1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
65 #include "buffer_head_io.h"
67 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
69 struct ocfs2_file_private
*fp
;
71 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
76 mutex_init(&fp
->fp_mutex
);
77 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
78 file
->private_data
= fp
;
83 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
85 struct ocfs2_file_private
*fp
= file
->private_data
;
86 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
89 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
90 ocfs2_lock_res_free(&fp
->fp_flock
);
92 file
->private_data
= NULL
;
96 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
99 int mode
= file
->f_flags
;
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
103 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
104 file
->f_path
.dentry
->d_name
.len
,
105 file
->f_path
.dentry
->d_name
.name
, mode
);
107 if (file
->f_mode
& FMODE_WRITE
)
108 dquot_initialize(inode
);
110 spin_lock(&oi
->ip_lock
);
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
116 spin_unlock(&oi
->ip_lock
);
123 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
126 spin_unlock(&oi
->ip_lock
);
128 status
= ocfs2_init_file_private(inode
, file
);
131 * We want to set open count back if we're failing the
134 spin_lock(&oi
->ip_lock
);
136 spin_unlock(&oi
->ip_lock
);
143 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
145 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
147 spin_lock(&oi
->ip_lock
);
148 if (!--oi
->ip_open_count
)
149 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
151 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
153 file
->f_path
.dentry
->d_name
.len
,
154 file
->f_path
.dentry
->d_name
.name
,
156 spin_unlock(&oi
->ip_lock
);
158 ocfs2_free_file_private(inode
, file
);
163 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
165 return ocfs2_init_file_private(inode
, file
);
168 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
170 ocfs2_free_file_private(inode
, file
);
174 static int ocfs2_sync_file(struct file
*file
, int datasync
)
178 struct inode
*inode
= file
->f_mapping
->host
;
179 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
181 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
182 OCFS2_I(inode
)->ip_blkno
,
183 file
->f_path
.dentry
->d_name
.len
,
184 file
->f_path
.dentry
->d_name
.name
,
185 (unsigned long long)datasync
);
187 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
)) {
189 * We still have to flush drive's caches to get data to the
192 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
193 blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
197 journal
= osb
->journal
->j_journal
;
198 err
= jbd2_journal_force_commit(journal
);
204 return (err
< 0) ? -EIO
: 0;
207 int ocfs2_should_update_atime(struct inode
*inode
,
208 struct vfsmount
*vfsmnt
)
211 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
213 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
216 if ((inode
->i_flags
& S_NOATIME
) ||
217 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
221 * We can be called with no vfsmnt structure - NFSD will
224 * Note that our action here is different than touch_atime() -
225 * if we can't tell whether this is a noatime mount, then we
226 * don't know whether to trust the value of s_atime_quantum.
231 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
232 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
235 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
236 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
237 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
244 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
250 int ocfs2_update_inode_atime(struct inode
*inode
,
251 struct buffer_head
*bh
)
254 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
256 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
258 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
259 if (IS_ERR(handle
)) {
260 ret
= PTR_ERR(handle
);
265 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
266 OCFS2_JOURNAL_ACCESS_WRITE
);
273 * Don't use ocfs2_mark_inode_dirty() here as we don't always
274 * have i_mutex to guard against concurrent changes to other
277 inode
->i_atime
= CURRENT_TIME
;
278 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
279 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
280 ocfs2_journal_dirty(handle
, bh
);
283 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
288 static int ocfs2_set_inode_size(handle_t
*handle
,
290 struct buffer_head
*fe_bh
,
295 i_size_write(inode
, new_i_size
);
296 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
297 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
299 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
309 int ocfs2_simple_size_update(struct inode
*inode
,
310 struct buffer_head
*di_bh
,
314 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
315 handle_t
*handle
= NULL
;
317 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
318 if (IS_ERR(handle
)) {
319 ret
= PTR_ERR(handle
);
324 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
329 ocfs2_commit_trans(osb
, handle
);
334 static int ocfs2_cow_file_pos(struct inode
*inode
,
335 struct buffer_head
*fe_bh
,
339 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
340 unsigned int num_clusters
= 0;
341 unsigned int ext_flags
= 0;
344 * If the new offset is aligned to the range of the cluster, there is
345 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
348 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
351 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
352 &num_clusters
, &ext_flags
);
358 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
361 return ocfs2_refcount_cow(inode
, NULL
, fe_bh
, cpos
, 1, cpos
+1);
367 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
369 struct buffer_head
*fe_bh
,
374 struct ocfs2_dinode
*di
;
378 * We need to CoW the cluster contains the offset if it is reflinked
379 * since we will call ocfs2_zero_range_for_truncate later which will
380 * write "0" from offset to the end of the cluster.
382 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
388 /* TODO: This needs to actually orphan the inode in this
391 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
392 if (IS_ERR(handle
)) {
393 status
= PTR_ERR(handle
);
398 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
399 OCFS2_JOURNAL_ACCESS_WRITE
);
406 * Do this before setting i_size.
408 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
409 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
416 i_size_write(inode
, new_i_size
);
417 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
419 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
420 di
->i_size
= cpu_to_le64(new_i_size
);
421 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
422 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
424 ocfs2_journal_dirty(handle
, fe_bh
);
427 ocfs2_commit_trans(osb
, handle
);
432 static int ocfs2_truncate_file(struct inode
*inode
,
433 struct buffer_head
*di_bh
,
437 struct ocfs2_dinode
*fe
= NULL
;
438 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
440 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
441 * already validated it */
442 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
444 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
445 (unsigned long long)le64_to_cpu(fe
->i_size
),
446 (unsigned long long)new_i_size
);
448 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
449 "Inode %llu, inode i_size = %lld != di "
450 "i_size = %llu, i_flags = 0x%x\n",
451 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
453 (unsigned long long)le64_to_cpu(fe
->i_size
),
454 le32_to_cpu(fe
->i_flags
));
456 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
457 trace_ocfs2_truncate_file_error(
458 (unsigned long long)le64_to_cpu(fe
->i_size
),
459 (unsigned long long)new_i_size
);
465 /* lets handle the simple truncate cases before doing any more
466 * cluster locking. */
467 if (new_i_size
== le64_to_cpu(fe
->i_size
))
470 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
472 ocfs2_resv_discard(&osb
->osb_la_resmap
,
473 &OCFS2_I(inode
)->ip_la_data_resv
);
476 * The inode lock forced other nodes to sync and drop their
477 * pages, which (correctly) happens even if we have a truncate
478 * without allocation change - ocfs2 cluster sizes can be much
479 * greater than page size, so we have to truncate them
482 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
483 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
485 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
486 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
487 i_size_read(inode
), 1);
491 goto bail_unlock_sem
;
494 /* alright, we're going to need to do a full blown alloc size
495 * change. Orphan the inode so that recovery can complete the
496 * truncate if necessary. This does the task of marking
498 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
501 goto bail_unlock_sem
;
504 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
507 goto bail_unlock_sem
;
510 /* TODO: orphan dir cleanup here. */
512 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
515 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
516 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
522 * extend file allocation only here.
523 * we'll update all the disk stuff, and oip->alloc_size
525 * expect stuff to be locked, a transaction started and enough data /
526 * metadata reservations in the contexts.
528 * Will return -EAGAIN, and a reason if a restart is needed.
529 * If passed in, *reason will always be set, even in error.
531 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
536 struct buffer_head
*fe_bh
,
538 struct ocfs2_alloc_context
*data_ac
,
539 struct ocfs2_alloc_context
*meta_ac
,
540 enum ocfs2_alloc_restarted
*reason_ret
)
543 struct ocfs2_extent_tree et
;
545 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
546 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
547 clusters_to_add
, mark_unwritten
,
548 data_ac
, meta_ac
, reason_ret
);
553 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
554 u32 clusters_to_add
, int mark_unwritten
)
557 int restart_func
= 0;
560 struct buffer_head
*bh
= NULL
;
561 struct ocfs2_dinode
*fe
= NULL
;
562 handle_t
*handle
= NULL
;
563 struct ocfs2_alloc_context
*data_ac
= NULL
;
564 struct ocfs2_alloc_context
*meta_ac
= NULL
;
565 enum ocfs2_alloc_restarted why
;
566 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
567 struct ocfs2_extent_tree et
;
571 * This function only exists for file systems which don't
574 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
576 status
= ocfs2_read_inode_block(inode
, &bh
);
581 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
584 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
586 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
587 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
594 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
,
596 handle
= ocfs2_start_trans(osb
, credits
);
597 if (IS_ERR(handle
)) {
598 status
= PTR_ERR(handle
);
604 restarted_transaction
:
605 trace_ocfs2_extend_allocation(
606 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
607 (unsigned long long)i_size_read(inode
),
608 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
611 status
= dquot_alloc_space_nodirty(inode
,
612 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
617 /* reserve a write to the file entry early on - that we if we
618 * run out of credits in the allocation path, we can still
620 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
621 OCFS2_JOURNAL_ACCESS_WRITE
);
627 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
629 status
= ocfs2_add_inode_data(osb
,
639 if ((status
< 0) && (status
!= -EAGAIN
)) {
640 if (status
!= -ENOSPC
)
645 ocfs2_journal_dirty(handle
, bh
);
647 spin_lock(&OCFS2_I(inode
)->ip_lock
);
648 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
649 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
650 /* Release unused quota reservation */
651 dquot_free_space(inode
,
652 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
655 if (why
!= RESTART_NONE
&& clusters_to_add
) {
656 if (why
== RESTART_META
) {
660 BUG_ON(why
!= RESTART_TRANS
);
662 /* TODO: This can be more intelligent. */
663 credits
= ocfs2_calc_extend_credits(osb
->sb
,
666 status
= ocfs2_extend_trans(handle
, credits
);
668 /* handle still has to be committed at
674 goto restarted_transaction
;
678 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
679 le32_to_cpu(fe
->i_clusters
),
680 (unsigned long long)le64_to_cpu(fe
->i_size
),
681 OCFS2_I(inode
)->ip_clusters
,
682 (unsigned long long)i_size_read(inode
));
685 if (status
< 0 && did_quota
)
686 dquot_free_space(inode
,
687 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
689 ocfs2_commit_trans(osb
, handle
);
693 ocfs2_free_alloc_context(data_ac
);
697 ocfs2_free_alloc_context(meta_ac
);
700 if ((!status
) && restart_func
) {
711 * While a write will already be ordering the data, a truncate will not.
712 * Thus, we need to explicitly order the zeroed pages.
714 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
)
716 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
717 handle_t
*handle
= NULL
;
720 if (!ocfs2_should_order_data(inode
))
723 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
724 if (IS_ERR(handle
)) {
730 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
737 ocfs2_commit_trans(osb
, handle
);
738 handle
= ERR_PTR(ret
);
743 /* Some parts of this taken from generic_cont_expand, which turned out
744 * to be too fragile to do exactly what we need without us having to
745 * worry about recursive locking in ->write_begin() and ->write_end(). */
746 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
749 struct address_space
*mapping
= inode
->i_mapping
;
751 unsigned long index
= abs_from
>> PAGE_CACHE_SHIFT
;
752 handle_t
*handle
= NULL
;
754 unsigned zero_from
, zero_to
, block_start
, block_end
;
756 BUG_ON(abs_from
>= abs_to
);
757 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_CACHE_SHIFT
));
758 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
760 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
767 /* Get the offsets within the page that we want to zero */
768 zero_from
= abs_from
& (PAGE_CACHE_SIZE
- 1);
769 zero_to
= abs_to
& (PAGE_CACHE_SIZE
- 1);
771 zero_to
= PAGE_CACHE_SIZE
;
773 trace_ocfs2_write_zero_page(
774 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
775 (unsigned long long)abs_from
,
776 (unsigned long long)abs_to
,
777 index
, zero_from
, zero_to
);
779 /* We know that zero_from is block aligned */
780 for (block_start
= zero_from
; block_start
< zero_to
;
781 block_start
= block_end
) {
782 block_end
= block_start
+ (1 << inode
->i_blkbits
);
785 * block_start is block-aligned. Bump it by one to force
786 * __block_write_begin and block_commit_write to zero the
789 ret
= __block_write_begin(page
, block_start
+ 1, 0,
797 handle
= ocfs2_zero_start_ordered_transaction(inode
);
798 if (IS_ERR(handle
)) {
799 ret
= PTR_ERR(handle
);
805 /* must not update i_size! */
806 ret
= block_commit_write(page
, block_start
+ 1,
815 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
819 page_cache_release(page
);
825 * Find the next range to zero. We do this in terms of bytes because
826 * that's what ocfs2_zero_extend() wants, and it is dealing with the
827 * pagecache. We may return multiple extents.
829 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
830 * needs to be zeroed. range_start and range_end return the next zeroing
831 * range. A subsequent call should pass the previous range_end as its
832 * zero_start. If range_end is 0, there's nothing to do.
834 * Unwritten extents are skipped over. Refcounted extents are CoWd.
836 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
837 struct buffer_head
*di_bh
,
838 u64 zero_start
, u64 zero_end
,
839 u64
*range_start
, u64
*range_end
)
841 int rc
= 0, needs_cow
= 0;
842 u32 p_cpos
, zero_clusters
= 0;
844 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
845 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
846 unsigned int num_clusters
= 0;
847 unsigned int ext_flags
= 0;
849 while (zero_cpos
< last_cpos
) {
850 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
851 &num_clusters
, &ext_flags
);
857 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
858 zero_clusters
= num_clusters
;
859 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
864 zero_cpos
+= num_clusters
;
866 if (!zero_clusters
) {
871 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
872 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
873 &p_cpos
, &num_clusters
,
880 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
882 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
884 zero_clusters
+= num_clusters
;
886 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
887 zero_clusters
= last_cpos
- zero_cpos
;
890 rc
= ocfs2_refcount_cow(inode
, NULL
, di_bh
, zero_cpos
,
891 zero_clusters
, UINT_MAX
);
898 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
899 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
900 zero_cpos
+ zero_clusters
);
907 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
908 * has made sure that the entire range needs zeroing.
910 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
915 u64 zero_pos
= range_start
;
917 trace_ocfs2_zero_extend_range(
918 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
919 (unsigned long long)range_start
,
920 (unsigned long long)range_end
);
921 BUG_ON(range_start
>= range_end
);
923 while (zero_pos
< range_end
) {
924 next_pos
= (zero_pos
& PAGE_CACHE_MASK
) + PAGE_CACHE_SIZE
;
925 if (next_pos
> range_end
)
926 next_pos
= range_end
;
927 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
);
935 * Very large extends have the potential to lock up
936 * the cpu for extended periods of time.
944 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
948 u64 zero_start
, range_start
= 0, range_end
= 0;
949 struct super_block
*sb
= inode
->i_sb
;
951 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
952 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
953 (unsigned long long)zero_start
,
954 (unsigned long long)i_size_read(inode
));
955 while (zero_start
< zero_to_size
) {
956 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
967 if (range_start
< zero_start
)
968 range_start
= zero_start
;
969 if (range_end
> zero_to_size
)
970 range_end
= zero_to_size
;
972 ret
= ocfs2_zero_extend_range(inode
, range_start
,
978 zero_start
= range_end
;
984 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
985 u64 new_i_size
, u64 zero_to
)
989 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
992 * Only quota files call this without a bh, and they can't be
995 BUG_ON(!di_bh
&& (oi
->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
));
996 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
998 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
999 if (clusters_to_add
< oi
->ip_clusters
)
1000 clusters_to_add
= 0;
1002 clusters_to_add
-= oi
->ip_clusters
;
1004 if (clusters_to_add
) {
1005 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1006 clusters_to_add
, 0);
1014 * Call this even if we don't add any clusters to the tree. We
1015 * still need to zero the area between the old i_size and the
1018 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1026 static int ocfs2_extend_file(struct inode
*inode
,
1027 struct buffer_head
*di_bh
,
1031 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1035 /* setattr sometimes calls us like this. */
1036 if (new_i_size
== 0)
1039 if (i_size_read(inode
) == new_i_size
)
1041 BUG_ON(new_i_size
< i_size_read(inode
));
1044 * The alloc sem blocks people in read/write from reading our
1045 * allocation until we're done changing it. We depend on
1046 * i_mutex to block other extend/truncate calls while we're
1047 * here. We even have to hold it for sparse files because there
1048 * might be some tail zeroing.
1050 down_write(&oi
->ip_alloc_sem
);
1052 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1054 * We can optimize small extends by keeping the inodes
1057 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1058 up_write(&oi
->ip_alloc_sem
);
1059 goto out_update_size
;
1062 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1064 up_write(&oi
->ip_alloc_sem
);
1070 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1071 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1073 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1076 up_write(&oi
->ip_alloc_sem
);
1084 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1092 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1094 int status
= 0, size_change
;
1095 struct inode
*inode
= dentry
->d_inode
;
1096 struct super_block
*sb
= inode
->i_sb
;
1097 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1098 struct buffer_head
*bh
= NULL
;
1099 handle_t
*handle
= NULL
;
1100 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1103 trace_ocfs2_setattr(inode
, dentry
,
1104 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1105 dentry
->d_name
.len
, dentry
->d_name
.name
,
1106 attr
->ia_valid
, attr
->ia_mode
,
1107 attr
->ia_uid
, attr
->ia_gid
);
1109 /* ensuring we don't even attempt to truncate a symlink */
1110 if (S_ISLNK(inode
->i_mode
))
1111 attr
->ia_valid
&= ~ATTR_SIZE
;
1113 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1114 | ATTR_GID | ATTR_UID | ATTR_MODE)
1115 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1118 status
= inode_change_ok(inode
, attr
);
1122 if (is_quota_modification(inode
, attr
))
1123 dquot_initialize(inode
);
1124 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1126 status
= ocfs2_rw_lock(inode
, 1);
1133 status
= ocfs2_inode_lock(inode
, &bh
, 1);
1135 if (status
!= -ENOENT
)
1137 goto bail_unlock_rw
;
1140 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1141 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1145 if (i_size_read(inode
) > attr
->ia_size
) {
1146 if (ocfs2_should_order_data(inode
)) {
1147 status
= ocfs2_begin_ordered_truncate(inode
,
1152 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1154 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1156 if (status
!= -ENOSPC
)
1163 if ((attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
1164 (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
1166 * Gather pointers to quota structures so that allocation /
1167 * freeing of quota structures happens here and not inside
1168 * dquot_transfer() where we have problems with lock ordering
1170 if (attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
1171 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1172 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1173 transfer_to
[USRQUOTA
] = dqget(sb
, attr
->ia_uid
,
1175 if (!transfer_to
[USRQUOTA
]) {
1180 if (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
1181 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1182 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1183 transfer_to
[GRPQUOTA
] = dqget(sb
, attr
->ia_gid
,
1185 if (!transfer_to
[GRPQUOTA
]) {
1190 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1191 2 * ocfs2_quota_trans_credits(sb
));
1192 if (IS_ERR(handle
)) {
1193 status
= PTR_ERR(handle
);
1197 status
= __dquot_transfer(inode
, transfer_to
);
1201 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1202 if (IS_ERR(handle
)) {
1203 status
= PTR_ERR(handle
);
1210 * This will intentionally not wind up calling truncate_setsize(),
1211 * since all the work for a size change has been done above.
1212 * Otherwise, we could get into problems with truncate as
1213 * ip_alloc_sem is used there to protect against i_size
1216 * XXX: this means the conditional below can probably be removed.
1218 if ((attr
->ia_valid
& ATTR_SIZE
) &&
1219 attr
->ia_size
!= i_size_read(inode
)) {
1220 status
= vmtruncate(inode
, attr
->ia_size
);
1227 setattr_copy(inode
, attr
);
1228 mark_inode_dirty(inode
);
1230 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1235 ocfs2_commit_trans(osb
, handle
);
1237 ocfs2_inode_unlock(inode
, 1);
1240 ocfs2_rw_unlock(inode
, 1);
1244 /* Release quota pointers in case we acquired them */
1245 for (qtype
= 0; qtype
< MAXQUOTAS
; qtype
++)
1246 dqput(transfer_to
[qtype
]);
1248 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1249 status
= ocfs2_acl_chmod(inode
);
1257 int ocfs2_getattr(struct vfsmount
*mnt
,
1258 struct dentry
*dentry
,
1261 struct inode
*inode
= dentry
->d_inode
;
1262 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1263 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1266 err
= ocfs2_inode_revalidate(dentry
);
1273 generic_fillattr(inode
, stat
);
1275 /* We set the blksize from the cluster size for performance */
1276 stat
->blksize
= osb
->s_clustersize
;
1282 int ocfs2_permission(struct inode
*inode
, int mask
, unsigned int flags
)
1286 if (flags
& IPERM_FLAG_RCU
)
1289 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1296 ret
= generic_permission(inode
, mask
, flags
, ocfs2_check_acl
);
1298 ocfs2_inode_unlock(inode
, 0);
1303 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1304 struct buffer_head
*bh
)
1308 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1309 struct ocfs2_dinode
*di
;
1311 trace_ocfs2_write_remove_suid(
1312 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1315 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1316 if (IS_ERR(handle
)) {
1317 ret
= PTR_ERR(handle
);
1322 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1323 OCFS2_JOURNAL_ACCESS_WRITE
);
1329 inode
->i_mode
&= ~S_ISUID
;
1330 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1331 inode
->i_mode
&= ~S_ISGID
;
1333 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1334 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1336 ocfs2_journal_dirty(handle
, bh
);
1339 ocfs2_commit_trans(osb
, handle
);
1345 * Will look for holes and unwritten extents in the range starting at
1346 * pos for count bytes (inclusive).
1348 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1352 unsigned int extent_flags
;
1353 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1354 struct super_block
*sb
= inode
->i_sb
;
1356 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1357 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1360 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1367 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1372 if (extent_len
> clusters
)
1373 extent_len
= clusters
;
1375 clusters
-= extent_len
;
1382 static int ocfs2_write_remove_suid(struct inode
*inode
)
1385 struct buffer_head
*bh
= NULL
;
1387 ret
= ocfs2_read_inode_block(inode
, &bh
);
1393 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1400 * Allocate enough extents to cover the region starting at byte offset
1401 * start for len bytes. Existing extents are skipped, any extents
1402 * added are marked as "unwritten".
1404 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1408 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1409 u64 end
= start
+ len
;
1410 struct buffer_head
*di_bh
= NULL
;
1412 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1413 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1420 * Nothing to do if the requested reservation range
1421 * fits within the inode.
1423 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1426 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1434 * We consider both start and len to be inclusive.
1436 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1437 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1441 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1449 * Hole or existing extent len can be arbitrary, so
1450 * cap it to our own allocation request.
1452 if (alloc_size
> clusters
)
1453 alloc_size
= clusters
;
1457 * We already have an allocation at this
1458 * region so we can safely skip it.
1463 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1472 clusters
-= alloc_size
;
1483 * Truncate a byte range, avoiding pages within partial clusters. This
1484 * preserves those pages for the zeroing code to write to.
1486 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1489 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1491 struct address_space
*mapping
= inode
->i_mapping
;
1493 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1494 end
= byte_start
+ byte_len
;
1495 end
= end
& ~(osb
->s_clustersize
- 1);
1498 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1499 truncate_inode_pages_range(mapping
, start
, end
- 1);
1503 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1507 u64 tmpend
, end
= start
+ len
;
1508 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1509 unsigned int csize
= osb
->s_clustersize
;
1513 * The "start" and "end" values are NOT necessarily part of
1514 * the range whose allocation is being deleted. Rather, this
1515 * is what the user passed in with the request. We must zero
1516 * partial clusters here. There's no need to worry about
1517 * physical allocation - the zeroing code knows to skip holes.
1519 trace_ocfs2_zero_partial_clusters(
1520 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1521 (unsigned long long)start
, (unsigned long long)end
);
1524 * If both edges are on a cluster boundary then there's no
1525 * zeroing required as the region is part of the allocation to
1528 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1531 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1532 if (IS_ERR(handle
)) {
1533 ret
= PTR_ERR(handle
);
1539 * We want to get the byte offset of the end of the 1st cluster.
1541 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1545 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start
,
1546 (unsigned long long)tmpend
);
1548 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1554 * This may make start and end equal, but the zeroing
1555 * code will skip any work in that case so there's no
1556 * need to catch it up here.
1558 start
= end
& ~(osb
->s_clustersize
- 1);
1560 trace_ocfs2_zero_partial_clusters_range2(
1561 (unsigned long long)start
, (unsigned long long)end
);
1563 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1568 ocfs2_commit_trans(osb
, handle
);
1573 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1576 struct ocfs2_extent_rec
*rec
= NULL
;
1578 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1580 rec
= &el
->l_recs
[i
];
1582 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1590 * Helper to calculate the punching pos and length in one run, we handle the
1591 * following three cases in order:
1593 * - remove the entire record
1594 * - remove a partial record
1595 * - no record needs to be removed (hole-punching completed)
1597 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1598 struct ocfs2_extent_list
*el
,
1599 struct ocfs2_extent_rec
*rec
,
1600 u32 trunc_start
, u32
*trunc_cpos
,
1601 u32
*trunc_len
, u32
*trunc_end
,
1602 u64
*blkno
, int *done
)
1607 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1609 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1611 * remove an entire extent record.
1613 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1615 * Skip holes if any.
1617 if (range
< *trunc_end
)
1619 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1620 *blkno
= le64_to_cpu(rec
->e_blkno
);
1621 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1622 } else if (range
> trunc_start
) {
1624 * remove a partial extent record, which means we're
1625 * removing the last extent record.
1627 *trunc_cpos
= trunc_start
;
1631 if (range
< *trunc_end
)
1633 *trunc_len
= *trunc_end
- trunc_start
;
1634 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1635 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1636 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1637 *trunc_end
= trunc_start
;
1640 * It may have two following possibilities:
1642 * - last record has been removed
1643 * - trunc_start was within a hole
1645 * both two cases mean the completion of hole punching.
1653 static int ocfs2_remove_inode_range(struct inode
*inode
,
1654 struct buffer_head
*di_bh
, u64 byte_start
,
1657 int ret
= 0, flags
= 0, done
= 0, i
;
1658 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1660 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1661 struct ocfs2_cached_dealloc_ctxt dealloc
;
1662 struct address_space
*mapping
= inode
->i_mapping
;
1663 struct ocfs2_extent_tree et
;
1664 struct ocfs2_path
*path
= NULL
;
1665 struct ocfs2_extent_list
*el
= NULL
;
1666 struct ocfs2_extent_rec
*rec
= NULL
;
1667 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1668 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1670 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1671 ocfs2_init_dealloc_ctxt(&dealloc
);
1673 trace_ocfs2_remove_inode_range(
1674 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1675 (unsigned long long)byte_start
,
1676 (unsigned long long)byte_len
);
1681 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1682 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1683 byte_start
+ byte_len
, 0);
1689 * There's no need to get fancy with the page cache
1690 * truncate of an inline-data inode. We're talking
1691 * about less than a page here, which will be cached
1692 * in the dinode buffer anyway.
1694 unmap_mapping_range(mapping
, 0, 0, 0);
1695 truncate_inode_pages(mapping
, 0);
1700 * For reflinks, we may need to CoW 2 clusters which might be
1701 * partially zero'd later, if hole's start and end offset were
1702 * within one cluster(means is not exactly aligned to clustersize).
1705 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) {
1707 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1713 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1720 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1721 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1722 cluster_in_el
= trunc_end
;
1724 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1730 path
= ocfs2_new_path_from_et(&et
);
1737 while (trunc_end
> trunc_start
) {
1739 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1746 el
= path_leaf_el(path
);
1748 i
= ocfs2_find_rec(el
, trunc_end
);
1750 * Need to go to previous extent block.
1753 if (path
->p_tree_depth
== 0)
1756 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1765 * We've reached the leftmost extent block,
1766 * it's safe to leave.
1768 if (cluster_in_el
== 0)
1772 * The 'pos' searched for previous extent block is
1773 * always one cluster less than actual trunc_end.
1775 trunc_end
= cluster_in_el
+ 1;
1777 ocfs2_reinit_path(path
, 1);
1782 rec
= &el
->l_recs
[i
];
1784 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1785 &trunc_len
, &trunc_end
, &blkno
, &done
);
1789 flags
= rec
->e_flags
;
1790 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1792 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1793 phys_cpos
, trunc_len
, flags
,
1794 &dealloc
, refcount_loc
);
1800 cluster_in_el
= trunc_end
;
1802 ocfs2_reinit_path(path
, 1);
1805 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1808 ocfs2_schedule_truncate_log_flush(osb
, 1);
1809 ocfs2_run_deallocs(osb
, &dealloc
);
1815 * Parts of this function taken from xfs_change_file_space()
1817 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1818 loff_t f_pos
, unsigned int cmd
,
1819 struct ocfs2_space_resv
*sr
,
1825 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1826 struct buffer_head
*di_bh
= NULL
;
1828 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1830 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1833 mutex_lock(&inode
->i_mutex
);
1836 * This prevents concurrent writes on other nodes
1838 ret
= ocfs2_rw_lock(inode
, 1);
1844 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1850 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1852 goto out_inode_unlock
;
1855 switch (sr
->l_whence
) {
1856 case 0: /*SEEK_SET*/
1858 case 1: /*SEEK_CUR*/
1859 sr
->l_start
+= f_pos
;
1861 case 2: /*SEEK_END*/
1862 sr
->l_start
+= i_size_read(inode
);
1866 goto out_inode_unlock
;
1870 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1873 || sr
->l_start
> max_off
1874 || (sr
->l_start
+ llen
) < 0
1875 || (sr
->l_start
+ llen
) > max_off
) {
1877 goto out_inode_unlock
;
1879 size
= sr
->l_start
+ sr
->l_len
;
1881 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1882 if (sr
->l_len
<= 0) {
1884 goto out_inode_unlock
;
1888 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1889 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1892 goto out_inode_unlock
;
1896 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1898 case OCFS2_IOC_RESVSP
:
1899 case OCFS2_IOC_RESVSP64
:
1901 * This takes unsigned offsets, but the signed ones we
1902 * pass have been checked against overflow above.
1904 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1907 case OCFS2_IOC_UNRESVSP
:
1908 case OCFS2_IOC_UNRESVSP64
:
1909 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1915 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1918 goto out_inode_unlock
;
1922 * We update c/mtime for these changes
1924 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1925 if (IS_ERR(handle
)) {
1926 ret
= PTR_ERR(handle
);
1928 goto out_inode_unlock
;
1931 if (change_size
&& i_size_read(inode
) < size
)
1932 i_size_write(inode
, size
);
1934 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1935 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1939 ocfs2_commit_trans(osb
, handle
);
1943 ocfs2_inode_unlock(inode
, 1);
1945 ocfs2_rw_unlock(inode
, 1);
1948 mutex_unlock(&inode
->i_mutex
);
1952 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1953 struct ocfs2_space_resv
*sr
)
1955 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1956 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1958 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1959 !ocfs2_writes_unwritten_extents(osb
))
1961 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1962 !ocfs2_sparse_alloc(osb
))
1965 if (!S_ISREG(inode
->i_mode
))
1968 if (!(file
->f_mode
& FMODE_WRITE
))
1971 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1974 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
1977 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1978 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1979 struct ocfs2_space_resv sr
;
1980 int change_size
= 1;
1981 int cmd
= OCFS2_IOC_RESVSP64
;
1983 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
1985 if (!ocfs2_writes_unwritten_extents(osb
))
1988 if (mode
& FALLOC_FL_KEEP_SIZE
)
1991 if (mode
& FALLOC_FL_PUNCH_HOLE
)
1992 cmd
= OCFS2_IOC_UNRESVSP64
;
1995 sr
.l_start
= (s64
)offset
;
1996 sr
.l_len
= (s64
)len
;
1998 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2002 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2006 unsigned int extent_flags
;
2007 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2008 struct super_block
*sb
= inode
->i_sb
;
2010 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2011 !(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) ||
2012 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2015 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2016 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2019 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2026 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2031 if (extent_len
> clusters
)
2032 extent_len
= clusters
;
2034 clusters
-= extent_len
;
2041 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
2043 loff_t pos
, size_t count
,
2047 struct buffer_head
*di_bh
= NULL
;
2048 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2050 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2052 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2060 ret
= ocfs2_refcount_cow(inode
, file
, di_bh
, cpos
, clusters
, UINT_MAX
);
2068 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2075 int ret
= 0, meta_level
= 0;
2076 struct dentry
*dentry
= file
->f_path
.dentry
;
2077 struct inode
*inode
= dentry
->d_inode
;
2078 loff_t saved_pos
= 0, end
;
2081 * We start with a read level meta lock and only jump to an ex
2082 * if we need to make modifications here.
2085 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2092 /* Clear suid / sgid if necessary. We do this here
2093 * instead of later in the write path because
2094 * remove_suid() calls ->setattr without any hint that
2095 * we may have already done our cluster locking. Since
2096 * ocfs2_setattr() *must* take cluster locks to
2097 * proceeed, this will lead us to recursively lock the
2098 * inode. There's also the dinode i_size state which
2099 * can be lost via setattr during extending writes (we
2100 * set inode->i_size at the end of a write. */
2101 if (should_remove_suid(dentry
)) {
2102 if (meta_level
== 0) {
2103 ocfs2_inode_unlock(inode
, meta_level
);
2108 ret
= ocfs2_write_remove_suid(inode
);
2115 /* work on a copy of ppos until we're sure that we won't have
2116 * to recalculate it due to relocking. */
2118 saved_pos
= i_size_read(inode
);
2122 end
= saved_pos
+ count
;
2124 ret
= ocfs2_check_range_for_refcount(inode
, saved_pos
, count
);
2126 ocfs2_inode_unlock(inode
, meta_level
);
2129 ret
= ocfs2_prepare_inode_for_refcount(inode
,
2146 * Skip the O_DIRECT checks if we don't need
2149 if (!direct_io
|| !(*direct_io
))
2153 * There's no sane way to do direct writes to an inode
2156 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
2162 * Allowing concurrent direct writes means
2163 * i_size changes wouldn't be synchronized, so
2164 * one node could wind up truncating another
2167 if (end
> i_size_read(inode
)) {
2173 * We don't fill holes during direct io, so
2174 * check for them here. If any are found, the
2175 * caller will have to retake some cluster
2176 * locks and initiate the io as buffered.
2178 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
2191 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2192 saved_pos
, appending
, count
,
2193 direct_io
, has_refcount
);
2195 if (meta_level
>= 0)
2196 ocfs2_inode_unlock(inode
, meta_level
);
2202 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
2203 const struct iovec
*iov
,
2204 unsigned long nr_segs
,
2207 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
2208 int can_do_direct
, has_refcount
= 0;
2209 ssize_t written
= 0;
2210 size_t ocount
; /* original count */
2211 size_t count
; /* after file limit checks */
2212 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
2214 struct file
*file
= iocb
->ki_filp
;
2215 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2216 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2217 int full_coherency
= !(osb
->s_mount_opt
&
2218 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2220 trace_ocfs2_file_aio_write(inode
, file
, file
->f_path
.dentry
,
2221 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2222 file
->f_path
.dentry
->d_name
.len
,
2223 file
->f_path
.dentry
->d_name
.name
,
2224 (unsigned int)nr_segs
);
2226 if (iocb
->ki_left
== 0)
2229 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2231 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
2232 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
2234 mutex_lock(&inode
->i_mutex
);
2236 ocfs2_iocb_clear_sem_locked(iocb
);
2239 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2241 down_read(&inode
->i_alloc_sem
);
2243 /* communicate with ocfs2_dio_end_io */
2244 ocfs2_iocb_set_sem_locked(iocb
);
2248 * Concurrent O_DIRECT writes are allowed with
2249 * mount_option "coherency=buffered".
2251 rw_level
= (!direct_io
|| full_coherency
);
2253 ret
= ocfs2_rw_lock(inode
, rw_level
);
2260 * O_DIRECT writes with "coherency=full" need to take EX cluster
2261 * inode_lock to guarantee coherency.
2263 if (direct_io
&& full_coherency
) {
2265 * We need to take and drop the inode lock to force
2266 * other nodes to drop their caches. Buffered I/O
2267 * already does this in write_begin().
2269 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2275 ocfs2_inode_unlock(inode
, 1);
2278 can_do_direct
= direct_io
;
2279 ret
= ocfs2_prepare_inode_for_write(file
, ppos
,
2280 iocb
->ki_left
, appending
,
2281 &can_do_direct
, &has_refcount
);
2288 * We can't complete the direct I/O as requested, fall back to
2291 if (direct_io
&& !can_do_direct
) {
2292 ocfs2_rw_unlock(inode
, rw_level
);
2293 up_read(&inode
->i_alloc_sem
);
2303 * To later detect whether a journal commit for sync writes is
2304 * necessary, we sample i_size, and cluster count here.
2306 old_size
= i_size_read(inode
);
2307 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
2309 /* communicate with ocfs2_dio_end_io */
2310 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2312 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
2318 ret
= generic_write_checks(file
, ppos
, &count
,
2319 S_ISBLK(inode
->i_mode
));
2324 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
2325 ppos
, count
, ocount
);
2331 current
->backing_dev_info
= file
->f_mapping
->backing_dev_info
;
2332 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
, *ppos
,
2334 current
->backing_dev_info
= NULL
;
2338 /* buffered aio wouldn't have proper lock coverage today */
2339 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2341 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) || IS_SYNC(inode
) ||
2342 ((file
->f_flags
& O_DIRECT
) && !direct_io
)) {
2343 ret
= filemap_fdatawrite_range(file
->f_mapping
, pos
,
2348 if (!ret
&& ((old_size
!= i_size_read(inode
)) ||
2349 (old_clusters
!= OCFS2_I(inode
)->ip_clusters
) ||
2351 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2357 ret
= filemap_fdatawait_range(file
->f_mapping
, pos
,
2362 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2363 * function pointer which is called when o_direct io completes so that
2364 * it can unlock our rw lock. (it's the clustered equivalent of
2365 * i_alloc_sem; protects truncate from racing with pending ios).
2366 * Unfortunately there are error cases which call end_io and others
2367 * that don't. so we don't have to unlock the rw_lock if either an
2368 * async dio is going to do it in the future or an end_io after an
2369 * error has already done it.
2371 if ((ret
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2378 ocfs2_rw_unlock(inode
, rw_level
);
2381 if (have_alloc_sem
) {
2382 up_read(&inode
->i_alloc_sem
);
2383 ocfs2_iocb_clear_sem_locked(iocb
);
2386 mutex_unlock(&inode
->i_mutex
);
2393 static int ocfs2_splice_to_file(struct pipe_inode_info
*pipe
,
2395 struct splice_desc
*sd
)
2399 ret
= ocfs2_prepare_inode_for_write(out
, &sd
->pos
,
2400 sd
->total_len
, 0, NULL
, NULL
);
2406 return splice_from_pipe_feed(pipe
, sd
, pipe_to_file
);
2409 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2416 struct address_space
*mapping
= out
->f_mapping
;
2417 struct inode
*inode
= mapping
->host
;
2418 struct splice_desc sd
= {
2426 trace_ocfs2_file_splice_write(inode
, out
, out
->f_path
.dentry
,
2427 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2428 out
->f_path
.dentry
->d_name
.len
,
2429 out
->f_path
.dentry
->d_name
.name
, len
);
2432 mutex_lock_nested(&pipe
->inode
->i_mutex
, I_MUTEX_PARENT
);
2434 splice_from_pipe_begin(&sd
);
2436 ret
= splice_from_pipe_next(pipe
, &sd
);
2440 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2441 ret
= ocfs2_rw_lock(inode
, 1);
2445 ret
= ocfs2_splice_to_file(pipe
, out
, &sd
);
2446 ocfs2_rw_unlock(inode
, 1);
2448 mutex_unlock(&inode
->i_mutex
);
2450 splice_from_pipe_end(pipe
, &sd
);
2453 mutex_unlock(&pipe
->inode
->i_mutex
);
2456 ret
= sd
.num_spliced
;
2459 unsigned long nr_pages
;
2462 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2464 err
= generic_write_sync(out
, *ppos
, ret
);
2470 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
2476 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2478 struct pipe_inode_info
*pipe
,
2482 int ret
= 0, lock_level
= 0;
2483 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2485 trace_ocfs2_file_splice_read(inode
, in
, in
->f_path
.dentry
,
2486 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2487 in
->f_path
.dentry
->d_name
.len
,
2488 in
->f_path
.dentry
->d_name
.name
, len
);
2491 * See the comment in ocfs2_file_aio_read()
2493 ret
= ocfs2_inode_lock_atime(inode
, in
->f_vfsmnt
, &lock_level
);
2498 ocfs2_inode_unlock(inode
, lock_level
);
2500 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2506 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2507 const struct iovec
*iov
,
2508 unsigned long nr_segs
,
2511 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2512 struct file
*filp
= iocb
->ki_filp
;
2513 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2515 trace_ocfs2_file_aio_read(inode
, filp
, filp
->f_path
.dentry
,
2516 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2517 filp
->f_path
.dentry
->d_name
.len
,
2518 filp
->f_path
.dentry
->d_name
.name
, nr_segs
);
2527 ocfs2_iocb_clear_sem_locked(iocb
);
2530 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2531 * need locks to protect pending reads from racing with truncate.
2533 if (filp
->f_flags
& O_DIRECT
) {
2534 down_read(&inode
->i_alloc_sem
);
2536 ocfs2_iocb_set_sem_locked(iocb
);
2538 ret
= ocfs2_rw_lock(inode
, 0);
2544 /* communicate with ocfs2_dio_end_io */
2545 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2549 * We're fine letting folks race truncates and extending
2550 * writes with read across the cluster, just like they can
2551 * locally. Hence no rw_lock during read.
2553 * Take and drop the meta data lock to update inode fields
2554 * like i_size. This allows the checks down below
2555 * generic_file_aio_read() a chance of actually working.
2557 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2562 ocfs2_inode_unlock(inode
, lock_level
);
2564 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2565 trace_generic_file_aio_read_ret(ret
);
2567 /* buffered aio wouldn't have proper lock coverage today */
2568 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2570 /* see ocfs2_file_aio_write */
2571 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2577 if (have_alloc_sem
) {
2578 up_read(&inode
->i_alloc_sem
);
2579 ocfs2_iocb_clear_sem_locked(iocb
);
2582 ocfs2_rw_unlock(inode
, rw_level
);
2587 const struct inode_operations ocfs2_file_iops
= {
2588 .setattr
= ocfs2_setattr
,
2589 .getattr
= ocfs2_getattr
,
2590 .permission
= ocfs2_permission
,
2591 .setxattr
= generic_setxattr
,
2592 .getxattr
= generic_getxattr
,
2593 .listxattr
= ocfs2_listxattr
,
2594 .removexattr
= generic_removexattr
,
2595 .fiemap
= ocfs2_fiemap
,
2598 const struct inode_operations ocfs2_special_file_iops
= {
2599 .setattr
= ocfs2_setattr
,
2600 .getattr
= ocfs2_getattr
,
2601 .permission
= ocfs2_permission
,
2605 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2606 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2608 const struct file_operations ocfs2_fops
= {
2609 .llseek
= generic_file_llseek
,
2610 .read
= do_sync_read
,
2611 .write
= do_sync_write
,
2613 .fsync
= ocfs2_sync_file
,
2614 .release
= ocfs2_file_release
,
2615 .open
= ocfs2_file_open
,
2616 .aio_read
= ocfs2_file_aio_read
,
2617 .aio_write
= ocfs2_file_aio_write
,
2618 .unlocked_ioctl
= ocfs2_ioctl
,
2619 #ifdef CONFIG_COMPAT
2620 .compat_ioctl
= ocfs2_compat_ioctl
,
2623 .flock
= ocfs2_flock
,
2624 .splice_read
= ocfs2_file_splice_read
,
2625 .splice_write
= ocfs2_file_splice_write
,
2626 .fallocate
= ocfs2_fallocate
,
2629 const struct file_operations ocfs2_dops
= {
2630 .llseek
= generic_file_llseek
,
2631 .read
= generic_read_dir
,
2632 .readdir
= ocfs2_readdir
,
2633 .fsync
= ocfs2_sync_file
,
2634 .release
= ocfs2_dir_release
,
2635 .open
= ocfs2_dir_open
,
2636 .unlocked_ioctl
= ocfs2_ioctl
,
2637 #ifdef CONFIG_COMPAT
2638 .compat_ioctl
= ocfs2_compat_ioctl
,
2641 .flock
= ocfs2_flock
,
2645 * POSIX-lockless variants of our file_operations.
2647 * These will be used if the underlying cluster stack does not support
2648 * posix file locking, if the user passes the "localflocks" mount
2649 * option, or if we have a local-only fs.
2651 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2652 * so we still want it in the case of no stack support for
2653 * plocks. Internally, it will do the right thing when asked to ignore
2656 const struct file_operations ocfs2_fops_no_plocks
= {
2657 .llseek
= generic_file_llseek
,
2658 .read
= do_sync_read
,
2659 .write
= do_sync_write
,
2661 .fsync
= ocfs2_sync_file
,
2662 .release
= ocfs2_file_release
,
2663 .open
= ocfs2_file_open
,
2664 .aio_read
= ocfs2_file_aio_read
,
2665 .aio_write
= ocfs2_file_aio_write
,
2666 .unlocked_ioctl
= ocfs2_ioctl
,
2667 #ifdef CONFIG_COMPAT
2668 .compat_ioctl
= ocfs2_compat_ioctl
,
2670 .flock
= ocfs2_flock
,
2671 .splice_read
= ocfs2_file_splice_read
,
2672 .splice_write
= ocfs2_file_splice_write
,
2673 .fallocate
= ocfs2_fallocate
,
2676 const struct file_operations ocfs2_dops_no_plocks
= {
2677 .llseek
= generic_file_llseek
,
2678 .read
= generic_read_dir
,
2679 .readdir
= ocfs2_readdir
,
2680 .fsync
= ocfs2_sync_file
,
2681 .release
= ocfs2_dir_release
,
2682 .open
= ocfs2_dir_open
,
2683 .unlocked_ioctl
= ocfs2_ioctl
,
2684 #ifdef CONFIG_COMPAT
2685 .compat_ioctl
= ocfs2_compat_ioctl
,
2687 .flock
= ocfs2_flock
,