staging:iio:adc:adt7310: allocate chip state with iio_dev and use iio_priv for access.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / au1550_spi.c
blobb50563d320e1705b2c0b7a77d334414fb80cda28
1 /*
2 * au1550_spi.c - au1550 psc spi controller driver
3 * may work also with au1200, au1210, au1250
4 * will not work on au1000, au1100 and au1500 (no full spi controller there)
6 * Copyright (c) 2006 ATRON electronic GmbH
7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/resource.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/spi_bitbang.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/completion.h>
35 #include <asm/mach-au1x00/au1000.h>
36 #include <asm/mach-au1x00/au1xxx_psc.h>
37 #include <asm/mach-au1x00/au1xxx_dbdma.h>
39 #include <asm/mach-au1x00/au1550_spi.h>
41 static unsigned usedma = 1;
42 module_param(usedma, uint, 0644);
45 #define AU1550_SPI_DEBUG_LOOPBACK
49 #define AU1550_SPI_DBDMA_DESCRIPTORS 1
50 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U
52 struct au1550_spi {
53 struct spi_bitbang bitbang;
55 volatile psc_spi_t __iomem *regs;
56 int irq;
57 unsigned freq_max;
58 unsigned freq_min;
60 unsigned len;
61 unsigned tx_count;
62 unsigned rx_count;
63 const u8 *tx;
64 u8 *rx;
66 void (*rx_word)(struct au1550_spi *hw);
67 void (*tx_word)(struct au1550_spi *hw);
68 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
69 irqreturn_t (*irq_callback)(struct au1550_spi *hw);
71 struct completion master_done;
73 unsigned usedma;
74 u32 dma_tx_id;
75 u32 dma_rx_id;
76 u32 dma_tx_ch;
77 u32 dma_rx_ch;
79 u8 *dma_rx_tmpbuf;
80 unsigned dma_rx_tmpbuf_size;
81 u32 dma_rx_tmpbuf_addr;
83 struct spi_master *master;
84 struct device *dev;
85 struct au1550_spi_info *pdata;
86 struct resource *ioarea;
90 /* we use an 8-bit memory device for dma transfers to/from spi fifo */
91 static dbdev_tab_t au1550_spi_mem_dbdev =
93 .dev_id = DBDMA_MEM_CHAN,
94 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
95 .dev_tsize = 0,
96 .dev_devwidth = 8,
97 .dev_physaddr = 0x00000000,
98 .dev_intlevel = 0,
99 .dev_intpolarity = 0
102 static int ddma_memid; /* id to above mem dma device */
104 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
108 * compute BRG and DIV bits to setup spi clock based on main input clock rate
109 * that was specified in platform data structure
110 * according to au1550 datasheet:
111 * psc_tempclk = psc_mainclk / (2 << DIV)
112 * spiclk = psc_tempclk / (2 * (BRG + 1))
113 * BRG valid range is 4..63
114 * DIV valid range is 0..3
116 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz)
118 u32 mainclk_hz = hw->pdata->mainclk_hz;
119 u32 div, brg;
121 for (div = 0; div < 4; div++) {
122 brg = mainclk_hz / speed_hz / (4 << div);
123 /* now we have BRG+1 in brg, so count with that */
124 if (brg < (4 + 1)) {
125 brg = (4 + 1); /* speed_hz too big */
126 break; /* set lowest brg (div is == 0) */
128 if (brg <= (63 + 1))
129 break; /* we have valid brg and div */
131 if (div == 4) {
132 div = 3; /* speed_hz too small */
133 brg = (63 + 1); /* set highest brg and div */
135 brg--;
136 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div);
139 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw)
141 hw->regs->psc_spimsk =
142 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO
143 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO
144 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD;
145 au_sync();
147 hw->regs->psc_spievent =
148 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO
149 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO
150 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD;
151 au_sync();
154 static void au1550_spi_reset_fifos(struct au1550_spi *hw)
156 u32 pcr;
158 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC;
159 au_sync();
160 do {
161 pcr = hw->regs->psc_spipcr;
162 au_sync();
163 } while (pcr != 0);
167 * dma transfers are used for the most common spi word size of 8-bits
168 * we cannot easily change already set up dma channels' width, so if we wanted
169 * dma support for more than 8-bit words (up to 24 bits), we would need to
170 * setup dma channels from scratch on each spi transfer, based on bits_per_word
171 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits
172 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode
173 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set()
175 static void au1550_spi_chipsel(struct spi_device *spi, int value)
177 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
178 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
179 u32 cfg, stat;
181 switch (value) {
182 case BITBANG_CS_INACTIVE:
183 if (hw->pdata->deactivate_cs)
184 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select,
185 cspol);
186 break;
188 case BITBANG_CS_ACTIVE:
189 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
191 cfg = hw->regs->psc_spicfg;
192 au_sync();
193 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
194 au_sync();
196 if (spi->mode & SPI_CPOL)
197 cfg |= PSC_SPICFG_BI;
198 else
199 cfg &= ~PSC_SPICFG_BI;
200 if (spi->mode & SPI_CPHA)
201 cfg &= ~PSC_SPICFG_CDE;
202 else
203 cfg |= PSC_SPICFG_CDE;
205 if (spi->mode & SPI_LSB_FIRST)
206 cfg |= PSC_SPICFG_MLF;
207 else
208 cfg &= ~PSC_SPICFG_MLF;
210 if (hw->usedma && spi->bits_per_word <= 8)
211 cfg &= ~PSC_SPICFG_DD_DISABLE;
212 else
213 cfg |= PSC_SPICFG_DD_DISABLE;
214 cfg = PSC_SPICFG_CLR_LEN(cfg);
215 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word);
217 cfg = PSC_SPICFG_CLR_BAUD(cfg);
218 cfg &= ~PSC_SPICFG_SET_DIV(3);
219 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz);
221 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE;
222 au_sync();
223 do {
224 stat = hw->regs->psc_spistat;
225 au_sync();
226 } while ((stat & PSC_SPISTAT_DR) == 0);
228 if (hw->pdata->activate_cs)
229 hw->pdata->activate_cs(hw->pdata, spi->chip_select,
230 cspol);
231 break;
235 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
237 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
238 unsigned bpw, hz;
239 u32 cfg, stat;
241 bpw = spi->bits_per_word;
242 hz = spi->max_speed_hz;
243 if (t) {
244 if (t->bits_per_word)
245 bpw = t->bits_per_word;
246 if (t->speed_hz)
247 hz = t->speed_hz;
250 if (bpw < 4 || bpw > 24) {
251 dev_err(&spi->dev, "setupxfer: invalid bits_per_word=%d\n",
252 bpw);
253 return -EINVAL;
255 if (hz > spi->max_speed_hz || hz > hw->freq_max || hz < hw->freq_min) {
256 dev_err(&spi->dev, "setupxfer: clock rate=%d out of range\n",
257 hz);
258 return -EINVAL;
261 au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
263 cfg = hw->regs->psc_spicfg;
264 au_sync();
265 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
266 au_sync();
268 if (hw->usedma && bpw <= 8)
269 cfg &= ~PSC_SPICFG_DD_DISABLE;
270 else
271 cfg |= PSC_SPICFG_DD_DISABLE;
272 cfg = PSC_SPICFG_CLR_LEN(cfg);
273 cfg |= PSC_SPICFG_SET_LEN(bpw);
275 cfg = PSC_SPICFG_CLR_BAUD(cfg);
276 cfg &= ~PSC_SPICFG_SET_DIV(3);
277 cfg |= au1550_spi_baudcfg(hw, hz);
279 hw->regs->psc_spicfg = cfg;
280 au_sync();
282 if (cfg & PSC_SPICFG_DE_ENABLE) {
283 do {
284 stat = hw->regs->psc_spistat;
285 au_sync();
286 } while ((stat & PSC_SPISTAT_DR) == 0);
289 au1550_spi_reset_fifos(hw);
290 au1550_spi_mask_ack_all(hw);
291 return 0;
294 static int au1550_spi_setup(struct spi_device *spi)
296 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
298 if (spi->bits_per_word < 4 || spi->bits_per_word > 24) {
299 dev_err(&spi->dev, "setup: invalid bits_per_word=%d\n",
300 spi->bits_per_word);
301 return -EINVAL;
304 if (spi->max_speed_hz == 0)
305 spi->max_speed_hz = hw->freq_max;
306 if (spi->max_speed_hz > hw->freq_max
307 || spi->max_speed_hz < hw->freq_min)
308 return -EINVAL;
310 * NOTE: cannot change speed and other hw settings immediately,
311 * otherwise sharing of spi bus is not possible,
312 * so do not call setupxfer(spi, NULL) here
314 return 0;
318 * for dma spi transfers, we have to setup rx channel, otherwise there is
319 * no reliable way how to recognize that spi transfer is done
320 * dma complete callbacks are called before real spi transfer is finished
321 * and if only tx dma channel is set up (and rx fifo overflow event masked)
322 * spi master done event irq is not generated unless rx fifo is empty (emptied)
323 * so we need rx tmp buffer to use for rx dma if user does not provide one
325 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size)
327 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
328 if (!hw->dma_rx_tmpbuf)
329 return -ENOMEM;
330 hw->dma_rx_tmpbuf_size = size;
331 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf,
332 size, DMA_FROM_DEVICE);
333 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) {
334 kfree(hw->dma_rx_tmpbuf);
335 hw->dma_rx_tmpbuf = 0;
336 hw->dma_rx_tmpbuf_size = 0;
337 return -EFAULT;
339 return 0;
342 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw)
344 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr,
345 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE);
346 kfree(hw->dma_rx_tmpbuf);
347 hw->dma_rx_tmpbuf = 0;
348 hw->dma_rx_tmpbuf_size = 0;
351 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
353 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
354 dma_addr_t dma_tx_addr;
355 dma_addr_t dma_rx_addr;
356 u32 res;
358 hw->len = t->len;
359 hw->tx_count = 0;
360 hw->rx_count = 0;
362 hw->tx = t->tx_buf;
363 hw->rx = t->rx_buf;
364 dma_tx_addr = t->tx_dma;
365 dma_rx_addr = t->rx_dma;
368 * check if buffers are already dma mapped, map them otherwise:
369 * - first map the TX buffer, so cache data gets written to memory
370 * - then map the RX buffer, so that cache entries (with
371 * soon-to-be-stale data) get removed
372 * use rx buffer in place of tx if tx buffer was not provided
373 * use temp rx buffer (preallocated or realloc to fit) for rx dma
375 if (t->tx_buf) {
376 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
377 dma_tx_addr = dma_map_single(hw->dev,
378 (void *)t->tx_buf,
379 t->len, DMA_TO_DEVICE);
380 if (dma_mapping_error(hw->dev, dma_tx_addr))
381 dev_err(hw->dev, "tx dma map error\n");
385 if (t->rx_buf) {
386 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */
387 dma_rx_addr = dma_map_single(hw->dev,
388 (void *)t->rx_buf,
389 t->len, DMA_FROM_DEVICE);
390 if (dma_mapping_error(hw->dev, dma_rx_addr))
391 dev_err(hw->dev, "rx dma map error\n");
393 } else {
394 if (t->len > hw->dma_rx_tmpbuf_size) {
395 int ret;
397 au1550_spi_dma_rxtmp_free(hw);
398 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len,
399 AU1550_SPI_DMA_RXTMP_MINSIZE));
400 if (ret < 0)
401 return ret;
403 hw->rx = hw->dma_rx_tmpbuf;
404 dma_rx_addr = hw->dma_rx_tmpbuf_addr;
405 dma_sync_single_for_device(hw->dev, dma_rx_addr,
406 t->len, DMA_FROM_DEVICE);
409 if (!t->tx_buf) {
410 dma_sync_single_for_device(hw->dev, dma_rx_addr,
411 t->len, DMA_BIDIRECTIONAL);
412 hw->tx = hw->rx;
415 /* put buffers on the ring */
416 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx),
417 t->len, DDMA_FLAGS_IE);
418 if (!res)
419 dev_err(hw->dev, "rx dma put dest error\n");
421 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx),
422 t->len, DDMA_FLAGS_IE);
423 if (!res)
424 dev_err(hw->dev, "tx dma put source error\n");
426 au1xxx_dbdma_start(hw->dma_rx_ch);
427 au1xxx_dbdma_start(hw->dma_tx_ch);
429 /* by default enable nearly all events interrupt */
430 hw->regs->psc_spimsk = PSC_SPIMSK_SD;
431 au_sync();
433 /* start the transfer */
434 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
435 au_sync();
437 wait_for_completion(&hw->master_done);
439 au1xxx_dbdma_stop(hw->dma_tx_ch);
440 au1xxx_dbdma_stop(hw->dma_rx_ch);
442 if (!t->rx_buf) {
443 /* using the temporal preallocated and premapped buffer */
444 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len,
445 DMA_FROM_DEVICE);
447 /* unmap buffers if mapped above */
448 if (t->rx_buf && t->rx_dma == 0 )
449 dma_unmap_single(hw->dev, dma_rx_addr, t->len,
450 DMA_FROM_DEVICE);
451 if (t->tx_buf && t->tx_dma == 0 )
452 dma_unmap_single(hw->dev, dma_tx_addr, t->len,
453 DMA_TO_DEVICE);
455 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
458 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
460 u32 stat, evnt;
462 stat = hw->regs->psc_spistat;
463 evnt = hw->regs->psc_spievent;
464 au_sync();
465 if ((stat & PSC_SPISTAT_DI) == 0) {
466 dev_err(hw->dev, "Unexpected IRQ!\n");
467 return IRQ_NONE;
470 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
471 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
472 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD))
473 != 0) {
475 * due to an spi error we consider transfer as done,
476 * so mask all events until before next transfer start
477 * and stop the possibly running dma immediatelly
479 au1550_spi_mask_ack_all(hw);
480 au1xxx_dbdma_stop(hw->dma_rx_ch);
481 au1xxx_dbdma_stop(hw->dma_tx_ch);
483 /* get number of transferred bytes */
484 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch);
485 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch);
487 au1xxx_dbdma_reset(hw->dma_rx_ch);
488 au1xxx_dbdma_reset(hw->dma_tx_ch);
489 au1550_spi_reset_fifos(hw);
491 if (evnt == PSC_SPIEVNT_RO)
492 dev_err(hw->dev,
493 "dma transfer: receive FIFO overflow!\n");
494 else
495 dev_err(hw->dev,
496 "dma transfer: unexpected SPI error "
497 "(event=0x%x stat=0x%x)!\n", evnt, stat);
499 complete(&hw->master_done);
500 return IRQ_HANDLED;
503 if ((evnt & PSC_SPIEVNT_MD) != 0) {
504 /* transfer completed successfully */
505 au1550_spi_mask_ack_all(hw);
506 hw->rx_count = hw->len;
507 hw->tx_count = hw->len;
508 complete(&hw->master_done);
510 return IRQ_HANDLED;
514 /* routines to handle different word sizes in pio mode */
515 #define AU1550_SPI_RX_WORD(size, mask) \
516 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \
518 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \
519 au_sync(); \
520 if (hw->rx) { \
521 *(u##size *)hw->rx = (u##size)fifoword; \
522 hw->rx += (size) / 8; \
524 hw->rx_count += (size) / 8; \
527 #define AU1550_SPI_TX_WORD(size, mask) \
528 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \
530 u32 fifoword = 0; \
531 if (hw->tx) { \
532 fifoword = *(u##size *)hw->tx & (u32)(mask); \
533 hw->tx += (size) / 8; \
535 hw->tx_count += (size) / 8; \
536 if (hw->tx_count >= hw->len) \
537 fifoword |= PSC_SPITXRX_LC; \
538 hw->regs->psc_spitxrx = fifoword; \
539 au_sync(); \
542 AU1550_SPI_RX_WORD(8,0xff)
543 AU1550_SPI_RX_WORD(16,0xffff)
544 AU1550_SPI_RX_WORD(32,0xffffff)
545 AU1550_SPI_TX_WORD(8,0xff)
546 AU1550_SPI_TX_WORD(16,0xffff)
547 AU1550_SPI_TX_WORD(32,0xffffff)
549 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
551 u32 stat, mask;
552 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
554 hw->tx = t->tx_buf;
555 hw->rx = t->rx_buf;
556 hw->len = t->len;
557 hw->tx_count = 0;
558 hw->rx_count = 0;
560 /* by default enable nearly all events after filling tx fifo */
561 mask = PSC_SPIMSK_SD;
563 /* fill the transmit FIFO */
564 while (hw->tx_count < hw->len) {
566 hw->tx_word(hw);
568 if (hw->tx_count >= hw->len) {
569 /* mask tx fifo request interrupt as we are done */
570 mask |= PSC_SPIMSK_TR;
573 stat = hw->regs->psc_spistat;
574 au_sync();
575 if (stat & PSC_SPISTAT_TF)
576 break;
579 /* enable event interrupts */
580 hw->regs->psc_spimsk = mask;
581 au_sync();
583 /* start the transfer */
584 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
585 au_sync();
587 wait_for_completion(&hw->master_done);
589 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
592 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
594 int busy;
595 u32 stat, evnt;
597 stat = hw->regs->psc_spistat;
598 evnt = hw->regs->psc_spievent;
599 au_sync();
600 if ((stat & PSC_SPISTAT_DI) == 0) {
601 dev_err(hw->dev, "Unexpected IRQ!\n");
602 return IRQ_NONE;
605 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
606 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
607 | PSC_SPIEVNT_SD))
608 != 0) {
610 * due to an error we consider transfer as done,
611 * so mask all events until before next transfer start
613 au1550_spi_mask_ack_all(hw);
614 au1550_spi_reset_fifos(hw);
615 dev_err(hw->dev,
616 "pio transfer: unexpected SPI error "
617 "(event=0x%x stat=0x%x)!\n", evnt, stat);
618 complete(&hw->master_done);
619 return IRQ_HANDLED;
623 * while there is something to read from rx fifo
624 * or there is a space to write to tx fifo:
626 do {
627 busy = 0;
628 stat = hw->regs->psc_spistat;
629 au_sync();
632 * Take care to not let the Rx FIFO overflow.
634 * We only write a byte if we have read one at least. Initially,
635 * the write fifo is full, so we should read from the read fifo
636 * first.
637 * In case we miss a word from the read fifo, we should get a
638 * RO event and should back out.
640 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) {
641 hw->rx_word(hw);
642 busy = 1;
644 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len)
645 hw->tx_word(hw);
647 } while (busy);
649 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR;
650 au_sync();
653 * Restart the SPI transmission in case of a transmit underflow.
654 * This seems to work despite the notes in the Au1550 data book
655 * of Figure 8-4 with flowchart for SPI master operation:
657 * """Note 1: An XFR Error Interrupt occurs, unless masked,
658 * for any of the following events: Tx FIFO Underflow,
659 * Rx FIFO Overflow, or Multiple-master Error
660 * Note 2: In case of a Tx Underflow Error, all zeroes are
661 * transmitted."""
663 * By simply restarting the spi transfer on Tx Underflow Error,
664 * we assume that spi transfer was paused instead of zeroes
665 * transmittion mentioned in the Note 2 of Au1550 data book.
667 if (evnt & PSC_SPIEVNT_TU) {
668 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD;
669 au_sync();
670 hw->regs->psc_spipcr = PSC_SPIPCR_MS;
671 au_sync();
674 if (hw->rx_count >= hw->len) {
675 /* transfer completed successfully */
676 au1550_spi_mask_ack_all(hw);
677 complete(&hw->master_done);
679 return IRQ_HANDLED;
682 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
684 struct au1550_spi *hw = spi_master_get_devdata(spi->master);
685 return hw->txrx_bufs(spi, t);
688 static irqreturn_t au1550_spi_irq(int irq, void *dev)
690 struct au1550_spi *hw = dev;
691 return hw->irq_callback(hw);
694 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw)
696 if (bpw <= 8) {
697 if (hw->usedma) {
698 hw->txrx_bufs = &au1550_spi_dma_txrxb;
699 hw->irq_callback = &au1550_spi_dma_irq_callback;
700 } else {
701 hw->rx_word = &au1550_spi_rx_word_8;
702 hw->tx_word = &au1550_spi_tx_word_8;
703 hw->txrx_bufs = &au1550_spi_pio_txrxb;
704 hw->irq_callback = &au1550_spi_pio_irq_callback;
706 } else if (bpw <= 16) {
707 hw->rx_word = &au1550_spi_rx_word_16;
708 hw->tx_word = &au1550_spi_tx_word_16;
709 hw->txrx_bufs = &au1550_spi_pio_txrxb;
710 hw->irq_callback = &au1550_spi_pio_irq_callback;
711 } else {
712 hw->rx_word = &au1550_spi_rx_word_32;
713 hw->tx_word = &au1550_spi_tx_word_32;
714 hw->txrx_bufs = &au1550_spi_pio_txrxb;
715 hw->irq_callback = &au1550_spi_pio_irq_callback;
719 static void __init au1550_spi_setup_psc_as_spi(struct au1550_spi *hw)
721 u32 stat, cfg;
723 /* set up the PSC for SPI mode */
724 hw->regs->psc_ctrl = PSC_CTRL_DISABLE;
725 au_sync();
726 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE;
727 au_sync();
729 hw->regs->psc_spicfg = 0;
730 au_sync();
732 hw->regs->psc_ctrl = PSC_CTRL_ENABLE;
733 au_sync();
735 do {
736 stat = hw->regs->psc_spistat;
737 au_sync();
738 } while ((stat & PSC_SPISTAT_SR) == 0);
741 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE;
742 cfg |= PSC_SPICFG_SET_LEN(8);
743 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8;
744 /* use minimal allowed brg and div values as initial setting: */
745 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0);
747 #ifdef AU1550_SPI_DEBUG_LOOPBACK
748 cfg |= PSC_SPICFG_LB;
749 #endif
751 hw->regs->psc_spicfg = cfg;
752 au_sync();
754 au1550_spi_mask_ack_all(hw);
756 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE;
757 au_sync();
759 do {
760 stat = hw->regs->psc_spistat;
761 au_sync();
762 } while ((stat & PSC_SPISTAT_DR) == 0);
764 au1550_spi_reset_fifos(hw);
768 static int __init au1550_spi_probe(struct platform_device *pdev)
770 struct au1550_spi *hw;
771 struct spi_master *master;
772 struct resource *r;
773 int err = 0;
775 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi));
776 if (master == NULL) {
777 dev_err(&pdev->dev, "No memory for spi_master\n");
778 err = -ENOMEM;
779 goto err_nomem;
782 /* the spi->mode bits understood by this driver: */
783 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
785 hw = spi_master_get_devdata(master);
787 hw->master = spi_master_get(master);
788 hw->pdata = pdev->dev.platform_data;
789 hw->dev = &pdev->dev;
791 if (hw->pdata == NULL) {
792 dev_err(&pdev->dev, "No platform data supplied\n");
793 err = -ENOENT;
794 goto err_no_pdata;
797 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
798 if (!r) {
799 dev_err(&pdev->dev, "no IRQ\n");
800 err = -ENODEV;
801 goto err_no_iores;
803 hw->irq = r->start;
805 hw->usedma = 0;
806 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
807 if (r) {
808 hw->dma_tx_id = r->start;
809 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
810 if (r) {
811 hw->dma_rx_id = r->start;
812 if (usedma && ddma_memid) {
813 if (pdev->dev.dma_mask == NULL)
814 dev_warn(&pdev->dev, "no dma mask\n");
815 else
816 hw->usedma = 1;
821 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
822 if (!r) {
823 dev_err(&pdev->dev, "no mmio resource\n");
824 err = -ENODEV;
825 goto err_no_iores;
828 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t),
829 pdev->name);
830 if (!hw->ioarea) {
831 dev_err(&pdev->dev, "Cannot reserve iomem region\n");
832 err = -ENXIO;
833 goto err_no_iores;
836 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t));
837 if (!hw->regs) {
838 dev_err(&pdev->dev, "cannot ioremap\n");
839 err = -ENXIO;
840 goto err_ioremap;
843 platform_set_drvdata(pdev, hw);
845 init_completion(&hw->master_done);
847 hw->bitbang.master = hw->master;
848 hw->bitbang.setup_transfer = au1550_spi_setupxfer;
849 hw->bitbang.chipselect = au1550_spi_chipsel;
850 hw->bitbang.master->setup = au1550_spi_setup;
851 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;
853 if (hw->usedma) {
854 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid,
855 hw->dma_tx_id, NULL, (void *)hw);
856 if (hw->dma_tx_ch == 0) {
857 dev_err(&pdev->dev,
858 "Cannot allocate tx dma channel\n");
859 err = -ENXIO;
860 goto err_no_txdma;
862 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8);
863 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch,
864 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
865 dev_err(&pdev->dev,
866 "Cannot allocate tx dma descriptors\n");
867 err = -ENXIO;
868 goto err_no_txdma_descr;
872 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id,
873 ddma_memid, NULL, (void *)hw);
874 if (hw->dma_rx_ch == 0) {
875 dev_err(&pdev->dev,
876 "Cannot allocate rx dma channel\n");
877 err = -ENXIO;
878 goto err_no_rxdma;
880 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8);
881 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch,
882 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
883 dev_err(&pdev->dev,
884 "Cannot allocate rx dma descriptors\n");
885 err = -ENXIO;
886 goto err_no_rxdma_descr;
889 err = au1550_spi_dma_rxtmp_alloc(hw,
890 AU1550_SPI_DMA_RXTMP_MINSIZE);
891 if (err < 0) {
892 dev_err(&pdev->dev,
893 "Cannot allocate initial rx dma tmp buffer\n");
894 goto err_dma_rxtmp_alloc;
898 au1550_spi_bits_handlers_set(hw, 8);
900 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw);
901 if (err) {
902 dev_err(&pdev->dev, "Cannot claim IRQ\n");
903 goto err_no_irq;
906 master->bus_num = pdev->id;
907 master->num_chipselect = hw->pdata->num_chipselect;
910 * precompute valid range for spi freq - from au1550 datasheet:
911 * psc_tempclk = psc_mainclk / (2 << DIV)
912 * spiclk = psc_tempclk / (2 * (BRG + 1))
913 * BRG valid range is 4..63
914 * DIV valid range is 0..3
915 * round the min and max frequencies to values that would still
916 * produce valid brg and div
919 int min_div = (2 << 0) * (2 * (4 + 1));
920 int max_div = (2 << 3) * (2 * (63 + 1));
921 hw->freq_max = hw->pdata->mainclk_hz / min_div;
922 hw->freq_min = hw->pdata->mainclk_hz / (max_div + 1) + 1;
925 au1550_spi_setup_psc_as_spi(hw);
927 err = spi_bitbang_start(&hw->bitbang);
928 if (err) {
929 dev_err(&pdev->dev, "Failed to register SPI master\n");
930 goto err_register;
933 dev_info(&pdev->dev,
934 "spi master registered: bus_num=%d num_chipselect=%d\n",
935 master->bus_num, master->num_chipselect);
937 return 0;
939 err_register:
940 free_irq(hw->irq, hw);
942 err_no_irq:
943 au1550_spi_dma_rxtmp_free(hw);
945 err_dma_rxtmp_alloc:
946 err_no_rxdma_descr:
947 if (hw->usedma)
948 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
950 err_no_rxdma:
951 err_no_txdma_descr:
952 if (hw->usedma)
953 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
955 err_no_txdma:
956 iounmap((void __iomem *)hw->regs);
958 err_ioremap:
959 release_resource(hw->ioarea);
960 kfree(hw->ioarea);
962 err_no_iores:
963 err_no_pdata:
964 spi_master_put(hw->master);
966 err_nomem:
967 return err;
970 static int __exit au1550_spi_remove(struct platform_device *pdev)
972 struct au1550_spi *hw = platform_get_drvdata(pdev);
974 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n",
975 hw->master->bus_num);
977 spi_bitbang_stop(&hw->bitbang);
978 free_irq(hw->irq, hw);
979 iounmap((void __iomem *)hw->regs);
980 release_resource(hw->ioarea);
981 kfree(hw->ioarea);
983 if (hw->usedma) {
984 au1550_spi_dma_rxtmp_free(hw);
985 au1xxx_dbdma_chan_free(hw->dma_rx_ch);
986 au1xxx_dbdma_chan_free(hw->dma_tx_ch);
989 platform_set_drvdata(pdev, NULL);
991 spi_master_put(hw->master);
992 return 0;
995 /* work with hotplug and coldplug */
996 MODULE_ALIAS("platform:au1550-spi");
998 static struct platform_driver au1550_spi_drv = {
999 .remove = __exit_p(au1550_spi_remove),
1000 .driver = {
1001 .name = "au1550-spi",
1002 .owner = THIS_MODULE,
1006 static int __init au1550_spi_init(void)
1009 * create memory device with 8 bits dev_devwidth
1010 * needed for proper byte ordering to spi fifo
1012 if (usedma) {
1013 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
1014 if (!ddma_memid)
1015 printk(KERN_ERR "au1550-spi: cannot add memory"
1016 "dbdma device\n");
1018 return platform_driver_probe(&au1550_spi_drv, au1550_spi_probe);
1020 module_init(au1550_spi_init);
1022 static void __exit au1550_spi_exit(void)
1024 if (usedma && ddma_memid)
1025 au1xxx_ddma_del_device(ddma_memid);
1026 platform_driver_unregister(&au1550_spi_drv);
1028 module_exit(au1550_spi_exit);
1030 MODULE_DESCRIPTION("Au1550 PSC SPI Driver");
1031 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>");
1032 MODULE_LICENSE("GPL");