stmmac: Stop advertising 1000Base capabilties for non GMII iface (V4).
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
blobae5debb1f5cde16bbe831011861f47fb2db1bfef
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/if.h>
46 #include <linux/if_vlan.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/slab.h>
49 #include <linux/prefetch.h>
50 #include "stmmac.h"
51 #ifdef CONFIG_STMMAC_DEBUG_FS
52 #include <linux/debugfs.h>
53 #include <linux/seq_file.h>
54 #endif
56 #define STMMAC_RESOURCE_NAME "stmmaceth"
58 #undef STMMAC_DEBUG
59 /*#define STMMAC_DEBUG*/
60 #ifdef STMMAC_DEBUG
61 #define DBG(nlevel, klevel, fmt, args...) \
62 ((void)(netif_msg_##nlevel(priv) && \
63 printk(KERN_##klevel fmt, ## args)))
64 #else
65 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
66 #endif
68 #undef STMMAC_RX_DEBUG
69 /*#define STMMAC_RX_DEBUG*/
70 #ifdef STMMAC_RX_DEBUG
71 #define RX_DBG(fmt, args...) printk(fmt, ## args)
72 #else
73 #define RX_DBG(fmt, args...) do { } while (0)
74 #endif
76 #undef STMMAC_XMIT_DEBUG
77 /*#define STMMAC_XMIT_DEBUG*/
78 #ifdef STMMAC_TX_DEBUG
79 #define TX_DBG(fmt, args...) printk(fmt, ## args)
80 #else
81 #define TX_DBG(fmt, args...) do { } while (0)
82 #endif
84 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
85 #define JUMBO_LEN 9000
87 /* Module parameters */
88 #define TX_TIMEO 5000 /* default 5 seconds */
89 static int watchdog = TX_TIMEO;
90 module_param(watchdog, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
93 static int debug = -1; /* -1: default, 0: no output, 16: all */
94 module_param(debug, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
97 static int phyaddr = -1;
98 module_param(phyaddr, int, S_IRUGO);
99 MODULE_PARM_DESC(phyaddr, "Physical device address");
101 #define DMA_TX_SIZE 256
102 static int dma_txsize = DMA_TX_SIZE;
103 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
106 #define DMA_RX_SIZE 256
107 static int dma_rxsize = DMA_RX_SIZE;
108 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
111 static int flow_ctrl = FLOW_OFF;
112 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
115 static int pause = PAUSE_TIME;
116 module_param(pause, int, S_IRUGO | S_IWUSR);
117 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
119 #define TC_DEFAULT 64
120 static int tc = TC_DEFAULT;
121 module_param(tc, int, S_IRUGO | S_IWUSR);
122 MODULE_PARM_DESC(tc, "DMA threshold control value");
124 /* Pay attention to tune this parameter; take care of both
125 * hardware capability and network stabitily/performance impact.
126 * Many tests showed that ~4ms latency seems to be good enough. */
127 #ifdef CONFIG_STMMAC_TIMER
128 #define DEFAULT_PERIODIC_RATE 256
129 static int tmrate = DEFAULT_PERIODIC_RATE;
130 module_param(tmrate, int, S_IRUGO | S_IWUSR);
131 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
132 #endif
134 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
135 static int buf_sz = DMA_BUFFER_SIZE;
136 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
137 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
139 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
140 NETIF_MSG_LINK | NETIF_MSG_IFUP |
141 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
143 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
146 * stmmac_verify_args - verify the driver parameters.
147 * Description: it verifies if some wrong parameter is passed to the driver.
148 * Note that wrong parameters are replaced with the default values.
150 static void stmmac_verify_args(void)
152 if (unlikely(watchdog < 0))
153 watchdog = TX_TIMEO;
154 if (unlikely(dma_rxsize < 0))
155 dma_rxsize = DMA_RX_SIZE;
156 if (unlikely(dma_txsize < 0))
157 dma_txsize = DMA_TX_SIZE;
158 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
159 buf_sz = DMA_BUFFER_SIZE;
160 if (unlikely(flow_ctrl > 1))
161 flow_ctrl = FLOW_AUTO;
162 else if (likely(flow_ctrl < 0))
163 flow_ctrl = FLOW_OFF;
164 if (unlikely((pause < 0) || (pause > 0xffff)))
165 pause = PAUSE_TIME;
168 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
169 static void print_pkt(unsigned char *buf, int len)
171 int j;
172 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
173 for (j = 0; j < len; j++) {
174 if ((j % 16) == 0)
175 pr_info("\n %03x:", j);
176 pr_info(" %02x", buf[j]);
178 pr_info("\n");
180 #endif
182 /* minimum number of free TX descriptors required to wake up TX process */
183 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
185 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
187 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
190 /* On some ST platforms, some HW system configuraton registers have to be
191 * set according to the link speed negotiated.
193 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
195 struct phy_device *phydev = priv->phydev;
197 if (likely(priv->plat->fix_mac_speed))
198 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
199 phydev->speed);
203 * stmmac_adjust_link
204 * @dev: net device structure
205 * Description: it adjusts the link parameters.
207 static void stmmac_adjust_link(struct net_device *dev)
209 struct stmmac_priv *priv = netdev_priv(dev);
210 struct phy_device *phydev = priv->phydev;
211 unsigned long flags;
212 int new_state = 0;
213 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
215 if (phydev == NULL)
216 return;
218 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
219 phydev->addr, phydev->link);
221 spin_lock_irqsave(&priv->lock, flags);
222 if (phydev->link) {
223 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
225 /* Now we make sure that we can be in full duplex mode.
226 * If not, we operate in half-duplex mode. */
227 if (phydev->duplex != priv->oldduplex) {
228 new_state = 1;
229 if (!(phydev->duplex))
230 ctrl &= ~priv->hw->link.duplex;
231 else
232 ctrl |= priv->hw->link.duplex;
233 priv->oldduplex = phydev->duplex;
235 /* Flow Control operation */
236 if (phydev->pause)
237 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
238 fc, pause_time);
240 if (phydev->speed != priv->speed) {
241 new_state = 1;
242 switch (phydev->speed) {
243 case 1000:
244 if (likely(priv->plat->has_gmac))
245 ctrl &= ~priv->hw->link.port;
246 stmmac_hw_fix_mac_speed(priv);
247 break;
248 case 100:
249 case 10:
250 if (priv->plat->has_gmac) {
251 ctrl |= priv->hw->link.port;
252 if (phydev->speed == SPEED_100) {
253 ctrl |= priv->hw->link.speed;
254 } else {
255 ctrl &= ~(priv->hw->link.speed);
257 } else {
258 ctrl &= ~priv->hw->link.port;
260 stmmac_hw_fix_mac_speed(priv);
261 break;
262 default:
263 if (netif_msg_link(priv))
264 pr_warning("%s: Speed (%d) is not 10"
265 " or 100!\n", dev->name, phydev->speed);
266 break;
269 priv->speed = phydev->speed;
272 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
274 if (!priv->oldlink) {
275 new_state = 1;
276 priv->oldlink = 1;
278 } else if (priv->oldlink) {
279 new_state = 1;
280 priv->oldlink = 0;
281 priv->speed = 0;
282 priv->oldduplex = -1;
285 if (new_state && netif_msg_link(priv))
286 phy_print_status(phydev);
288 spin_unlock_irqrestore(&priv->lock, flags);
290 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
294 * stmmac_init_phy - PHY initialization
295 * @dev: net device structure
296 * Description: it initializes the driver's PHY state, and attaches the PHY
297 * to the mac driver.
298 * Return value:
299 * 0 on success
301 static int stmmac_init_phy(struct net_device *dev)
303 struct stmmac_priv *priv = netdev_priv(dev);
304 struct phy_device *phydev;
305 char phy_id[MII_BUS_ID_SIZE + 3];
306 char bus_id[MII_BUS_ID_SIZE];
307 int interface = priv->plat->interface;
308 priv->oldlink = 0;
309 priv->speed = 0;
310 priv->oldduplex = -1;
312 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
313 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
314 priv->plat->phy_addr);
315 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
317 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
319 if (IS_ERR(phydev)) {
320 pr_err("%s: Could not attach to PHY\n", dev->name);
321 return PTR_ERR(phydev);
324 /* Stop Advertising 1000BASE Capability if interface is not GMII */
325 if ((interface) && ((interface == PHY_INTERFACE_MODE_MII) ||
326 (interface == PHY_INTERFACE_MODE_RMII))) {
327 phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
328 SUPPORTED_Asym_Pause);
329 priv->phydev->advertising = priv->phydev->supported;
333 * Broken HW is sometimes missing the pull-up resistor on the
334 * MDIO line, which results in reads to non-existent devices returning
335 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
336 * device as well.
337 * Note: phydev->phy_id is the result of reading the UID PHY registers.
339 if (phydev->phy_id == 0) {
340 phy_disconnect(phydev);
341 return -ENODEV;
343 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
344 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
346 priv->phydev = phydev;
348 return 0;
351 static inline void stmmac_enable_mac(void __iomem *ioaddr)
353 u32 value = readl(ioaddr + MAC_CTRL_REG);
355 value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
356 writel(value, ioaddr + MAC_CTRL_REG);
359 static inline void stmmac_disable_mac(void __iomem *ioaddr)
361 u32 value = readl(ioaddr + MAC_CTRL_REG);
363 value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
364 writel(value, ioaddr + MAC_CTRL_REG);
368 * display_ring
369 * @p: pointer to the ring.
370 * @size: size of the ring.
371 * Description: display all the descriptors within the ring.
373 static void display_ring(struct dma_desc *p, int size)
375 struct tmp_s {
376 u64 a;
377 unsigned int b;
378 unsigned int c;
380 int i;
381 for (i = 0; i < size; i++) {
382 struct tmp_s *x = (struct tmp_s *)(p + i);
383 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
384 i, (unsigned int)virt_to_phys(&p[i]),
385 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
386 x->b, x->c);
387 pr_info("\n");
392 * init_dma_desc_rings - init the RX/TX descriptor rings
393 * @dev: net device structure
394 * Description: this function initializes the DMA RX/TX descriptors
395 * and allocates the socket buffers.
397 static void init_dma_desc_rings(struct net_device *dev)
399 int i;
400 struct stmmac_priv *priv = netdev_priv(dev);
401 struct sk_buff *skb;
402 unsigned int txsize = priv->dma_tx_size;
403 unsigned int rxsize = priv->dma_rx_size;
404 unsigned int bfsize = priv->dma_buf_sz;
405 int buff2_needed = 0, dis_ic = 0;
407 /* Set the Buffer size according to the MTU;
408 * indeed, in case of jumbo we need to bump-up the buffer sizes.
410 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
411 bfsize = BUF_SIZE_16KiB;
412 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
413 bfsize = BUF_SIZE_8KiB;
414 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
415 bfsize = BUF_SIZE_4KiB;
416 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
417 bfsize = BUF_SIZE_2KiB;
418 else
419 bfsize = DMA_BUFFER_SIZE;
421 #ifdef CONFIG_STMMAC_TIMER
422 /* Disable interrupts on completion for the reception if timer is on */
423 if (likely(priv->tm->enable))
424 dis_ic = 1;
425 #endif
426 /* If the MTU exceeds 8k so use the second buffer in the chain */
427 if (bfsize >= BUF_SIZE_8KiB)
428 buff2_needed = 1;
430 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
431 txsize, rxsize, bfsize);
433 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
434 priv->rx_skbuff =
435 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
436 priv->dma_rx =
437 (struct dma_desc *)dma_alloc_coherent(priv->device,
438 rxsize *
439 sizeof(struct dma_desc),
440 &priv->dma_rx_phy,
441 GFP_KERNEL);
442 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
443 GFP_KERNEL);
444 priv->dma_tx =
445 (struct dma_desc *)dma_alloc_coherent(priv->device,
446 txsize *
447 sizeof(struct dma_desc),
448 &priv->dma_tx_phy,
449 GFP_KERNEL);
451 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
452 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
453 return;
456 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
457 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
458 dev->name, priv->dma_rx, priv->dma_tx,
459 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
461 /* RX INITIALIZATION */
462 DBG(probe, INFO, "stmmac: SKB addresses:\n"
463 "skb\t\tskb data\tdma data\n");
465 for (i = 0; i < rxsize; i++) {
466 struct dma_desc *p = priv->dma_rx + i;
468 skb = netdev_alloc_skb_ip_align(dev, bfsize);
469 if (unlikely(skb == NULL)) {
470 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
471 break;
473 priv->rx_skbuff[i] = skb;
474 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
475 bfsize, DMA_FROM_DEVICE);
477 p->des2 = priv->rx_skbuff_dma[i];
478 if (unlikely(buff2_needed))
479 p->des3 = p->des2 + BUF_SIZE_8KiB;
480 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
481 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
483 priv->cur_rx = 0;
484 priv->dirty_rx = (unsigned int)(i - rxsize);
485 priv->dma_buf_sz = bfsize;
486 buf_sz = bfsize;
488 /* TX INITIALIZATION */
489 for (i = 0; i < txsize; i++) {
490 priv->tx_skbuff[i] = NULL;
491 priv->dma_tx[i].des2 = 0;
493 priv->dirty_tx = 0;
494 priv->cur_tx = 0;
496 /* Clear the Rx/Tx descriptors */
497 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
498 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
500 if (netif_msg_hw(priv)) {
501 pr_info("RX descriptor ring:\n");
502 display_ring(priv->dma_rx, rxsize);
503 pr_info("TX descriptor ring:\n");
504 display_ring(priv->dma_tx, txsize);
508 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
510 int i;
512 for (i = 0; i < priv->dma_rx_size; i++) {
513 if (priv->rx_skbuff[i]) {
514 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
515 priv->dma_buf_sz, DMA_FROM_DEVICE);
516 dev_kfree_skb_any(priv->rx_skbuff[i]);
518 priv->rx_skbuff[i] = NULL;
522 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
524 int i;
526 for (i = 0; i < priv->dma_tx_size; i++) {
527 if (priv->tx_skbuff[i] != NULL) {
528 struct dma_desc *p = priv->dma_tx + i;
529 if (p->des2)
530 dma_unmap_single(priv->device, p->des2,
531 priv->hw->desc->get_tx_len(p),
532 DMA_TO_DEVICE);
533 dev_kfree_skb_any(priv->tx_skbuff[i]);
534 priv->tx_skbuff[i] = NULL;
539 static void free_dma_desc_resources(struct stmmac_priv *priv)
541 /* Release the DMA TX/RX socket buffers */
542 dma_free_rx_skbufs(priv);
543 dma_free_tx_skbufs(priv);
545 /* Free the region of consistent memory previously allocated for
546 * the DMA */
547 dma_free_coherent(priv->device,
548 priv->dma_tx_size * sizeof(struct dma_desc),
549 priv->dma_tx, priv->dma_tx_phy);
550 dma_free_coherent(priv->device,
551 priv->dma_rx_size * sizeof(struct dma_desc),
552 priv->dma_rx, priv->dma_rx_phy);
553 kfree(priv->rx_skbuff_dma);
554 kfree(priv->rx_skbuff);
555 kfree(priv->tx_skbuff);
559 * stmmac_dma_operation_mode - HW DMA operation mode
560 * @priv : pointer to the private device structure.
561 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
562 * or Store-And-Forward capability.
564 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
566 if (likely(priv->plat->force_sf_dma_mode ||
567 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
569 * In case of GMAC, SF mode can be enabled
570 * to perform the TX COE in HW. This depends on:
571 * 1) TX COE if actually supported
572 * 2) There is no bugged Jumbo frame support
573 * that needs to not insert csum in the TDES.
575 priv->hw->dma->dma_mode(priv->ioaddr,
576 SF_DMA_MODE, SF_DMA_MODE);
577 tc = SF_DMA_MODE;
578 } else
579 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
583 * stmmac_tx:
584 * @priv: private driver structure
585 * Description: it reclaims resources after transmission completes.
587 static void stmmac_tx(struct stmmac_priv *priv)
589 unsigned int txsize = priv->dma_tx_size;
591 while (priv->dirty_tx != priv->cur_tx) {
592 int last;
593 unsigned int entry = priv->dirty_tx % txsize;
594 struct sk_buff *skb = priv->tx_skbuff[entry];
595 struct dma_desc *p = priv->dma_tx + entry;
597 /* Check if the descriptor is owned by the DMA. */
598 if (priv->hw->desc->get_tx_owner(p))
599 break;
601 /* Verify tx error by looking at the last segment */
602 last = priv->hw->desc->get_tx_ls(p);
603 if (likely(last)) {
604 int tx_error =
605 priv->hw->desc->tx_status(&priv->dev->stats,
606 &priv->xstats, p,
607 priv->ioaddr);
608 if (likely(tx_error == 0)) {
609 priv->dev->stats.tx_packets++;
610 priv->xstats.tx_pkt_n++;
611 } else
612 priv->dev->stats.tx_errors++;
614 TX_DBG("%s: curr %d, dirty %d\n", __func__,
615 priv->cur_tx, priv->dirty_tx);
617 if (likely(p->des2))
618 dma_unmap_single(priv->device, p->des2,
619 priv->hw->desc->get_tx_len(p),
620 DMA_TO_DEVICE);
621 if (unlikely(p->des3))
622 p->des3 = 0;
624 if (likely(skb != NULL)) {
626 * If there's room in the queue (limit it to size)
627 * we add this skb back into the pool,
628 * if it's the right size.
630 if ((skb_queue_len(&priv->rx_recycle) <
631 priv->dma_rx_size) &&
632 skb_recycle_check(skb, priv->dma_buf_sz))
633 __skb_queue_head(&priv->rx_recycle, skb);
634 else
635 dev_kfree_skb(skb);
637 priv->tx_skbuff[entry] = NULL;
640 priv->hw->desc->release_tx_desc(p);
642 entry = (++priv->dirty_tx) % txsize;
644 if (unlikely(netif_queue_stopped(priv->dev) &&
645 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
646 netif_tx_lock(priv->dev);
647 if (netif_queue_stopped(priv->dev) &&
648 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
649 TX_DBG("%s: restart transmit\n", __func__);
650 netif_wake_queue(priv->dev);
652 netif_tx_unlock(priv->dev);
656 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
658 #ifdef CONFIG_STMMAC_TIMER
659 if (likely(priv->tm->enable))
660 priv->tm->timer_start(tmrate);
661 else
662 #endif
663 priv->hw->dma->enable_dma_irq(priv->ioaddr);
666 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
668 #ifdef CONFIG_STMMAC_TIMER
669 if (likely(priv->tm->enable))
670 priv->tm->timer_stop();
671 else
672 #endif
673 priv->hw->dma->disable_dma_irq(priv->ioaddr);
676 static int stmmac_has_work(struct stmmac_priv *priv)
678 unsigned int has_work = 0;
679 int rxret, tx_work = 0;
681 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
682 (priv->cur_rx % priv->dma_rx_size));
684 if (priv->dirty_tx != priv->cur_tx)
685 tx_work = 1;
687 if (likely(!rxret || tx_work))
688 has_work = 1;
690 return has_work;
693 static inline void _stmmac_schedule(struct stmmac_priv *priv)
695 if (likely(stmmac_has_work(priv))) {
696 stmmac_disable_irq(priv);
697 napi_schedule(&priv->napi);
701 #ifdef CONFIG_STMMAC_TIMER
702 void stmmac_schedule(struct net_device *dev)
704 struct stmmac_priv *priv = netdev_priv(dev);
706 priv->xstats.sched_timer_n++;
708 _stmmac_schedule(priv);
711 static void stmmac_no_timer_started(unsigned int x)
715 static void stmmac_no_timer_stopped(void)
718 #endif
721 * stmmac_tx_err:
722 * @priv: pointer to the private device structure
723 * Description: it cleans the descriptors and restarts the transmission
724 * in case of errors.
726 static void stmmac_tx_err(struct stmmac_priv *priv)
729 netif_stop_queue(priv->dev);
731 priv->hw->dma->stop_tx(priv->ioaddr);
732 dma_free_tx_skbufs(priv);
733 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734 priv->dirty_tx = 0;
735 priv->cur_tx = 0;
736 priv->hw->dma->start_tx(priv->ioaddr);
738 priv->dev->stats.tx_errors++;
739 netif_wake_queue(priv->dev);
743 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
745 int status;
747 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748 if (likely(status == handle_tx_rx))
749 _stmmac_schedule(priv);
751 else if (unlikely(status == tx_hard_error_bump_tc)) {
752 /* Try to bump up the dma threshold on this failure */
753 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
754 tc += 64;
755 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756 priv->xstats.threshold = tc;
758 } else if (unlikely(status == tx_hard_error))
759 stmmac_tx_err(priv);
762 static void stmmac_mmc_setup(struct stmmac_priv *priv)
764 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
765 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
767 /* Do not manage MMC IRQ (FIXME) */
768 dwmac_mmc_intr_all_mask(priv->ioaddr);
769 dwmac_mmc_ctrl(priv->ioaddr, mode);
770 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
773 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
775 u32 hwid = priv->hw->synopsys_uid;
777 /* Only check valid Synopsys Id because old MAC chips
778 * have no HW registers where get the ID */
779 if (likely(hwid)) {
780 u32 uid = ((hwid & 0x0000ff00) >> 8);
781 u32 synid = (hwid & 0x000000ff);
783 pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
784 uid, synid);
786 return synid;
788 return 0;
791 /* New GMAC chips support a new register to indicate the
792 * presence of the optional feature/functions.
794 static int stmmac_get_hw_features(struct stmmac_priv *priv)
796 u32 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
798 if (likely(hw_cap)) {
799 priv->dma_cap.mbps_10_100 = (hw_cap & 0x1);
800 priv->dma_cap.mbps_1000 = (hw_cap & 0x2) >> 1;
801 priv->dma_cap.half_duplex = (hw_cap & 0x4) >> 2;
802 priv->dma_cap.hash_filter = (hw_cap & 0x10) >> 4;
803 priv->dma_cap.multi_addr = (hw_cap & 0x20) >> 5;
804 priv->dma_cap.pcs = (hw_cap & 0x40) >> 6;
805 priv->dma_cap.sma_mdio = (hw_cap & 0x100) >> 8;
806 priv->dma_cap.pmt_remote_wake_up = (hw_cap & 0x200) >> 9;
807 priv->dma_cap.pmt_magic_frame = (hw_cap & 0x400) >> 10;
808 priv->dma_cap.rmon = (hw_cap & 0x800) >> 11; /* MMC */
809 /* IEEE 1588-2002*/
810 priv->dma_cap.time_stamp = (hw_cap & 0x1000) >> 12;
811 /* IEEE 1588-2008*/
812 priv->dma_cap.atime_stamp = (hw_cap & 0x2000) >> 13;
813 /* 802.3az - Energy-Efficient Ethernet (EEE) */
814 priv->dma_cap.eee = (hw_cap & 0x4000) >> 14;
815 priv->dma_cap.av = (hw_cap & 0x8000) >> 15;
816 /* TX and RX csum */
817 priv->dma_cap.tx_coe = (hw_cap & 0x10000) >> 16;
818 priv->dma_cap.rx_coe_type1 = (hw_cap & 0x20000) >> 17;
819 priv->dma_cap.rx_coe_type2 = (hw_cap & 0x40000) >> 18;
820 priv->dma_cap.rxfifo_over_2048 = (hw_cap & 0x80000) >> 19;
821 /* TX and RX number of channels */
822 priv->dma_cap.number_rx_channel = (hw_cap & 0x300000) >> 20;
823 priv->dma_cap.number_tx_channel = (hw_cap & 0xc00000) >> 22;
824 /* Alternate (enhanced) DESC mode*/
825 priv->dma_cap.enh_desc = (hw_cap & 0x1000000) >> 24;
827 } else
828 pr_debug("\tNo HW DMA feature register supported");
830 return hw_cap;
834 * stmmac_open - open entry point of the driver
835 * @dev : pointer to the device structure.
836 * Description:
837 * This function is the open entry point of the driver.
838 * Return value:
839 * 0 on success and an appropriate (-)ve integer as defined in errno.h
840 * file on failure.
842 static int stmmac_open(struct net_device *dev)
844 struct stmmac_priv *priv = netdev_priv(dev);
845 int ret;
847 /* Check that the MAC address is valid. If its not, refuse
848 * to bring the device up. The user must specify an
849 * address using the following linux command:
850 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
851 if (!is_valid_ether_addr(dev->dev_addr)) {
852 random_ether_addr(dev->dev_addr);
853 pr_warning("%s: generated random MAC address %pM\n", dev->name,
854 dev->dev_addr);
857 stmmac_verify_args();
859 #ifdef CONFIG_STMMAC_TIMER
860 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
861 if (unlikely(priv->tm == NULL)) {
862 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
863 return -ENOMEM;
865 priv->tm->freq = tmrate;
867 /* Test if the external timer can be actually used.
868 * In case of failure continue without timer. */
869 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
870 pr_warning("stmmaceth: cannot attach the external timer.\n");
871 priv->tm->freq = 0;
872 priv->tm->timer_start = stmmac_no_timer_started;
873 priv->tm->timer_stop = stmmac_no_timer_stopped;
874 } else
875 priv->tm->enable = 1;
876 #endif
877 ret = stmmac_init_phy(dev);
878 if (unlikely(ret)) {
879 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
880 goto open_error;
883 /* Create and initialize the TX/RX descriptors chains. */
884 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
885 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
886 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
887 init_dma_desc_rings(dev);
889 /* DMA initialization and SW reset */
890 ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
891 priv->dma_tx_phy, priv->dma_rx_phy);
892 if (ret < 0) {
893 pr_err("%s: DMA initialization failed\n", __func__);
894 goto open_error;
897 /* Copy the MAC addr into the HW */
898 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
899 /* If required, perform hw setup of the bus. */
900 if (priv->plat->bus_setup)
901 priv->plat->bus_setup(priv->ioaddr);
902 /* Initialize the MAC Core */
903 priv->hw->mac->core_init(priv->ioaddr);
905 stmmac_get_synopsys_id(priv);
907 stmmac_get_hw_features(priv);
909 if (priv->rx_coe)
910 pr_info("stmmac: Rx Checksum Offload Engine supported\n");
911 if (priv->plat->tx_coe)
912 pr_info("\tTX Checksum insertion supported\n");
913 netdev_update_features(dev);
915 /* Request the IRQ lines */
916 ret = request_irq(dev->irq, stmmac_interrupt,
917 IRQF_SHARED, dev->name, dev);
918 if (unlikely(ret < 0)) {
919 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
920 __func__, dev->irq, ret);
921 goto open_error;
924 /* Enable the MAC Rx/Tx */
925 stmmac_enable_mac(priv->ioaddr);
927 /* Set the HW DMA mode and the COE */
928 stmmac_dma_operation_mode(priv);
930 /* Extra statistics */
931 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
932 priv->xstats.threshold = tc;
934 stmmac_mmc_setup(priv);
936 /* Start the ball rolling... */
937 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
938 priv->hw->dma->start_tx(priv->ioaddr);
939 priv->hw->dma->start_rx(priv->ioaddr);
941 #ifdef CONFIG_STMMAC_TIMER
942 priv->tm->timer_start(tmrate);
943 #endif
944 /* Dump DMA/MAC registers */
945 if (netif_msg_hw(priv)) {
946 priv->hw->mac->dump_regs(priv->ioaddr);
947 priv->hw->dma->dump_regs(priv->ioaddr);
950 if (priv->phydev)
951 phy_start(priv->phydev);
953 napi_enable(&priv->napi);
954 skb_queue_head_init(&priv->rx_recycle);
955 netif_start_queue(dev);
957 return 0;
959 open_error:
960 #ifdef CONFIG_STMMAC_TIMER
961 kfree(priv->tm);
962 #endif
963 if (priv->phydev)
964 phy_disconnect(priv->phydev);
966 return ret;
970 * stmmac_release - close entry point of the driver
971 * @dev : device pointer.
972 * Description:
973 * This is the stop entry point of the driver.
975 static int stmmac_release(struct net_device *dev)
977 struct stmmac_priv *priv = netdev_priv(dev);
979 /* Stop and disconnect the PHY */
980 if (priv->phydev) {
981 phy_stop(priv->phydev);
982 phy_disconnect(priv->phydev);
983 priv->phydev = NULL;
986 netif_stop_queue(dev);
988 #ifdef CONFIG_STMMAC_TIMER
989 /* Stop and release the timer */
990 stmmac_close_ext_timer();
991 if (priv->tm != NULL)
992 kfree(priv->tm);
993 #endif
994 napi_disable(&priv->napi);
995 skb_queue_purge(&priv->rx_recycle);
997 /* Free the IRQ lines */
998 free_irq(dev->irq, dev);
1000 /* Stop TX/RX DMA and clear the descriptors */
1001 priv->hw->dma->stop_tx(priv->ioaddr);
1002 priv->hw->dma->stop_rx(priv->ioaddr);
1004 /* Release and free the Rx/Tx resources */
1005 free_dma_desc_resources(priv);
1007 /* Disable the MAC Rx/Tx */
1008 stmmac_disable_mac(priv->ioaddr);
1010 netif_carrier_off(dev);
1012 return 0;
1015 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1016 struct net_device *dev,
1017 int csum_insertion)
1019 struct stmmac_priv *priv = netdev_priv(dev);
1020 unsigned int nopaged_len = skb_headlen(skb);
1021 unsigned int txsize = priv->dma_tx_size;
1022 unsigned int entry = priv->cur_tx % txsize;
1023 struct dma_desc *desc = priv->dma_tx + entry;
1025 if (nopaged_len > BUF_SIZE_8KiB) {
1027 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1029 desc->des2 = dma_map_single(priv->device, skb->data,
1030 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1031 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1032 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1033 csum_insertion);
1035 entry = (++priv->cur_tx) % txsize;
1036 desc = priv->dma_tx + entry;
1038 desc->des2 = dma_map_single(priv->device,
1039 skb->data + BUF_SIZE_8KiB,
1040 buf2_size, DMA_TO_DEVICE);
1041 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1042 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
1043 csum_insertion);
1044 priv->hw->desc->set_tx_owner(desc);
1045 priv->tx_skbuff[entry] = NULL;
1046 } else {
1047 desc->des2 = dma_map_single(priv->device, skb->data,
1048 nopaged_len, DMA_TO_DEVICE);
1049 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1050 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1051 csum_insertion);
1053 return entry;
1057 * stmmac_xmit:
1058 * @skb : the socket buffer
1059 * @dev : device pointer
1060 * Description : Tx entry point of the driver.
1062 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1064 struct stmmac_priv *priv = netdev_priv(dev);
1065 unsigned int txsize = priv->dma_tx_size;
1066 unsigned int entry;
1067 int i, csum_insertion = 0;
1068 int nfrags = skb_shinfo(skb)->nr_frags;
1069 struct dma_desc *desc, *first;
1071 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1072 if (!netif_queue_stopped(dev)) {
1073 netif_stop_queue(dev);
1074 /* This is a hard error, log it. */
1075 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1076 __func__);
1078 return NETDEV_TX_BUSY;
1081 entry = priv->cur_tx % txsize;
1083 #ifdef STMMAC_XMIT_DEBUG
1084 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1085 pr_info("stmmac xmit:\n"
1086 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1087 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1088 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1089 !skb_is_gso(skb) ? "isn't" : "is");
1090 #endif
1092 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1094 desc = priv->dma_tx + entry;
1095 first = desc;
1097 #ifdef STMMAC_XMIT_DEBUG
1098 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1099 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1100 "\t\tn_frags: %d, ip_summed: %d\n",
1101 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1102 #endif
1103 priv->tx_skbuff[entry] = skb;
1104 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1105 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1106 desc = priv->dma_tx + entry;
1107 } else {
1108 unsigned int nopaged_len = skb_headlen(skb);
1109 desc->des2 = dma_map_single(priv->device, skb->data,
1110 nopaged_len, DMA_TO_DEVICE);
1111 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1112 csum_insertion);
1115 for (i = 0; i < nfrags; i++) {
1116 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117 int len = skb_frag_size(frag);
1119 entry = (++priv->cur_tx) % txsize;
1120 desc = priv->dma_tx + entry;
1122 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1123 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1124 DMA_TO_DEVICE);
1125 priv->tx_skbuff[entry] = NULL;
1126 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1127 wmb();
1128 priv->hw->desc->set_tx_owner(desc);
1131 /* Interrupt on completition only for the latest segment */
1132 priv->hw->desc->close_tx_desc(desc);
1134 #ifdef CONFIG_STMMAC_TIMER
1135 /* Clean IC while using timer */
1136 if (likely(priv->tm->enable))
1137 priv->hw->desc->clear_tx_ic(desc);
1138 #endif
1140 wmb();
1142 /* To avoid raise condition */
1143 priv->hw->desc->set_tx_owner(first);
1145 priv->cur_tx++;
1147 #ifdef STMMAC_XMIT_DEBUG
1148 if (netif_msg_pktdata(priv)) {
1149 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1150 "first=%p, nfrags=%d\n",
1151 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1152 entry, first, nfrags);
1153 display_ring(priv->dma_tx, txsize);
1154 pr_info(">>> frame to be transmitted: ");
1155 print_pkt(skb->data, skb->len);
1157 #endif
1158 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1159 TX_DBG("%s: stop transmitted packets\n", __func__);
1160 netif_stop_queue(dev);
1163 dev->stats.tx_bytes += skb->len;
1165 skb_tx_timestamp(skb);
1167 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1169 return NETDEV_TX_OK;
1172 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1174 unsigned int rxsize = priv->dma_rx_size;
1175 int bfsize = priv->dma_buf_sz;
1176 struct dma_desc *p = priv->dma_rx;
1178 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1179 unsigned int entry = priv->dirty_rx % rxsize;
1180 if (likely(priv->rx_skbuff[entry] == NULL)) {
1181 struct sk_buff *skb;
1183 skb = __skb_dequeue(&priv->rx_recycle);
1184 if (skb == NULL)
1185 skb = netdev_alloc_skb_ip_align(priv->dev,
1186 bfsize);
1188 if (unlikely(skb == NULL))
1189 break;
1191 priv->rx_skbuff[entry] = skb;
1192 priv->rx_skbuff_dma[entry] =
1193 dma_map_single(priv->device, skb->data, bfsize,
1194 DMA_FROM_DEVICE);
1196 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1197 if (unlikely(priv->plat->has_gmac)) {
1198 if (bfsize >= BUF_SIZE_8KiB)
1199 (p + entry)->des3 =
1200 (p + entry)->des2 + BUF_SIZE_8KiB;
1202 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1204 wmb();
1205 priv->hw->desc->set_rx_owner(p + entry);
1209 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1211 unsigned int rxsize = priv->dma_rx_size;
1212 unsigned int entry = priv->cur_rx % rxsize;
1213 unsigned int next_entry;
1214 unsigned int count = 0;
1215 struct dma_desc *p = priv->dma_rx + entry;
1216 struct dma_desc *p_next;
1218 #ifdef STMMAC_RX_DEBUG
1219 if (netif_msg_hw(priv)) {
1220 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1221 display_ring(priv->dma_rx, rxsize);
1223 #endif
1224 count = 0;
1225 while (!priv->hw->desc->get_rx_owner(p)) {
1226 int status;
1228 if (count >= limit)
1229 break;
1231 count++;
1233 next_entry = (++priv->cur_rx) % rxsize;
1234 p_next = priv->dma_rx + next_entry;
1235 prefetch(p_next);
1237 /* read the status of the incoming frame */
1238 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1239 &priv->xstats, p));
1240 if (unlikely(status == discard_frame))
1241 priv->dev->stats.rx_errors++;
1242 else {
1243 struct sk_buff *skb;
1244 int frame_len;
1246 frame_len = priv->hw->desc->get_rx_frame_len(p);
1247 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1248 * Type frames (LLC/LLC-SNAP) */
1249 if (unlikely(status != llc_snap))
1250 frame_len -= ETH_FCS_LEN;
1251 #ifdef STMMAC_RX_DEBUG
1252 if (frame_len > ETH_FRAME_LEN)
1253 pr_debug("\tRX frame size %d, COE status: %d\n",
1254 frame_len, status);
1256 if (netif_msg_hw(priv))
1257 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1258 p, entry, p->des2);
1259 #endif
1260 skb = priv->rx_skbuff[entry];
1261 if (unlikely(!skb)) {
1262 pr_err("%s: Inconsistent Rx descriptor chain\n",
1263 priv->dev->name);
1264 priv->dev->stats.rx_dropped++;
1265 break;
1267 prefetch(skb->data - NET_IP_ALIGN);
1268 priv->rx_skbuff[entry] = NULL;
1270 skb_put(skb, frame_len);
1271 dma_unmap_single(priv->device,
1272 priv->rx_skbuff_dma[entry],
1273 priv->dma_buf_sz, DMA_FROM_DEVICE);
1274 #ifdef STMMAC_RX_DEBUG
1275 if (netif_msg_pktdata(priv)) {
1276 pr_info(" frame received (%dbytes)", frame_len);
1277 print_pkt(skb->data, frame_len);
1279 #endif
1280 skb->protocol = eth_type_trans(skb, priv->dev);
1282 if (unlikely(status == csum_none)) {
1283 /* always for the old mac 10/100 */
1284 skb_checksum_none_assert(skb);
1285 netif_receive_skb(skb);
1286 } else {
1287 skb->ip_summed = CHECKSUM_UNNECESSARY;
1288 napi_gro_receive(&priv->napi, skb);
1291 priv->dev->stats.rx_packets++;
1292 priv->dev->stats.rx_bytes += frame_len;
1294 entry = next_entry;
1295 p = p_next; /* use prefetched values */
1298 stmmac_rx_refill(priv);
1300 priv->xstats.rx_pkt_n += count;
1302 return count;
1306 * stmmac_poll - stmmac poll method (NAPI)
1307 * @napi : pointer to the napi structure.
1308 * @budget : maximum number of packets that the current CPU can receive from
1309 * all interfaces.
1310 * Description :
1311 * This function implements the the reception process.
1312 * Also it runs the TX completion thread
1314 static int stmmac_poll(struct napi_struct *napi, int budget)
1316 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1317 int work_done = 0;
1319 priv->xstats.poll_n++;
1320 stmmac_tx(priv);
1321 work_done = stmmac_rx(priv, budget);
1323 if (work_done < budget) {
1324 napi_complete(napi);
1325 stmmac_enable_irq(priv);
1327 return work_done;
1331 * stmmac_tx_timeout
1332 * @dev : Pointer to net device structure
1333 * Description: this function is called when a packet transmission fails to
1334 * complete within a reasonable tmrate. The driver will mark the error in the
1335 * netdev structure and arrange for the device to be reset to a sane state
1336 * in order to transmit a new packet.
1338 static void stmmac_tx_timeout(struct net_device *dev)
1340 struct stmmac_priv *priv = netdev_priv(dev);
1342 /* Clear Tx resources and restart transmitting again */
1343 stmmac_tx_err(priv);
1346 /* Configuration changes (passed on by ifconfig) */
1347 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1349 if (dev->flags & IFF_UP) /* can't act on a running interface */
1350 return -EBUSY;
1352 /* Don't allow changing the I/O address */
1353 if (map->base_addr != dev->base_addr) {
1354 pr_warning("%s: can't change I/O address\n", dev->name);
1355 return -EOPNOTSUPP;
1358 /* Don't allow changing the IRQ */
1359 if (map->irq != dev->irq) {
1360 pr_warning("%s: can't change IRQ number %d\n",
1361 dev->name, dev->irq);
1362 return -EOPNOTSUPP;
1365 /* ignore other fields */
1366 return 0;
1370 * stmmac_set_rx_mode - entry point for multicast addressing
1371 * @dev : pointer to the device structure
1372 * Description:
1373 * This function is a driver entry point which gets called by the kernel
1374 * whenever multicast addresses must be enabled/disabled.
1375 * Return value:
1376 * void.
1378 static void stmmac_set_rx_mode(struct net_device *dev)
1380 struct stmmac_priv *priv = netdev_priv(dev);
1382 spin_lock(&priv->lock);
1383 priv->hw->mac->set_filter(dev);
1384 spin_unlock(&priv->lock);
1388 * stmmac_change_mtu - entry point to change MTU size for the device.
1389 * @dev : device pointer.
1390 * @new_mtu : the new MTU size for the device.
1391 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1392 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1393 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1394 * Return value:
1395 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1396 * file on failure.
1398 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1400 struct stmmac_priv *priv = netdev_priv(dev);
1401 int max_mtu;
1403 if (netif_running(dev)) {
1404 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1405 return -EBUSY;
1408 if (priv->plat->has_gmac)
1409 max_mtu = JUMBO_LEN;
1410 else
1411 max_mtu = ETH_DATA_LEN;
1413 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1414 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1415 return -EINVAL;
1418 dev->mtu = new_mtu;
1419 netdev_update_features(dev);
1421 return 0;
1424 static u32 stmmac_fix_features(struct net_device *dev, u32 features)
1426 struct stmmac_priv *priv = netdev_priv(dev);
1428 if (!priv->rx_coe)
1429 features &= ~NETIF_F_RXCSUM;
1430 if (!priv->plat->tx_coe)
1431 features &= ~NETIF_F_ALL_CSUM;
1433 /* Some GMAC devices have a bugged Jumbo frame support that
1434 * needs to have the Tx COE disabled for oversized frames
1435 * (due to limited buffer sizes). In this case we disable
1436 * the TX csum insertionin the TDES and not use SF. */
1437 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1438 features &= ~NETIF_F_ALL_CSUM;
1440 return features;
1443 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1445 struct net_device *dev = (struct net_device *)dev_id;
1446 struct stmmac_priv *priv = netdev_priv(dev);
1448 if (unlikely(!dev)) {
1449 pr_err("%s: invalid dev pointer\n", __func__);
1450 return IRQ_NONE;
1453 if (priv->plat->has_gmac)
1454 /* To handle GMAC own interrupts */
1455 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1457 stmmac_dma_interrupt(priv);
1459 return IRQ_HANDLED;
1462 #ifdef CONFIG_NET_POLL_CONTROLLER
1463 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1464 * to allow network I/O with interrupts disabled. */
1465 static void stmmac_poll_controller(struct net_device *dev)
1467 disable_irq(dev->irq);
1468 stmmac_interrupt(dev->irq, dev);
1469 enable_irq(dev->irq);
1471 #endif
1474 * stmmac_ioctl - Entry point for the Ioctl
1475 * @dev: Device pointer.
1476 * @rq: An IOCTL specefic structure, that can contain a pointer to
1477 * a proprietary structure used to pass information to the driver.
1478 * @cmd: IOCTL command
1479 * Description:
1480 * Currently there are no special functionality supported in IOCTL, just the
1481 * phy_mii_ioctl(...) can be invoked.
1483 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1485 struct stmmac_priv *priv = netdev_priv(dev);
1486 int ret;
1488 if (!netif_running(dev))
1489 return -EINVAL;
1491 if (!priv->phydev)
1492 return -EINVAL;
1494 spin_lock(&priv->lock);
1495 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1496 spin_unlock(&priv->lock);
1498 return ret;
1501 #ifdef CONFIG_STMMAC_DEBUG_FS
1502 static struct dentry *stmmac_fs_dir;
1503 static struct dentry *stmmac_rings_status;
1504 static struct dentry *stmmac_dma_cap;
1506 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1508 struct tmp_s {
1509 u64 a;
1510 unsigned int b;
1511 unsigned int c;
1513 int i;
1514 struct net_device *dev = seq->private;
1515 struct stmmac_priv *priv = netdev_priv(dev);
1517 seq_printf(seq, "=======================\n");
1518 seq_printf(seq, " RX descriptor ring\n");
1519 seq_printf(seq, "=======================\n");
1521 for (i = 0; i < priv->dma_rx_size; i++) {
1522 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1523 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1524 i, (unsigned int)(x->a),
1525 (unsigned int)((x->a) >> 32), x->b, x->c);
1526 seq_printf(seq, "\n");
1529 seq_printf(seq, "\n");
1530 seq_printf(seq, "=======================\n");
1531 seq_printf(seq, " TX descriptor ring\n");
1532 seq_printf(seq, "=======================\n");
1534 for (i = 0; i < priv->dma_tx_size; i++) {
1535 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1536 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1537 i, (unsigned int)(x->a),
1538 (unsigned int)((x->a) >> 32), x->b, x->c);
1539 seq_printf(seq, "\n");
1542 return 0;
1545 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1547 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1550 static const struct file_operations stmmac_rings_status_fops = {
1551 .owner = THIS_MODULE,
1552 .open = stmmac_sysfs_ring_open,
1553 .read = seq_read,
1554 .llseek = seq_lseek,
1555 .release = seq_release,
1558 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1560 struct net_device *dev = seq->private;
1561 struct stmmac_priv *priv = netdev_priv(dev);
1563 if (!stmmac_get_hw_features(priv)) {
1564 seq_printf(seq, "DMA HW features not supported\n");
1565 return 0;
1568 seq_printf(seq, "==============================\n");
1569 seq_printf(seq, "\tDMA HW features\n");
1570 seq_printf(seq, "==============================\n");
1572 seq_printf(seq, "\t10/100 Mbps %s\n",
1573 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1574 seq_printf(seq, "\t1000 Mbps %s\n",
1575 (priv->dma_cap.mbps_1000) ? "Y" : "N");
1576 seq_printf(seq, "\tHalf duple %s\n",
1577 (priv->dma_cap.half_duplex) ? "Y" : "N");
1578 seq_printf(seq, "\tHash Filter: %s\n",
1579 (priv->dma_cap.hash_filter) ? "Y" : "N");
1580 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1581 (priv->dma_cap.multi_addr) ? "Y" : "N");
1582 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1583 (priv->dma_cap.pcs) ? "Y" : "N");
1584 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1585 (priv->dma_cap.sma_mdio) ? "Y" : "N");
1586 seq_printf(seq, "\tPMT Remote wake up: %s\n",
1587 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1588 seq_printf(seq, "\tPMT Magic Frame: %s\n",
1589 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1590 seq_printf(seq, "\tRMON module: %s\n",
1591 (priv->dma_cap.rmon) ? "Y" : "N");
1592 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1593 (priv->dma_cap.time_stamp) ? "Y" : "N");
1594 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1595 (priv->dma_cap.atime_stamp) ? "Y" : "N");
1596 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1597 (priv->dma_cap.eee) ? "Y" : "N");
1598 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1599 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1600 (priv->dma_cap.tx_coe) ? "Y" : "N");
1601 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1602 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1603 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1604 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1605 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1606 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1607 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1608 priv->dma_cap.number_rx_channel);
1609 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1610 priv->dma_cap.number_tx_channel);
1611 seq_printf(seq, "\tEnhanced descriptors: %s\n",
1612 (priv->dma_cap.enh_desc) ? "Y" : "N");
1614 return 0;
1617 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1619 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1622 static const struct file_operations stmmac_dma_cap_fops = {
1623 .owner = THIS_MODULE,
1624 .open = stmmac_sysfs_dma_cap_open,
1625 .read = seq_read,
1626 .llseek = seq_lseek,
1627 .release = seq_release,
1630 static int stmmac_init_fs(struct net_device *dev)
1632 /* Create debugfs entries */
1633 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1635 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1636 pr_err("ERROR %s, debugfs create directory failed\n",
1637 STMMAC_RESOURCE_NAME);
1639 return -ENOMEM;
1642 /* Entry to report DMA RX/TX rings */
1643 stmmac_rings_status = debugfs_create_file("descriptors_status",
1644 S_IRUGO, stmmac_fs_dir, dev,
1645 &stmmac_rings_status_fops);
1647 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1648 pr_info("ERROR creating stmmac ring debugfs file\n");
1649 debugfs_remove(stmmac_fs_dir);
1651 return -ENOMEM;
1654 /* Entry to report the DMA HW features */
1655 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1656 dev, &stmmac_dma_cap_fops);
1658 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1659 pr_info("ERROR creating stmmac MMC debugfs file\n");
1660 debugfs_remove(stmmac_rings_status);
1661 debugfs_remove(stmmac_fs_dir);
1663 return -ENOMEM;
1666 return 0;
1669 static void stmmac_exit_fs(void)
1671 debugfs_remove(stmmac_rings_status);
1672 debugfs_remove(stmmac_dma_cap);
1673 debugfs_remove(stmmac_fs_dir);
1675 #endif /* CONFIG_STMMAC_DEBUG_FS */
1677 static const struct net_device_ops stmmac_netdev_ops = {
1678 .ndo_open = stmmac_open,
1679 .ndo_start_xmit = stmmac_xmit,
1680 .ndo_stop = stmmac_release,
1681 .ndo_change_mtu = stmmac_change_mtu,
1682 .ndo_fix_features = stmmac_fix_features,
1683 .ndo_set_rx_mode = stmmac_set_rx_mode,
1684 .ndo_tx_timeout = stmmac_tx_timeout,
1685 .ndo_do_ioctl = stmmac_ioctl,
1686 .ndo_set_config = stmmac_config,
1687 #ifdef CONFIG_NET_POLL_CONTROLLER
1688 .ndo_poll_controller = stmmac_poll_controller,
1689 #endif
1690 .ndo_set_mac_address = eth_mac_addr,
1694 * stmmac_probe - Initialization of the adapter .
1695 * @dev : device pointer
1696 * Description: The function initializes the network device structure for
1697 * the STMMAC driver. It also calls the low level routines
1698 * in order to init the HW (i.e. the DMA engine)
1700 static int stmmac_probe(struct net_device *dev)
1702 int ret = 0;
1703 struct stmmac_priv *priv = netdev_priv(dev);
1705 ether_setup(dev);
1707 dev->netdev_ops = &stmmac_netdev_ops;
1708 stmmac_set_ethtool_ops(dev);
1710 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1711 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
1712 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1713 #ifdef STMMAC_VLAN_TAG_USED
1714 /* Both mac100 and gmac support receive VLAN tag detection */
1715 dev->features |= NETIF_F_HW_VLAN_RX;
1716 #endif
1717 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1719 if (flow_ctrl)
1720 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1722 priv->pause = pause;
1723 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1725 /* Get the MAC address */
1726 priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1727 dev->dev_addr, 0);
1729 if (!is_valid_ether_addr(dev->dev_addr))
1730 pr_warning("\tno valid MAC address;"
1731 "please, use ifconfig or nwhwconfig!\n");
1733 spin_lock_init(&priv->lock);
1735 ret = register_netdev(dev);
1736 if (ret) {
1737 pr_err("%s: ERROR %i registering the device\n",
1738 __func__, ret);
1739 return -ENODEV;
1742 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1743 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1744 (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1746 return ret;
1750 * stmmac_mac_device_setup
1751 * @dev : device pointer
1752 * Description: select and initialise the mac device (mac100 or Gmac).
1754 static int stmmac_mac_device_setup(struct net_device *dev)
1756 struct stmmac_priv *priv = netdev_priv(dev);
1758 struct mac_device_info *device;
1760 if (priv->plat->has_gmac) {
1761 dev->priv_flags |= IFF_UNICAST_FLT;
1762 device = dwmac1000_setup(priv->ioaddr);
1763 } else {
1764 device = dwmac100_setup(priv->ioaddr);
1767 if (!device)
1768 return -ENOMEM;
1770 if (priv->plat->enh_desc) {
1771 device->desc = &enh_desc_ops;
1772 pr_info("\tEnhanced descriptor structure\n");
1773 } else
1774 device->desc = &ndesc_ops;
1776 priv->hw = device;
1778 if (device_can_wakeup(priv->device)) {
1779 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1780 enable_irq_wake(priv->wol_irq);
1783 return 0;
1787 * stmmac_dvr_probe
1788 * @pdev: platform device pointer
1789 * Description: the driver is initialized through platform_device.
1791 static int stmmac_dvr_probe(struct platform_device *pdev)
1793 int ret = 0;
1794 struct resource *res;
1795 void __iomem *addr = NULL;
1796 struct net_device *ndev = NULL;
1797 struct stmmac_priv *priv = NULL;
1798 struct plat_stmmacenet_data *plat_dat;
1800 pr_info("STMMAC driver:\n\tplatform registration... ");
1801 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1802 if (!res)
1803 return -ENODEV;
1804 pr_info("\tdone!\n");
1806 if (!request_mem_region(res->start, resource_size(res),
1807 pdev->name)) {
1808 pr_err("%s: ERROR: memory allocation failed"
1809 "cannot get the I/O addr 0x%x\n",
1810 __func__, (unsigned int)res->start);
1811 return -EBUSY;
1814 addr = ioremap(res->start, resource_size(res));
1815 if (!addr) {
1816 pr_err("%s: ERROR: memory mapping failed\n", __func__);
1817 ret = -ENOMEM;
1818 goto out_release_region;
1821 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1822 if (!ndev) {
1823 pr_err("%s: ERROR: allocating the device\n", __func__);
1824 ret = -ENOMEM;
1825 goto out_unmap;
1828 SET_NETDEV_DEV(ndev, &pdev->dev);
1830 /* Get the MAC information */
1831 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1832 if (ndev->irq == -ENXIO) {
1833 pr_err("%s: ERROR: MAC IRQ configuration "
1834 "information not found\n", __func__);
1835 ret = -ENXIO;
1836 goto out_free_ndev;
1839 priv = netdev_priv(ndev);
1840 priv->device = &(pdev->dev);
1841 priv->dev = ndev;
1842 plat_dat = pdev->dev.platform_data;
1844 priv->plat = plat_dat;
1846 priv->ioaddr = addr;
1848 /* PMT module is not integrated in all the MAC devices. */
1849 if (plat_dat->pmt) {
1850 pr_info("\tPMT module supported\n");
1851 device_set_wakeup_capable(&pdev->dev, 1);
1854 * On some platforms e.g. SPEAr the wake up irq differs from the mac irq
1855 * The external wake up irq can be passed through the platform code
1856 * named as "eth_wake_irq"
1858 * In case the wake up interrupt is not passed from the platform
1859 * so the driver will continue to use the mac irq (ndev->irq)
1861 priv->wol_irq = platform_get_irq_byname(pdev, "eth_wake_irq");
1862 if (priv->wol_irq == -ENXIO)
1863 priv->wol_irq = ndev->irq;
1866 platform_set_drvdata(pdev, ndev);
1868 /* Set the I/O base addr */
1869 ndev->base_addr = (unsigned long)addr;
1871 /* Custom initialisation */
1872 if (priv->plat->init) {
1873 ret = priv->plat->init(pdev);
1874 if (unlikely(ret))
1875 goto out_free_ndev;
1878 /* MAC HW revice detection */
1879 ret = stmmac_mac_device_setup(ndev);
1880 if (ret < 0)
1881 goto out_plat_exit;
1883 /* Network Device Registration */
1884 ret = stmmac_probe(ndev);
1885 if (ret < 0)
1886 goto out_plat_exit;
1888 /* Override with kernel parameters if supplied XXX CRS XXX
1889 * this needs to have multiple instances */
1890 if ((phyaddr >= 0) && (phyaddr <= 31))
1891 priv->plat->phy_addr = phyaddr;
1893 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1894 "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
1895 pdev->id, ndev->irq, addr);
1897 /* MDIO bus Registration */
1898 pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1899 ret = stmmac_mdio_register(ndev);
1900 if (ret < 0)
1901 goto out_unregister;
1902 pr_debug("registered!\n");
1904 #ifdef CONFIG_STMMAC_DEBUG_FS
1905 ret = stmmac_init_fs(ndev);
1906 if (ret < 0)
1907 pr_warning("\tFailed debugFS registration");
1908 #endif
1910 return 0;
1912 out_unregister:
1913 unregister_netdev(ndev);
1914 out_plat_exit:
1915 if (priv->plat->exit)
1916 priv->plat->exit(pdev);
1917 out_free_ndev:
1918 free_netdev(ndev);
1919 platform_set_drvdata(pdev, NULL);
1920 out_unmap:
1921 iounmap(addr);
1922 out_release_region:
1923 release_mem_region(res->start, resource_size(res));
1925 return ret;
1929 * stmmac_dvr_remove
1930 * @pdev: platform device pointer
1931 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1932 * changes the link status, releases the DMA descriptor rings,
1933 * unregisters the MDIO bus and unmaps the allocated memory.
1935 static int stmmac_dvr_remove(struct platform_device *pdev)
1937 struct net_device *ndev = platform_get_drvdata(pdev);
1938 struct stmmac_priv *priv = netdev_priv(ndev);
1939 struct resource *res;
1941 pr_info("%s:\n\tremoving driver", __func__);
1943 priv->hw->dma->stop_rx(priv->ioaddr);
1944 priv->hw->dma->stop_tx(priv->ioaddr);
1946 stmmac_disable_mac(priv->ioaddr);
1948 netif_carrier_off(ndev);
1950 stmmac_mdio_unregister(ndev);
1952 if (priv->plat->exit)
1953 priv->plat->exit(pdev);
1955 platform_set_drvdata(pdev, NULL);
1956 unregister_netdev(ndev);
1958 iounmap((void *)priv->ioaddr);
1959 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1960 release_mem_region(res->start, resource_size(res));
1962 #ifdef CONFIG_STMMAC_DEBUG_FS
1963 stmmac_exit_fs();
1964 #endif
1966 free_netdev(ndev);
1968 return 0;
1971 #ifdef CONFIG_PM
1972 static int stmmac_suspend(struct device *dev)
1974 struct net_device *ndev = dev_get_drvdata(dev);
1975 struct stmmac_priv *priv = netdev_priv(ndev);
1976 int dis_ic = 0;
1978 if (!ndev || !netif_running(ndev))
1979 return 0;
1981 spin_lock(&priv->lock);
1983 netif_device_detach(ndev);
1984 netif_stop_queue(ndev);
1985 if (priv->phydev)
1986 phy_stop(priv->phydev);
1988 #ifdef CONFIG_STMMAC_TIMER
1989 priv->tm->timer_stop();
1990 if (likely(priv->tm->enable))
1991 dis_ic = 1;
1992 #endif
1993 napi_disable(&priv->napi);
1995 /* Stop TX/RX DMA */
1996 priv->hw->dma->stop_tx(priv->ioaddr);
1997 priv->hw->dma->stop_rx(priv->ioaddr);
1998 /* Clear the Rx/Tx descriptors */
1999 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2000 dis_ic);
2001 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2003 /* Enable Power down mode by programming the PMT regs */
2004 if (device_may_wakeup(priv->device))
2005 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2006 else
2007 stmmac_disable_mac(priv->ioaddr);
2009 spin_unlock(&priv->lock);
2010 return 0;
2013 static int stmmac_resume(struct device *dev)
2015 struct net_device *ndev = dev_get_drvdata(dev);
2016 struct stmmac_priv *priv = netdev_priv(ndev);
2018 if (!netif_running(ndev))
2019 return 0;
2021 spin_lock(&priv->lock);
2023 /* Power Down bit, into the PM register, is cleared
2024 * automatically as soon as a magic packet or a Wake-up frame
2025 * is received. Anyway, it's better to manually clear
2026 * this bit because it can generate problems while resuming
2027 * from another devices (e.g. serial console). */
2028 if (device_may_wakeup(priv->device))
2029 priv->hw->mac->pmt(priv->ioaddr, 0);
2031 netif_device_attach(ndev);
2033 /* Enable the MAC and DMA */
2034 stmmac_enable_mac(priv->ioaddr);
2035 priv->hw->dma->start_tx(priv->ioaddr);
2036 priv->hw->dma->start_rx(priv->ioaddr);
2038 #ifdef CONFIG_STMMAC_TIMER
2039 if (likely(priv->tm->enable))
2040 priv->tm->timer_start(tmrate);
2041 #endif
2042 napi_enable(&priv->napi);
2044 if (priv->phydev)
2045 phy_start(priv->phydev);
2047 netif_start_queue(ndev);
2049 spin_unlock(&priv->lock);
2050 return 0;
2053 static int stmmac_freeze(struct device *dev)
2055 struct net_device *ndev = dev_get_drvdata(dev);
2057 if (!ndev || !netif_running(ndev))
2058 return 0;
2060 return stmmac_release(ndev);
2063 static int stmmac_restore(struct device *dev)
2065 struct net_device *ndev = dev_get_drvdata(dev);
2067 if (!ndev || !netif_running(ndev))
2068 return 0;
2070 return stmmac_open(ndev);
2073 static const struct dev_pm_ops stmmac_pm_ops = {
2074 .suspend = stmmac_suspend,
2075 .resume = stmmac_resume,
2076 .freeze = stmmac_freeze,
2077 .thaw = stmmac_restore,
2078 .restore = stmmac_restore,
2080 #else
2081 static const struct dev_pm_ops stmmac_pm_ops;
2082 #endif /* CONFIG_PM */
2084 static struct platform_driver stmmac_driver = {
2085 .probe = stmmac_dvr_probe,
2086 .remove = stmmac_dvr_remove,
2087 .driver = {
2088 .name = STMMAC_RESOURCE_NAME,
2089 .owner = THIS_MODULE,
2090 .pm = &stmmac_pm_ops,
2095 * stmmac_init_module - Entry point for the driver
2096 * Description: This function is the entry point for the driver.
2098 static int __init stmmac_init_module(void)
2100 int ret;
2102 ret = platform_driver_register(&stmmac_driver);
2103 return ret;
2107 * stmmac_cleanup_module - Cleanup routine for the driver
2108 * Description: This function is the cleanup routine for the driver.
2110 static void __exit stmmac_cleanup_module(void)
2112 platform_driver_unregister(&stmmac_driver);
2115 #ifndef MODULE
2116 static int __init stmmac_cmdline_opt(char *str)
2118 char *opt;
2120 if (!str || !*str)
2121 return -EINVAL;
2122 while ((opt = strsep(&str, ",")) != NULL) {
2123 if (!strncmp(opt, "debug:", 6)) {
2124 if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2125 goto err;
2126 } else if (!strncmp(opt, "phyaddr:", 8)) {
2127 if (strict_strtoul(opt + 8, 0,
2128 (unsigned long *)&phyaddr))
2129 goto err;
2130 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2131 if (strict_strtoul(opt + 11, 0,
2132 (unsigned long *)&dma_txsize))
2133 goto err;
2134 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2135 if (strict_strtoul(opt + 11, 0,
2136 (unsigned long *)&dma_rxsize))
2137 goto err;
2138 } else if (!strncmp(opt, "buf_sz:", 7)) {
2139 if (strict_strtoul(opt + 7, 0,
2140 (unsigned long *)&buf_sz))
2141 goto err;
2142 } else if (!strncmp(opt, "tc:", 3)) {
2143 if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2144 goto err;
2145 } else if (!strncmp(opt, "watchdog:", 9)) {
2146 if (strict_strtoul(opt + 9, 0,
2147 (unsigned long *)&watchdog))
2148 goto err;
2149 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2150 if (strict_strtoul(opt + 10, 0,
2151 (unsigned long *)&flow_ctrl))
2152 goto err;
2153 } else if (!strncmp(opt, "pause:", 6)) {
2154 if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2155 goto err;
2156 #ifdef CONFIG_STMMAC_TIMER
2157 } else if (!strncmp(opt, "tmrate:", 7)) {
2158 if (strict_strtoul(opt + 7, 0,
2159 (unsigned long *)&tmrate))
2160 goto err;
2161 #endif
2164 return 0;
2166 err:
2167 pr_err("%s: ERROR broken module parameter conversion", __func__);
2168 return -EINVAL;
2171 __setup("stmmaceth=", stmmac_cmdline_opt);
2172 #endif
2174 module_init(stmmac_init_module);
2175 module_exit(stmmac_cleanup_module);
2177 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2178 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2179 MODULE_LICENSE("GPL");