staging: comedi: fix oops for USB DAQ devices.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blob41d0237fd449fd842d33cd9d92282c59c99d2daf
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
34 * Scheduling policies
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
45 #ifdef __KERNEL__
47 struct sched_param {
48 int sched_priority;
51 #include <asm/param.h> /* for HZ */
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
94 #include <asm/processor.h>
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
146 extern void calc_global_load(unsigned long ticks);
148 extern unsigned long get_parent_ip(unsigned long addr);
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 static inline void proc_sched_set_task(struct task_struct *p)
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 #endif
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
238 * If the caller does not need such serialisation then use __set_current_state()
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
248 #include <linux/spinlock.h>
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
259 struct task_struct;
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
271 extern int runqueue_is_locked(int cpu);
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
282 * Only dump TASK_* tasks. (0 for all tasks)
284 extern void show_state_filter(unsigned long state_filter);
286 static inline void show_state(void)
288 show_state_filter(0);
291 extern void show_regs(struct pt_regs *);
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
308 extern void sched_show_task(struct task_struct *p);
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
323 static inline void touch_softlockup_watchdog_sync(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 static inline void lockup_detector_init(void)
332 #endif
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched __attribute__((__section__(".sched.text")))
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
364 struct nsproxy;
365 struct user_namespace;
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
379 #define MAPCOUNT_ELF_CORE_MARGIN (5)
380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
382 extern int sysctl_max_map_count;
384 #include <linux/aio.h>
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE 0 /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE 2
415 #define MMF_DUMP_ANON_SHARED 3
416 #define MMF_DUMP_MAPPED_PRIVATE 4
417 #define MMF_DUMP_MAPPED_SHARED 5
418 #define MMF_DUMP_ELF_HEADERS 6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED 8
422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS 7
424 #define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF 0
434 #endif
435 /* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441 struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
448 struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
456 struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
464 * struct task_cputime - collected CPU time counts
465 * @utime: time spent in user mode, in &cputime_t units
466 * @stime: time spent in kernel mode, in &cputime_t units
467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
469 * This structure groups together three kinds of CPU time that are
470 * tracked for threads and thread groups. Most things considering
471 * CPU time want to group these counts together and treat all three
472 * of them in parallel.
474 struct task_cputime {
475 cputime_t utime;
476 cputime_t stime;
477 unsigned long long sum_exec_runtime;
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp stime
481 #define virt_exp utime
482 #define sched_exp sum_exec_runtime
484 #define INIT_CPUTIME \
485 (struct task_cputime) { \
486 .utime = cputime_zero, \
487 .stime = cputime_zero, \
488 .sum_exec_runtime = 0, \
492 * Disable preemption until the scheduler is running.
493 * Reset by start_kernel()->sched_init()->init_idle().
495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496 * before the scheduler is active -- see should_resched().
498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
501 * struct thread_group_cputimer - thread group interval timer counts
502 * @cputime: thread group interval timers.
503 * @running: non-zero when there are timers running and
504 * @cputime receives updates.
505 * @lock: lock for fields in this struct.
507 * This structure contains the version of task_cputime, above, that is
508 * used for thread group CPU timer calculations.
510 struct thread_group_cputimer {
511 struct task_cputime cputime;
512 int running;
513 spinlock_t lock;
516 #include <linux/rwsem.h>
517 struct autogroup;
520 * NOTE! "signal_struct" does not have its own
521 * locking, because a shared signal_struct always
522 * implies a shared sighand_struct, so locking
523 * sighand_struct is always a proper superset of
524 * the locking of signal_struct.
526 struct signal_struct {
527 atomic_t sigcnt;
528 atomic_t live;
529 int nr_threads;
531 wait_queue_head_t wait_chldexit; /* for wait4() */
533 /* current thread group signal load-balancing target: */
534 struct task_struct *curr_target;
536 /* shared signal handling: */
537 struct sigpending shared_pending;
539 /* thread group exit support */
540 int group_exit_code;
541 /* overloaded:
542 * - notify group_exit_task when ->count is equal to notify_count
543 * - everyone except group_exit_task is stopped during signal delivery
544 * of fatal signals, group_exit_task processes the signal.
546 int notify_count;
547 struct task_struct *group_exit_task;
549 /* thread group stop support, overloads group_exit_code too */
550 int group_stop_count;
551 unsigned int flags; /* see SIGNAL_* flags below */
553 /* POSIX.1b Interval Timers */
554 struct list_head posix_timers;
556 /* ITIMER_REAL timer for the process */
557 struct hrtimer real_timer;
558 struct pid *leader_pid;
559 ktime_t it_real_incr;
562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
564 * values are defined to 0 and 1 respectively
566 struct cpu_itimer it[2];
569 * Thread group totals for process CPU timers.
570 * See thread_group_cputimer(), et al, for details.
572 struct thread_group_cputimer cputimer;
574 /* Earliest-expiration cache. */
575 struct task_cputime cputime_expires;
577 struct list_head cpu_timers[3];
579 struct pid *tty_old_pgrp;
581 /* boolean value for session group leader */
582 int leader;
584 struct tty_struct *tty; /* NULL if no tty */
586 #ifdef CONFIG_SCHED_AUTOGROUP
587 struct autogroup *autogroup;
588 #endif
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600 #endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
613 unsigned long long sum_sched_runtime;
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
624 struct rlimit rlim[RLIM_NLIMITS];
626 #ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628 #endif
629 #ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631 #endif
632 #ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635 #endif
636 #ifdef CONFIG_CGROUPS
638 * The threadgroup_fork_lock prevents threads from forking with
639 * CLONE_THREAD while held for writing. Use this for fork-sensitive
640 * threadgroup-wide operations. It's taken for reading in fork.c in
641 * copy_process().
642 * Currently only needed write-side by cgroups.
644 struct rw_semaphore threadgroup_fork_lock;
645 #endif
647 int oom_adj; /* OOM kill score adjustment (bit shift) */
648 int oom_score_adj; /* OOM kill score adjustment */
649 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
650 * Only settable by CAP_SYS_RESOURCE. */
652 struct mutex cred_guard_mutex; /* guard against foreign influences on
653 * credential calculations
654 * (notably. ptrace) */
657 /* Context switch must be unlocked if interrupts are to be enabled */
658 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 # define __ARCH_WANT_UNLOCKED_CTXSW
660 #endif
663 * Bits in flags field of signal_struct.
665 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
666 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
667 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
669 * Pending notifications to parent.
671 #define SIGNAL_CLD_STOPPED 0x00000010
672 #define SIGNAL_CLD_CONTINUED 0x00000020
673 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
675 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
677 /* If true, all threads except ->group_exit_task have pending SIGKILL */
678 static inline int signal_group_exit(const struct signal_struct *sig)
680 return (sig->flags & SIGNAL_GROUP_EXIT) ||
681 (sig->group_exit_task != NULL);
685 * Some day this will be a full-fledged user tracking system..
687 struct user_struct {
688 atomic_t __count; /* reference count */
689 atomic_t processes; /* How many processes does this user have? */
690 atomic_t files; /* How many open files does this user have? */
691 atomic_t sigpending; /* How many pending signals does this user have? */
692 #ifdef CONFIG_INOTIFY_USER
693 atomic_t inotify_watches; /* How many inotify watches does this user have? */
694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
695 #endif
696 #ifdef CONFIG_FANOTIFY
697 atomic_t fanotify_listeners;
698 #endif
699 #ifdef CONFIG_EPOLL
700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
701 #endif
702 #ifdef CONFIG_POSIX_MQUEUE
703 /* protected by mq_lock */
704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
705 #endif
706 unsigned long locked_shm; /* How many pages of mlocked shm ? */
708 #ifdef CONFIG_KEYS
709 struct key *uid_keyring; /* UID specific keyring */
710 struct key *session_keyring; /* UID's default session keyring */
711 #endif
713 /* Hash table maintenance information */
714 struct hlist_node uidhash_node;
715 uid_t uid;
716 struct user_namespace *user_ns;
718 #ifdef CONFIG_PERF_EVENTS
719 atomic_long_t locked_vm;
720 #endif
723 extern int uids_sysfs_init(void);
725 extern struct user_struct *find_user(uid_t);
727 extern struct user_struct root_user;
728 #define INIT_USER (&root_user)
731 struct backing_dev_info;
732 struct reclaim_state;
734 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
735 struct sched_info {
736 /* cumulative counters */
737 unsigned long pcount; /* # of times run on this cpu */
738 unsigned long long run_delay; /* time spent waiting on a runqueue */
740 /* timestamps */
741 unsigned long long last_arrival,/* when we last ran on a cpu */
742 last_queued; /* when we were last queued to run */
744 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
746 #ifdef CONFIG_TASK_DELAY_ACCT
747 struct task_delay_info {
748 spinlock_t lock;
749 unsigned int flags; /* Private per-task flags */
751 /* For each stat XXX, add following, aligned appropriately
753 * struct timespec XXX_start, XXX_end;
754 * u64 XXX_delay;
755 * u32 XXX_count;
757 * Atomicity of updates to XXX_delay, XXX_count protected by
758 * single lock above (split into XXX_lock if contention is an issue).
762 * XXX_count is incremented on every XXX operation, the delay
763 * associated with the operation is added to XXX_delay.
764 * XXX_delay contains the accumulated delay time in nanoseconds.
766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
767 u64 blkio_delay; /* wait for sync block io completion */
768 u64 swapin_delay; /* wait for swapin block io completion */
769 u32 blkio_count; /* total count of the number of sync block */
770 /* io operations performed */
771 u32 swapin_count; /* total count of the number of swapin block */
772 /* io operations performed */
774 struct timespec freepages_start, freepages_end;
775 u64 freepages_delay; /* wait for memory reclaim */
776 u32 freepages_count; /* total count of memory reclaim */
778 #endif /* CONFIG_TASK_DELAY_ACCT */
780 static inline int sched_info_on(void)
782 #ifdef CONFIG_SCHEDSTATS
783 return 1;
784 #elif defined(CONFIG_TASK_DELAY_ACCT)
785 extern int delayacct_on;
786 return delayacct_on;
787 #else
788 return 0;
789 #endif
792 enum cpu_idle_type {
793 CPU_IDLE,
794 CPU_NOT_IDLE,
795 CPU_NEWLY_IDLE,
796 CPU_MAX_IDLE_TYPES
800 * Increase resolution of nice-level calculations for 64-bit architectures.
801 * The extra resolution improves shares distribution and load balancing of
802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
803 * hierarchies, especially on larger systems. This is not a user-visible change
804 * and does not change the user-interface for setting shares/weights.
806 * We increase resolution only if we have enough bits to allow this increased
807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
809 * increased costs.
811 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
812 # define SCHED_LOAD_RESOLUTION 10
813 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
814 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
815 #else
816 # define SCHED_LOAD_RESOLUTION 0
817 # define scale_load(w) (w)
818 # define scale_load_down(w) (w)
819 #endif
821 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
822 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
825 * Increase resolution of cpu_power calculations
827 #define SCHED_POWER_SHIFT 10
828 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
831 * sched-domains (multiprocessor balancing) declarations:
833 #ifdef CONFIG_SMP
834 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
835 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
836 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
837 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
838 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
839 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
840 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
841 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
842 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
843 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
844 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
845 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
846 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
847 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
849 enum powersavings_balance_level {
850 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
851 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
852 * first for long running threads
854 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
855 * cpu package for power savings
857 MAX_POWERSAVINGS_BALANCE_LEVELS
860 extern int sched_mc_power_savings, sched_smt_power_savings;
862 static inline int sd_balance_for_mc_power(void)
864 if (sched_smt_power_savings)
865 return SD_POWERSAVINGS_BALANCE;
867 if (!sched_mc_power_savings)
868 return SD_PREFER_SIBLING;
870 return 0;
873 static inline int sd_balance_for_package_power(void)
875 if (sched_mc_power_savings | sched_smt_power_savings)
876 return SD_POWERSAVINGS_BALANCE;
878 return SD_PREFER_SIBLING;
881 extern int __weak arch_sd_sibiling_asym_packing(void);
884 * Optimise SD flags for power savings:
885 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
889 static inline int sd_power_saving_flags(void)
891 if (sched_mc_power_savings | sched_smt_power_savings)
892 return SD_BALANCE_NEWIDLE;
894 return 0;
897 struct sched_group_power {
898 atomic_t ref;
900 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
901 * single CPU.
903 unsigned int power, power_orig;
906 struct sched_group {
907 struct sched_group *next; /* Must be a circular list */
908 atomic_t ref;
910 unsigned int group_weight;
911 struct sched_group_power *sgp;
914 * The CPUs this group covers.
916 * NOTE: this field is variable length. (Allocated dynamically
917 * by attaching extra space to the end of the structure,
918 * depending on how many CPUs the kernel has booted up with)
920 unsigned long cpumask[0];
923 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
925 return to_cpumask(sg->cpumask);
928 struct sched_domain_attr {
929 int relax_domain_level;
932 #define SD_ATTR_INIT (struct sched_domain_attr) { \
933 .relax_domain_level = -1, \
936 extern int sched_domain_level_max;
938 struct sched_domain {
939 /* These fields must be setup */
940 struct sched_domain *parent; /* top domain must be null terminated */
941 struct sched_domain *child; /* bottom domain must be null terminated */
942 struct sched_group *groups; /* the balancing groups of the domain */
943 unsigned long min_interval; /* Minimum balance interval ms */
944 unsigned long max_interval; /* Maximum balance interval ms */
945 unsigned int busy_factor; /* less balancing by factor if busy */
946 unsigned int imbalance_pct; /* No balance until over watermark */
947 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
948 unsigned int busy_idx;
949 unsigned int idle_idx;
950 unsigned int newidle_idx;
951 unsigned int wake_idx;
952 unsigned int forkexec_idx;
953 unsigned int smt_gain;
954 int flags; /* See SD_* */
955 int level;
957 /* Runtime fields. */
958 unsigned long last_balance; /* init to jiffies. units in jiffies */
959 unsigned int balance_interval; /* initialise to 1. units in ms. */
960 unsigned int nr_balance_failed; /* initialise to 0 */
962 u64 last_update;
964 #ifdef CONFIG_SCHEDSTATS
965 /* load_balance() stats */
966 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
975 /* Active load balancing */
976 unsigned int alb_count;
977 unsigned int alb_failed;
978 unsigned int alb_pushed;
980 /* SD_BALANCE_EXEC stats */
981 unsigned int sbe_count;
982 unsigned int sbe_balanced;
983 unsigned int sbe_pushed;
985 /* SD_BALANCE_FORK stats */
986 unsigned int sbf_count;
987 unsigned int sbf_balanced;
988 unsigned int sbf_pushed;
990 /* try_to_wake_up() stats */
991 unsigned int ttwu_wake_remote;
992 unsigned int ttwu_move_affine;
993 unsigned int ttwu_move_balance;
994 #endif
995 #ifdef CONFIG_SCHED_DEBUG
996 char *name;
997 #endif
998 union {
999 void *private; /* used during construction */
1000 struct rcu_head rcu; /* used during destruction */
1003 unsigned int span_weight;
1005 * Span of all CPUs in this domain.
1007 * NOTE: this field is variable length. (Allocated dynamically
1008 * by attaching extra space to the end of the structure,
1009 * depending on how many CPUs the kernel has booted up with)
1011 unsigned long span[0];
1014 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1016 return to_cpumask(sd->span);
1019 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1020 struct sched_domain_attr *dattr_new);
1022 /* Allocate an array of sched domains, for partition_sched_domains(). */
1023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1024 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1026 /* Test a flag in parent sched domain */
1027 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1029 if (sd->parent && (sd->parent->flags & flag))
1030 return 1;
1032 return 0;
1035 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1036 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1038 #else /* CONFIG_SMP */
1040 struct sched_domain_attr;
1042 static inline void
1043 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1044 struct sched_domain_attr *dattr_new)
1047 #endif /* !CONFIG_SMP */
1050 struct io_context; /* See blkdev.h */
1053 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1054 extern void prefetch_stack(struct task_struct *t);
1055 #else
1056 static inline void prefetch_stack(struct task_struct *t) { }
1057 #endif
1059 struct audit_context; /* See audit.c */
1060 struct mempolicy;
1061 struct pipe_inode_info;
1062 struct uts_namespace;
1064 struct rq;
1065 struct sched_domain;
1068 * wake flags
1070 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1071 #define WF_FORK 0x02 /* child wakeup after fork */
1072 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1074 #define ENQUEUE_WAKEUP 1
1075 #define ENQUEUE_HEAD 2
1076 #ifdef CONFIG_SMP
1077 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1078 #else
1079 #define ENQUEUE_WAKING 0
1080 #endif
1082 #define DEQUEUE_SLEEP 1
1084 struct sched_class {
1085 const struct sched_class *next;
1087 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1088 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1089 void (*yield_task) (struct rq *rq);
1090 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1092 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1094 struct task_struct * (*pick_next_task) (struct rq *rq);
1095 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1097 #ifdef CONFIG_SMP
1098 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1100 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1101 void (*post_schedule) (struct rq *this_rq);
1102 void (*task_waking) (struct task_struct *task);
1103 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1105 void (*set_cpus_allowed)(struct task_struct *p,
1106 const struct cpumask *newmask);
1108 void (*rq_online)(struct rq *rq);
1109 void (*rq_offline)(struct rq *rq);
1110 #endif
1112 void (*set_curr_task) (struct rq *rq);
1113 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1114 void (*task_fork) (struct task_struct *p);
1116 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1117 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1118 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119 int oldprio);
1121 unsigned int (*get_rr_interval) (struct rq *rq,
1122 struct task_struct *task);
1124 #ifdef CONFIG_FAIR_GROUP_SCHED
1125 void (*task_move_group) (struct task_struct *p, int on_rq);
1126 #endif
1129 struct load_weight {
1130 unsigned long weight, inv_weight;
1133 #ifdef CONFIG_SCHEDSTATS
1134 struct sched_statistics {
1135 u64 wait_start;
1136 u64 wait_max;
1137 u64 wait_count;
1138 u64 wait_sum;
1139 u64 iowait_count;
1140 u64 iowait_sum;
1142 u64 sleep_start;
1143 u64 sleep_max;
1144 s64 sum_sleep_runtime;
1146 u64 block_start;
1147 u64 block_max;
1148 u64 exec_max;
1149 u64 slice_max;
1151 u64 nr_migrations_cold;
1152 u64 nr_failed_migrations_affine;
1153 u64 nr_failed_migrations_running;
1154 u64 nr_failed_migrations_hot;
1155 u64 nr_forced_migrations;
1157 u64 nr_wakeups;
1158 u64 nr_wakeups_sync;
1159 u64 nr_wakeups_migrate;
1160 u64 nr_wakeups_local;
1161 u64 nr_wakeups_remote;
1162 u64 nr_wakeups_affine;
1163 u64 nr_wakeups_affine_attempts;
1164 u64 nr_wakeups_passive;
1165 u64 nr_wakeups_idle;
1167 #endif
1169 struct sched_entity {
1170 struct load_weight load; /* for load-balancing */
1171 struct rb_node run_node;
1172 struct list_head group_node;
1173 unsigned int on_rq;
1175 u64 exec_start;
1176 u64 sum_exec_runtime;
1177 u64 vruntime;
1178 u64 prev_sum_exec_runtime;
1180 u64 nr_migrations;
1182 #ifdef CONFIG_SCHEDSTATS
1183 struct sched_statistics statistics;
1184 #endif
1186 #ifdef CONFIG_FAIR_GROUP_SCHED
1187 struct sched_entity *parent;
1188 /* rq on which this entity is (to be) queued: */
1189 struct cfs_rq *cfs_rq;
1190 /* rq "owned" by this entity/group: */
1191 struct cfs_rq *my_q;
1192 #endif
1195 struct sched_rt_entity {
1196 struct list_head run_list;
1197 unsigned long timeout;
1198 unsigned int time_slice;
1199 int nr_cpus_allowed;
1201 struct sched_rt_entity *back;
1202 #ifdef CONFIG_RT_GROUP_SCHED
1203 struct sched_rt_entity *parent;
1204 /* rq on which this entity is (to be) queued: */
1205 struct rt_rq *rt_rq;
1206 /* rq "owned" by this entity/group: */
1207 struct rt_rq *my_q;
1208 #endif
1211 struct rcu_node;
1213 enum perf_event_task_context {
1214 perf_invalid_context = -1,
1215 perf_hw_context = 0,
1216 perf_sw_context,
1217 perf_nr_task_contexts,
1220 struct task_struct {
1221 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1222 void *stack;
1223 atomic_t usage;
1224 unsigned int flags; /* per process flags, defined below */
1225 unsigned int ptrace;
1227 #ifdef CONFIG_SMP
1228 struct task_struct *wake_entry;
1229 int on_cpu;
1230 #endif
1231 int on_rq;
1233 int prio, static_prio, normal_prio;
1234 unsigned int rt_priority;
1235 const struct sched_class *sched_class;
1236 struct sched_entity se;
1237 struct sched_rt_entity rt;
1239 #ifdef CONFIG_PREEMPT_NOTIFIERS
1240 /* list of struct preempt_notifier: */
1241 struct hlist_head preempt_notifiers;
1242 #endif
1245 * fpu_counter contains the number of consecutive context switches
1246 * that the FPU is used. If this is over a threshold, the lazy fpu
1247 * saving becomes unlazy to save the trap. This is an unsigned char
1248 * so that after 256 times the counter wraps and the behavior turns
1249 * lazy again; this to deal with bursty apps that only use FPU for
1250 * a short time
1252 unsigned char fpu_counter;
1253 #ifdef CONFIG_BLK_DEV_IO_TRACE
1254 unsigned int btrace_seq;
1255 #endif
1257 unsigned int policy;
1258 cpumask_t cpus_allowed;
1260 #ifdef CONFIG_PREEMPT_RCU
1261 int rcu_read_lock_nesting;
1262 char rcu_read_unlock_special;
1263 #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU)
1264 int rcu_boosted;
1265 #endif /* #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU) */
1266 struct list_head rcu_node_entry;
1267 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1268 #ifdef CONFIG_TREE_PREEMPT_RCU
1269 struct rcu_node *rcu_blocked_node;
1270 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1271 #ifdef CONFIG_RCU_BOOST
1272 struct rt_mutex *rcu_boost_mutex;
1273 #endif /* #ifdef CONFIG_RCU_BOOST */
1275 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1276 struct sched_info sched_info;
1277 #endif
1279 struct list_head tasks;
1280 #ifdef CONFIG_SMP
1281 struct plist_node pushable_tasks;
1282 #endif
1284 struct mm_struct *mm, *active_mm;
1285 #ifdef CONFIG_COMPAT_BRK
1286 unsigned brk_randomized:1;
1287 #endif
1288 #if defined(SPLIT_RSS_COUNTING)
1289 struct task_rss_stat rss_stat;
1290 #endif
1291 /* task state */
1292 int exit_state;
1293 int exit_code, exit_signal;
1294 int pdeath_signal; /* The signal sent when the parent dies */
1295 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1296 /* ??? */
1297 unsigned int personality;
1298 unsigned did_exec:1;
1299 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1300 * execve */
1301 unsigned in_iowait:1;
1304 /* Revert to default priority/policy when forking */
1305 unsigned sched_reset_on_fork:1;
1306 unsigned sched_contributes_to_load:1;
1308 pid_t pid;
1309 pid_t tgid;
1311 #ifdef CONFIG_CC_STACKPROTECTOR
1312 /* Canary value for the -fstack-protector gcc feature */
1313 unsigned long stack_canary;
1314 #endif
1317 * pointers to (original) parent process, youngest child, younger sibling,
1318 * older sibling, respectively. (p->father can be replaced with
1319 * p->real_parent->pid)
1321 struct task_struct *real_parent; /* real parent process */
1322 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1324 * children/sibling forms the list of my natural children
1326 struct list_head children; /* list of my children */
1327 struct list_head sibling; /* linkage in my parent's children list */
1328 struct task_struct *group_leader; /* threadgroup leader */
1331 * ptraced is the list of tasks this task is using ptrace on.
1332 * This includes both natural children and PTRACE_ATTACH targets.
1333 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1335 struct list_head ptraced;
1336 struct list_head ptrace_entry;
1338 /* PID/PID hash table linkage. */
1339 struct pid_link pids[PIDTYPE_MAX];
1340 struct list_head thread_group;
1342 struct completion *vfork_done; /* for vfork() */
1343 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1344 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1346 cputime_t utime, stime, utimescaled, stimescaled;
1347 cputime_t gtime;
1348 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1349 cputime_t prev_utime, prev_stime;
1350 #endif
1351 unsigned long nvcsw, nivcsw; /* context switch counts */
1352 struct timespec start_time; /* monotonic time */
1353 struct timespec real_start_time; /* boot based time */
1354 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1355 unsigned long min_flt, maj_flt;
1357 struct task_cputime cputime_expires;
1358 struct list_head cpu_timers[3];
1360 /* process credentials */
1361 const struct cred __rcu *real_cred; /* objective and real subjective task
1362 * credentials (COW) */
1363 const struct cred __rcu *cred; /* effective (overridable) subjective task
1364 * credentials (COW) */
1365 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1367 char comm[TASK_COMM_LEN]; /* executable name excluding path
1368 - access with [gs]et_task_comm (which lock
1369 it with task_lock())
1370 - initialized normally by setup_new_exec */
1371 /* file system info */
1372 int link_count, total_link_count;
1373 #ifdef CONFIG_SYSVIPC
1374 /* ipc stuff */
1375 struct sysv_sem sysvsem;
1376 #endif
1377 #ifdef CONFIG_DETECT_HUNG_TASK
1378 /* hung task detection */
1379 unsigned long last_switch_count;
1380 #endif
1381 /* CPU-specific state of this task */
1382 struct thread_struct thread;
1383 /* filesystem information */
1384 struct fs_struct *fs;
1385 /* open file information */
1386 struct files_struct *files;
1387 /* namespaces */
1388 struct nsproxy *nsproxy;
1389 /* signal handlers */
1390 struct signal_struct *signal;
1391 struct sighand_struct *sighand;
1393 sigset_t blocked, real_blocked;
1394 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1395 struct sigpending pending;
1397 unsigned long sas_ss_sp;
1398 size_t sas_ss_size;
1399 int (*notifier)(void *priv);
1400 void *notifier_data;
1401 sigset_t *notifier_mask;
1402 struct audit_context *audit_context;
1403 #ifdef CONFIG_AUDITSYSCALL
1404 uid_t loginuid;
1405 unsigned int sessionid;
1406 #endif
1407 seccomp_t seccomp;
1409 /* Thread group tracking */
1410 u32 parent_exec_id;
1411 u32 self_exec_id;
1412 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1413 * mempolicy */
1414 spinlock_t alloc_lock;
1416 #ifdef CONFIG_GENERIC_HARDIRQS
1417 /* IRQ handler threads */
1418 struct irqaction *irqaction;
1419 #endif
1421 /* Protection of the PI data structures: */
1422 raw_spinlock_t pi_lock;
1424 #ifdef CONFIG_RT_MUTEXES
1425 /* PI waiters blocked on a rt_mutex held by this task */
1426 struct plist_head pi_waiters;
1427 /* Deadlock detection and priority inheritance handling */
1428 struct rt_mutex_waiter *pi_blocked_on;
1429 #endif
1431 #ifdef CONFIG_DEBUG_MUTEXES
1432 /* mutex deadlock detection */
1433 struct mutex_waiter *blocked_on;
1434 #endif
1435 #ifdef CONFIG_TRACE_IRQFLAGS
1436 unsigned int irq_events;
1437 unsigned long hardirq_enable_ip;
1438 unsigned long hardirq_disable_ip;
1439 unsigned int hardirq_enable_event;
1440 unsigned int hardirq_disable_event;
1441 int hardirqs_enabled;
1442 int hardirq_context;
1443 unsigned long softirq_disable_ip;
1444 unsigned long softirq_enable_ip;
1445 unsigned int softirq_disable_event;
1446 unsigned int softirq_enable_event;
1447 int softirqs_enabled;
1448 int softirq_context;
1449 #endif
1450 #ifdef CONFIG_LOCKDEP
1451 # define MAX_LOCK_DEPTH 48UL
1452 u64 curr_chain_key;
1453 int lockdep_depth;
1454 unsigned int lockdep_recursion;
1455 struct held_lock held_locks[MAX_LOCK_DEPTH];
1456 gfp_t lockdep_reclaim_gfp;
1457 #endif
1459 /* journalling filesystem info */
1460 void *journal_info;
1462 /* stacked block device info */
1463 struct bio_list *bio_list;
1465 #ifdef CONFIG_BLOCK
1466 /* stack plugging */
1467 struct blk_plug *plug;
1468 #endif
1470 /* VM state */
1471 struct reclaim_state *reclaim_state;
1473 struct backing_dev_info *backing_dev_info;
1475 struct io_context *io_context;
1477 unsigned long ptrace_message;
1478 siginfo_t *last_siginfo; /* For ptrace use. */
1479 struct task_io_accounting ioac;
1480 #if defined(CONFIG_TASK_XACCT)
1481 u64 acct_rss_mem1; /* accumulated rss usage */
1482 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1483 cputime_t acct_timexpd; /* stime + utime since last update */
1484 #endif
1485 #ifdef CONFIG_CPUSETS
1486 nodemask_t mems_allowed; /* Protected by alloc_lock */
1487 int mems_allowed_change_disable;
1488 int cpuset_mem_spread_rotor;
1489 int cpuset_slab_spread_rotor;
1490 #endif
1491 #ifdef CONFIG_CGROUPS
1492 /* Control Group info protected by css_set_lock */
1493 struct css_set __rcu *cgroups;
1494 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1495 struct list_head cg_list;
1496 #endif
1497 #ifdef CONFIG_FUTEX
1498 struct robust_list_head __user *robust_list;
1499 #ifdef CONFIG_COMPAT
1500 struct compat_robust_list_head __user *compat_robust_list;
1501 #endif
1502 struct list_head pi_state_list;
1503 struct futex_pi_state *pi_state_cache;
1504 #endif
1505 #ifdef CONFIG_PERF_EVENTS
1506 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1507 struct mutex perf_event_mutex;
1508 struct list_head perf_event_list;
1509 #endif
1510 #ifdef CONFIG_NUMA
1511 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1512 short il_next;
1513 short pref_node_fork;
1514 #endif
1515 struct rcu_head rcu;
1518 * cache last used pipe for splice
1520 struct pipe_inode_info *splice_pipe;
1521 #ifdef CONFIG_TASK_DELAY_ACCT
1522 struct task_delay_info *delays;
1523 #endif
1524 #ifdef CONFIG_FAULT_INJECTION
1525 int make_it_fail;
1526 #endif
1527 struct prop_local_single dirties;
1528 #ifdef CONFIG_LATENCYTOP
1529 int latency_record_count;
1530 struct latency_record latency_record[LT_SAVECOUNT];
1531 #endif
1533 * time slack values; these are used to round up poll() and
1534 * select() etc timeout values. These are in nanoseconds.
1536 unsigned long timer_slack_ns;
1537 unsigned long default_timer_slack_ns;
1539 struct list_head *scm_work_list;
1540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1541 /* Index of current stored address in ret_stack */
1542 int curr_ret_stack;
1543 /* Stack of return addresses for return function tracing */
1544 struct ftrace_ret_stack *ret_stack;
1545 /* time stamp for last schedule */
1546 unsigned long long ftrace_timestamp;
1548 * Number of functions that haven't been traced
1549 * because of depth overrun.
1551 atomic_t trace_overrun;
1552 /* Pause for the tracing */
1553 atomic_t tracing_graph_pause;
1554 #endif
1555 #ifdef CONFIG_TRACING
1556 /* state flags for use by tracers */
1557 unsigned long trace;
1558 /* bitmask and counter of trace recursion */
1559 unsigned long trace_recursion;
1560 #endif /* CONFIG_TRACING */
1561 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1562 struct memcg_batch_info {
1563 int do_batch; /* incremented when batch uncharge started */
1564 struct mem_cgroup *memcg; /* target memcg of uncharge */
1565 unsigned long nr_pages; /* uncharged usage */
1566 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1567 } memcg_batch;
1568 #endif
1569 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1570 atomic_t ptrace_bp_refcnt;
1571 #endif
1574 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1575 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1578 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1579 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1580 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1581 * values are inverted: lower p->prio value means higher priority.
1583 * The MAX_USER_RT_PRIO value allows the actual maximum
1584 * RT priority to be separate from the value exported to
1585 * user-space. This allows kernel threads to set their
1586 * priority to a value higher than any user task. Note:
1587 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1590 #define MAX_USER_RT_PRIO 100
1591 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1593 #define MAX_PRIO (MAX_RT_PRIO + 40)
1594 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1596 static inline int rt_prio(int prio)
1598 if (unlikely(prio < MAX_RT_PRIO))
1599 return 1;
1600 return 0;
1603 static inline int rt_task(struct task_struct *p)
1605 return rt_prio(p->prio);
1608 static inline struct pid *task_pid(struct task_struct *task)
1610 return task->pids[PIDTYPE_PID].pid;
1613 static inline struct pid *task_tgid(struct task_struct *task)
1615 return task->group_leader->pids[PIDTYPE_PID].pid;
1619 * Without tasklist or rcu lock it is not safe to dereference
1620 * the result of task_pgrp/task_session even if task == current,
1621 * we can race with another thread doing sys_setsid/sys_setpgid.
1623 static inline struct pid *task_pgrp(struct task_struct *task)
1625 return task->group_leader->pids[PIDTYPE_PGID].pid;
1628 static inline struct pid *task_session(struct task_struct *task)
1630 return task->group_leader->pids[PIDTYPE_SID].pid;
1633 struct pid_namespace;
1636 * the helpers to get the task's different pids as they are seen
1637 * from various namespaces
1639 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1640 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1641 * current.
1642 * task_xid_nr_ns() : id seen from the ns specified;
1644 * set_task_vxid() : assigns a virtual id to a task;
1646 * see also pid_nr() etc in include/linux/pid.h
1648 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1649 struct pid_namespace *ns);
1651 static inline pid_t task_pid_nr(struct task_struct *tsk)
1653 return tsk->pid;
1656 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1657 struct pid_namespace *ns)
1659 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1662 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1664 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1668 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1670 return tsk->tgid;
1673 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1675 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1677 return pid_vnr(task_tgid(tsk));
1681 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1682 struct pid_namespace *ns)
1684 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1687 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1689 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1693 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1694 struct pid_namespace *ns)
1696 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1699 static inline pid_t task_session_vnr(struct task_struct *tsk)
1701 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1704 /* obsolete, do not use */
1705 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1707 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1711 * pid_alive - check that a task structure is not stale
1712 * @p: Task structure to be checked.
1714 * Test if a process is not yet dead (at most zombie state)
1715 * If pid_alive fails, then pointers within the task structure
1716 * can be stale and must not be dereferenced.
1718 static inline int pid_alive(struct task_struct *p)
1720 return p->pids[PIDTYPE_PID].pid != NULL;
1724 * is_global_init - check if a task structure is init
1725 * @tsk: Task structure to be checked.
1727 * Check if a task structure is the first user space task the kernel created.
1729 static inline int is_global_init(struct task_struct *tsk)
1731 return tsk->pid == 1;
1735 * is_container_init:
1736 * check whether in the task is init in its own pid namespace.
1738 extern int is_container_init(struct task_struct *tsk);
1740 extern struct pid *cad_pid;
1742 extern void free_task(struct task_struct *tsk);
1743 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1745 extern void __put_task_struct(struct task_struct *t);
1747 static inline void put_task_struct(struct task_struct *t)
1749 if (atomic_dec_and_test(&t->usage))
1750 __put_task_struct(t);
1753 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1754 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1757 * Per process flags
1759 #define PF_STARTING 0x00000002 /* being created */
1760 #define PF_EXITING 0x00000004 /* getting shut down */
1761 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1762 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1763 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1764 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1765 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1766 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1767 #define PF_DUMPCORE 0x00000200 /* dumped core */
1768 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1769 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1770 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1771 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1772 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1773 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1774 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1775 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1776 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1777 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1778 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1779 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1780 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1781 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1782 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1783 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1784 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1785 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1786 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1787 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1788 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1791 * Only the _current_ task can read/write to tsk->flags, but other
1792 * tasks can access tsk->flags in readonly mode for example
1793 * with tsk_used_math (like during threaded core dumping).
1794 * There is however an exception to this rule during ptrace
1795 * or during fork: the ptracer task is allowed to write to the
1796 * child->flags of its traced child (same goes for fork, the parent
1797 * can write to the child->flags), because we're guaranteed the
1798 * child is not running and in turn not changing child->flags
1799 * at the same time the parent does it.
1801 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1802 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1803 #define clear_used_math() clear_stopped_child_used_math(current)
1804 #define set_used_math() set_stopped_child_used_math(current)
1805 #define conditional_stopped_child_used_math(condition, child) \
1806 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1807 #define conditional_used_math(condition) \
1808 conditional_stopped_child_used_math(condition, current)
1809 #define copy_to_stopped_child_used_math(child) \
1810 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1811 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1812 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1813 #define used_math() tsk_used_math(current)
1816 * task->jobctl flags
1818 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1820 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1821 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1822 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1823 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1824 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1825 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1826 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1828 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1829 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1830 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1831 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1832 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1833 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1834 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1836 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1837 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1839 extern bool task_set_jobctl_pending(struct task_struct *task,
1840 unsigned int mask);
1841 extern void task_clear_jobctl_trapping(struct task_struct *task);
1842 extern void task_clear_jobctl_pending(struct task_struct *task,
1843 unsigned int mask);
1845 #ifdef CONFIG_PREEMPT_RCU
1847 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1848 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1849 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1851 static inline void rcu_copy_process(struct task_struct *p)
1853 p->rcu_read_lock_nesting = 0;
1854 p->rcu_read_unlock_special = 0;
1855 #ifdef CONFIG_TREE_PREEMPT_RCU
1856 p->rcu_blocked_node = NULL;
1857 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1858 #ifdef CONFIG_RCU_BOOST
1859 p->rcu_boost_mutex = NULL;
1860 #endif /* #ifdef CONFIG_RCU_BOOST */
1861 INIT_LIST_HEAD(&p->rcu_node_entry);
1864 #else
1866 static inline void rcu_copy_process(struct task_struct *p)
1870 #endif
1872 #ifdef CONFIG_SMP
1873 extern void do_set_cpus_allowed(struct task_struct *p,
1874 const struct cpumask *new_mask);
1876 extern int set_cpus_allowed_ptr(struct task_struct *p,
1877 const struct cpumask *new_mask);
1878 #else
1879 static inline void do_set_cpus_allowed(struct task_struct *p,
1880 const struct cpumask *new_mask)
1883 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1884 const struct cpumask *new_mask)
1886 if (!cpumask_test_cpu(0, new_mask))
1887 return -EINVAL;
1888 return 0;
1890 #endif
1892 #ifndef CONFIG_CPUMASK_OFFSTACK
1893 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1895 return set_cpus_allowed_ptr(p, &new_mask);
1897 #endif
1900 * Do not use outside of architecture code which knows its limitations.
1902 * sched_clock() has no promise of monotonicity or bounded drift between
1903 * CPUs, use (which you should not) requires disabling IRQs.
1905 * Please use one of the three interfaces below.
1907 extern unsigned long long notrace sched_clock(void);
1909 * See the comment in kernel/sched_clock.c
1911 extern u64 cpu_clock(int cpu);
1912 extern u64 local_clock(void);
1913 extern u64 sched_clock_cpu(int cpu);
1916 extern void sched_clock_init(void);
1918 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1919 static inline void sched_clock_tick(void)
1923 static inline void sched_clock_idle_sleep_event(void)
1927 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1930 #else
1932 * Architectures can set this to 1 if they have specified
1933 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1934 * but then during bootup it turns out that sched_clock()
1935 * is reliable after all:
1937 extern int sched_clock_stable;
1939 extern void sched_clock_tick(void);
1940 extern void sched_clock_idle_sleep_event(void);
1941 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1942 #endif
1944 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1946 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1947 * The reason for this explicit opt-in is not to have perf penalty with
1948 * slow sched_clocks.
1950 extern void enable_sched_clock_irqtime(void);
1951 extern void disable_sched_clock_irqtime(void);
1952 #else
1953 static inline void enable_sched_clock_irqtime(void) {}
1954 static inline void disable_sched_clock_irqtime(void) {}
1955 #endif
1957 extern unsigned long long
1958 task_sched_runtime(struct task_struct *task);
1960 /* sched_exec is called by processes performing an exec */
1961 #ifdef CONFIG_SMP
1962 extern void sched_exec(void);
1963 #else
1964 #define sched_exec() {}
1965 #endif
1967 extern void sched_clock_idle_sleep_event(void);
1968 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1970 #ifdef CONFIG_HOTPLUG_CPU
1971 extern void idle_task_exit(void);
1972 #else
1973 static inline void idle_task_exit(void) {}
1974 #endif
1976 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1977 extern void wake_up_idle_cpu(int cpu);
1978 #else
1979 static inline void wake_up_idle_cpu(int cpu) { }
1980 #endif
1982 extern unsigned int sysctl_sched_latency;
1983 extern unsigned int sysctl_sched_min_granularity;
1984 extern unsigned int sysctl_sched_wakeup_granularity;
1985 extern unsigned int sysctl_sched_child_runs_first;
1987 enum sched_tunable_scaling {
1988 SCHED_TUNABLESCALING_NONE,
1989 SCHED_TUNABLESCALING_LOG,
1990 SCHED_TUNABLESCALING_LINEAR,
1991 SCHED_TUNABLESCALING_END,
1993 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1995 #ifdef CONFIG_SCHED_DEBUG
1996 extern unsigned int sysctl_sched_migration_cost;
1997 extern unsigned int sysctl_sched_nr_migrate;
1998 extern unsigned int sysctl_sched_time_avg;
1999 extern unsigned int sysctl_timer_migration;
2000 extern unsigned int sysctl_sched_shares_window;
2002 int sched_proc_update_handler(struct ctl_table *table, int write,
2003 void __user *buffer, size_t *length,
2004 loff_t *ppos);
2005 #endif
2006 #ifdef CONFIG_SCHED_DEBUG
2007 static inline unsigned int get_sysctl_timer_migration(void)
2009 return sysctl_timer_migration;
2011 #else
2012 static inline unsigned int get_sysctl_timer_migration(void)
2014 return 1;
2016 #endif
2017 extern unsigned int sysctl_sched_rt_period;
2018 extern int sysctl_sched_rt_runtime;
2020 int sched_rt_handler(struct ctl_table *table, int write,
2021 void __user *buffer, size_t *lenp,
2022 loff_t *ppos);
2024 #ifdef CONFIG_SCHED_AUTOGROUP
2025 extern unsigned int sysctl_sched_autogroup_enabled;
2027 extern void sched_autogroup_create_attach(struct task_struct *p);
2028 extern void sched_autogroup_detach(struct task_struct *p);
2029 extern void sched_autogroup_fork(struct signal_struct *sig);
2030 extern void sched_autogroup_exit(struct signal_struct *sig);
2031 #ifdef CONFIG_PROC_FS
2032 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2033 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2034 #endif
2035 #else
2036 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2037 static inline void sched_autogroup_detach(struct task_struct *p) { }
2038 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2039 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2040 #endif
2042 #ifdef CONFIG_RT_MUTEXES
2043 extern int rt_mutex_getprio(struct task_struct *p);
2044 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2045 extern void rt_mutex_adjust_pi(struct task_struct *p);
2046 #else
2047 static inline int rt_mutex_getprio(struct task_struct *p)
2049 return p->normal_prio;
2051 # define rt_mutex_adjust_pi(p) do { } while (0)
2052 #endif
2054 extern bool yield_to(struct task_struct *p, bool preempt);
2055 extern void set_user_nice(struct task_struct *p, long nice);
2056 extern int task_prio(const struct task_struct *p);
2057 extern int task_nice(const struct task_struct *p);
2058 extern int can_nice(const struct task_struct *p, const int nice);
2059 extern int task_curr(const struct task_struct *p);
2060 extern int idle_cpu(int cpu);
2061 extern int sched_setscheduler(struct task_struct *, int,
2062 const struct sched_param *);
2063 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2064 const struct sched_param *);
2065 extern struct task_struct *idle_task(int cpu);
2066 extern struct task_struct *curr_task(int cpu);
2067 extern void set_curr_task(int cpu, struct task_struct *p);
2069 void yield(void);
2072 * The default (Linux) execution domain.
2074 extern struct exec_domain default_exec_domain;
2076 union thread_union {
2077 struct thread_info thread_info;
2078 unsigned long stack[THREAD_SIZE/sizeof(long)];
2081 #ifndef __HAVE_ARCH_KSTACK_END
2082 static inline int kstack_end(void *addr)
2084 /* Reliable end of stack detection:
2085 * Some APM bios versions misalign the stack
2087 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2089 #endif
2091 extern union thread_union init_thread_union;
2092 extern struct task_struct init_task;
2094 extern struct mm_struct init_mm;
2096 extern struct pid_namespace init_pid_ns;
2099 * find a task by one of its numerical ids
2101 * find_task_by_pid_ns():
2102 * finds a task by its pid in the specified namespace
2103 * find_task_by_vpid():
2104 * finds a task by its virtual pid
2106 * see also find_vpid() etc in include/linux/pid.h
2109 extern struct task_struct *find_task_by_vpid(pid_t nr);
2110 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2111 struct pid_namespace *ns);
2113 extern void __set_special_pids(struct pid *pid);
2115 /* per-UID process charging. */
2116 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2117 static inline struct user_struct *get_uid(struct user_struct *u)
2119 atomic_inc(&u->__count);
2120 return u;
2122 extern void free_uid(struct user_struct *);
2123 extern void release_uids(struct user_namespace *ns);
2125 #include <asm/current.h>
2127 extern void xtime_update(unsigned long ticks);
2129 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2130 extern int wake_up_process(struct task_struct *tsk);
2131 extern void wake_up_new_task(struct task_struct *tsk);
2132 #ifdef CONFIG_SMP
2133 extern void kick_process(struct task_struct *tsk);
2134 #else
2135 static inline void kick_process(struct task_struct *tsk) { }
2136 #endif
2137 extern void sched_fork(struct task_struct *p);
2138 extern void sched_dead(struct task_struct *p);
2140 extern void proc_caches_init(void);
2141 extern void flush_signals(struct task_struct *);
2142 extern void __flush_signals(struct task_struct *);
2143 extern void ignore_signals(struct task_struct *);
2144 extern void flush_signal_handlers(struct task_struct *, int force_default);
2145 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2147 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2149 unsigned long flags;
2150 int ret;
2152 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2153 ret = dequeue_signal(tsk, mask, info);
2154 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2156 return ret;
2159 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2160 sigset_t *mask);
2161 extern void unblock_all_signals(void);
2162 extern void release_task(struct task_struct * p);
2163 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2164 extern int force_sigsegv(int, struct task_struct *);
2165 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2166 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2167 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2168 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2169 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2170 extern int kill_pid(struct pid *pid, int sig, int priv);
2171 extern int kill_proc_info(int, struct siginfo *, pid_t);
2172 extern __must_check bool do_notify_parent(struct task_struct *, int);
2173 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2174 extern void force_sig(int, struct task_struct *);
2175 extern int send_sig(int, struct task_struct *, int);
2176 extern int zap_other_threads(struct task_struct *p);
2177 extern struct sigqueue *sigqueue_alloc(void);
2178 extern void sigqueue_free(struct sigqueue *);
2179 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2180 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2181 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2183 static inline int kill_cad_pid(int sig, int priv)
2185 return kill_pid(cad_pid, sig, priv);
2188 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2189 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2190 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2191 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2194 * True if we are on the alternate signal stack.
2196 static inline int on_sig_stack(unsigned long sp)
2198 #ifdef CONFIG_STACK_GROWSUP
2199 return sp >= current->sas_ss_sp &&
2200 sp - current->sas_ss_sp < current->sas_ss_size;
2201 #else
2202 return sp > current->sas_ss_sp &&
2203 sp - current->sas_ss_sp <= current->sas_ss_size;
2204 #endif
2207 static inline int sas_ss_flags(unsigned long sp)
2209 return (current->sas_ss_size == 0 ? SS_DISABLE
2210 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2214 * Routines for handling mm_structs
2216 extern struct mm_struct * mm_alloc(void);
2218 /* mmdrop drops the mm and the page tables */
2219 extern void __mmdrop(struct mm_struct *);
2220 static inline void mmdrop(struct mm_struct * mm)
2222 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2223 __mmdrop(mm);
2226 /* mmput gets rid of the mappings and all user-space */
2227 extern void mmput(struct mm_struct *);
2228 /* Grab a reference to a task's mm, if it is not already going away */
2229 extern struct mm_struct *get_task_mm(struct task_struct *task);
2230 /* Remove the current tasks stale references to the old mm_struct */
2231 extern void mm_release(struct task_struct *, struct mm_struct *);
2232 /* Allocate a new mm structure and copy contents from tsk->mm */
2233 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2235 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2236 struct task_struct *, struct pt_regs *);
2237 extern void flush_thread(void);
2238 extern void exit_thread(void);
2240 extern void exit_files(struct task_struct *);
2241 extern void __cleanup_sighand(struct sighand_struct *);
2243 extern void exit_itimers(struct signal_struct *);
2244 extern void flush_itimer_signals(void);
2246 extern NORET_TYPE void do_group_exit(int);
2248 extern void daemonize(const char *, ...);
2249 extern int allow_signal(int);
2250 extern int disallow_signal(int);
2252 extern int do_execve(const char *,
2253 const char __user * const __user *,
2254 const char __user * const __user *, struct pt_regs *);
2255 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2256 struct task_struct *fork_idle(int);
2258 extern void set_task_comm(struct task_struct *tsk, char *from);
2259 extern char *get_task_comm(char *to, struct task_struct *tsk);
2261 #ifdef CONFIG_SMP
2262 void scheduler_ipi(void);
2263 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2264 #else
2265 static inline void scheduler_ipi(void) { }
2266 static inline unsigned long wait_task_inactive(struct task_struct *p,
2267 long match_state)
2269 return 1;
2271 #endif
2273 #define next_task(p) \
2274 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2276 #define for_each_process(p) \
2277 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2279 extern bool current_is_single_threaded(void);
2282 * Careful: do_each_thread/while_each_thread is a double loop so
2283 * 'break' will not work as expected - use goto instead.
2285 #define do_each_thread(g, t) \
2286 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2288 #define while_each_thread(g, t) \
2289 while ((t = next_thread(t)) != g)
2291 static inline int get_nr_threads(struct task_struct *tsk)
2293 return tsk->signal->nr_threads;
2296 static inline bool thread_group_leader(struct task_struct *p)
2298 return p->exit_signal >= 0;
2301 /* Do to the insanities of de_thread it is possible for a process
2302 * to have the pid of the thread group leader without actually being
2303 * the thread group leader. For iteration through the pids in proc
2304 * all we care about is that we have a task with the appropriate
2305 * pid, we don't actually care if we have the right task.
2307 static inline int has_group_leader_pid(struct task_struct *p)
2309 return p->pid == p->tgid;
2312 static inline
2313 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2315 return p1->tgid == p2->tgid;
2318 static inline struct task_struct *next_thread(const struct task_struct *p)
2320 return list_entry_rcu(p->thread_group.next,
2321 struct task_struct, thread_group);
2324 static inline int thread_group_empty(struct task_struct *p)
2326 return list_empty(&p->thread_group);
2329 #define delay_group_leader(p) \
2330 (thread_group_leader(p) && !thread_group_empty(p))
2333 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2334 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2335 * pins the final release of task.io_context. Also protects ->cpuset and
2336 * ->cgroup.subsys[].
2338 * Nests both inside and outside of read_lock(&tasklist_lock).
2339 * It must not be nested with write_lock_irq(&tasklist_lock),
2340 * neither inside nor outside.
2342 static inline void task_lock(struct task_struct *p)
2344 spin_lock(&p->alloc_lock);
2347 static inline void task_unlock(struct task_struct *p)
2349 spin_unlock(&p->alloc_lock);
2352 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2353 unsigned long *flags);
2355 #define lock_task_sighand(tsk, flags) \
2356 ({ struct sighand_struct *__ss; \
2357 __cond_lock(&(tsk)->sighand->siglock, \
2358 (__ss = __lock_task_sighand(tsk, flags))); \
2359 __ss; \
2360 }) \
2362 static inline void unlock_task_sighand(struct task_struct *tsk,
2363 unsigned long *flags)
2365 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2368 /* See the declaration of threadgroup_fork_lock in signal_struct. */
2369 #ifdef CONFIG_CGROUPS
2370 static inline void threadgroup_fork_read_lock(struct task_struct *tsk)
2372 down_read(&tsk->signal->threadgroup_fork_lock);
2374 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk)
2376 up_read(&tsk->signal->threadgroup_fork_lock);
2378 static inline void threadgroup_fork_write_lock(struct task_struct *tsk)
2380 down_write(&tsk->signal->threadgroup_fork_lock);
2382 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk)
2384 up_write(&tsk->signal->threadgroup_fork_lock);
2386 #else
2387 static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {}
2388 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {}
2389 static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {}
2390 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {}
2391 #endif
2393 #ifndef __HAVE_THREAD_FUNCTIONS
2395 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2396 #define task_stack_page(task) ((task)->stack)
2398 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2400 *task_thread_info(p) = *task_thread_info(org);
2401 task_thread_info(p)->task = p;
2404 static inline unsigned long *end_of_stack(struct task_struct *p)
2406 return (unsigned long *)(task_thread_info(p) + 1);
2409 #endif
2411 static inline int object_is_on_stack(void *obj)
2413 void *stack = task_stack_page(current);
2415 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2418 extern void thread_info_cache_init(void);
2420 #ifdef CONFIG_DEBUG_STACK_USAGE
2421 static inline unsigned long stack_not_used(struct task_struct *p)
2423 unsigned long *n = end_of_stack(p);
2425 do { /* Skip over canary */
2426 n++;
2427 } while (!*n);
2429 return (unsigned long)n - (unsigned long)end_of_stack(p);
2431 #endif
2433 /* set thread flags in other task's structures
2434 * - see asm/thread_info.h for TIF_xxxx flags available
2436 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2438 set_ti_thread_flag(task_thread_info(tsk), flag);
2441 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2443 clear_ti_thread_flag(task_thread_info(tsk), flag);
2446 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2448 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2451 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2453 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2456 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2458 return test_ti_thread_flag(task_thread_info(tsk), flag);
2461 static inline void set_tsk_need_resched(struct task_struct *tsk)
2463 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2466 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2468 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2471 static inline int test_tsk_need_resched(struct task_struct *tsk)
2473 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2476 static inline int restart_syscall(void)
2478 set_tsk_thread_flag(current, TIF_SIGPENDING);
2479 return -ERESTARTNOINTR;
2482 static inline int signal_pending(struct task_struct *p)
2484 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2487 static inline int __fatal_signal_pending(struct task_struct *p)
2489 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2492 static inline int fatal_signal_pending(struct task_struct *p)
2494 return signal_pending(p) && __fatal_signal_pending(p);
2497 static inline int signal_pending_state(long state, struct task_struct *p)
2499 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2500 return 0;
2501 if (!signal_pending(p))
2502 return 0;
2504 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2507 static inline int need_resched(void)
2509 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2513 * cond_resched() and cond_resched_lock(): latency reduction via
2514 * explicit rescheduling in places that are safe. The return
2515 * value indicates whether a reschedule was done in fact.
2516 * cond_resched_lock() will drop the spinlock before scheduling,
2517 * cond_resched_softirq() will enable bhs before scheduling.
2519 extern int _cond_resched(void);
2521 #define cond_resched() ({ \
2522 __might_sleep(__FILE__, __LINE__, 0); \
2523 _cond_resched(); \
2526 extern int __cond_resched_lock(spinlock_t *lock);
2528 #ifdef CONFIG_PREEMPT_COUNT
2529 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2530 #else
2531 #define PREEMPT_LOCK_OFFSET 0
2532 #endif
2534 #define cond_resched_lock(lock) ({ \
2535 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2536 __cond_resched_lock(lock); \
2539 extern int __cond_resched_softirq(void);
2541 #define cond_resched_softirq() ({ \
2542 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2543 __cond_resched_softirq(); \
2547 * Does a critical section need to be broken due to another
2548 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2549 * but a general need for low latency)
2551 static inline int spin_needbreak(spinlock_t *lock)
2553 #ifdef CONFIG_PREEMPT
2554 return spin_is_contended(lock);
2555 #else
2556 return 0;
2557 #endif
2561 * Thread group CPU time accounting.
2563 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2564 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2566 static inline void thread_group_cputime_init(struct signal_struct *sig)
2568 spin_lock_init(&sig->cputimer.lock);
2572 * Reevaluate whether the task has signals pending delivery.
2573 * Wake the task if so.
2574 * This is required every time the blocked sigset_t changes.
2575 * callers must hold sighand->siglock.
2577 extern void recalc_sigpending_and_wake(struct task_struct *t);
2578 extern void recalc_sigpending(void);
2580 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2583 * Wrappers for p->thread_info->cpu access. No-op on UP.
2585 #ifdef CONFIG_SMP
2587 static inline unsigned int task_cpu(const struct task_struct *p)
2589 return task_thread_info(p)->cpu;
2592 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2594 #else
2596 static inline unsigned int task_cpu(const struct task_struct *p)
2598 return 0;
2601 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2605 #endif /* CONFIG_SMP */
2607 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2608 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2610 extern void normalize_rt_tasks(void);
2612 #ifdef CONFIG_CGROUP_SCHED
2614 extern struct task_group root_task_group;
2616 extern struct task_group *sched_create_group(struct task_group *parent);
2617 extern void sched_destroy_group(struct task_group *tg);
2618 extern void sched_move_task(struct task_struct *tsk);
2619 #ifdef CONFIG_FAIR_GROUP_SCHED
2620 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2621 extern unsigned long sched_group_shares(struct task_group *tg);
2622 #endif
2623 #ifdef CONFIG_RT_GROUP_SCHED
2624 extern int sched_group_set_rt_runtime(struct task_group *tg,
2625 long rt_runtime_us);
2626 extern long sched_group_rt_runtime(struct task_group *tg);
2627 extern int sched_group_set_rt_period(struct task_group *tg,
2628 long rt_period_us);
2629 extern long sched_group_rt_period(struct task_group *tg);
2630 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2631 #endif
2632 #endif
2634 extern int task_can_switch_user(struct user_struct *up,
2635 struct task_struct *tsk);
2637 #ifdef CONFIG_TASK_XACCT
2638 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2640 tsk->ioac.rchar += amt;
2643 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2645 tsk->ioac.wchar += amt;
2648 static inline void inc_syscr(struct task_struct *tsk)
2650 tsk->ioac.syscr++;
2653 static inline void inc_syscw(struct task_struct *tsk)
2655 tsk->ioac.syscw++;
2657 #else
2658 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2662 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2666 static inline void inc_syscr(struct task_struct *tsk)
2670 static inline void inc_syscw(struct task_struct *tsk)
2673 #endif
2675 #ifndef TASK_SIZE_OF
2676 #define TASK_SIZE_OF(tsk) TASK_SIZE
2677 #endif
2679 #ifdef CONFIG_MM_OWNER
2680 extern void mm_update_next_owner(struct mm_struct *mm);
2681 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2682 #else
2683 static inline void mm_update_next_owner(struct mm_struct *mm)
2687 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2690 #endif /* CONFIG_MM_OWNER */
2692 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2693 unsigned int limit)
2695 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2698 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2699 unsigned int limit)
2701 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2704 static inline unsigned long rlimit(unsigned int limit)
2706 return task_rlimit(current, limit);
2709 static inline unsigned long rlimit_max(unsigned int limit)
2711 return task_rlimit_max(current, limit);
2714 #endif /* __KERNEL__ */
2716 #endif