2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
47 #include <asm/uaccess.h>
49 #include <asm/pgtable.h>
50 #include <asm/cacheflush.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
67 #define FEC_MAX_PORTS 1
71 * Define the fixed address of the FEC hardware.
73 static unsigned int fec_hw
[] = {
74 #if defined(CONFIG_M5272)
76 #elif defined(CONFIG_M527x)
79 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
81 #elif defined(CONFIG_M520x)
83 #elif defined(CONFIG_M532x)
84 (MCF_MBAR
+0xfc030000),
86 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
90 static unsigned char fec_mac_default
[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
98 #if defined(CONFIG_NETtel)
99 #define FEC_FLASHMAC 0xf0006006
100 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101 #define FEC_FLASHMAC 0xf0006000
102 #elif defined(CONFIG_CANCam)
103 #define FEC_FLASHMAC 0xf0020000
104 #elif defined (CONFIG_M5272C3)
105 #define FEC_FLASHMAC (0xffe04000 + 4)
106 #elif defined(CONFIG_MOD5272)
107 #define FEC_FLASHMAC 0xffc0406b
109 #define FEC_FLASHMAC 0
112 /* Forward declarations of some structures to support different PHYs
117 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
124 const phy_cmd_t
*config
;
125 const phy_cmd_t
*startup
;
126 const phy_cmd_t
*ack_int
;
127 const phy_cmd_t
*shutdown
;
130 /* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
136 #define FEC_ENET_RX_PAGES 8
137 #define FEC_ENET_RX_FRSIZE 2048
138 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140 #define FEC_ENET_TX_FRSIZE 2048
141 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142 #define TX_RING_SIZE 16 /* Must be power of two */
143 #define TX_RING_MOD_MASK 15 /* for this to work */
145 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146 #error "FEC: descriptor ring size constants too large"
149 /* Interrupt events/masks.
151 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
162 /* The FEC stores dest/src/type, data, and checksum for receive packets.
164 #define PKT_MAXBUF_SIZE 1518
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1520
170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
174 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
176 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
178 #define OPT_FRAME_SIZE 0
181 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
189 struct fec_enet_private
{
190 /* Hardware registers of the FEC device */
193 struct net_device
*netdev
;
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce
[TX_RING_SIZE
];
197 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
201 /* CPM dual port RAM relative addresses.
203 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
205 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
206 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
214 phy_info_t
const *phy
;
215 struct work_struct phy_task
;
218 uint mii_phy_task_queued
;
229 static int fec_enet_open(struct net_device
*dev
);
230 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
231 static void fec_enet_mii(struct net_device
*dev
);
232 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
233 static void fec_enet_tx(struct net_device
*dev
);
234 static void fec_enet_rx(struct net_device
*dev
);
235 static int fec_enet_close(struct net_device
*dev
);
236 static void set_multicast_list(struct net_device
*dev
);
237 static void fec_restart(struct net_device
*dev
, int duplex
);
238 static void fec_stop(struct net_device
*dev
);
239 static void fec_set_mac_address(struct net_device
*dev
);
242 /* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
246 typedef struct mii_list
{
248 void (*mii_func
)(uint val
, struct net_device
*dev
);
249 struct mii_list
*mii_next
;
253 static mii_list_t mii_cmds
[NMII
];
254 static mii_list_t
*mii_free
;
255 static mii_list_t
*mii_head
;
256 static mii_list_t
*mii_tail
;
258 static int mii_queue(struct net_device
*dev
, int request
,
259 void (*func
)(uint
, struct net_device
*));
261 /* Make MII read/write commands for the FEC.
263 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
268 /* Transmitter timeout.
270 #define TX_TIMEOUT (2*HZ)
272 /* Register definitions for the PHY.
275 #define MII_REG_CR 0 /* Control Register */
276 #define MII_REG_SR 1 /* Status Register */
277 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
279 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
280 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281 #define MII_REG_ANER 6 /* A-N Expansion Register */
282 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
285 /* values for phy_status */
287 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
291 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
292 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
293 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
295 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
300 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
301 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
302 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
306 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
308 struct fec_enet_private
*fep
;
309 volatile fec_t
*fecp
;
311 unsigned short status
;
313 fep
= netdev_priv(dev
);
314 fecp
= (volatile fec_t
*)dev
->base_addr
;
317 /* Link is down or autonegotiation is in progress. */
321 /* Fill in a Tx ring entry */
324 status
= bdp
->cbd_sc
;
325 #ifndef final_version
326 if (status
& BD_ENET_TX_READY
) {
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
330 printk("%s: tx queue full!.\n", dev
->name
);
335 /* Clear all of the status flags.
337 status
&= ~BD_ENET_TX_STATS
;
339 /* Set buffer length and buffer pointer.
341 bdp
->cbd_bufaddr
= __pa(skb
->data
);
342 bdp
->cbd_datlen
= skb
->len
;
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
349 if (bdp
->cbd_bufaddr
& 0x3) {
351 index
= bdp
- fep
->tx_bd_base
;
352 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
353 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
358 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
360 dev
->stats
.tx_bytes
+= skb
->len
;
361 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
363 /* Push the data cache so the CPM does not get stale memory
366 flush_dcache_range((unsigned long)skb
->data
,
367 (unsigned long)skb
->data
+ skb
->len
);
369 spin_lock_irq(&fep
->lock
);
371 /* Send it on its way. Tell FEC it's ready, interrupt when done,
372 * it's the last BD of the frame, and to put the CRC on the end.
375 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
376 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
377 bdp
->cbd_sc
= status
;
379 dev
->trans_start
= jiffies
;
381 /* Trigger transmission start */
382 fecp
->fec_x_des_active
= 0;
384 /* If this was the last BD in the ring, start at the beginning again.
386 if (status
& BD_ENET_TX_WRAP
) {
387 bdp
= fep
->tx_bd_base
;
392 if (bdp
== fep
->dirty_tx
) {
394 netif_stop_queue(dev
);
397 fep
->cur_tx
= (cbd_t
*)bdp
;
399 spin_unlock_irq(&fep
->lock
);
405 fec_timeout(struct net_device
*dev
)
407 struct fec_enet_private
*fep
= netdev_priv(dev
);
409 printk("%s: transmit timed out.\n", dev
->name
);
410 dev
->stats
.tx_errors
++;
411 #ifndef final_version
416 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
418 (unsigned long)fep
->dirty_tx
,
419 (unsigned long)fep
->cur_rx
);
421 bdp
= fep
->tx_bd_base
;
422 printk(" tx: %u buffers\n", TX_RING_SIZE
);
423 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
424 printk(" %08x: %04x %04x %08x\n",
428 (int) bdp
->cbd_bufaddr
);
432 bdp
= fep
->rx_bd_base
;
433 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
434 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
435 printk(" %08x: %04x %04x %08x\n",
439 (int) bdp
->cbd_bufaddr
);
444 fec_restart(dev
, fep
->full_duplex
);
445 netif_wake_queue(dev
);
448 /* The interrupt handler.
449 * This is called from the MPC core interrupt.
452 fec_enet_interrupt(int irq
, void * dev_id
)
454 struct net_device
*dev
= dev_id
;
455 volatile fec_t
*fecp
;
459 fecp
= (volatile fec_t
*)dev
->base_addr
;
461 /* Get the interrupt events that caused us to be here.
463 while ((int_events
= fecp
->fec_ievent
) != 0) {
464 fecp
->fec_ievent
= int_events
;
466 /* Handle receive event in its own function.
468 if (int_events
& FEC_ENET_RXF
) {
473 /* Transmit OK, or non-fatal error. Update the buffer
474 descriptors. FEC handles all errors, we just discover
475 them as part of the transmit process.
477 if (int_events
& FEC_ENET_TXF
) {
482 if (int_events
& FEC_ENET_MII
) {
488 return IRQ_RETVAL(handled
);
493 fec_enet_tx(struct net_device
*dev
)
495 struct fec_enet_private
*fep
;
497 unsigned short status
;
500 fep
= netdev_priv(dev
);
501 spin_lock(&fep
->lock
);
504 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
505 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
507 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
508 /* Check for errors. */
509 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
510 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
512 dev
->stats
.tx_errors
++;
513 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
514 dev
->stats
.tx_heartbeat_errors
++;
515 if (status
& BD_ENET_TX_LC
) /* Late collision */
516 dev
->stats
.tx_window_errors
++;
517 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
518 dev
->stats
.tx_aborted_errors
++;
519 if (status
& BD_ENET_TX_UN
) /* Underrun */
520 dev
->stats
.tx_fifo_errors
++;
521 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
522 dev
->stats
.tx_carrier_errors
++;
524 dev
->stats
.tx_packets
++;
527 #ifndef final_version
528 if (status
& BD_ENET_TX_READY
)
529 printk("HEY! Enet xmit interrupt and TX_READY.\n");
531 /* Deferred means some collisions occurred during transmit,
532 * but we eventually sent the packet OK.
534 if (status
& BD_ENET_TX_DEF
)
535 dev
->stats
.collisions
++;
537 /* Free the sk buffer associated with this last transmit.
539 dev_kfree_skb_any(skb
);
540 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
541 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
543 /* Update pointer to next buffer descriptor to be transmitted.
545 if (status
& BD_ENET_TX_WRAP
)
546 bdp
= fep
->tx_bd_base
;
550 /* Since we have freed up a buffer, the ring is no longer
555 if (netif_queue_stopped(dev
))
556 netif_wake_queue(dev
);
559 fep
->dirty_tx
= (cbd_t
*)bdp
;
560 spin_unlock(&fep
->lock
);
564 /* During a receive, the cur_rx points to the current incoming buffer.
565 * When we update through the ring, if the next incoming buffer has
566 * not been given to the system, we just set the empty indicator,
567 * effectively tossing the packet.
570 fec_enet_rx(struct net_device
*dev
)
572 struct fec_enet_private
*fep
;
573 volatile fec_t
*fecp
;
575 unsigned short status
;
584 fep
= netdev_priv(dev
);
585 fecp
= (volatile fec_t
*)dev
->base_addr
;
587 /* First, grab all of the stats for the incoming packet.
588 * These get messed up if we get called due to a busy condition.
592 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
594 #ifndef final_version
595 /* Since we have allocated space to hold a complete frame,
596 * the last indicator should be set.
598 if ((status
& BD_ENET_RX_LAST
) == 0)
599 printk("FEC ENET: rcv is not +last\n");
603 goto rx_processing_done
;
605 /* Check for errors. */
606 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
607 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
608 dev
->stats
.rx_errors
++;
609 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
610 /* Frame too long or too short. */
611 dev
->stats
.rx_length_errors
++;
613 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
614 dev
->stats
.rx_frame_errors
++;
615 if (status
& BD_ENET_RX_CR
) /* CRC Error */
616 dev
->stats
.rx_crc_errors
++;
617 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
618 dev
->stats
.rx_fifo_errors
++;
621 /* Report late collisions as a frame error.
622 * On this error, the BD is closed, but we don't know what we
623 * have in the buffer. So, just drop this frame on the floor.
625 if (status
& BD_ENET_RX_CL
) {
626 dev
->stats
.rx_errors
++;
627 dev
->stats
.rx_frame_errors
++;
628 goto rx_processing_done
;
631 /* Process the incoming frame.
633 dev
->stats
.rx_packets
++;
634 pkt_len
= bdp
->cbd_datlen
;
635 dev
->stats
.rx_bytes
+= pkt_len
;
636 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
638 /* This does 16 byte alignment, exactly what we need.
639 * The packet length includes FCS, but we don't want to
640 * include that when passing upstream as it messes up
641 * bridging applications.
643 skb
= dev_alloc_skb(pkt_len
-4);
646 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
647 dev
->stats
.rx_dropped
++;
649 skb_put(skb
,pkt_len
-4); /* Make room */
650 skb_copy_to_linear_data(skb
, data
, pkt_len
-4);
651 skb
->protocol
=eth_type_trans(skb
,dev
);
656 /* Clear the status flags for this buffer.
658 status
&= ~BD_ENET_RX_STATS
;
660 /* Mark the buffer empty.
662 status
|= BD_ENET_RX_EMPTY
;
663 bdp
->cbd_sc
= status
;
665 /* Update BD pointer to next entry.
667 if (status
& BD_ENET_RX_WRAP
)
668 bdp
= fep
->rx_bd_base
;
673 /* Doing this here will keep the FEC running while we process
674 * incoming frames. On a heavily loaded network, we should be
675 * able to keep up at the expense of system resources.
677 fecp
->fec_r_des_active
= 0;
679 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
680 fep
->cur_rx
= (cbd_t
*)bdp
;
683 /* Doing this here will allow us to process all frames in the
684 * ring before the FEC is allowed to put more there. On a heavily
685 * loaded network, some frames may be lost. Unfortunately, this
686 * increases the interrupt overhead since we can potentially work
687 * our way back to the interrupt return only to come right back
690 fecp
->fec_r_des_active
= 0;
695 /* called from interrupt context */
697 fec_enet_mii(struct net_device
*dev
)
699 struct fec_enet_private
*fep
;
704 fep
= netdev_priv(dev
);
706 mii_reg
= ep
->fec_mii_data
;
708 spin_lock(&fep
->lock
);
710 if ((mip
= mii_head
) == NULL
) {
711 printk("MII and no head!\n");
715 if (mip
->mii_func
!= NULL
)
716 (*(mip
->mii_func
))(mii_reg
, dev
);
718 mii_head
= mip
->mii_next
;
719 mip
->mii_next
= mii_free
;
722 if ((mip
= mii_head
) != NULL
)
723 ep
->fec_mii_data
= mip
->mii_regval
;
726 spin_unlock(&fep
->lock
);
730 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
732 struct fec_enet_private
*fep
;
737 /* Add PHY address to register command.
739 fep
= netdev_priv(dev
);
740 regval
|= fep
->phy_addr
<< 23;
744 spin_lock_irqsave(&fep
->lock
,flags
);
746 if ((mip
= mii_free
) != NULL
) {
747 mii_free
= mip
->mii_next
;
748 mip
->mii_regval
= regval
;
749 mip
->mii_func
= func
;
750 mip
->mii_next
= NULL
;
752 mii_tail
->mii_next
= mip
;
755 mii_head
= mii_tail
= mip
;
756 fep
->hwp
->fec_mii_data
= regval
;
762 spin_unlock_irqrestore(&fep
->lock
,flags
);
767 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
772 for (; c
->mii_data
!= mk_mii_end
; c
++)
773 mii_queue(dev
, c
->mii_data
, c
->funct
);
776 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
778 struct fec_enet_private
*fep
= netdev_priv(dev
);
779 volatile uint
*s
= &(fep
->phy_status
);
782 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
784 if (mii_reg
& 0x0004)
785 status
|= PHY_STAT_LINK
;
786 if (mii_reg
& 0x0010)
787 status
|= PHY_STAT_FAULT
;
788 if (mii_reg
& 0x0020)
789 status
|= PHY_STAT_ANC
;
793 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
795 struct fec_enet_private
*fep
= netdev_priv(dev
);
796 volatile uint
*s
= &(fep
->phy_status
);
799 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
801 if (mii_reg
& 0x1000)
802 status
|= PHY_CONF_ANE
;
803 if (mii_reg
& 0x4000)
804 status
|= PHY_CONF_LOOP
;
808 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
810 struct fec_enet_private
*fep
= netdev_priv(dev
);
811 volatile uint
*s
= &(fep
->phy_status
);
814 status
= *s
& ~(PHY_CONF_SPMASK
);
816 if (mii_reg
& 0x0020)
817 status
|= PHY_CONF_10HDX
;
818 if (mii_reg
& 0x0040)
819 status
|= PHY_CONF_10FDX
;
820 if (mii_reg
& 0x0080)
821 status
|= PHY_CONF_100HDX
;
822 if (mii_reg
& 0x00100)
823 status
|= PHY_CONF_100FDX
;
827 /* ------------------------------------------------------------------------- */
828 /* The Level one LXT970 is used by many boards */
830 #define MII_LXT970_MIRROR 16 /* Mirror register */
831 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
832 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
833 #define MII_LXT970_CONFIG 19 /* Configuration Register */
834 #define MII_LXT970_CSR 20 /* Chip Status Register */
836 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
838 struct fec_enet_private
*fep
= netdev_priv(dev
);
839 volatile uint
*s
= &(fep
->phy_status
);
842 status
= *s
& ~(PHY_STAT_SPMASK
);
843 if (mii_reg
& 0x0800) {
844 if (mii_reg
& 0x1000)
845 status
|= PHY_STAT_100FDX
;
847 status
|= PHY_STAT_100HDX
;
849 if (mii_reg
& 0x1000)
850 status
|= PHY_STAT_10FDX
;
852 status
|= PHY_STAT_10HDX
;
857 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
858 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
859 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
862 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
863 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
864 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
867 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
868 /* read SR and ISR to acknowledge */
869 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
870 { mk_mii_read(MII_LXT970_ISR
), NULL
},
872 /* find out the current status */
873 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
876 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
877 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
880 static phy_info_t
const phy_info_lxt970
= {
883 .config
= phy_cmd_lxt970_config
,
884 .startup
= phy_cmd_lxt970_startup
,
885 .ack_int
= phy_cmd_lxt970_ack_int
,
886 .shutdown
= phy_cmd_lxt970_shutdown
889 /* ------------------------------------------------------------------------- */
890 /* The Level one LXT971 is used on some of my custom boards */
892 /* register definitions for the 971 */
894 #define MII_LXT971_PCR 16 /* Port Control Register */
895 #define MII_LXT971_SR2 17 /* Status Register 2 */
896 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
897 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
898 #define MII_LXT971_LCR 20 /* LED Control Register */
899 #define MII_LXT971_TCR 30 /* Transmit Control Register */
902 * I had some nice ideas of running the MDIO faster...
903 * The 971 should support 8MHz and I tried it, but things acted really
904 * weird, so 2.5 MHz ought to be enough for anyone...
907 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
909 struct fec_enet_private
*fep
= netdev_priv(dev
);
910 volatile uint
*s
= &(fep
->phy_status
);
913 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
915 if (mii_reg
& 0x0400) {
917 status
|= PHY_STAT_LINK
;
921 if (mii_reg
& 0x0080)
922 status
|= PHY_STAT_ANC
;
923 if (mii_reg
& 0x4000) {
924 if (mii_reg
& 0x0200)
925 status
|= PHY_STAT_100FDX
;
927 status
|= PHY_STAT_100HDX
;
929 if (mii_reg
& 0x0200)
930 status
|= PHY_STAT_10FDX
;
932 status
|= PHY_STAT_10HDX
;
934 if (mii_reg
& 0x0008)
935 status
|= PHY_STAT_FAULT
;
940 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
941 /* limit to 10MBit because my prototype board
942 * doesn't work with 100. */
943 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
944 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
945 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
948 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
949 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
950 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
951 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
952 /* Somehow does the 971 tell me that the link is down
953 * the first read after power-up.
954 * read here to get a valid value in ack_int */
955 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
958 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
959 /* acknowledge the int before reading status ! */
960 { mk_mii_read(MII_LXT971_ISR
), NULL
},
961 /* find out the current status */
962 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
963 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
966 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
967 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
970 static phy_info_t
const phy_info_lxt971
= {
973 .config
= phy_cmd_lxt971_config
,
974 .startup
= phy_cmd_lxt971_startup
,
975 .ack_int
= phy_cmd_lxt971_ack_int
,
976 .shutdown
= phy_cmd_lxt971_shutdown
979 /* ------------------------------------------------------------------------- */
980 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
982 /* register definitions */
984 #define MII_QS6612_MCR 17 /* Mode Control Register */
985 #define MII_QS6612_FTR 27 /* Factory Test Register */
986 #define MII_QS6612_MCO 28 /* Misc. Control Register */
987 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
988 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
989 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
991 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
993 struct fec_enet_private
*fep
= netdev_priv(dev
);
994 volatile uint
*s
= &(fep
->phy_status
);
997 status
= *s
& ~(PHY_STAT_SPMASK
);
999 switch((mii_reg
>> 2) & 7) {
1000 case 1: status
|= PHY_STAT_10HDX
; break;
1001 case 2: status
|= PHY_STAT_100HDX
; break;
1002 case 5: status
|= PHY_STAT_10FDX
; break;
1003 case 6: status
|= PHY_STAT_100FDX
; break;
1009 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1010 /* The PHY powers up isolated on the RPX,
1011 * so send a command to allow operation.
1013 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1015 /* parse cr and anar to get some info */
1016 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1017 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1020 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1021 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1022 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1025 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1026 /* we need to read ISR, SR and ANER to acknowledge */
1027 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1028 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1029 { mk_mii_read(MII_REG_ANER
), NULL
},
1031 /* read pcr to get info */
1032 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1035 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1036 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1039 static phy_info_t
const phy_info_qs6612
= {
1042 .config
= phy_cmd_qs6612_config
,
1043 .startup
= phy_cmd_qs6612_startup
,
1044 .ack_int
= phy_cmd_qs6612_ack_int
,
1045 .shutdown
= phy_cmd_qs6612_shutdown
1048 /* ------------------------------------------------------------------------- */
1049 /* AMD AM79C874 phy */
1051 /* register definitions for the 874 */
1053 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1054 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1055 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1056 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1057 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1058 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1059 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1061 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1063 struct fec_enet_private
*fep
= netdev_priv(dev
);
1064 volatile uint
*s
= &(fep
->phy_status
);
1067 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1069 if (mii_reg
& 0x0080)
1070 status
|= PHY_STAT_ANC
;
1071 if (mii_reg
& 0x0400)
1072 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1074 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1079 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1080 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1081 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1082 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1085 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1086 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1087 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1088 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1091 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1092 /* find out the current status */
1093 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1094 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1095 /* we only need to read ISR to acknowledge */
1096 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1099 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1100 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1103 static phy_info_t
const phy_info_am79c874
= {
1106 .config
= phy_cmd_am79c874_config
,
1107 .startup
= phy_cmd_am79c874_startup
,
1108 .ack_int
= phy_cmd_am79c874_ack_int
,
1109 .shutdown
= phy_cmd_am79c874_shutdown
1113 /* ------------------------------------------------------------------------- */
1114 /* Kendin KS8721BL phy */
1116 /* register definitions for the 8721 */
1118 #define MII_KS8721BL_RXERCR 21
1119 #define MII_KS8721BL_ICSR 22
1120 #define MII_KS8721BL_PHYCR 31
1122 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1123 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1124 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1127 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1128 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1129 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1130 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1133 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1134 /* find out the current status */
1135 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1136 /* we only need to read ISR to acknowledge */
1137 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1140 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1141 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1144 static phy_info_t
const phy_info_ks8721bl
= {
1147 .config
= phy_cmd_ks8721bl_config
,
1148 .startup
= phy_cmd_ks8721bl_startup
,
1149 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1150 .shutdown
= phy_cmd_ks8721bl_shutdown
1153 /* ------------------------------------------------------------------------- */
1154 /* register definitions for the DP83848 */
1156 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1158 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1160 struct fec_enet_private
*fep
= dev
->priv
;
1161 volatile uint
*s
= &(fep
->phy_status
);
1163 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1166 if (mii_reg
& 0x0001) {
1168 *s
|= PHY_STAT_LINK
;
1171 /* Status of link */
1172 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1174 if (mii_reg
& 0x0002) { /* 10MBps? */
1175 if (mii_reg
& 0x0004) /* Full Duplex? */
1176 *s
|= PHY_STAT_10FDX
;
1178 *s
|= PHY_STAT_10HDX
;
1179 } else { /* 100 Mbps? */
1180 if (mii_reg
& 0x0004) /* Full Duplex? */
1181 *s
|= PHY_STAT_100FDX
;
1183 *s
|= PHY_STAT_100HDX
;
1185 if (mii_reg
& 0x0008)
1186 *s
|= PHY_STAT_FAULT
;
1189 static phy_info_t phy_info_dp83848
= {
1193 (const phy_cmd_t
[]) { /* config */
1194 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1195 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1196 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1199 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1200 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1201 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1204 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1207 (const phy_cmd_t
[]) { /* shutdown */
1212 /* ------------------------------------------------------------------------- */
1214 static phy_info_t
const * const phy_info
[] = {
1224 /* ------------------------------------------------------------------------- */
1225 #if !defined(CONFIG_M532x)
1226 #ifdef CONFIG_RPXCLASSIC
1228 mii_link_interrupt(void *dev_id
);
1231 mii_link_interrupt(int irq
, void * dev_id
);
1235 #if defined(CONFIG_M5272)
1237 * Code specific to Coldfire 5272 setup.
1239 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1241 volatile unsigned long *icrp
;
1242 static const struct idesc
{
1245 irq_handler_t handler
;
1247 { "fec(RX)", 86, fec_enet_interrupt
},
1248 { "fec(TX)", 87, fec_enet_interrupt
},
1249 { "fec(OTHER)", 88, fec_enet_interrupt
},
1250 { "fec(MII)", 66, mii_link_interrupt
},
1254 /* Setup interrupt handlers. */
1255 for (idp
= id
; idp
->name
; idp
++) {
1256 if (request_irq(idp
->irq
, idp
->handler
, 0, idp
->name
, dev
) != 0)
1257 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1260 /* Unmask interrupt at ColdFire 5272 SIM */
1261 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1263 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1267 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1269 volatile fec_t
*fecp
;
1272 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1273 fecp
->fec_x_cntrl
= 0x00;
1276 * Set MII speed to 2.5 MHz
1277 * See 5272 manual section 11.5.8: MSCR
1279 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1280 fecp
->fec_mii_speed
= fep
->phy_speed
;
1282 fec_restart(dev
, 0);
1285 static void __inline__
fec_get_mac(struct net_device
*dev
)
1287 struct fec_enet_private
*fep
= netdev_priv(dev
);
1288 volatile fec_t
*fecp
;
1289 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1295 * Get MAC address from FLASH.
1296 * If it is all 1's or 0's, use the default.
1298 iap
= (unsigned char *)FEC_FLASHMAC
;
1299 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1300 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1301 iap
= fec_mac_default
;
1302 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1303 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1304 iap
= fec_mac_default
;
1306 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1307 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1311 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1313 /* Adjust MAC if using default MAC address */
1314 if (iap
== fec_mac_default
)
1315 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1318 static void __inline__
fec_enable_phy_intr(void)
1322 static void __inline__
fec_disable_phy_intr(void)
1324 volatile unsigned long *icrp
;
1325 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1329 static void __inline__
fec_phy_ack_intr(void)
1331 volatile unsigned long *icrp
;
1332 /* Acknowledge the interrupt */
1333 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1337 static void __inline__
fec_localhw_setup(void)
1342 * Do not need to make region uncached on 5272.
1344 static void __inline__
fec_uncache(unsigned long addr
)
1348 /* ------------------------------------------------------------------------- */
1350 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1353 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1354 * the 5270/5271/5274/5275 and 5280/5282 setups.
1356 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1358 struct fec_enet_private
*fep
;
1360 static const struct idesc
{
1366 { "fec(TXFIFO)", 25 },
1367 { "fec(TXCR)", 26 },
1372 { "fec(HBERR)", 31 },
1374 { "fec(EBERR)", 33 },
1375 { "fec(BABT)", 34 },
1376 { "fec(BABR)", 35 },
1380 fep
= netdev_priv(dev
);
1381 b
= (fep
->index
) ? 128 : 64;
1383 /* Setup interrupt handlers. */
1384 for (idp
= id
; idp
->name
; idp
++) {
1385 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, 0, idp
->name
, dev
) != 0)
1386 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1389 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1391 volatile unsigned char *icrp
;
1392 volatile unsigned long *imrp
;
1395 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1396 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1398 for (i
= 23, ilip
= 0x28; (i
< 36); i
++)
1401 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1403 *imrp
&= ~0x0000000f;
1404 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1406 *imrp
&= ~0xff800001;
1409 #if defined(CONFIG_M528x)
1410 /* Set up gpio outputs for MII lines */
1412 volatile u16
*gpio_paspar
;
1413 volatile u8
*gpio_pehlpar
;
1415 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1416 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1417 *gpio_paspar
|= 0x0f00;
1418 *gpio_pehlpar
= 0xc0;
1422 #if defined(CONFIG_M527x)
1423 /* Set up gpio outputs for MII lines */
1425 volatile u8
*gpio_par_fec
;
1426 volatile u16
*gpio_par_feci2c
;
1428 gpio_par_feci2c
= (volatile u16
*)(MCF_IPSBAR
+ 0x100082);
1429 /* Set up gpio outputs for FEC0 MII lines */
1430 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100078);
1432 *gpio_par_feci2c
|= 0x0f00;
1433 *gpio_par_fec
|= 0xc0;
1435 #if defined(CONFIG_FEC2)
1436 /* Set up gpio outputs for FEC1 MII lines */
1437 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100079);
1439 *gpio_par_feci2c
|= 0x00a0;
1440 *gpio_par_fec
|= 0xc0;
1441 #endif /* CONFIG_FEC2 */
1443 #endif /* CONFIG_M527x */
1446 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1448 volatile fec_t
*fecp
;
1451 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1452 fecp
->fec_x_cntrl
= 0x00;
1455 * Set MII speed to 2.5 MHz
1456 * See 5282 manual section 17.5.4.7: MSCR
1458 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1459 fecp
->fec_mii_speed
= fep
->phy_speed
;
1461 fec_restart(dev
, 0);
1464 static void __inline__
fec_get_mac(struct net_device
*dev
)
1466 struct fec_enet_private
*fep
= netdev_priv(dev
);
1467 volatile fec_t
*fecp
;
1468 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1474 * Get MAC address from FLASH.
1475 * If it is all 1's or 0's, use the default.
1478 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1479 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1480 iap
= fec_mac_default
;
1481 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1482 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1483 iap
= fec_mac_default
;
1485 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1486 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1490 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1492 /* Adjust MAC if using default MAC address */
1493 if (iap
== fec_mac_default
)
1494 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1497 static void __inline__
fec_enable_phy_intr(void)
1501 static void __inline__
fec_disable_phy_intr(void)
1505 static void __inline__
fec_phy_ack_intr(void)
1509 static void __inline__
fec_localhw_setup(void)
1514 * Do not need to make region uncached on 5272.
1516 static void __inline__
fec_uncache(unsigned long addr
)
1520 /* ------------------------------------------------------------------------- */
1522 #elif defined(CONFIG_M520x)
1525 * Code specific to Coldfire 520x
1527 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1529 struct fec_enet_private
*fep
;
1531 static const struct idesc
{
1537 { "fec(TXFIFO)", 25 },
1538 { "fec(TXCR)", 26 },
1543 { "fec(HBERR)", 31 },
1545 { "fec(EBERR)", 33 },
1546 { "fec(BABT)", 34 },
1547 { "fec(BABR)", 35 },
1551 fep
= netdev_priv(dev
);
1554 /* Setup interrupt handlers. */
1555 for (idp
= id
; idp
->name
; idp
++) {
1556 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1557 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1560 /* Unmask interrupts at ColdFire interrupt controller */
1562 volatile unsigned char *icrp
;
1563 volatile unsigned long *imrp
;
1565 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1567 for (b
= 36; (b
< 49); b
++)
1569 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1571 *imrp
&= ~0x0001FFF0;
1573 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1574 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1577 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1579 volatile fec_t
*fecp
;
1582 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1583 fecp
->fec_x_cntrl
= 0x00;
1586 * Set MII speed to 2.5 MHz
1587 * See 5282 manual section 17.5.4.7: MSCR
1589 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1590 fecp
->fec_mii_speed
= fep
->phy_speed
;
1592 fec_restart(dev
, 0);
1595 static void __inline__
fec_get_mac(struct net_device
*dev
)
1597 struct fec_enet_private
*fep
= netdev_priv(dev
);
1598 volatile fec_t
*fecp
;
1599 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1605 * Get MAC address from FLASH.
1606 * If it is all 1's or 0's, use the default.
1609 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1610 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1611 iap
= fec_mac_default
;
1612 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1613 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1614 iap
= fec_mac_default
;
1616 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1617 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1621 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1623 /* Adjust MAC if using default MAC address */
1624 if (iap
== fec_mac_default
)
1625 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1628 static void __inline__
fec_enable_phy_intr(void)
1632 static void __inline__
fec_disable_phy_intr(void)
1636 static void __inline__
fec_phy_ack_intr(void)
1640 static void __inline__
fec_localhw_setup(void)
1644 static void __inline__
fec_uncache(unsigned long addr
)
1648 /* ------------------------------------------------------------------------- */
1650 #elif defined(CONFIG_M532x)
1652 * Code specific for M532x
1654 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1656 struct fec_enet_private
*fep
;
1658 static const struct idesc
{
1664 { "fec(TXFIFO)", 38 },
1665 { "fec(TXCR)", 39 },
1670 { "fec(HBERR)", 44 },
1672 { "fec(EBERR)", 46 },
1673 { "fec(BABT)", 47 },
1674 { "fec(BABR)", 48 },
1678 fep
= netdev_priv(dev
);
1679 b
= (fep
->index
) ? 128 : 64;
1681 /* Setup interrupt handlers. */
1682 for (idp
= id
; idp
->name
; idp
++) {
1683 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1684 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1685 idp
->name
, b
+idp
->irq
);
1688 /* Unmask interrupts */
1689 MCF_INTC0_ICR36
= 0x2;
1690 MCF_INTC0_ICR37
= 0x2;
1691 MCF_INTC0_ICR38
= 0x2;
1692 MCF_INTC0_ICR39
= 0x2;
1693 MCF_INTC0_ICR40
= 0x2;
1694 MCF_INTC0_ICR41
= 0x2;
1695 MCF_INTC0_ICR42
= 0x2;
1696 MCF_INTC0_ICR43
= 0x2;
1697 MCF_INTC0_ICR44
= 0x2;
1698 MCF_INTC0_ICR45
= 0x2;
1699 MCF_INTC0_ICR46
= 0x2;
1700 MCF_INTC0_ICR47
= 0x2;
1701 MCF_INTC0_ICR48
= 0x2;
1703 MCF_INTC0_IMRH
&= ~(
1704 MCF_INTC_IMRH_INT_MASK36
|
1705 MCF_INTC_IMRH_INT_MASK37
|
1706 MCF_INTC_IMRH_INT_MASK38
|
1707 MCF_INTC_IMRH_INT_MASK39
|
1708 MCF_INTC_IMRH_INT_MASK40
|
1709 MCF_INTC_IMRH_INT_MASK41
|
1710 MCF_INTC_IMRH_INT_MASK42
|
1711 MCF_INTC_IMRH_INT_MASK43
|
1712 MCF_INTC_IMRH_INT_MASK44
|
1713 MCF_INTC_IMRH_INT_MASK45
|
1714 MCF_INTC_IMRH_INT_MASK46
|
1715 MCF_INTC_IMRH_INT_MASK47
|
1716 MCF_INTC_IMRH_INT_MASK48
);
1718 /* Set up gpio outputs for MII lines */
1719 MCF_GPIO_PAR_FECI2C
|= (0 |
1720 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC
|
1721 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO
);
1722 MCF_GPIO_PAR_FEC
= (0 |
1723 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC
|
1724 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC
);
1727 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1729 volatile fec_t
*fecp
;
1732 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1733 fecp
->fec_x_cntrl
= 0x00;
1736 * Set MII speed to 2.5 MHz
1738 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1739 fecp
->fec_mii_speed
= fep
->phy_speed
;
1741 fec_restart(dev
, 0);
1744 static void __inline__
fec_get_mac(struct net_device
*dev
)
1746 struct fec_enet_private
*fep
= netdev_priv(dev
);
1747 volatile fec_t
*fecp
;
1748 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1754 * Get MAC address from FLASH.
1755 * If it is all 1's or 0's, use the default.
1758 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1759 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1760 iap
= fec_mac_default
;
1761 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1762 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1763 iap
= fec_mac_default
;
1765 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1766 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1770 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1772 /* Adjust MAC if using default MAC address */
1773 if (iap
== fec_mac_default
)
1774 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1777 static void __inline__
fec_enable_phy_intr(void)
1781 static void __inline__
fec_disable_phy_intr(void)
1785 static void __inline__
fec_phy_ack_intr(void)
1789 static void __inline__
fec_localhw_setup(void)
1794 * Do not need to make region uncached on 532x.
1796 static void __inline__
fec_uncache(unsigned long addr
)
1800 /* ------------------------------------------------------------------------- */
1806 * Code specific to the MPC860T setup.
1808 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1810 volatile immap_t
*immap
;
1812 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1814 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1815 panic("Could not allocate FEC IRQ!");
1817 #ifdef CONFIG_RPXCLASSIC
1818 /* Make Port C, bit 15 an input that causes interrupts.
1820 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1821 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1822 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1823 immap
->im_ioport
.iop_pcint
|= 0x0001;
1824 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1826 /* Make LEDS reflect Link status.
1828 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1831 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1832 panic("Could not allocate MII IRQ!");
1836 static void __inline__
fec_get_mac(struct net_device
*dev
)
1841 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1843 #ifdef CONFIG_RPXCLASSIC
1844 /* The Embedded Planet boards have only one MAC address in
1845 * the EEPROM, but can have two Ethernet ports. For the
1846 * FEC port, we create another address by setting one of
1847 * the address bits above something that would have (up to
1848 * now) been allocated.
1850 dev
->dev_adrd
[3] |= 0x80;
1854 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1856 extern uint
_get_IMMR(void);
1857 volatile immap_t
*immap
;
1858 volatile fec_t
*fecp
;
1861 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1863 /* Configure all of port D for MII.
1865 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1867 /* Bits moved from Rev. D onward.
1869 if ((_get_IMMR() & 0xffff) < 0x0501)
1870 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1872 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1874 /* Set MII speed to 2.5 MHz
1876 fecp
->fec_mii_speed
= fep
->phy_speed
=
1877 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1880 static void __inline__
fec_enable_phy_intr(void)
1882 volatile fec_t
*fecp
;
1886 /* Enable MII command finished interrupt
1888 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1891 static void __inline__
fec_disable_phy_intr(void)
1895 static void __inline__
fec_phy_ack_intr(void)
1899 static void __inline__
fec_localhw_setup(void)
1901 volatile fec_t
*fecp
;
1904 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1905 /* Enable big endian and don't care about SDMA FC.
1907 fecp
->fec_fun_code
= 0x78000000;
1910 static void __inline__
fec_uncache(unsigned long addr
)
1913 pte
= va_to_pte(mem_addr
);
1914 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1915 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1920 /* ------------------------------------------------------------------------- */
1922 static void mii_display_status(struct net_device
*dev
)
1924 struct fec_enet_private
*fep
= netdev_priv(dev
);
1925 volatile uint
*s
= &(fep
->phy_status
);
1927 if (!fep
->link
&& !fep
->old_link
) {
1928 /* Link is still down - don't print anything */
1932 printk("%s: status: ", dev
->name
);
1935 printk("link down");
1939 switch(*s
& PHY_STAT_SPMASK
) {
1940 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1941 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1942 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1943 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1945 printk(", Unknown speed/duplex");
1948 if (*s
& PHY_STAT_ANC
)
1949 printk(", auto-negotiation complete");
1952 if (*s
& PHY_STAT_FAULT
)
1953 printk(", remote fault");
1958 static void mii_display_config(struct work_struct
*work
)
1960 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1961 struct net_device
*dev
= fep
->netdev
;
1962 uint status
= fep
->phy_status
;
1965 ** When we get here, phy_task is already removed from
1966 ** the workqueue. It is thus safe to allow to reuse it.
1968 fep
->mii_phy_task_queued
= 0;
1969 printk("%s: config: auto-negotiation ", dev
->name
);
1971 if (status
& PHY_CONF_ANE
)
1976 if (status
& PHY_CONF_100FDX
)
1978 if (status
& PHY_CONF_100HDX
)
1980 if (status
& PHY_CONF_10FDX
)
1982 if (status
& PHY_CONF_10HDX
)
1984 if (!(status
& PHY_CONF_SPMASK
))
1985 printk(", No speed/duplex selected?");
1987 if (status
& PHY_CONF_LOOP
)
1988 printk(", loopback enabled");
1992 fep
->sequence_done
= 1;
1995 static void mii_relink(struct work_struct
*work
)
1997 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1998 struct net_device
*dev
= fep
->netdev
;
2002 ** When we get here, phy_task is already removed from
2003 ** the workqueue. It is thus safe to allow to reuse it.
2005 fep
->mii_phy_task_queued
= 0;
2006 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
2007 mii_display_status(dev
);
2008 fep
->old_link
= fep
->link
;
2013 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
2015 fec_restart(dev
, duplex
);
2020 enable_irq(fep
->mii_irq
);
2025 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2026 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
2028 struct fec_enet_private
*fep
= netdev_priv(dev
);
2031 ** We cannot queue phy_task twice in the workqueue. It
2032 ** would cause an endless loop in the workqueue.
2033 ** Fortunately, if the last mii_relink entry has not yet been
2034 ** executed now, it will do the job for the current interrupt,
2035 ** which is just what we want.
2037 if (fep
->mii_phy_task_queued
)
2040 fep
->mii_phy_task_queued
= 1;
2041 INIT_WORK(&fep
->phy_task
, mii_relink
);
2042 schedule_work(&fep
->phy_task
);
2045 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2046 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
2048 struct fec_enet_private
*fep
= netdev_priv(dev
);
2050 if (fep
->mii_phy_task_queued
)
2053 fep
->mii_phy_task_queued
= 1;
2054 INIT_WORK(&fep
->phy_task
, mii_display_config
);
2055 schedule_work(&fep
->phy_task
);
2058 phy_cmd_t
const phy_cmd_relink
[] = {
2059 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
2062 phy_cmd_t
const phy_cmd_config
[] = {
2063 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
2067 /* Read remainder of PHY ID.
2070 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
2072 struct fec_enet_private
*fep
;
2075 fep
= netdev_priv(dev
);
2076 fep
->phy_id
|= (mii_reg
& 0xffff);
2077 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
2079 for(i
= 0; phy_info
[i
]; i
++) {
2080 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
2085 printk(" -- %s\n", phy_info
[i
]->name
);
2087 printk(" -- unknown PHY!\n");
2089 fep
->phy
= phy_info
[i
];
2090 fep
->phy_id_done
= 1;
2093 /* Scan all of the MII PHY addresses looking for someone to respond
2094 * with a valid ID. This usually happens quickly.
2097 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
2099 struct fec_enet_private
*fep
;
2100 volatile fec_t
*fecp
;
2103 fep
= netdev_priv(dev
);
2106 if (fep
->phy_addr
< 32) {
2107 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
2109 /* Got first part of ID, now get remainder.
2111 fep
->phy_id
= phytype
<< 16;
2112 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
2116 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
2120 printk("FEC: No PHY device found.\n");
2121 /* Disable external MII interface */
2122 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
2123 fec_disable_phy_intr();
2127 /* This interrupt occurs when the PHY detects a link change.
2129 #ifdef CONFIG_RPXCLASSIC
2131 mii_link_interrupt(void *dev_id
)
2134 mii_link_interrupt(int irq
, void * dev_id
)
2137 struct net_device
*dev
= dev_id
;
2138 struct fec_enet_private
*fep
= netdev_priv(dev
);
2143 disable_irq(fep
->mii_irq
); /* disable now, enable later */
2146 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2147 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
2153 fec_enet_open(struct net_device
*dev
)
2155 struct fec_enet_private
*fep
= netdev_priv(dev
);
2157 /* I should reset the ring buffers here, but I don't yet know
2158 * a simple way to do that.
2160 fec_set_mac_address(dev
);
2162 fep
->sequence_done
= 0;
2166 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2167 mii_do_cmd(dev
, fep
->phy
->config
);
2168 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2170 /* Poll until the PHY tells us its configuration
2172 * Request is initiated by mii_do_cmd above, but answer
2173 * comes by interrupt.
2174 * This should take about 25 usec per register at 2.5 MHz,
2175 * and we read approximately 5 registers.
2177 while(!fep
->sequence_done
)
2180 mii_do_cmd(dev
, fep
->phy
->startup
);
2182 /* Set the initial link state to true. A lot of hardware
2183 * based on this device does not implement a PHY interrupt,
2184 * so we are never notified of link change.
2188 fep
->link
= 1; /* lets just try it and see */
2189 /* no phy, go full duplex, it's most likely a hub chip */
2190 fec_restart(dev
, 1);
2193 netif_start_queue(dev
);
2195 return 0; /* Success */
2199 fec_enet_close(struct net_device
*dev
)
2201 struct fec_enet_private
*fep
= netdev_priv(dev
);
2203 /* Don't know what to do yet.
2206 netif_stop_queue(dev
);
2212 /* Set or clear the multicast filter for this adaptor.
2213 * Skeleton taken from sunlance driver.
2214 * The CPM Ethernet implementation allows Multicast as well as individual
2215 * MAC address filtering. Some of the drivers check to make sure it is
2216 * a group multicast address, and discard those that are not. I guess I
2217 * will do the same for now, but just remove the test if you want
2218 * individual filtering as well (do the upper net layers want or support
2219 * this kind of feature?).
2222 #define HASH_BITS 6 /* #bits in hash */
2223 #define CRC32_POLY 0xEDB88320
2225 static void set_multicast_list(struct net_device
*dev
)
2227 struct fec_enet_private
*fep
;
2229 struct dev_mc_list
*dmi
;
2230 unsigned int i
, j
, bit
, data
, crc
;
2233 fep
= netdev_priv(dev
);
2236 if (dev
->flags
&IFF_PROMISC
) {
2237 ep
->fec_r_cntrl
|= 0x0008;
2240 ep
->fec_r_cntrl
&= ~0x0008;
2242 if (dev
->flags
& IFF_ALLMULTI
) {
2243 /* Catch all multicast addresses, so set the
2244 * filter to all 1's.
2246 ep
->fec_hash_table_high
= 0xffffffff;
2247 ep
->fec_hash_table_low
= 0xffffffff;
2249 /* Clear filter and add the addresses in hash register.
2251 ep
->fec_hash_table_high
= 0;
2252 ep
->fec_hash_table_low
= 0;
2256 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2258 /* Only support group multicast for now.
2260 if (!(dmi
->dmi_addr
[0] & 1))
2263 /* calculate crc32 value of mac address
2267 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2269 data
= dmi
->dmi_addr
[i
];
2270 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2273 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2277 /* only upper 6 bits (HASH_BITS) are used
2278 which point to specific bit in he hash registers
2280 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2283 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
2285 ep
->fec_hash_table_low
|= 1 << hash
;
2291 /* Set a MAC change in hardware.
2294 fec_set_mac_address(struct net_device
*dev
)
2296 volatile fec_t
*fecp
;
2298 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2300 /* Set station address. */
2301 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2302 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2303 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2304 (dev
->dev_addr
[4] << 24);
2308 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2311 * XXX: We need to clean up on failure exits here.
2313 int __init
fec_enet_init(struct net_device
*dev
)
2315 struct fec_enet_private
*fep
= netdev_priv(dev
);
2316 unsigned long mem_addr
;
2317 volatile cbd_t
*bdp
;
2319 volatile fec_t
*fecp
;
2321 static int index
= 0;
2323 /* Only allow us to be probed once. */
2324 if (index
>= FEC_MAX_PORTS
)
2327 /* Allocate memory for buffer descriptors.
2329 mem_addr
= __get_free_page(GFP_KERNEL
);
2330 if (mem_addr
== 0) {
2331 printk("FEC: allocate descriptor memory failed?\n");
2335 /* Create an Ethernet device instance.
2337 fecp
= (volatile fec_t
*) fec_hw
[index
];
2343 /* Whack a reset. We should wait for this.
2345 fecp
->fec_ecntrl
= 1;
2348 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2349 * this needs some work to get unique addresses.
2351 * This is our default MAC address unless the user changes
2352 * it via eth_mac_addr (our dev->set_mac_addr handler).
2356 cbd_base
= (cbd_t
*)mem_addr
;
2357 /* XXX: missing check for allocation failure */
2359 fec_uncache(mem_addr
);
2361 /* Set receive and transmit descriptor base.
2363 fep
->rx_bd_base
= cbd_base
;
2364 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2366 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2367 fep
->cur_rx
= fep
->rx_bd_base
;
2369 fep
->skb_cur
= fep
->skb_dirty
= 0;
2371 /* Initialize the receive buffer descriptors.
2373 bdp
= fep
->rx_bd_base
;
2374 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2378 mem_addr
= __get_free_page(GFP_KERNEL
);
2379 /* XXX: missing check for allocation failure */
2381 fec_uncache(mem_addr
);
2383 /* Initialize the BD for every fragment in the page.
2385 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2386 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2387 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2388 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2393 /* Set the last buffer to wrap.
2396 bdp
->cbd_sc
|= BD_SC_WRAP
;
2398 /* ...and the same for transmmit.
2400 bdp
= fep
->tx_bd_base
;
2401 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2402 if (j
>= FEC_ENET_TX_FRPPG
) {
2403 mem_addr
= __get_free_page(GFP_KERNEL
);
2406 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2409 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2411 /* Initialize the BD for every fragment in the page.
2414 bdp
->cbd_bufaddr
= 0;
2418 /* Set the last buffer to wrap.
2421 bdp
->cbd_sc
|= BD_SC_WRAP
;
2423 /* Set receive and transmit descriptor base.
2425 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2426 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2428 /* Install our interrupt handlers. This varies depending on
2431 fec_request_intrs(dev
);
2433 fecp
->fec_hash_table_high
= 0;
2434 fecp
->fec_hash_table_low
= 0;
2435 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2436 fecp
->fec_ecntrl
= 2;
2437 fecp
->fec_r_des_active
= 0;
2439 dev
->base_addr
= (unsigned long)fecp
;
2441 /* The FEC Ethernet specific entries in the device structure. */
2442 dev
->open
= fec_enet_open
;
2443 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2444 dev
->tx_timeout
= fec_timeout
;
2445 dev
->watchdog_timeo
= TX_TIMEOUT
;
2446 dev
->stop
= fec_enet_close
;
2447 dev
->set_multicast_list
= set_multicast_list
;
2449 for (i
=0; i
<NMII
-1; i
++)
2450 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2451 mii_free
= mii_cmds
;
2453 /* setup MII interface */
2454 fec_set_mii(dev
, fep
);
2456 /* Clear and enable interrupts */
2457 fecp
->fec_ievent
= 0xffc00000;
2458 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2459 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2461 /* Queue up command to detect the PHY and initialize the
2462 * remainder of the interface.
2464 fep
->phy_id_done
= 0;
2466 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2472 /* This function is called to start or restart the FEC during a link
2473 * change. This only happens when switching between half and full
2477 fec_restart(struct net_device
*dev
, int duplex
)
2479 struct fec_enet_private
*fep
;
2480 volatile cbd_t
*bdp
;
2481 volatile fec_t
*fecp
;
2484 fep
= netdev_priv(dev
);
2487 /* Whack a reset. We should wait for this.
2489 fecp
->fec_ecntrl
= 1;
2492 /* Clear any outstanding interrupt.
2494 fecp
->fec_ievent
= 0xffc00000;
2495 fec_enable_phy_intr();
2497 /* Set station address.
2499 fec_set_mac_address(dev
);
2501 /* Reset all multicast.
2503 fecp
->fec_hash_table_high
= 0;
2504 fecp
->fec_hash_table_low
= 0;
2506 /* Set maximum receive buffer size.
2508 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2510 fec_localhw_setup();
2512 /* Set receive and transmit descriptor base.
2514 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2515 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2517 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2518 fep
->cur_rx
= fep
->rx_bd_base
;
2520 /* Reset SKB transmit buffers.
2522 fep
->skb_cur
= fep
->skb_dirty
= 0;
2523 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2524 if (fep
->tx_skbuff
[i
] != NULL
) {
2525 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2526 fep
->tx_skbuff
[i
] = NULL
;
2530 /* Initialize the receive buffer descriptors.
2532 bdp
= fep
->rx_bd_base
;
2533 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2535 /* Initialize the BD for every fragment in the page.
2537 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2541 /* Set the last buffer to wrap.
2544 bdp
->cbd_sc
|= BD_SC_WRAP
;
2546 /* ...and the same for transmmit.
2548 bdp
= fep
->tx_bd_base
;
2549 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2551 /* Initialize the BD for every fragment in the page.
2554 bdp
->cbd_bufaddr
= 0;
2558 /* Set the last buffer to wrap.
2561 bdp
->cbd_sc
|= BD_SC_WRAP
;
2566 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2567 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2569 /* MII enable|No Rcv on Xmit */
2570 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2571 fecp
->fec_x_cntrl
= 0x00;
2573 fep
->full_duplex
= duplex
;
2577 fecp
->fec_mii_speed
= fep
->phy_speed
;
2579 /* And last, enable the transmit and receive processing.
2581 fecp
->fec_ecntrl
= 2;
2582 fecp
->fec_r_des_active
= 0;
2584 /* Enable interrupts we wish to service.
2586 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2587 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2591 fec_stop(struct net_device
*dev
)
2593 volatile fec_t
*fecp
;
2594 struct fec_enet_private
*fep
;
2596 fep
= netdev_priv(dev
);
2600 ** We cannot expect a graceful transmit stop without link !!!
2604 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2606 if (!(fecp
->fec_ievent
& FEC_ENET_GRA
))
2607 printk("fec_stop : Graceful transmit stop did not complete !\n");
2610 /* Whack a reset. We should wait for this.
2612 fecp
->fec_ecntrl
= 1;
2615 /* Clear outstanding MII command interrupts.
2617 fecp
->fec_ievent
= FEC_ENET_MII
;
2618 fec_enable_phy_intr();
2620 fecp
->fec_imask
= FEC_ENET_MII
;
2621 fecp
->fec_mii_speed
= fep
->phy_speed
;
2624 static int __init
fec_enet_module_init(void)
2626 struct net_device
*dev
;
2628 DECLARE_MAC_BUF(mac
);
2630 printk("FEC ENET Version 0.2\n");
2632 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2633 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2636 err
= fec_enet_init(dev
);
2641 if (register_netdev(dev
) != 0) {
2642 /* XXX: missing cleanup here */
2647 printk("%s: ethernet %s\n",
2648 dev
->name
, print_mac(mac
, dev
->dev_addr
));
2653 module_init(fec_enet_module_init
);
2655 MODULE_LICENSE("GPL");