct perf_event
*event
)
2101 struct perf_event_mmap_page
*userpg
;
2102 struct perf_mmap_data
*data
;
2105 data
= rcu_dereference(event
->data
);
2109 userpg
= data
->user_page
;
2112 * Disable preemption so as to not let the corresponding user-space
2113 * spin too long if we get preempted.
2118 userpg
->index
= perf_event_index(event
);
2119 userpg
->offset
= atomic64_read(&event
->count
);
2120 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2121 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2123 userpg
->time_enabled
= event
->total_time_enabled
+
2124 atomic64_read(&event
->child_total_time_enabled
);
2126 userpg
->time_running
= event
->total_time_running
+
2127 atomic64_read(&event
->child_total_time_running
);
2136 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2138 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2141 #ifndef CONFIG_PERF_USE_VMALLOC
2144 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2147 static struct page
*
2148 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2150 if (pgoff
> data
->nr_pages
)
2154 return virt_to_page(data
->user_page
);
2156 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2159 static struct perf_mmap_data
*
2160 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2162 struct perf_mmap_data
*data
;
2166 WARN_ON(atomic_read(&event
->mmap_count
));
2168 size
= sizeof(struct perf_mmap_data
);
2169 size
+= nr_pages
* sizeof(void *);
2171 data
= kzalloc(size
, GFP_KERNEL
);
2175 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2176 if (!data
->user_page
)
2177 goto fail_user_page
;
2179 for (i
= 0; i
< nr_pages
; i
++) {
2180 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2181 if (!data
->data_pages
[i
])
2182 goto fail_data_pages
;
2185 data
->data_order
= 0;
2186 data
->nr_pages
= nr_pages
;
2191 for (i
--; i
>= 0; i
--)
2192 free_page((unsigned long)data
->data_pages
[i
]);
2194 free_page((unsigned long)data
->user_page
);
2203 static void perf_mmap_free_page(unsigned long addr
)
2205 struct page
*page
= virt_to_page((void *)addr
);
2207 page
->mapping
= NULL
;
2211 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2215 perf_mmap_free_page((unsigned long)data
->user_page
);
2216 for (i
= 0; i
< data
->nr_pages
; i
++)
2217 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2224 * Back perf_mmap() with vmalloc memory.
2226 * Required for architectures that have d-cache aliasing issues.
2229 static struct page
*
2230 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2232 if (pgoff
> (1UL << data
->data_order
))
2235 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2238 static void perf_mmap_unmark_page(void *addr
)
2240 struct page
*page
= vmalloc_to_page(addr
);
2242 page
->mapping
= NULL
;
2245 static void perf_mmap_data_free_work(struct work_struct
*work
)
2247 struct perf_mmap_data
*data
;
2251 data
= container_of(work
, struct perf_mmap_data
, work
);
2252 nr
= 1 << data
->data_order
;
2254 base
= data
->user_page
;
2255 for (i
= 0; i
< nr
+ 1; i
++)
2256 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2262 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2264 schedule_work(&data
->work
);
2267 static struct perf_mmap_data
*
2268 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2270 struct perf_mmap_data
*data
;
2274 WARN_ON(atomic_read(&event
->mmap_count
));
2276 size
= sizeof(struct perf_mmap_data
);
2277 size
+= sizeof(void *);
2279 data
= kzalloc(size
, GFP_KERNEL
);
2283 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2285 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2289 data
->user_page
= all_buf
;
2290 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2291 data
->data_order
= ilog2(nr_pages
);
2305 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2307 struct perf_event
*event
= vma
->vm_file
->private_data
;
2308 struct perf_mmap_data
*data
;
2309 int ret
= VM_FAULT_SIGBUS
;
2311 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2312 if (vmf
->pgoff
== 0)
2318 data
= rcu_dereference(event
->data
);
2322 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2325 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2329 get_page(vmf
->page
);
2330 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2331 vmf
->page
->index
= vmf
->pgoff
;
2341 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2343 long max_size
= perf_data_size(data
);
2345 atomic_set(&data
->lock
, -1);
2347 if (event
->attr
.watermark
) {
2348 data
->watermark
= min_t(long, max_size
,
2349 event
->attr
.wakeup_watermark
);
2352 if (!data
->watermark
)
2353 data
->watermark
= max_size
/ 2;
2356 rcu_assign_pointer(event
->data
, data
);
2359 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2361 struct perf_mmap_data
*data
;
2363 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2364 perf_mmap_data_free(data
);
2367 static void perf_mmap_data_release(struct perf_event
*event
)
2369 struct perf_mmap_data
*data
= event
->data
;
2371 WARN_ON(atomic_read(&event
->mmap_count
));
2373 rcu_assign_pointer(event
->data
, NULL
);
2374 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2377 static void perf_mmap_open(struct vm_area_struct
*vma
)
2379 struct perf_event
*event
= vma
->vm_file
->private_data
;
2381 atomic_inc(&event
->mmap_count
);
2384 static void perf_mmap_close(struct vm_area_struct
*vma
)
2386 struct perf_event
*event
= vma
->vm_file
->private_data
;
2388 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2389 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2390 unsigned long size
= perf_data_size(event
->data
);
2391 struct user_struct
*user
= current_user();
2393 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2394 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2395 perf_mmap_data_release(event
);
2396 mutex_unlock(&event
->mmap_mutex
);
2400 static const struct vm_operations_struct perf_mmap_vmops
= {
2401 .open
= perf_mmap_open
,
2402 .close
= perf_mmap_close
,
2403 .fault
= perf_mmap_fault
,
2404 .page_mkwrite
= perf_mmap_fault
,
2407 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2409 struct perf_event
*event
= file
->private_data
;
2410 unsigned long user_locked
, user_lock_limit
;
2411 struct user_struct
*user
= current_user();
2412 unsigned long locked
, lock_limit
;
2413 struct perf_mmap_data
*data
;
2414 unsigned long vma_size
;
2415 unsigned long nr_pages
;
2416 long user_extra
, extra
;
2419 if (!(vma
->vm_flags
& VM_SHARED
))
2422 vma_size
= vma
->vm_end
- vma
->vm_start
;
2423 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2426 * If we have data pages ensure they're a power-of-two number, so we
2427 * can do bitmasks instead of modulo.
2429 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2432 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2435 if (vma
->vm_pgoff
!= 0)
2438 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2439 mutex_lock(&event
->mmap_mutex
);
2440 if (event
->output
) {
2445 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2446 if (nr_pages
!= event
->data
->nr_pages
)
2451 user_extra
= nr_pages
+ 1;
2452 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2455 * Increase the limit linearly with more CPUs:
2457 user_lock_limit
*= num_online_cpus();
2459 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2462 if (user_locked
> user_lock_limit
)
2463 extra
= user_locked
- user_lock_limit
;
2465 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2466 lock_limit
>>= PAGE_SHIFT
;
2467 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2469 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2470 !capable(CAP_IPC_LOCK
)) {
2475 WARN_ON(event
->data
);
2477 data
= perf_mmap_data_alloc(event
, nr_pages
);
2483 perf_mmap_data_init(event
, data
);
2485 atomic_set(&event
->mmap_count
, 1);
2486 atomic_long_add(user_extra
, &user
->locked_vm
);
2487 vma
->vm_mm
->locked_vm
+= extra
;
2488 event
->data
->nr_locked
= extra
;
2489 if (vma
->vm_flags
& VM_WRITE
)
2490 event
->data
->writable
= 1;
2493 mutex_unlock(&event
->mmap_mutex
);
2495 vma
->vm_flags
|= VM_RESERVED
;
2496 vma
->vm_ops
= &perf_mmap_vmops
;
2501 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2503 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2504 struct perf_event
*event
= filp
->private_data
;
2507 mutex_lock(&inode
->i_mutex
);
2508 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2509 mutex_unlock(&inode
->i_mutex
);
2517 static const struct file_operations perf_fops
= {
2518 .release
= perf_release
,
2521 .unlocked_ioctl
= perf_ioctl
,
2522 .compat_ioctl
= perf_ioctl
,
2524 .fasync
= perf_fasync
,
2530 * If there's data, ensure we set the poll() state and publish everything
2531 * to user-space before waking everybody up.
2534 void perf_event_wakeup(struct perf_event
*event
)
2536 wake_up_all(&event
->waitq
);
2538 if (event
->pending_kill
) {
2539 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2540 event
->pending_kill
= 0;
2547 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2549 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2550 * single linked list and use cmpxchg() to add entries lockless.
2553 static void perf_pending_event(struct perf_pending_entry
*entry
)
2555 struct perf_event
*event
= container_of(entry
,
2556 struct perf_event
, pending
);
2558 if (event
->pending_disable
) {
2559 event
->pending_disable
= 0;
2560 __perf_event_disable(event
);
2563 if (event
->pending_wakeup
) {
2564 event
->pending_wakeup
= 0;
2565 perf_event_wakeup(event
);
2569 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2571 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2575 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2576 void (*func
)(struct perf_pending_entry
*))
2578 struct perf_pending_entry
**head
;
2580 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2585 head
= &get_cpu_var(perf_pending_head
);
2588 entry
->next
= *head
;
2589 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2591 set_perf_event_pending();
2593 put_cpu_var(perf_pending_head
);
2596 static int __perf_pending_run(void)
2598 struct perf_pending_entry
*list
;
2601 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2602 while (list
!= PENDING_TAIL
) {
2603 void (*func
)(struct perf_pending_entry
*);
2604 struct perf_pending_entry
*entry
= list
;
2611 * Ensure we observe the unqueue before we issue the wakeup,
2612 * so that we won't be waiting forever.
2613 * -- see perf_not_pending().
2624 static inline int perf_not_pending(struct perf_event
*event
)
2627 * If we flush on whatever cpu we run, there is a chance we don't
2631 __perf_pending_run();
2635 * Ensure we see the proper queue state before going to sleep
2636 * so that we do not miss the wakeup. -- see perf_pending_handle()
2639 return event
->pending
.next
== NULL
;
2642 static void perf_pending_sync(struct perf_event
*event
)
2644 wait_event(event
->waitq
, perf_not_pending(event
));
2647 void perf_event_do_pending(void)
2649 __perf_pending_run();
2653 * Callchain support -- arch specific
2656 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2664 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2665 unsigned long offset
, unsigned long head
)
2669 if (!data
->writable
)
2672 mask
= perf_data_size(data
) - 1;
2674 offset
= (offset
- tail
) & mask
;
2675 head
= (head
- tail
) & mask
;
2677 if ((int)(head
- offset
) < 0)
2683 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2685 atomic_set(&handle
->data
->poll
, POLL_IN
);
2688 handle
->event
->pending_wakeup
= 1;
2689 perf_pending_queue(&handle
->event
->pending
,
2690 perf_pending_event
);
2692 perf_event_wakeup(handle
->event
);
2696 * Curious locking construct.
2698 * We need to ensure a later event_id doesn't publish a head when a former
2699 * event_id isn't done writing. However since we need to deal with NMIs we
2700 * cannot fully serialize things.
2702 * What we do is serialize between CPUs so we only have to deal with NMI
2703 * nesting on a single CPU.
2705 * We only publish the head (and generate a wakeup) when the outer-most
2706 * event_id completes.
2708 static void perf_output_lock(struct perf_output_handle
*handle
)
2710 struct perf_mmap_data
*data
= handle
->data
;
2711 int cur
, cpu
= get_cpu();
2716 cur
= atomic_cmpxchg(&data
->lock
, -1, cpu
);
2728 static void perf_output_unlock(struct perf_output_handle
*handle
)
2730 struct perf_mmap_data
*data
= handle
->data
;
2734 data
->done_head
= data
->head
;
2736 if (!handle
->locked
)
2741 * The xchg implies a full barrier that ensures all writes are done
2742 * before we publish the new head, matched by a rmb() in userspace when
2743 * reading this position.
2745 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2746 data
->user_page
->data_head
= head
;
2749 * NMI can happen here, which means we can miss a done_head update.
2752 cpu
= atomic_xchg(&data
->lock
, -1);
2753 WARN_ON_ONCE(cpu
!= smp_processor_id());
2756 * Therefore we have to validate we did not indeed do so.
2758 if (unlikely(atomic_long_read(&data
->done_head
))) {
2760 * Since we had it locked, we can lock it again.
2762 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2768 if (atomic_xchg(&data
->wakeup
, 0))
2769 perf_output_wakeup(handle
);
2774 void perf_output_copy(struct perf_output_handle
*handle
,
2775 const void *buf
, unsigned int len
)
2777 unsigned int pages_mask
;
2778 unsigned long offset
;
2782 offset
= handle
->offset
;
2783 pages_mask
= handle
->data
->nr_pages
- 1;
2784 pages
= handle
->data
->data_pages
;
2787 unsigned long page_offset
;
2788 unsigned long page_size
;
2791 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2792 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2793 page_offset
= offset
& (page_size
- 1);
2794 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2796 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2803 handle
->offset
= offset
;
2806 * Check we didn't copy past our reservation window, taking the
2807 * possible unsigned int wrap into account.
2809 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2812 int perf_output_begin(struct perf_output_handle
*handle
,
2813 struct perf_event
*event
, unsigned int size
,
2814 int nmi
, int sample
)
2816 struct perf_event
*output_event
;
2817 struct perf_mmap_data
*data
;
2818 unsigned long tail
, offset
, head
;
2821 struct perf_event_header header
;
2828 * For inherited events we send all the output towards the parent.
2831 event
= event
->parent
;
2833 output_event
= rcu_dereference(event
->output
);
2835 event
= output_event
;
2837 data
= rcu_dereference(event
->data
);
2841 handle
->data
= data
;
2842 handle
->event
= event
;
2844 handle
->sample
= sample
;
2846 if (!data
->nr_pages
)
2849 have_lost
= atomic_read(&data
->lost
);
2851 size
+= sizeof(lost_event
);
2853 perf_output_lock(handle
);
2857 * Userspace could choose to issue a mb() before updating the
2858 * tail pointer. So that all reads will be completed before the
2861 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2863 offset
= head
= atomic_long_read(&data
->head
);
2865 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2867 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2869 handle
->offset
= offset
;
2870 handle
->head
= head
;
2872 if (head
- tail
> data
->watermark
)
2873 atomic_set(&data
->wakeup
, 1);
2876 lost_event
.header
.type
= PERF_RECORD_LOST
;
2877 lost_event
.header
.misc
= 0;
2878 lost_event
.header
.size
= sizeof(lost_event
);
2879 lost_event
.id
= event
->id
;
2880 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2882 perf_output_put(handle
, lost_event
);
2888 atomic_inc(&data
->lost
);
2889 perf_output_unlock(handle
);
2896 void perf_output_end(struct perf_output_handle
*handle
)
2898 struct perf_event
*event
= handle
->event
;
2899 struct perf_mmap_data
*data
= handle
->data
;
2901 int wakeup_events
= event
->attr
.wakeup_events
;
2903 if (handle
->sample
&& wakeup_events
) {
2904 int events
= atomic_inc_return(&data
->events
);
2905 if (events
>= wakeup_events
) {
2906 atomic_sub(wakeup_events
, &data
->events
);
2907 atomic_set(&data
->wakeup
, 1);
2911 perf_output_unlock(handle
);
2915 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2918 * only top level events have the pid namespace they were created in
2921 event
= event
->parent
;
2923 return task_tgid_nr_ns(p
, event
->ns
);
2926 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2929 * only top level events have the pid namespace they were created in
2932 event
= event
->parent
;
2934 return task_pid_nr_ns(p
, event
->ns
);
2937 static void perf_output_read_one(struct perf_output_handle
*handle
,
2938 struct perf_event
*event
)
2940 u64 read_format
= event
->attr
.read_format
;
2944 values
[n
++] = atomic64_read(&event
->count
);
2945 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2946 values
[n
++] = event
->total_time_enabled
+
2947 atomic64_read(&event
->child_total_time_enabled
);
2949 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2950 values
[n
++] = event
->total_time_running
+
2951 atomic64_read(&event
->child_total_time_running
);
2953 if (read_format
& PERF_FORMAT_ID
)
2954 values
[n
++] = primary_event_id(event
);
2956 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2960 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2962 static void perf_output_read_group(struct perf_output_handle
*handle
,
2963 struct perf_event
*event
)
2965 struct perf_event
*leader
= event
->group_leader
, *sub
;
2966 u64 read_format
= event
->attr
.read_format
;
2970 values
[n
++] = 1 + leader
->nr_siblings
;
2972 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2973 values
[n
++] = leader
->total_time_enabled
;
2975 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2976 values
[n
++] = leader
->total_time_running
;
2978 if (leader
!= event
)
2979 leader
->pmu
->read(leader
);
2981 values
[n
++] = atomic64_read(&leader
->count
);
2982 if (read_format
& PERF_FORMAT_ID
)
2983 values
[n
++] = primary_event_id(leader
);
2985 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2987 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2991 sub
->pmu
->read(sub
);
2993 values
[n
++] = atomic64_read(&sub
->count
);
2994 if (read_format
& PERF_FORMAT_ID
)
2995 values
[n
++] = primary_event_id(sub
);
2997 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3001 static void perf_output_read(struct perf_output_handle
*handle
,
3002 struct perf_event
*event
)
3004 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3005 perf_output_read_group(handle
, event
);
3007 perf_output_read_one(handle
, event
);
3010 void perf_output_sample(struct perf_output_handle
*handle
,
3011 struct perf_event_header
*header
,
3012 struct perf_sample_data
*data
,
3013 struct perf_event
*event
)
3015 u64 sample_type
= data
->type
;
3017 perf_output_put(handle
, *header
);
3019 if (sample_type
& PERF_SAMPLE_IP
)
3020 perf_output_put(handle
, data
->ip
);
3022 if (sample_type
& PERF_SAMPLE_TID
)
3023 perf_output_put(handle
, data
->tid_entry
);
3025 if (sample_type
& PERF_SAMPLE_TIME
)
3026 perf_output_put(handle
, data
->time
);
3028 if (sample_type
& PERF_SAMPLE_ADDR
)
3029 perf_output_put(handle
, data
->addr
);
3031 if (sample_type
& PERF_SAMPLE_ID
)
3032 perf_output_put(handle
, data
->id
);
3034 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3035 perf_output_put(handle
, data
->stream_id
);
3037 if (sample_type
& PERF_SAMPLE_CPU
)
3038 perf_output_put(handle
, data
->cpu_entry
);
3040 if (sample_type
& PERF_SAMPLE_PERIOD
)
3041 perf_output_put(handle
, data
->period
);
3043 if (sample_type
& PERF_SAMPLE_READ
)
3044 perf_output_read(handle
, event
);
3046 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3047 if (data
->callchain
) {
3050 if (data
->callchain
)
3051 size
+= data
->callchain
->nr
;
3053 size
*= sizeof(u64
);
3055 perf_output_copy(handle
, data
->callchain
, size
);
3058 perf_output_put(handle
, nr
);
3062 if (sample_type
& PERF_SAMPLE_RAW
) {
3064 perf_output_put(handle
, data
->raw
->size
);
3065 perf_output_copy(handle
, data
->raw
->data
,
3072 .size
= sizeof(u32
),
3075 perf_output_put(handle
, raw
);
3080 void perf_prepare_sample(struct perf_event_header
*header
,
3081 struct perf_sample_data
*data
,
3082 struct perf_event
*event
,
3083 struct pt_regs
*regs
)
3085 u64 sample_type
= event
->attr
.sample_type
;
3087 data
->type
= sample_type
;
3089 header
->type
= PERF_RECORD_SAMPLE
;
3090 header
->size
= sizeof(*header
);
3093 header
->misc
|= perf_misc_flags(regs
);
3095 if (sample_type
& PERF_SAMPLE_IP
) {
3096 data
->ip
= perf_instruction_pointer(regs
);
3098 header
->size
+= sizeof(data
->ip
);
3101 if (sample_type
& PERF_SAMPLE_TID
) {
3102 /* namespace issues */
3103 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3104 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3106 header
->size
+= sizeof(data
->tid_entry
);
3109 if (sample_type
& PERF_SAMPLE_TIME
) {
3110 data
->time
= perf_clock();
3112 header
->size
+= sizeof(data
->time
);
3115 if (sample_type
& PERF_SAMPLE_ADDR
)
3116 header
->size
+= sizeof(data
->addr
);
3118 if (sample_type
& PERF_SAMPLE_ID
) {
3119 data
->id
= primary_event_id(event
);
3121 header
->size
+= sizeof(data
->id
);
3124 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3125 data
->stream_id
= event
->id
;
3127 header
->size
+= sizeof(data
->stream_id
);
3130 if (sample_type
& PERF_SAMPLE_CPU
) {
3131 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3132 data
->cpu_entry
.reserved
= 0;
3134 header
->size
+= sizeof(data
->cpu_entry
);
3137 if (sample_type
& PERF_SAMPLE_PERIOD
)
3138 header
->size
+= sizeof(data
->period
);
3140 if (sample_type
& PERF_SAMPLE_READ
)
3141 header
->size
+= perf_event_read_size(event
);
3143 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3146 data
->callchain
= perf_callchain(regs
);
3148 if (data
->callchain
)
3149 size
+= data
->callchain
->nr
;
3151 header
->size
+= size
* sizeof(u64
);
3154 if (sample_type
& PERF_SAMPLE_RAW
) {
3155 int size
= sizeof(u32
);
3158 size
+= data
->raw
->size
;
3160 size
+= sizeof(u32
);
3162 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3163 header
->size
+= size
;
3167 static void perf_event_output(struct perf_event
*event
, int nmi
,
3168 struct perf_sample_data
*data
,
3169 struct pt_regs
*regs
)
3171 struct perf_output_handle handle
;
3172 struct perf_event_header header
;
3174 perf_prepare_sample(&header
, data
, event
, regs
);
3176 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3179 perf_output_sample(&handle
, &header
, data
, event
);
3181 perf_output_end(&handle
);
3188 struct perf_read_event
{
3189 struct perf_event_header header
;
3196 perf_event_read_event(struct perf_event
*event
,
3197 struct task_struct
*task
)
3199 struct perf_output_handle handle
;
3200 struct perf_read_event read_event
= {
3202 .type
= PERF_RECORD_READ
,
3204 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3206 .pid
= perf_event_pid(event
, task
),
3207 .tid
= perf_event_tid(event
, task
),
3211 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3215 perf_output_put(&handle
, read_event
);
3216 perf_output_read(&handle
, event
);
3218 perf_output_end(&handle
);
3222 * task tracking -- fork/exit
3224 * enabled by: attr.comm | attr.mmap | attr.task
3227 struct perf_task_event
{
3228 struct task_struct
*task
;
3229 struct perf_event_context
*task_ctx
;
3232 struct perf_event_header header
;
3242 static void perf_event_task_output(struct perf_event
*event
,
3243 struct perf_task_event
*task_event
)
3245 struct perf_output_handle handle
;
3247 struct task_struct
*task
= task_event
->task
;
3250 size
= task_event
->event_id
.header
.size
;
3251 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3256 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3257 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3259 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3260 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3262 task_event
->event_id
.time
= perf_clock();
3264 perf_output_put(&handle
, task_event
->event_id
);
3266 perf_output_end(&handle
);
3269 static int perf_event_task_match(struct perf_event
*event
)
3271 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3274 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3277 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3283 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3284 struct perf_task_event
*task_event
)
3286 struct perf_event
*event
;
3288 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3289 if (perf_event_task_match(event
))
3290 perf_event_task_output(event
, task_event
);
3294 static void perf_event_task_event(struct perf_task_event
*task_event
)
3296 struct perf_cpu_context
*cpuctx
;
3297 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3300 cpuctx
= &get_cpu_var(perf_cpu_context
);
3301 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3303 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3305 perf_event_task_ctx(ctx
, task_event
);
3306 put_cpu_var(perf_cpu_context
);
3310 static void perf_event_task(struct task_struct
*task
,
3311 struct perf_event_context
*task_ctx
,
3314 struct perf_task_event task_event
;
3316 if (!atomic_read(&nr_comm_events
) &&
3317 !atomic_read(&nr_mmap_events
) &&
3318 !atomic_read(&nr_task_events
))
3321 task_event
= (struct perf_task_event
){
3323 .task_ctx
= task_ctx
,
3326 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3328 .size
= sizeof(task_event
.event_id
),
3337 perf_event_task_event(&task_event
);
3340 void perf_event_fork(struct task_struct
*task
)
3342 perf_event_task(task
, NULL
, 1);
3349 struct perf_comm_event
{
3350 struct task_struct
*task
;
3355 struct perf_event_header header
;
3362 static void perf_event_comm_output(struct perf_event
*event
,
3363 struct perf_comm_event
*comm_event
)
3365 struct perf_output_handle handle
;
3366 int size
= comm_event
->event_id
.header
.size
;
3367 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3372 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3373 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3375 perf_output_put(&handle
, comm_event
->event_id
);
3376 perf_output_copy(&handle
, comm_event
->comm
,
3377 comm_event
->comm_size
);
3378 perf_output_end(&handle
);
3381 static int perf_event_comm_match(struct perf_event
*event
)
3383 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3386 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3389 if (event
->attr
.comm
)
3395 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3396 struct perf_comm_event
*comm_event
)
3398 struct perf_event
*event
;
3400 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3401 if (perf_event_comm_match(event
))
3402 perf_event_comm_output(event
, comm_event
);
3406 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3408 struct perf_cpu_context
*cpuctx
;
3409 struct perf_event_context
*ctx
;
3411 char comm
[TASK_COMM_LEN
];
3413 memset(comm
, 0, sizeof(comm
));
3414 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3415 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3417 comm_event
->comm
= comm
;
3418 comm_event
->comm_size
= size
;
3420 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3423 cpuctx
= &get_cpu_var(perf_cpu_context
);
3424 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3425 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3427 perf_event_comm_ctx(ctx
, comm_event
);
3428 put_cpu_var(perf_cpu_context
);
3432 void perf_event_comm(struct task_struct
*task
)
3434 struct perf_comm_event comm_event
;
3436 if (task
->perf_event_ctxp
)
3437 perf_event_enable_on_exec(task
);
3439 if (!atomic_read(&nr_comm_events
))
3442 comm_event
= (struct perf_comm_event
){
3448 .type
= PERF_RECORD_COMM
,
3457 perf_event_comm_event(&comm_event
);
3464 struct perf_mmap_event
{
3465 struct vm_area_struct
*vma
;
3467 const char *file_name
;
3471 struct perf_event_header header
;
3481 static void perf_event_mmap_output(struct perf_event
*event
,
3482 struct perf_mmap_event
*mmap_event
)
3484 struct perf_output_handle handle
;
3485 int size
= mmap_event
->event_id
.header
.size
;
3486 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3491 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3492 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3494 perf_output_put(&handle
, mmap_event
->event_id
);
3495 perf_output_copy(&handle
, mmap_event
->file_name
,
3496 mmap_event
->file_size
);
3497 perf_output_end(&handle
);
3500 static int perf_event_mmap_match(struct perf_event
*event
,
3501 struct perf_mmap_event
*mmap_event
)
3503 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3506 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3509 if (event
->attr
.mmap
)
3515 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3516 struct perf_mmap_event
*mmap_event
)
3518 struct perf_event
*event
;
3520 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3521 if (perf_event_mmap_match(event
, mmap_event
))
3522 perf_event_mmap_output(event
, mmap_event
);
3526 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3528 struct perf_cpu_context
*cpuctx
;
3529 struct perf_event_context
*ctx
;
3530 struct vm_area_struct
*vma
= mmap_event
->vma
;
3531 struct file
*file
= vma
->vm_file
;
3537 memset(tmp
, 0, sizeof(tmp
));
3541 * d_path works from the end of the buffer backwards, so we
3542 * need to add enough zero bytes after the string to handle
3543 * the 64bit alignment we do later.
3545 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3547 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3550 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3552 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3556 if (arch_vma_name(mmap_event
->vma
)) {
3557 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3563 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3567 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3572 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3574 mmap_event
->file_name
= name
;
3575 mmap_event
->file_size
= size
;
3577 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3580 cpuctx
= &get_cpu_var(perf_cpu_context
);
3581 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3582 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3584 perf_event_mmap_ctx(ctx
, mmap_event
);
3585 put_cpu_var(perf_cpu_context
);
3591 void __perf_event_mmap(struct vm_area_struct
*vma
)
3593 struct perf_mmap_event mmap_event
;
3595 if (!atomic_read(&nr_mmap_events
))
3598 mmap_event
= (struct perf_mmap_event
){
3604 .type
= PERF_RECORD_MMAP
,
3610 .start
= vma
->vm_start
,
3611 .len
= vma
->vm_end
- vma
->vm_start
,
3612 .pgoff
= vma
->vm_pgoff
,
3616 perf_event_mmap_event(&mmap_event
);
3620 * IRQ throttle logging
3623 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3625 struct perf_output_handle handle
;
3629 struct perf_event_header header
;
3633 } throttle_event
= {
3635 .type
= PERF_RECORD_THROTTLE
,
3637 .size
= sizeof(throttle_event
),
3639 .time
= perf_clock(),
3640 .id
= primary_event_id(event
),
3641 .stream_id
= event
->id
,
3645 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3647 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3651 perf_output_put(&handle
, throttle_event
);
3652 perf_output_end(&handle
);
3656 * Generic event overflow handling, sampling.
3659 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3660 int throttle
, struct perf_sample_data
*data
,
3661 struct pt_regs
*regs
)
3663 int events
= atomic_read(&event
->event_limit
);
3664 struct hw_perf_event
*hwc
= &event
->hw
;
3667 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3672 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3674 if (HZ
* hwc
->interrupts
>
3675 (u64
)sysctl_perf_event_sample_rate
) {
3676 hwc
->interrupts
= MAX_INTERRUPTS
;
3677 perf_log_throttle(event
, 0);
3682 * Keep re-disabling events even though on the previous
3683 * pass we disabled it - just in case we raced with a
3684 * sched-in and the event got enabled again:
3690 if (event
->attr
.freq
) {
3691 u64 now
= perf_clock();
3692 s64 delta
= now
- hwc
->freq_stamp
;
3694 hwc
->freq_stamp
= now
;
3696 if (delta
> 0 && delta
< TICK_NSEC
)
3697 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3701 * XXX event_limit might not quite work as expected on inherited
3705 event
->pending_kill
= POLL_IN
;
3706 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3708 event
->pending_kill
= POLL_HUP
;
3710 event
->pending_disable
= 1;
3711 perf_pending_queue(&event
->pending
,
3712 perf_pending_event
);
3714 perf_event_disable(event
);
3717 if (event
->overflow_handler
)
3718 event
->overflow_handler(event
, nmi
, data
, regs
);
3720 perf_event_output(event
, nmi
, data
, regs
);
3725 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3726 struct perf_sample_data
*data
,
3727 struct pt_regs
*regs
)
3729 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3733 * Generic software event infrastructure
3737 * We directly increment event->count and keep a second value in
3738 * event->hw.period_left to count intervals. This period event
3739 * is kept in the range [-sample_period, 0] so that we can use the
3743 static u64
perf_swevent_set_period(struct perf_event
*event
)
3745 struct hw_perf_event
*hwc
= &event
->hw
;
3746 u64 period
= hwc
->last_period
;
3750 hwc
->last_period
= hwc
->sample_period
;
3753 old
= val
= atomic64_read(&hwc
->period_left
);
3757 nr
= div64_u64(period
+ val
, period
);
3758 offset
= nr
* period
;
3760 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3766 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
3767 int nmi
, struct perf_sample_data
*data
,
3768 struct pt_regs
*regs
)
3770 struct hw_perf_event
*hwc
= &event
->hw
;
3773 data
->period
= event
->hw
.last_period
;
3775 overflow
= perf_swevent_set_period(event
);
3777 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3780 for (; overflow
; overflow
--) {
3781 if (__perf_event_overflow(event
, nmi
, throttle
,
3784 * We inhibit the overflow from happening when
3785 * hwc->interrupts == MAX_INTERRUPTS.
3793 static void perf_swevent_unthrottle(struct perf_event
*event
)
3796 * Nothing to do, we already reset hwc->interrupts.
3800 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3801 int nmi
, struct perf_sample_data
*data
,
3802 struct pt_regs
*regs
)
3804 struct hw_perf_event
*hwc
= &event
->hw
;
3806 atomic64_add(nr
, &event
->count
);
3811 if (!hwc
->sample_period
)
3814 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
3815 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
3817 if (atomic64_add_negative(nr
, &hwc
->period_left
))
3820 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
3823 static int perf_swevent_is_counting(struct perf_event
*event
)
3826 * The event is active, we're good!
3828 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3832 * The event is off/error, not counting.
3834 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3838 * The event is inactive, if the context is active
3839 * we're part of a group that didn't make it on the 'pmu',
3842 if (event
->ctx
->is_active
)
3846 * We're inactive and the context is too, this means the
3847 * task is scheduled out, we're counting events that happen
3848 * to us, like migration events.
3853 static int perf_tp_event_match(struct perf_event
*event
,
3854 struct perf_sample_data
*data
);
3856 static int perf_exclude_event(struct perf_event
*event
,
3857 struct pt_regs
*regs
)
3860 if (event
->attr
.exclude_user
&& user_mode(regs
))
3863 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3870 static int perf_swevent_match(struct perf_event
*event
,
3871 enum perf_type_id type
,
3873 struct perf_sample_data
*data
,
3874 struct pt_regs
*regs
)
3876 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3879 if (!perf_swevent_is_counting(event
))
3882 if (event
->attr
.type
!= type
)
3885 if (event
->attr
.config
!= event_id
)
3888 if (perf_exclude_event(event
, regs
))
3891 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
3892 !perf_tp_event_match(event
, data
))
3898 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3899 enum perf_type_id type
,
3900 u32 event_id
, u64 nr
, int nmi
,
3901 struct perf_sample_data
*data
,
3902 struct pt_regs
*regs
)
3904 struct perf_event
*event
;
3906 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3907 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
3908 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3912 int perf_swevent_get_recursion_context(void)
3914 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3921 else if (in_softirq())
3926 if (cpuctx
->recursion
[rctx
]) {
3927 put_cpu_var(perf_cpu_context
);
3931 cpuctx
->recursion
[rctx
]++;
3936 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
3938 void perf_swevent_put_recursion_context(int rctx
)
3940 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
3942 cpuctx
->recursion
[rctx
]--;
3943 put_cpu_var(perf_cpu_context
);
3945 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
3947 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3949 struct perf_sample_data
*data
,
3950 struct pt_regs
*regs
)
3952 struct perf_cpu_context
*cpuctx
;
3953 struct perf_event_context
*ctx
;
3955 cpuctx
= &__get_cpu_var(perf_cpu_context
);
3957 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3958 nr
, nmi
, data
, regs
);
3960 * doesn't really matter which of the child contexts the
3961 * events ends up in.
3963 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3965 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3969 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3970 struct pt_regs
*regs
, u64 addr
)
3972 struct perf_sample_data data
;
3975 rctx
= perf_swevent_get_recursion_context();
3982 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
3984 perf_swevent_put_recursion_context(rctx
);
3987 static void perf_swevent_read(struct perf_event
*event
)
3991 static int perf_swevent_enable(struct perf_event
*event
)
3993 struct hw_perf_event
*hwc
= &event
->hw
;
3995 if (hwc
->sample_period
) {
3996 hwc
->last_period
= hwc
->sample_period
;
3997 perf_swevent_set_period(event
);
4002 static void perf_swevent_disable(struct perf_event
*event
)
4006 static const struct pmu perf_ops_generic
= {
4007 .enable
= perf_swevent_enable
,
4008 .disable
= perf_swevent_disable
,
4009 .read
= perf_swevent_read
,
4010 .unthrottle
= perf_swevent_unthrottle
,
4014 * hrtimer based swevent callback
4017 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4019 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4020 struct perf_sample_data data
;
4021 struct pt_regs
*regs
;
4022 struct perf_event
*event
;
4025 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4026 event
->pmu
->read(event
);
4030 data
.period
= event
->hw
.last_period
;
4031 regs
= get_irq_regs();
4033 * In case we exclude kernel IPs or are somehow not in interrupt
4034 * context, provide the next best thing, the user IP.
4036 if ((event
->attr
.exclude_kernel
|| !regs
) &&
4037 !event
->attr
.exclude_user
)
4038 regs
= task_pt_regs(current
);
4041 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4042 if (perf_event_overflow(event
, 0, &data
, regs
))
4043 ret
= HRTIMER_NORESTART
;
4046 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4047 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4052 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4054 struct hw_perf_event
*hwc
= &event
->hw
;
4056 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4057 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4058 if (hwc
->sample_period
) {
4061 if (hwc
->remaining
) {
4062 if (hwc
->remaining
< 0)
4065 period
= hwc
->remaining
;
4068 period
= max_t(u64
, 10000, hwc
->sample_period
);
4070 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4071 ns_to_ktime(period
), 0,
4072 HRTIMER_MODE_REL
, 0);
4076 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4078 struct hw_perf_event
*hwc
= &event
->hw
;
4080 if (hwc
->sample_period
) {
4081 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4082 hwc
->remaining
= ktime_to_ns(remaining
);
4084 hrtimer_cancel(&hwc
->hrtimer
);
4089 * Software event: cpu wall time clock
4092 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4094 int cpu
= raw_smp_processor_id();
4098 now
= cpu_clock(cpu
);
4099 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4100 atomic64_add(now
- prev
, &event
->count
);
4103 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4105 struct hw_perf_event
*hwc
= &event
->hw
;
4106 int cpu
= raw_smp_processor_id();
4108 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4109 perf_swevent_start_hrtimer(event
);
4114 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4116 perf_swevent_cancel_hrtimer(event
);
4117 cpu_clock_perf_event_update(event
);
4120 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4122 cpu_clock_perf_event_update(event
);
4125 static const struct pmu perf_ops_cpu_clock
= {
4126 .enable
= cpu_clock_perf_event_enable
,
4127 .disable
= cpu_clock_perf_event_disable
,
4128 .read
= cpu_clock_perf_event_read
,
4132 * Software event: task time clock
4135 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4140 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4142 atomic64_add(delta
, &event
->count
);
4145 static int task_clock_perf_event_enable(struct perf_event
*event
)
4147 struct hw_perf_event
*hwc
= &event
->hw
;
4150 now
= event
->ctx
->time
;
4152 atomic64_set(&hwc
->prev_count
, now
);
4154 perf_swevent_start_hrtimer(event
);
4159 static void task_clock_perf_event_disable(struct perf_event
*event
)
4161 perf_swevent_cancel_hrtimer(event
);
4162 task_clock_perf_event_update(event
, event
->ctx
->time
);
4166 static void task_clock_perf_event_read(struct perf_event
*event
)
4171 update_context_time(event
->ctx
);
4172 time
= event
->ctx
->time
;
4174 u64 now
= perf_clock();
4175 u64 delta
= now
- event
->ctx
->timestamp
;
4176 time
= event
->ctx
->time
+ delta
;
4179 task_clock_perf_event_update(event
, time
);
4182 static const struct pmu perf_ops_task_clock
= {
4183 .enable
= task_clock_perf_event_enable
,
4184 .disable
= task_clock_perf_event_disable
,
4185 .read
= task_clock_perf_event_read
,
4188 #ifdef CONFIG_EVENT_PROFILE
4190 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4193 struct perf_raw_record raw
= {
4198 struct perf_sample_data data
= {
4203 struct pt_regs
*regs
= get_irq_regs();
4206 regs
= task_pt_regs(current
);
4208 /* Trace events already protected against recursion */
4209 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4212 EXPORT_SYMBOL_GPL(perf_tp_event
);
4214 static int perf_tp_event_match(struct perf_event
*event
,
4215 struct perf_sample_data
*data
)
4217 void *record
= data
->raw
->data
;
4219 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4224 static void tp_perf_event_destroy(struct perf_event
*event
)
4226 ftrace_profile_disable(event
->attr
.config
);
4229 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4232 * Raw tracepoint data is a severe data leak, only allow root to
4235 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4236 perf_paranoid_tracepoint_raw() &&
4237 !capable(CAP_SYS_ADMIN
))
4238 return ERR_PTR(-EPERM
);
4240 if (ftrace_profile_enable(event
->attr
.config
))
4243 event
->destroy
= tp_perf_event_destroy
;
4245 return &perf_ops_generic
;
4248 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4253 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4256 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4257 if (IS_ERR(filter_str
))
4258 return PTR_ERR(filter_str
);
4260 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4266 static void perf_event_free_filter(struct perf_event
*event
)
4268 ftrace_profile_free_filter(event
);
4273 static int perf_tp_event_match(struct perf_event
*event
,
4274 struct perf_sample_data
*data
)
4279 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4284 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4289 static void perf_event_free_filter(struct perf_event
*event
)
4293 #endif /* CONFIG_EVENT_PROFILE */
4295 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4296 static void bp_perf_event_destroy(struct perf_event
*event
)
4298 release_bp_slot(event
);
4301 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4305 err
= register_perf_hw_breakpoint(bp
);
4307 return ERR_PTR(err
);
4309 bp
->destroy
= bp_perf_event_destroy
;
4311 return &perf_ops_bp
;
4314 void perf_bp_event(struct perf_event
*bp
, void *data
)
4316 struct perf_sample_data sample
;
4317 struct pt_regs
*regs
= data
;
4320 sample
.addr
= bp
->attr
.bp_addr
;
4322 if (!perf_exclude_event(bp
, regs
))
4323 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4326 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4331 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4336 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4338 static void sw_perf_event_destroy(struct perf_event
*event
)
4340 u64 event_id
= event
->attr
.config
;
4342 WARN_ON(event
->parent
);
4344 atomic_dec(&perf_swevent_enabled
[event_id
]);
4347 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4349 const struct pmu
*pmu
= NULL
;
4350 u64 event_id
= event
->attr
.config
;
4353 * Software events (currently) can't in general distinguish
4354 * between user, kernel and hypervisor events.
4355 * However, context switches and cpu migrations are considered
4356 * to be kernel events, and page faults are never hypervisor
4360 case PERF_COUNT_SW_CPU_CLOCK
:
4361 pmu
= &perf_ops_cpu_clock
;
4364 case PERF_COUNT_SW_TASK_CLOCK
:
4366 * If the user instantiates this as a per-cpu event,
4367 * use the cpu_clock event instead.
4369 if (event
->ctx
->task
)
4370 pmu
= &perf_ops_task_clock
;
4372 pmu
= &perf_ops_cpu_clock
;
4375 case PERF_COUNT_SW_PAGE_FAULTS
:
4376 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4377 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4378 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4379 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4380 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4381 case PERF_COUNT_SW_EMULATION_FAULTS
:
4382 if (!event
->parent
) {
4383 atomic_inc(&perf_swevent_enabled
[event_id
]);
4384 event
->destroy
= sw_perf_event_destroy
;
4386 pmu
= &perf_ops_generic
;
4394 * Allocate and initialize a event structure
4396 static struct perf_event
*
4397 perf_event_alloc(struct perf_event_attr
*attr
,
4399 struct perf_event_context
*ctx
,
4400 struct perf_event
*group_leader
,
4401 struct perf_event
*parent_event
,
4402 perf_overflow_handler_t overflow_handler
,
4405 const struct pmu
*pmu
;
4406 struct perf_event
*event
;
4407 struct hw_perf_event
*hwc
;
4410 event
= kzalloc(sizeof(*event
), gfpflags
);
4412 return ERR_PTR(-ENOMEM
);
4415 * Single events are their own group leaders, with an
4416 * empty sibling list:
4419 group_leader
= event
;
4421 mutex_init(&event
->child_mutex
);
4422 INIT_LIST_HEAD(&event
->child_list
);
4424 INIT_LIST_HEAD(&event
->group_entry
);
4425 INIT_LIST_HEAD(&event
->event_entry
);
4426 INIT_LIST_HEAD(&event
->sibling_list
);
4427 init_waitqueue_head(&event
->waitq
);
4429 mutex_init(&event
->mmap_mutex
);
4432 event
->attr
= *attr
;
4433 event
->group_leader
= group_leader
;
4438 event
->parent
= parent_event
;
4440 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4441 event
->id
= atomic64_inc_return(&perf_event_id
);
4443 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4445 if (!overflow_handler
&& parent_event
)
4446 overflow_handler
= parent_event
->overflow_handler
;
4448 event
->overflow_handler
= overflow_handler
;
4451 event
->state
= PERF_EVENT_STATE_OFF
;
4456 hwc
->sample_period
= attr
->sample_period
;
4457 if (attr
->freq
&& attr
->sample_freq
)
4458 hwc
->sample_period
= 1;
4459 hwc
->last_period
= hwc
->sample_period
;
4461 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4464 * we currently do not support PERF_FORMAT_GROUP on inherited events
4466 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4469 switch (attr
->type
) {
4471 case PERF_TYPE_HARDWARE
:
4472 case PERF_TYPE_HW_CACHE
:
4473 pmu
= hw_perf_event_init(event
);
4476 case PERF_TYPE_SOFTWARE
:
4477 pmu
= sw_perf_event_init(event
);
4480 case PERF_TYPE_TRACEPOINT
:
4481 pmu
= tp_perf_event_init(event
);
4484 case PERF_TYPE_BREAKPOINT
:
4485 pmu
= bp_perf_event_init(event
);
4496 else if (IS_ERR(pmu
))
4501 put_pid_ns(event
->ns
);
4503 return ERR_PTR(err
);
4508 if (!event
->parent
) {
4509 atomic_inc(&nr_events
);
4510 if (event
->attr
.mmap
)
4511 atomic_inc(&nr_mmap_events
);
4512 if (event
->attr
.comm
)
4513 atomic_inc(&nr_comm_events
);
4514 if (event
->attr
.task
)
4515 atomic_inc(&nr_task_events
);
4521 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4522 struct perf_event_attr
*attr
)
4527 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4531 * zero the full structure, so that a short copy will be nice.
4533 memset(attr
, 0, sizeof(*attr
));
4535 ret
= get_user(size
, &uattr
->size
);
4539 if (size
> PAGE_SIZE
) /* silly large */
4542 if (!size
) /* abi compat */
4543 size
= PERF_ATTR_SIZE_VER0
;
4545 if (size
< PERF_ATTR_SIZE_VER0
)
4549 * If we're handed a bigger struct than we know of,
4550 * ensure all the unknown bits are 0 - i.e. new
4551 * user-space does not rely on any kernel feature
4552 * extensions we dont know about yet.
4554 if (size
> sizeof(*attr
)) {
4555 unsigned char __user
*addr
;
4556 unsigned char __user
*end
;
4559 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4560 end
= (void __user
*)uattr
+ size
;
4562 for (; addr
< end
; addr
++) {
4563 ret
= get_user(val
, addr
);
4569 size
= sizeof(*attr
);
4572 ret
= copy_from_user(attr
, uattr
, size
);
4577 * If the type exists, the corresponding creation will verify
4580 if (attr
->type
>= PERF_TYPE_MAX
)
4583 if (attr
->__reserved_1
|| attr
->__reserved_2
)
4586 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4589 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4596 put_user(sizeof(*attr
), &uattr
->size
);
4601 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4603 struct perf_event
*output_event
= NULL
;
4604 struct file
*output_file
= NULL
;
4605 struct perf_event
*old_output
;
4606 int fput_needed
= 0;
4612 output_file
= fget_light(output_fd
, &fput_needed
);
4616 if (output_file
->f_op
!= &perf_fops
)
4619 output_event
= output_file
->private_data
;
4621 /* Don't chain output fds */
4622 if (output_event
->output
)
4625 /* Don't set an output fd when we already have an output channel */
4629 atomic_long_inc(&output_file
->f_count
);
4632 mutex_lock(&event
->mmap_mutex
);
4633 old_output
= event
->output
;
4634 rcu_assign_pointer(event
->output
, output_event
);
4635 mutex_unlock(&event
->mmap_mutex
);
4639 * we need to make sure no existing perf_output_*()
4640 * is still referencing this event.
4643 fput(old_output
->filp
);
4648 fput_light(output_file
, fput_needed
);
4653 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4655 * @attr_uptr: event_id type attributes for monitoring/sampling
4658 * @group_fd: group leader event fd
4660 SYSCALL_DEFINE5(perf_event_open
,
4661 struct perf_event_attr __user
*, attr_uptr
,
4662 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4664 struct perf_event
*event
, *group_leader
;
4665 struct perf_event_attr attr
;
4666 struct perf_event_context
*ctx
;
4667 struct file
*event_file
= NULL
;
4668 struct file
*group_file
= NULL
;
4669 int fput_needed
= 0;
4670 int fput_needed2
= 0;
4673 /* for future expandability... */
4674 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4677 err
= perf_copy_attr(attr_uptr
, &attr
);
4681 if (!attr
.exclude_kernel
) {
4682 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4687 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4692 * Get the target context (task or percpu):
4694 ctx
= find_get_context(pid
, cpu
);
4696 return PTR_ERR(ctx
);
4699 * Look up the group leader (we will attach this event to it):
4701 group_leader
= NULL
;
4702 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4704 group_file
= fget_light(group_fd
, &fput_needed
);
4706 goto err_put_context
;
4707 if (group_file
->f_op
!= &perf_fops
)
4708 goto err_put_context
;
4710 group_leader
= group_file
->private_data
;
4712 * Do not allow a recursive hierarchy (this new sibling
4713 * becoming part of another group-sibling):
4715 if (group_leader
->group_leader
!= group_leader
)
4716 goto err_put_context
;
4718 * Do not allow to attach to a group in a different
4719 * task or CPU context:
4721 if (group_leader
->ctx
!= ctx
)
4722 goto err_put_context
;
4724 * Only a group leader can be exclusive or pinned
4726 if (attr
.exclusive
|| attr
.pinned
)
4727 goto err_put_context
;
4730 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4731 NULL
, NULL
, GFP_KERNEL
);
4732 err
= PTR_ERR(event
);
4734 goto err_put_context
;
4736 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, O_RDWR
);
4738 goto err_free_put_context
;
4740 event_file
= fget_light(err
, &fput_needed2
);
4742 goto err_free_put_context
;
4744 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4745 err
= perf_event_set_output(event
, group_fd
);
4747 goto err_fput_free_put_context
;
4750 event
->filp
= event_file
;
4751 WARN_ON_ONCE(ctx
->parent_ctx
);
4752 mutex_lock(&ctx
->mutex
);
4753 perf_install_in_context(ctx
, event
, cpu
);
4755 mutex_unlock(&ctx
->mutex
);
4757 event
->owner
= current
;
4758 get_task_struct(current
);
4759 mutex_lock(¤t
->perf_event_mutex
);
4760 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4761 mutex_unlock(¤t
->perf_event_mutex
);
4763 err_fput_free_put_context
:
4764 fput_light(event_file
, fput_needed2
);
4766 err_free_put_context
:
4774 fput_light(group_file
, fput_needed
);
4780 * perf_event_create_kernel_counter
4782 * @attr: attributes of the counter to create
4783 * @cpu: cpu in which the counter is bound
4784 * @pid: task to profile
4787 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
4789 perf_overflow_handler_t overflow_handler
)
4791 struct perf_event
*event
;
4792 struct perf_event_context
*ctx
;
4796 * Get the target context (task or percpu):
4799 ctx
= find_get_context(pid
, cpu
);
4805 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
4806 NULL
, overflow_handler
, GFP_KERNEL
);
4807 if (IS_ERR(event
)) {
4808 err
= PTR_ERR(event
);
4809 goto err_put_context
;
4813 WARN_ON_ONCE(ctx
->parent_ctx
);
4814 mutex_lock(&ctx
->mutex
);
4815 perf_install_in_context(ctx
, event
, cpu
);
4817 mutex_unlock(&ctx
->mutex
);
4819 event
->owner
= current
;
4820 get_task_struct(current
);
4821 mutex_lock(¤t
->perf_event_mutex
);
4822 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4823 mutex_unlock(¤t
->perf_event_mutex
);
4830 return ERR_PTR(err
);
4832 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
4835 * inherit a event from parent task to child task:
4837 static struct perf_event
*
4838 inherit_event(struct perf_event
*parent_event
,
4839 struct task_struct
*parent
,
4840 struct perf_event_context
*parent_ctx
,
4841 struct task_struct
*child
,
4842 struct perf_event
*group_leader
,
4843 struct perf_event_context
*child_ctx
)
4845 struct perf_event
*child_event
;
4848 * Instead of creating recursive hierarchies of events,
4849 * we link inherited events back to the original parent,
4850 * which has a filp for sure, which we use as the reference
4853 if (parent_event
->parent
)
4854 parent_event
= parent_event
->parent
;
4856 child_event
= perf_event_alloc(&parent_event
->attr
,
4857 parent_event
->cpu
, child_ctx
,
4858 group_leader
, parent_event
,
4860 if (IS_ERR(child_event
))
4865 * Make the child state follow the state of the parent event,
4866 * not its attr.disabled bit. We hold the parent's mutex,
4867 * so we won't race with perf_event_{en, dis}able_family.
4869 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4870 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4872 child_event
->state
= PERF_EVENT_STATE_OFF
;
4874 if (parent_event
->attr
.freq
)
4875 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4877 child_event
->overflow_handler
= parent_event
->overflow_handler
;
4880 * Link it up in the child's context:
4882 add_event_to_ctx(child_event
, child_ctx
);
4885 * Get a reference to the parent filp - we will fput it
4886 * when the child event exits. This is safe to do because
4887 * we are in the parent and we know that the filp still
4888 * exists and has a nonzero count:
4890 atomic_long_inc(&parent_event
->filp
->f_count
);
4893 * Link this into the parent event's child list
4895 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4896 mutex_lock(&parent_event
->child_mutex
);
4897 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4898 mutex_unlock(&parent_event
->child_mutex
);
4903 static int inherit_group(struct perf_event
*parent_event
,
4904 struct task_struct
*parent
,
4905 struct perf_event_context
*parent_ctx
,
4906 struct task_struct
*child
,
4907 struct perf_event_context
*child_ctx
)
4909 struct perf_event
*leader
;
4910 struct perf_event
*sub
;
4911 struct perf_event
*child_ctr
;
4913 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4914 child
, NULL
, child_ctx
);
4916 return PTR_ERR(leader
);
4917 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4918 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4919 child
, leader
, child_ctx
);
4920 if (IS_ERR(child_ctr
))
4921 return PTR_ERR(child_ctr
);
4926 static void sync_child_event(struct perf_event
*child_event
,
4927 struct task_struct
*child
)
4929 struct perf_event
*parent_event
= child_event
->parent
;
4932 if (child_event
->attr
.inherit_stat
)
4933 perf_event_read_event(child_event
, child
);
4935 child_val
= atomic64_read(&child_event
->count
);
4938 * Add back the child's count to the parent's count:
4940 atomic64_add(child_val
, &parent_event
->count
);
4941 atomic64_add(child_event
->total_time_enabled
,
4942 &parent_event
->child_total_time_enabled
);
4943 atomic64_add(child_event
->total_time_running
,
4944 &parent_event
->child_total_time_running
);
4947 * Remove this event from the parent's list
4949 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4950 mutex_lock(&parent_event
->child_mutex
);
4951 list_del_init(&child_event
->child_list
);
4952 mutex_unlock(&parent_event
->child_mutex
);
4955 * Release the parent event, if this was the last
4958 fput(parent_event
->filp
);
4962 __perf_event_exit_task(struct perf_event
*child_event
,
4963 struct perf_event_context
*child_ctx
,
4964 struct task_struct
*child
)
4966 struct perf_event
*parent_event
;
4968 perf_event_remove_from_context(child_event
);
4970 parent_event
= child_event
->parent
;
4972 * It can happen that parent exits first, and has events
4973 * that are still around due to the child reference. These
4974 * events need to be zapped - but otherwise linger.
4977 sync_child_event(child_event
, child
);
4978 free_event(child_event
);
4983 * When a child task exits, feed back event values to parent events.
4985 void perf_event_exit_task(struct task_struct
*child
)
4987 struct perf_event
*child_event
, *tmp
;
4988 struct perf_event_context
*child_ctx
;
4989 unsigned long flags
;
4991 if (likely(!child
->perf_event_ctxp
)) {
4992 perf_event_task(child
, NULL
, 0);
4996 local_irq_save(flags
);
4998 * We can't reschedule here because interrupts are disabled,
4999 * and either child is current or it is a task that can't be
5000 * scheduled, so we are now safe from rescheduling changing
5003 child_ctx
= child
->perf_event_ctxp
;
5004 __perf_event_task_sched_out(child_ctx
);
5007 * Take the context lock here so that if find_get_context is
5008 * reading child->perf_event_ctxp, we wait until it has
5009 * incremented the context's refcount before we do put_ctx below.
5011 raw_spin_lock(&child_ctx
->lock
);
5012 child
->perf_event_ctxp
= NULL
;
5014 * If this context is a clone; unclone it so it can't get
5015 * swapped to another process while we're removing all
5016 * the events from it.
5018 unclone_ctx(child_ctx
);
5019 update_context_time(child_ctx
);
5020 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5023 * Report the task dead after unscheduling the events so that we
5024 * won't get any samples after PERF_RECORD_EXIT. We can however still
5025 * get a few PERF_RECORD_READ events.
5027 perf_event_task(child
, child_ctx
, 0);
5030 * We can recurse on the same lock type through:
5032 * __perf_event_exit_task()
5033 * sync_child_event()
5034 * fput(parent_event->filp)
5036 * mutex_lock(&ctx->mutex)
5038 * But since its the parent context it won't be the same instance.
5040 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
5043 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
5045 __perf_event_exit_task(child_event
, child_ctx
, child
);
5048 * If the last event was a group event, it will have appended all
5049 * its siblings to the list, but we obtained 'tmp' before that which
5050 * will still point to the list head terminating the iteration.
5052 if (!list_empty(&child_ctx
->group_list
))
5055 mutex_unlock(&child_ctx
->mutex
);
5061 * free an unexposed, unused context as created by inheritance by
5062 * init_task below, used by fork() in case of fail.
5064 void perf_event_free_task(struct task_struct
*task
)
5066 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5067 struct perf_event
*event
, *tmp
;
5072 mutex_lock(&ctx
->mutex
);
5074 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
5075 struct perf_event
*parent
= event
->parent
;
5077 if (WARN_ON_ONCE(!parent
))
5080 mutex_lock(&parent
->child_mutex
);
5081 list_del_init(&event
->child_list
);
5082 mutex_unlock(&parent
->child_mutex
);
5086 list_del_event(event
, ctx
);
5090 if (!list_empty(&ctx
->group_list
))
5093 mutex_unlock(&ctx
->mutex
);
5099 * Initialize the perf_event context in task_struct
5101 int perf_event_init_task(struct task_struct
*child
)
5103 struct perf_event_context
*child_ctx
= NULL
, *parent_ctx
;
5104 struct perf_event_context
*cloned_ctx
;
5105 struct perf_event
*event
;
5106 struct task_struct
*parent
= current
;
5107 int inherited_all
= 1;
5110 child
->perf_event_ctxp
= NULL
;
5112 mutex_init(&child
->perf_event_mutex
);
5113 INIT_LIST_HEAD(&child
->perf_event_list
);
5115 if (likely(!parent
->perf_event_ctxp
))
5119 * If the parent's context is a clone, pin it so it won't get
5122 parent_ctx
= perf_pin_task_context(parent
);
5125 * No need to check if parent_ctx != NULL here; since we saw
5126 * it non-NULL earlier, the only reason for it to become NULL
5127 * is if we exit, and since we're currently in the middle of
5128 * a fork we can't be exiting at the same time.
5132 * Lock the parent list. No need to lock the child - not PID
5133 * hashed yet and not running, so nobody can access it.
5135 mutex_lock(&parent_ctx
->mutex
);
5138 * We dont have to disable NMIs - we are only looking at
5139 * the list, not manipulating it:
5141 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
5143 if (!event
->attr
.inherit
) {
5148 if (!child
->perf_event_ctxp
) {
5150 * This is executed from the parent task context, so
5151 * inherit events that have been marked for cloning.
5152 * First allocate and initialize a context for the
5156 child_ctx
= kzalloc(sizeof(struct perf_event_context
),
5163 __perf_event_init_context(child_ctx
, child
);
5164 child
->perf_event_ctxp
= child_ctx
;
5165 get_task_struct(child
);
5168 ret
= inherit_group(event
, parent
, parent_ctx
,
5176 if (child_ctx
&& inherited_all
) {
5178 * Mark the child context as a clone of the parent
5179 * context, or of whatever the parent is a clone of.
5180 * Note that if the parent is a clone, it could get
5181 * uncloned at any point, but that doesn't matter
5182 * because the list of events and the generation
5183 * count can't have changed since we took the mutex.
5185 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5187 child_ctx
->parent_ctx
= cloned_ctx
;
5188 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5190 child_ctx
->parent_ctx
= parent_ctx
;
5191 child_ctx
->parent_gen
= parent_ctx
->generation
;
5193 get_ctx(child_ctx
->parent_ctx
);
5196 mutex_unlock(&parent_ctx
->mutex
);
5198 perf_unpin_context(parent_ctx
);
5203 static void __cpuinit
perf_event_init_cpu(int cpu
)
5205 struct perf_cpu_context
*cpuctx
;
5207 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5208 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5210 spin_lock(&perf_resource_lock
);
5211 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5212 spin_unlock(&perf_resource_lock
);
5214 hw_perf_event_setup(cpu
);
5217 #ifdef CONFIG_HOTPLUG_CPU
5218 static void __perf_event_exit_cpu(void *info
)
5220 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5221 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5222 struct perf_event
*event
, *tmp
;
5224 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5225 __perf_event_remove_from_context(event
);
5227 static void perf_event_exit_cpu(int cpu
)
5229 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5230 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5232 mutex_lock(&ctx
->mutex
);
5233 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5234 mutex_unlock(&ctx
->mutex
);
5237 static inline void perf_event_exit_cpu(int cpu
) { }
5240 static int __cpuinit
5241 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5243 unsigned int cpu
= (long)hcpu
;
5247 case CPU_UP_PREPARE
:
5248 case CPU_UP_PREPARE_FROZEN
:
5249 perf_event_init_cpu(cpu
);
5253 case CPU_ONLINE_FROZEN
:
5254 hw_perf_event_setup_online(cpu
);
5257 case CPU_DOWN_PREPARE
:
5258 case CPU_DOWN_PREPARE_FROZEN
:
5259 perf_event_exit_cpu(cpu
);
5270 * This has to have a higher priority than migration_notifier in sched.c.
5272 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5273 .notifier_call
= perf_cpu_notify
,
5277 void __init
perf_event_init(void)
5279 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5280 (void *)(long)smp_processor_id());
5281 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5282 (void *)(long)smp_processor_id());
5283 register_cpu_notifier(&perf_cpu_nb
);
5286 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5288 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5292 perf_set_reserve_percpu(struct sysdev_class
*class,
5296 struct perf_cpu_context
*cpuctx
;
5300 err
= strict_strtoul(buf
, 10, &val
);
5303 if (val
> perf_max_events
)
5306 spin_lock(&perf_resource_lock
);
5307 perf_reserved_percpu
= val
;
5308 for_each_online_cpu(cpu
) {
5309 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5310 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
5311 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5312 perf_max_events
- perf_reserved_percpu
);
5313 cpuctx
->max_pertask
= mpt
;
5314 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
5316 spin_unlock(&perf_resource_lock
);
5321 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5323 return sprintf(buf
, "%d\n", perf_overcommit
);
5327 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5332 err
= strict_strtoul(buf
, 10, &val
);
5338 spin_lock(&perf_resource_lock
);
5339 perf_overcommit
= val
;
5340 spin_unlock(&perf_resource_lock
);
5345 static SYSDEV_CLASS_ATTR(
5348 perf_show_reserve_percpu
,
5349 perf_set_reserve_percpu
5352 static SYSDEV_CLASS_ATTR(
5355 perf_show_overcommit
,
5359 static struct attribute
*perfclass_attrs
[] = {
5360 &attr_reserve_percpu
.attr
,
5361 &attr_overcommit
.attr
,
5365 static struct attribute_group perfclass_attr_group
= {
5366 .attrs
= perfclass_attrs
,
5367 .name
= "perf_events",
5370 static int __init
perf_event_sysfs_init(void)
5372 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5373 &perfclass_attr_group
);
5375 device_initcall(perf_event_sysfs_init
);