2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
103 struct list_head list
; /* anchored by shmem_inode_info->xattr_list */
104 char *name
; /* xattr name */
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
111 SGP_READ
, /* don't exceed i_size, don't allocate page */
112 SGP_CACHE
, /* don't exceed i_size, may allocate page */
113 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
114 SGP_WRITE
, /* may exceed i_size, may allocate page */
118 static unsigned long shmem_default_max_blocks(void)
120 return totalram_pages
/ 2;
123 static unsigned long shmem_default_max_inodes(void)
125 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
129 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
130 struct page
**pagep
, enum sgp_type sgp
, int *type
);
132 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
135 * The above definition of ENTRIES_PER_PAGE, and the use of
136 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 * might be reconsidered if it ever diverges from PAGE_SIZE.
139 * Mobility flags are masked out as swap vectors cannot move
141 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
142 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
145 static inline void shmem_dir_free(struct page
*page
)
147 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
150 static struct page
**shmem_dir_map(struct page
*page
)
152 return (struct page
**)kmap_atomic(page
, KM_USER0
);
155 static inline void shmem_dir_unmap(struct page
**dir
)
157 kunmap_atomic(dir
, KM_USER0
);
160 static swp_entry_t
*shmem_swp_map(struct page
*page
)
162 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
165 static inline void shmem_swp_balance_unmap(void)
168 * When passing a pointer to an i_direct entry, to code which
169 * also handles indirect entries and so will shmem_swp_unmap,
170 * we must arrange for the preempt count to remain in balance.
171 * What kmap_atomic of a lowmem page does depends on config
172 * and architecture, so pretend to kmap_atomic some lowmem page.
174 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
177 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
179 kunmap_atomic(entry
, KM_USER1
);
182 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
184 return sb
->s_fs_info
;
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
193 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
195 return (flags
& VM_NORESERVE
) ?
196 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
199 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
201 if (!(flags
& VM_NORESERVE
))
202 vm_unacct_memory(VM_ACCT(size
));
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
211 static inline int shmem_acct_block(unsigned long flags
)
213 return (flags
& VM_NORESERVE
) ?
214 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
217 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
219 if (flags
& VM_NORESERVE
)
220 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
223 static const struct super_operations shmem_ops
;
224 static const struct address_space_operations shmem_aops
;
225 static const struct file_operations shmem_file_operations
;
226 static const struct inode_operations shmem_inode_operations
;
227 static const struct inode_operations shmem_dir_inode_operations
;
228 static const struct inode_operations shmem_special_inode_operations
;
229 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
232 .ra_pages
= 0, /* No readahead */
233 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
236 static LIST_HEAD(shmem_swaplist
);
237 static DEFINE_MUTEX(shmem_swaplist_mutex
);
239 static void shmem_free_blocks(struct inode
*inode
, long pages
)
241 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
242 if (sbinfo
->max_blocks
) {
243 percpu_counter_add(&sbinfo
->used_blocks
, -pages
);
244 spin_lock(&inode
->i_lock
);
245 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
246 spin_unlock(&inode
->i_lock
);
250 static int shmem_reserve_inode(struct super_block
*sb
)
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
253 if (sbinfo
->max_inodes
) {
254 spin_lock(&sbinfo
->stat_lock
);
255 if (!sbinfo
->free_inodes
) {
256 spin_unlock(&sbinfo
->stat_lock
);
259 sbinfo
->free_inodes
--;
260 spin_unlock(&sbinfo
->stat_lock
);
265 static void shmem_free_inode(struct super_block
*sb
)
267 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
268 if (sbinfo
->max_inodes
) {
269 spin_lock(&sbinfo
->stat_lock
);
270 sbinfo
->free_inodes
++;
271 spin_unlock(&sbinfo
->stat_lock
);
276 * shmem_recalc_inode - recalculate the size of an inode
277 * @inode: inode to recalc
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
282 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
285 * It has to be called with the spinlock held.
287 static void shmem_recalc_inode(struct inode
*inode
)
289 struct shmem_inode_info
*info
= SHMEM_I(inode
);
292 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
294 info
->alloced
-= freed
;
295 shmem_unacct_blocks(info
->flags
, freed
);
296 shmem_free_blocks(inode
, freed
);
301 * shmem_swp_entry - find the swap vector position in the info structure
302 * @info: info structure for the inode
303 * @index: index of the page to find
304 * @page: optional page to add to the structure. Has to be preset to
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
311 * The swap vector is organized the following way:
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
324 * i_indirect -> dir --> 16-19
337 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
339 unsigned long offset
;
343 if (index
< SHMEM_NR_DIRECT
) {
344 shmem_swp_balance_unmap();
345 return info
->i_direct
+index
;
347 if (!info
->i_indirect
) {
349 info
->i_indirect
= *page
;
352 return NULL
; /* need another page */
355 index
-= SHMEM_NR_DIRECT
;
356 offset
= index
% ENTRIES_PER_PAGE
;
357 index
/= ENTRIES_PER_PAGE
;
358 dir
= shmem_dir_map(info
->i_indirect
);
360 if (index
>= ENTRIES_PER_PAGE
/2) {
361 index
-= ENTRIES_PER_PAGE
/2;
362 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
363 index
%= ENTRIES_PER_PAGE
;
370 shmem_dir_unmap(dir
);
371 return NULL
; /* need another page */
373 shmem_dir_unmap(dir
);
374 dir
= shmem_dir_map(subdir
);
380 if (!page
|| !(subdir
= *page
)) {
381 shmem_dir_unmap(dir
);
382 return NULL
; /* need a page */
387 shmem_dir_unmap(dir
);
388 return shmem_swp_map(subdir
) + offset
;
391 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
393 long incdec
= value
? 1: -1;
396 info
->swapped
+= incdec
;
397 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
398 struct page
*page
= kmap_atomic_to_page(entry
);
399 set_page_private(page
, page_private(page
) + incdec
);
404 * shmem_swp_alloc - get the position of the swap entry for the page.
405 * @info: info structure for the inode
406 * @index: index of the page to find
407 * @sgp: check and recheck i_size? skip allocation?
409 * If the entry does not exist, allocate it.
411 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
413 struct inode
*inode
= &info
->vfs_inode
;
414 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
415 struct page
*page
= NULL
;
418 if (sgp
!= SGP_WRITE
&&
419 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
420 return ERR_PTR(-EINVAL
);
422 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
424 return shmem_swp_map(ZERO_PAGE(0));
426 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 * page (and perhaps indirect index pages) yet to allocate:
428 * a waste to allocate index if we cannot allocate data.
430 if (sbinfo
->max_blocks
) {
431 if (percpu_counter_compare(&sbinfo
->used_blocks
,
432 sbinfo
->max_blocks
- 1) >= 0)
433 return ERR_PTR(-ENOSPC
);
434 percpu_counter_inc(&sbinfo
->used_blocks
);
435 spin_lock(&inode
->i_lock
);
436 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
437 spin_unlock(&inode
->i_lock
);
440 spin_unlock(&info
->lock
);
441 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
442 spin_lock(&info
->lock
);
445 shmem_free_blocks(inode
, 1);
446 return ERR_PTR(-ENOMEM
);
448 if (sgp
!= SGP_WRITE
&&
449 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
450 entry
= ERR_PTR(-EINVAL
);
453 if (info
->next_index
<= index
)
454 info
->next_index
= index
+ 1;
457 /* another task gave its page, or truncated the file */
458 shmem_free_blocks(inode
, 1);
459 shmem_dir_free(page
);
461 if (info
->next_index
<= index
&& !IS_ERR(entry
))
462 info
->next_index
= index
+ 1;
467 * shmem_free_swp - free some swap entries in a directory
468 * @dir: pointer to the directory
469 * @edir: pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
472 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
473 spinlock_t
*punch_lock
)
475 spinlock_t
*punch_unlock
= NULL
;
479 for (ptr
= dir
; ptr
< edir
; ptr
++) {
481 if (unlikely(punch_lock
)) {
482 punch_unlock
= punch_lock
;
484 spin_lock(punch_unlock
);
488 free_swap_and_cache(*ptr
);
489 *ptr
= (swp_entry_t
){0};
494 spin_unlock(punch_unlock
);
498 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
499 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
504 ptr
= shmem_swp_map(subdir
);
505 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
506 int size
= limit
- offset
;
507 if (size
> LATENCY_LIMIT
)
508 size
= LATENCY_LIMIT
;
509 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
511 if (need_resched()) {
512 shmem_swp_unmap(ptr
);
514 shmem_dir_unmap(*dir
);
518 ptr
= shmem_swp_map(subdir
);
521 shmem_swp_unmap(ptr
);
525 static void shmem_free_pages(struct list_head
*next
)
531 page
= container_of(next
, struct page
, lru
);
533 shmem_dir_free(page
);
535 if (freed
>= LATENCY_LIMIT
) {
542 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
544 struct shmem_inode_info
*info
= SHMEM_I(inode
);
549 unsigned long diroff
;
555 LIST_HEAD(pages_to_free
);
556 long nr_pages_to_free
= 0;
557 long nr_swaps_freed
= 0;
561 spinlock_t
*needs_lock
;
562 spinlock_t
*punch_lock
;
563 unsigned long upper_limit
;
565 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
566 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
567 if (idx
>= info
->next_index
)
570 spin_lock(&info
->lock
);
571 info
->flags
|= SHMEM_TRUNCATE
;
572 if (likely(end
== (loff_t
) -1)) {
573 limit
= info
->next_index
;
574 upper_limit
= SHMEM_MAX_INDEX
;
575 info
->next_index
= idx
;
579 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
580 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
582 upper_limit
= SHMEM_MAX_INDEX
;
584 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
587 needs_lock
= &info
->lock
;
591 topdir
= info
->i_indirect
;
592 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
593 info
->i_indirect
= NULL
;
595 list_add(&topdir
->lru
, &pages_to_free
);
597 spin_unlock(&info
->lock
);
599 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
600 ptr
= info
->i_direct
;
602 if (size
> SHMEM_NR_DIRECT
)
603 size
= SHMEM_NR_DIRECT
;
604 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
608 * If there are no indirect blocks or we are punching a hole
609 * below indirect blocks, nothing to be done.
611 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
615 * The truncation case has already dropped info->lock, and we're safe
616 * because i_size and next_index have already been lowered, preventing
617 * access beyond. But in the punch_hole case, we still need to take
618 * the lock when updating the swap directory, because there might be
619 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
620 * shmem_writepage. However, whenever we find we can remove a whole
621 * directory page (not at the misaligned start or end of the range),
622 * we first NULLify its pointer in the level above, and then have no
623 * need to take the lock when updating its contents: needs_lock and
624 * punch_lock (either pointing to info->lock or NULL) manage this.
627 upper_limit
-= SHMEM_NR_DIRECT
;
628 limit
-= SHMEM_NR_DIRECT
;
629 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
630 offset
= idx
% ENTRIES_PER_PAGE
;
633 dir
= shmem_dir_map(topdir
);
634 stage
= ENTRIES_PER_PAGEPAGE
/2;
635 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
637 diroff
= idx
/ENTRIES_PER_PAGE
;
639 dir
+= ENTRIES_PER_PAGE
/2;
640 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
642 stage
+= ENTRIES_PER_PAGEPAGE
;
645 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
646 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
647 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
649 spin_lock(needs_lock
);
651 spin_unlock(needs_lock
);
656 list_add(&middir
->lru
, &pages_to_free
);
658 shmem_dir_unmap(dir
);
659 dir
= shmem_dir_map(middir
);
667 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
668 if (unlikely(idx
== stage
)) {
669 shmem_dir_unmap(dir
);
670 dir
= shmem_dir_map(topdir
) +
671 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
674 idx
+= ENTRIES_PER_PAGEPAGE
;
678 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
681 needs_lock
= &info
->lock
;
682 if (upper_limit
>= stage
) {
684 spin_lock(needs_lock
);
686 spin_unlock(needs_lock
);
691 list_add(&middir
->lru
, &pages_to_free
);
693 shmem_dir_unmap(dir
);
695 dir
= shmem_dir_map(middir
);
698 punch_lock
= needs_lock
;
699 subdir
= dir
[diroff
];
700 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
702 spin_lock(needs_lock
);
704 spin_unlock(needs_lock
);
709 list_add(&subdir
->lru
, &pages_to_free
);
711 if (subdir
&& page_private(subdir
) /* has swap entries */) {
713 if (size
> ENTRIES_PER_PAGE
)
714 size
= ENTRIES_PER_PAGE
;
715 freed
= shmem_map_and_free_swp(subdir
,
716 offset
, size
, &dir
, punch_lock
);
718 dir
= shmem_dir_map(middir
);
719 nr_swaps_freed
+= freed
;
720 if (offset
|| punch_lock
) {
721 spin_lock(&info
->lock
);
722 set_page_private(subdir
,
723 page_private(subdir
) - freed
);
724 spin_unlock(&info
->lock
);
726 BUG_ON(page_private(subdir
) != freed
);
731 shmem_dir_unmap(dir
);
733 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
735 * Call truncate_inode_pages again: racing shmem_unuse_inode
736 * may have swizzled a page in from swap since
737 * truncate_pagecache or generic_delete_inode did it, before we
738 * lowered next_index. Also, though shmem_getpage checks
739 * i_size before adding to cache, no recheck after: so fix the
740 * narrow window there too.
742 * Recalling truncate_inode_pages_range and unmap_mapping_range
743 * every time for punch_hole (which never got a chance to clear
744 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
745 * yet hardly ever necessary: try to optimize them out later.
747 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
749 unmap_mapping_range(inode
->i_mapping
, start
,
753 spin_lock(&info
->lock
);
754 info
->flags
&= ~SHMEM_TRUNCATE
;
755 info
->swapped
-= nr_swaps_freed
;
756 if (nr_pages_to_free
)
757 shmem_free_blocks(inode
, nr_pages_to_free
);
758 shmem_recalc_inode(inode
);
759 spin_unlock(&info
->lock
);
762 * Empty swap vector directory pages to be freed?
764 if (!list_empty(&pages_to_free
)) {
765 pages_to_free
.prev
->next
= NULL
;
766 shmem_free_pages(pages_to_free
.next
);
770 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
772 struct inode
*inode
= dentry
->d_inode
;
773 loff_t newsize
= attr
->ia_size
;
776 error
= inode_change_ok(inode
, attr
);
780 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)
781 && newsize
!= inode
->i_size
) {
782 struct page
*page
= NULL
;
784 if (newsize
< inode
->i_size
) {
786 * If truncating down to a partial page, then
787 * if that page is already allocated, hold it
788 * in memory until the truncation is over, so
789 * truncate_partial_page cannot miss it were
790 * it assigned to swap.
792 if (newsize
& (PAGE_CACHE_SIZE
-1)) {
793 (void) shmem_getpage(inode
,
794 newsize
>> PAGE_CACHE_SHIFT
,
795 &page
, SGP_READ
, NULL
);
800 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
801 * detect if any pages might have been added to cache
802 * after truncate_inode_pages. But we needn't bother
803 * if it's being fully truncated to zero-length: the
804 * nrpages check is efficient enough in that case.
807 struct shmem_inode_info
*info
= SHMEM_I(inode
);
808 spin_lock(&info
->lock
);
809 info
->flags
&= ~SHMEM_PAGEIN
;
810 spin_unlock(&info
->lock
);
814 /* XXX(truncate): truncate_setsize should be called last */
815 truncate_setsize(inode
, newsize
);
817 page_cache_release(page
);
818 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
821 setattr_copy(inode
, attr
);
822 #ifdef CONFIG_TMPFS_POSIX_ACL
823 if (attr
->ia_valid
& ATTR_MODE
)
824 error
= generic_acl_chmod(inode
);
829 static void shmem_evict_inode(struct inode
*inode
)
831 struct shmem_inode_info
*info
= SHMEM_I(inode
);
832 struct shmem_xattr
*xattr
, *nxattr
;
834 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
835 truncate_inode_pages(inode
->i_mapping
, 0);
836 shmem_unacct_size(info
->flags
, inode
->i_size
);
838 shmem_truncate_range(inode
, 0, (loff_t
)-1);
839 if (!list_empty(&info
->swaplist
)) {
840 mutex_lock(&shmem_swaplist_mutex
);
841 list_del_init(&info
->swaplist
);
842 mutex_unlock(&shmem_swaplist_mutex
);
846 list_for_each_entry_safe(xattr
, nxattr
, &info
->xattr_list
, list
) {
850 BUG_ON(inode
->i_blocks
);
851 shmem_free_inode(inode
->i_sb
);
852 end_writeback(inode
);
855 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
859 for (ptr
= dir
; ptr
< edir
; ptr
++) {
860 if (ptr
->val
== entry
.val
)
866 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
868 struct address_space
*mapping
;
880 ptr
= info
->i_direct
;
881 spin_lock(&info
->lock
);
882 if (!info
->swapped
) {
883 list_del_init(&info
->swaplist
);
886 limit
= info
->next_index
;
888 if (size
> SHMEM_NR_DIRECT
)
889 size
= SHMEM_NR_DIRECT
;
890 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
892 shmem_swp_balance_unmap();
895 if (!info
->i_indirect
)
898 dir
= shmem_dir_map(info
->i_indirect
);
899 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
901 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
902 if (unlikely(idx
== stage
)) {
903 shmem_dir_unmap(dir
-1);
904 if (cond_resched_lock(&info
->lock
)) {
905 /* check it has not been truncated */
906 if (limit
> info
->next_index
) {
907 limit
= info
->next_index
;
912 dir
= shmem_dir_map(info
->i_indirect
) +
913 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
916 idx
+= ENTRIES_PER_PAGEPAGE
;
920 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
922 shmem_dir_unmap(dir
);
923 dir
= shmem_dir_map(subdir
);
926 if (subdir
&& page_private(subdir
)) {
927 ptr
= shmem_swp_map(subdir
);
929 if (size
> ENTRIES_PER_PAGE
)
930 size
= ENTRIES_PER_PAGE
;
931 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
932 shmem_swp_unmap(ptr
);
934 shmem_dir_unmap(dir
);
935 ptr
= shmem_swp_map(subdir
);
941 shmem_dir_unmap(dir
-1);
943 spin_unlock(&info
->lock
);
950 * Move _head_ to start search for next from here.
951 * But be careful: shmem_evict_inode checks list_empty without taking
952 * mutex, and there's an instant in list_move_tail when info->swaplist
953 * would appear empty, if it were the only one on shmem_swaplist. We
954 * could avoid doing it if inode NULL; or use this minor optimization.
956 if (shmem_swaplist
.next
!= &info
->swaplist
)
957 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
960 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
961 * but also to hold up shmem_evict_inode(): so inode cannot be freed
962 * beneath us (pagelock doesn't help until the page is in pagecache).
964 mapping
= info
->vfs_inode
.i_mapping
;
965 error
= add_to_page_cache_locked(page
, mapping
, idx
, GFP_NOWAIT
);
966 /* which does mem_cgroup_uncharge_cache_page on error */
968 if (error
== -EEXIST
) {
969 struct page
*filepage
= find_get_page(mapping
, idx
);
973 * There might be a more uptodate page coming down
974 * from a stacked writepage: forget our swappage if so.
976 if (PageUptodate(filepage
))
978 page_cache_release(filepage
);
982 delete_from_swap_cache(page
);
983 set_page_dirty(page
);
984 info
->flags
|= SHMEM_PAGEIN
;
985 shmem_swp_set(info
, ptr
, 0);
987 error
= 1; /* not an error, but entry was found */
989 shmem_swp_unmap(ptr
);
990 spin_unlock(&info
->lock
);
995 * shmem_unuse() search for an eventually swapped out shmem page.
997 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
999 struct list_head
*p
, *next
;
1000 struct shmem_inode_info
*info
;
1005 * Charge page using GFP_KERNEL while we can wait, before taking
1006 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1007 * Charged back to the user (not to caller) when swap account is used.
1008 * add_to_page_cache() will be called with GFP_NOWAIT.
1010 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
1014 * Try to preload while we can wait, to not make a habit of
1015 * draining atomic reserves; but don't latch on to this cpu,
1016 * it's okay if sometimes we get rescheduled after this.
1018 error
= radix_tree_preload(GFP_KERNEL
);
1021 radix_tree_preload_end();
1023 mutex_lock(&shmem_swaplist_mutex
);
1024 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1025 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1026 found
= shmem_unuse_inode(info
, entry
, page
);
1031 mutex_unlock(&shmem_swaplist_mutex
);
1035 mem_cgroup_uncharge_cache_page(page
);
1040 page_cache_release(page
);
1045 * Move the page from the page cache to the swap cache.
1047 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1049 struct shmem_inode_info
*info
;
1050 swp_entry_t
*entry
, swap
;
1051 struct address_space
*mapping
;
1052 unsigned long index
;
1053 struct inode
*inode
;
1055 BUG_ON(!PageLocked(page
));
1056 mapping
= page
->mapping
;
1057 index
= page
->index
;
1058 inode
= mapping
->host
;
1059 info
= SHMEM_I(inode
);
1060 if (info
->flags
& VM_LOCKED
)
1062 if (!total_swap_pages
)
1066 * shmem_backing_dev_info's capabilities prevent regular writeback or
1067 * sync from ever calling shmem_writepage; but a stacking filesystem
1068 * may use the ->writepage of its underlying filesystem, in which case
1069 * tmpfs should write out to swap only in response to memory pressure,
1070 * and not for the writeback threads or sync. However, in those cases,
1071 * we do still want to check if there's a redundant swappage to be
1074 if (wbc
->for_reclaim
)
1075 swap
= get_swap_page();
1080 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1081 * if it's not already there. Do it now because we cannot take
1082 * mutex while holding spinlock, and must do so before the page
1083 * is moved to swap cache, when its pagelock no longer protects
1084 * the inode from eviction. But don't unlock the mutex until
1085 * we've taken the spinlock, because shmem_unuse_inode() will
1086 * prune a !swapped inode from the swaplist under both locks.
1089 mutex_lock(&shmem_swaplist_mutex
);
1090 if (list_empty(&info
->swaplist
))
1091 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1094 spin_lock(&info
->lock
);
1096 mutex_unlock(&shmem_swaplist_mutex
);
1098 if (index
>= info
->next_index
) {
1099 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1102 entry
= shmem_swp_entry(info
, index
, NULL
);
1105 * The more uptodate page coming down from a stacked
1106 * writepage should replace our old swappage.
1108 free_swap_and_cache(*entry
);
1109 shmem_swp_set(info
, entry
, 0);
1111 shmem_recalc_inode(inode
);
1113 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1114 delete_from_page_cache(page
);
1115 shmem_swp_set(info
, entry
, swap
.val
);
1116 shmem_swp_unmap(entry
);
1117 swap_shmem_alloc(swap
);
1118 spin_unlock(&info
->lock
);
1119 BUG_ON(page_mapped(page
));
1120 swap_writepage(page
, wbc
);
1124 shmem_swp_unmap(entry
);
1126 spin_unlock(&info
->lock
);
1128 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1129 * clear SWAP_HAS_CACHE flag.
1131 swapcache_free(swap
, NULL
);
1133 set_page_dirty(page
);
1134 if (wbc
->for_reclaim
)
1135 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1142 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1146 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1147 return; /* show nothing */
1149 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1151 seq_printf(seq
, ",mpol=%s", buffer
);
1154 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1156 struct mempolicy
*mpol
= NULL
;
1158 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1159 mpol
= sbinfo
->mpol
;
1161 spin_unlock(&sbinfo
->stat_lock
);
1165 #endif /* CONFIG_TMPFS */
1167 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1168 struct shmem_inode_info
*info
, unsigned long idx
)
1170 struct mempolicy mpol
, *spol
;
1171 struct vm_area_struct pvma
;
1174 spol
= mpol_cond_copy(&mpol
,
1175 mpol_shared_policy_lookup(&info
->policy
, idx
));
1177 /* Create a pseudo vma that just contains the policy */
1179 pvma
.vm_pgoff
= idx
;
1181 pvma
.vm_policy
= spol
;
1182 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1186 static struct page
*shmem_alloc_page(gfp_t gfp
,
1187 struct shmem_inode_info
*info
, unsigned long idx
)
1189 struct vm_area_struct pvma
;
1191 /* Create a pseudo vma that just contains the policy */
1193 pvma
.vm_pgoff
= idx
;
1195 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1198 * alloc_page_vma() will drop the shared policy reference
1200 return alloc_page_vma(gfp
, &pvma
, 0);
1202 #else /* !CONFIG_NUMA */
1204 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1207 #endif /* CONFIG_TMPFS */
1209 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1210 struct shmem_inode_info
*info
, unsigned long idx
)
1212 return swapin_readahead(entry
, gfp
, NULL
, 0);
1215 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1216 struct shmem_inode_info
*info
, unsigned long idx
)
1218 return alloc_page(gfp
);
1220 #endif /* CONFIG_NUMA */
1222 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1223 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1230 * shmem_getpage - either get the page from swap or allocate a new one
1232 * If we allocate a new one we do not mark it dirty. That's up to the
1233 * vm. If we swap it in we mark it dirty since we also free the swap
1234 * entry since a page cannot live in both the swap and page cache
1236 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1237 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1239 struct address_space
*mapping
= inode
->i_mapping
;
1240 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1241 struct shmem_sb_info
*sbinfo
;
1242 struct page
*filepage
= *pagep
;
1243 struct page
*swappage
;
1244 struct page
*prealloc_page
= NULL
;
1250 if (idx
>= SHMEM_MAX_INDEX
)
1257 * Normally, filepage is NULL on entry, and either found
1258 * uptodate immediately, or allocated and zeroed, or read
1259 * in under swappage, which is then assigned to filepage.
1260 * But shmem_readpage (required for splice) passes in a locked
1261 * filepage, which may be found not uptodate by other callers
1262 * too, and may need to be copied from the swappage read in.
1266 filepage
= find_lock_page(mapping
, idx
);
1267 if (filepage
&& PageUptodate(filepage
))
1269 gfp
= mapping_gfp_mask(mapping
);
1272 * Try to preload while we can wait, to not make a habit of
1273 * draining atomic reserves; but don't latch on to this cpu.
1275 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1278 radix_tree_preload_end();
1279 if (sgp
!= SGP_READ
&& !prealloc_page
) {
1280 /* We don't care if this fails */
1281 prealloc_page
= shmem_alloc_page(gfp
, info
, idx
);
1282 if (prealloc_page
) {
1283 if (mem_cgroup_cache_charge(prealloc_page
,
1284 current
->mm
, GFP_KERNEL
)) {
1285 page_cache_release(prealloc_page
);
1286 prealloc_page
= NULL
;
1293 spin_lock(&info
->lock
);
1294 shmem_recalc_inode(inode
);
1295 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1296 if (IS_ERR(entry
)) {
1297 spin_unlock(&info
->lock
);
1298 error
= PTR_ERR(entry
);
1304 /* Look it up and read it in.. */
1305 swappage
= lookup_swap_cache(swap
);
1307 shmem_swp_unmap(entry
);
1308 spin_unlock(&info
->lock
);
1309 /* here we actually do the io */
1311 *type
|= VM_FAULT_MAJOR
;
1312 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1314 spin_lock(&info
->lock
);
1315 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1317 error
= PTR_ERR(entry
);
1319 if (entry
->val
== swap
.val
)
1321 shmem_swp_unmap(entry
);
1323 spin_unlock(&info
->lock
);
1328 wait_on_page_locked(swappage
);
1329 page_cache_release(swappage
);
1333 /* We have to do this with page locked to prevent races */
1334 if (!trylock_page(swappage
)) {
1335 shmem_swp_unmap(entry
);
1336 spin_unlock(&info
->lock
);
1337 wait_on_page_locked(swappage
);
1338 page_cache_release(swappage
);
1341 if (PageWriteback(swappage
)) {
1342 shmem_swp_unmap(entry
);
1343 spin_unlock(&info
->lock
);
1344 wait_on_page_writeback(swappage
);
1345 unlock_page(swappage
);
1346 page_cache_release(swappage
);
1349 if (!PageUptodate(swappage
)) {
1350 shmem_swp_unmap(entry
);
1351 spin_unlock(&info
->lock
);
1352 unlock_page(swappage
);
1353 page_cache_release(swappage
);
1359 shmem_swp_set(info
, entry
, 0);
1360 shmem_swp_unmap(entry
);
1361 delete_from_swap_cache(swappage
);
1362 spin_unlock(&info
->lock
);
1363 copy_highpage(filepage
, swappage
);
1364 unlock_page(swappage
);
1365 page_cache_release(swappage
);
1366 flush_dcache_page(filepage
);
1367 SetPageUptodate(filepage
);
1368 set_page_dirty(filepage
);
1370 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1371 idx
, GFP_NOWAIT
))) {
1372 info
->flags
|= SHMEM_PAGEIN
;
1373 shmem_swp_set(info
, entry
, 0);
1374 shmem_swp_unmap(entry
);
1375 delete_from_swap_cache(swappage
);
1376 spin_unlock(&info
->lock
);
1377 filepage
= swappage
;
1378 set_page_dirty(filepage
);
1381 shmem_swp_unmap(entry
);
1382 spin_unlock(&info
->lock
);
1383 if (error
== -ENOMEM
) {
1385 * reclaim from proper memory cgroup and
1386 * call memcg's OOM if needed.
1388 error
= mem_cgroup_shmem_charge_fallback(
1393 unlock_page(swappage
);
1394 page_cache_release(swappage
);
1398 unlock_page(swappage
);
1399 page_cache_release(swappage
);
1402 } else if (sgp
== SGP_READ
&& !filepage
) {
1403 shmem_swp_unmap(entry
);
1404 filepage
= find_get_page(mapping
, idx
);
1406 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1407 spin_unlock(&info
->lock
);
1408 wait_on_page_locked(filepage
);
1409 page_cache_release(filepage
);
1413 spin_unlock(&info
->lock
);
1415 shmem_swp_unmap(entry
);
1416 sbinfo
= SHMEM_SB(inode
->i_sb
);
1417 if (sbinfo
->max_blocks
) {
1418 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1419 sbinfo
->max_blocks
) >= 0 ||
1420 shmem_acct_block(info
->flags
))
1422 percpu_counter_inc(&sbinfo
->used_blocks
);
1423 spin_lock(&inode
->i_lock
);
1424 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1425 spin_unlock(&inode
->i_lock
);
1426 } else if (shmem_acct_block(info
->flags
))
1432 if (!prealloc_page
) {
1433 spin_unlock(&info
->lock
);
1434 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1436 shmem_unacct_blocks(info
->flags
, 1);
1437 shmem_free_blocks(inode
, 1);
1441 SetPageSwapBacked(filepage
);
1444 * Precharge page while we can wait, compensate
1447 error
= mem_cgroup_cache_charge(filepage
,
1448 current
->mm
, GFP_KERNEL
);
1450 page_cache_release(filepage
);
1451 shmem_unacct_blocks(info
->flags
, 1);
1452 shmem_free_blocks(inode
, 1);
1457 spin_lock(&info
->lock
);
1459 filepage
= prealloc_page
;
1460 prealloc_page
= NULL
;
1461 SetPageSwapBacked(filepage
);
1464 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1466 error
= PTR_ERR(entry
);
1469 shmem_swp_unmap(entry
);
1471 ret
= error
|| swap
.val
;
1473 mem_cgroup_uncharge_cache_page(filepage
);
1475 ret
= add_to_page_cache_lru(filepage
, mapping
,
1478 * At add_to_page_cache_lru() failure, uncharge will
1479 * be done automatically.
1482 spin_unlock(&info
->lock
);
1483 page_cache_release(filepage
);
1484 shmem_unacct_blocks(info
->flags
, 1);
1485 shmem_free_blocks(inode
, 1);
1491 info
->flags
|= SHMEM_PAGEIN
;
1495 spin_unlock(&info
->lock
);
1496 clear_highpage(filepage
);
1497 flush_dcache_page(filepage
);
1498 SetPageUptodate(filepage
);
1499 if (sgp
== SGP_DIRTY
)
1500 set_page_dirty(filepage
);
1509 * Perhaps the page was brought in from swap between find_lock_page
1510 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1511 * but must also avoid reporting a spurious ENOSPC while working on a
1512 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1513 * is already in page cache, which prevents this race from occurring.)
1516 struct page
*page
= find_get_page(mapping
, idx
);
1518 spin_unlock(&info
->lock
);
1519 page_cache_release(page
);
1523 spin_unlock(&info
->lock
);
1526 if (*pagep
!= filepage
) {
1527 unlock_page(filepage
);
1528 page_cache_release(filepage
);
1531 if (prealloc_page
) {
1532 mem_cgroup_uncharge_cache_page(prealloc_page
);
1533 page_cache_release(prealloc_page
);
1538 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1540 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1544 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1545 return VM_FAULT_SIGBUS
;
1547 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1549 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1550 if (ret
& VM_FAULT_MAJOR
) {
1551 count_vm_event(PGMAJFAULT
);
1552 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1554 return ret
| VM_FAULT_LOCKED
;
1558 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1560 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1561 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1564 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1567 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1570 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1571 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1575 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1577 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1578 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1579 int retval
= -ENOMEM
;
1581 spin_lock(&info
->lock
);
1582 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1583 if (!user_shm_lock(inode
->i_size
, user
))
1585 info
->flags
|= VM_LOCKED
;
1586 mapping_set_unevictable(file
->f_mapping
);
1588 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1589 user_shm_unlock(inode
->i_size
, user
);
1590 info
->flags
&= ~VM_LOCKED
;
1591 mapping_clear_unevictable(file
->f_mapping
);
1592 scan_mapping_unevictable_pages(file
->f_mapping
);
1597 spin_unlock(&info
->lock
);
1601 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1603 file_accessed(file
);
1604 vma
->vm_ops
= &shmem_vm_ops
;
1605 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1609 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1610 int mode
, dev_t dev
, unsigned long flags
)
1612 struct inode
*inode
;
1613 struct shmem_inode_info
*info
;
1614 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1616 if (shmem_reserve_inode(sb
))
1619 inode
= new_inode(sb
);
1621 inode
->i_ino
= get_next_ino();
1622 inode_init_owner(inode
, dir
, mode
);
1623 inode
->i_blocks
= 0;
1624 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1625 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1626 inode
->i_generation
= get_seconds();
1627 info
= SHMEM_I(inode
);
1628 memset(info
, 0, (char *)inode
- (char *)info
);
1629 spin_lock_init(&info
->lock
);
1630 info
->flags
= flags
& VM_NORESERVE
;
1631 INIT_LIST_HEAD(&info
->swaplist
);
1632 INIT_LIST_HEAD(&info
->xattr_list
);
1633 cache_no_acl(inode
);
1635 switch (mode
& S_IFMT
) {
1637 inode
->i_op
= &shmem_special_inode_operations
;
1638 init_special_inode(inode
, mode
, dev
);
1641 inode
->i_mapping
->a_ops
= &shmem_aops
;
1642 inode
->i_op
= &shmem_inode_operations
;
1643 inode
->i_fop
= &shmem_file_operations
;
1644 mpol_shared_policy_init(&info
->policy
,
1645 shmem_get_sbmpol(sbinfo
));
1649 /* Some things misbehave if size == 0 on a directory */
1650 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1651 inode
->i_op
= &shmem_dir_inode_operations
;
1652 inode
->i_fop
= &simple_dir_operations
;
1656 * Must not load anything in the rbtree,
1657 * mpol_free_shared_policy will not be called.
1659 mpol_shared_policy_init(&info
->policy
, NULL
);
1663 shmem_free_inode(sb
);
1668 static const struct inode_operations shmem_symlink_inode_operations
;
1669 static const struct inode_operations shmem_symlink_inline_operations
;
1672 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1673 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1674 * below the loop driver, in the generic fashion that many filesystems support.
1676 static int shmem_readpage(struct file
*file
, struct page
*page
)
1678 struct inode
*inode
= page
->mapping
->host
;
1679 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1685 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1686 loff_t pos
, unsigned len
, unsigned flags
,
1687 struct page
**pagep
, void **fsdata
)
1689 struct inode
*inode
= mapping
->host
;
1690 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1692 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1696 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1697 loff_t pos
, unsigned len
, unsigned copied
,
1698 struct page
*page
, void *fsdata
)
1700 struct inode
*inode
= mapping
->host
;
1702 if (pos
+ copied
> inode
->i_size
)
1703 i_size_write(inode
, pos
+ copied
);
1705 set_page_dirty(page
);
1707 page_cache_release(page
);
1712 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1714 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1715 struct address_space
*mapping
= inode
->i_mapping
;
1716 unsigned long index
, offset
;
1717 enum sgp_type sgp
= SGP_READ
;
1720 * Might this read be for a stacking filesystem? Then when reading
1721 * holes of a sparse file, we actually need to allocate those pages,
1722 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1724 if (segment_eq(get_fs(), KERNEL_DS
))
1727 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1728 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1731 struct page
*page
= NULL
;
1732 unsigned long end_index
, nr
, ret
;
1733 loff_t i_size
= i_size_read(inode
);
1735 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1736 if (index
> end_index
)
1738 if (index
== end_index
) {
1739 nr
= i_size
& ~PAGE_CACHE_MASK
;
1744 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1746 if (desc
->error
== -EINVAL
)
1754 * We must evaluate after, since reads (unlike writes)
1755 * are called without i_mutex protection against truncate
1757 nr
= PAGE_CACHE_SIZE
;
1758 i_size
= i_size_read(inode
);
1759 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1760 if (index
== end_index
) {
1761 nr
= i_size
& ~PAGE_CACHE_MASK
;
1764 page_cache_release(page
);
1772 * If users can be writing to this page using arbitrary
1773 * virtual addresses, take care about potential aliasing
1774 * before reading the page on the kernel side.
1776 if (mapping_writably_mapped(mapping
))
1777 flush_dcache_page(page
);
1779 * Mark the page accessed if we read the beginning.
1782 mark_page_accessed(page
);
1784 page
= ZERO_PAGE(0);
1785 page_cache_get(page
);
1789 * Ok, we have the page, and it's up-to-date, so
1790 * now we can copy it to user space...
1792 * The actor routine returns how many bytes were actually used..
1793 * NOTE! This may not be the same as how much of a user buffer
1794 * we filled up (we may be padding etc), so we can only update
1795 * "pos" here (the actor routine has to update the user buffer
1796 * pointers and the remaining count).
1798 ret
= actor(desc
, page
, offset
, nr
);
1800 index
+= offset
>> PAGE_CACHE_SHIFT
;
1801 offset
&= ~PAGE_CACHE_MASK
;
1803 page_cache_release(page
);
1804 if (ret
!= nr
|| !desc
->count
)
1810 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1811 file_accessed(filp
);
1814 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1815 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1817 struct file
*filp
= iocb
->ki_filp
;
1821 loff_t
*ppos
= &iocb
->ki_pos
;
1823 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1827 for (seg
= 0; seg
< nr_segs
; seg
++) {
1828 read_descriptor_t desc
;
1831 desc
.arg
.buf
= iov
[seg
].iov_base
;
1832 desc
.count
= iov
[seg
].iov_len
;
1833 if (desc
.count
== 0)
1836 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1837 retval
+= desc
.written
;
1839 retval
= retval
?: desc
.error
;
1848 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1850 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1852 buf
->f_type
= TMPFS_MAGIC
;
1853 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1854 buf
->f_namelen
= NAME_MAX
;
1855 if (sbinfo
->max_blocks
) {
1856 buf
->f_blocks
= sbinfo
->max_blocks
;
1857 buf
->f_bavail
= buf
->f_bfree
=
1858 sbinfo
->max_blocks
- percpu_counter_sum(&sbinfo
->used_blocks
);
1860 if (sbinfo
->max_inodes
) {
1861 buf
->f_files
= sbinfo
->max_inodes
;
1862 buf
->f_ffree
= sbinfo
->free_inodes
;
1864 /* else leave those fields 0 like simple_statfs */
1869 * File creation. Allocate an inode, and we're done..
1872 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1874 struct inode
*inode
;
1875 int error
= -ENOSPC
;
1877 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1879 error
= security_inode_init_security(inode
, dir
,
1880 &dentry
->d_name
, NULL
,
1883 if (error
!= -EOPNOTSUPP
) {
1888 #ifdef CONFIG_TMPFS_POSIX_ACL
1889 error
= generic_acl_init(inode
, dir
);
1897 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1898 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1899 d_instantiate(dentry
, inode
);
1900 dget(dentry
); /* Extra count - pin the dentry in core */
1905 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1909 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1915 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1916 struct nameidata
*nd
)
1918 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1924 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1926 struct inode
*inode
= old_dentry
->d_inode
;
1930 * No ordinary (disk based) filesystem counts links as inodes;
1931 * but each new link needs a new dentry, pinning lowmem, and
1932 * tmpfs dentries cannot be pruned until they are unlinked.
1934 ret
= shmem_reserve_inode(inode
->i_sb
);
1938 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1939 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1941 ihold(inode
); /* New dentry reference */
1942 dget(dentry
); /* Extra pinning count for the created dentry */
1943 d_instantiate(dentry
, inode
);
1948 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1950 struct inode
*inode
= dentry
->d_inode
;
1952 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1953 shmem_free_inode(inode
->i_sb
);
1955 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1956 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1958 dput(dentry
); /* Undo the count from "create" - this does all the work */
1962 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1964 if (!simple_empty(dentry
))
1967 drop_nlink(dentry
->d_inode
);
1969 return shmem_unlink(dir
, dentry
);
1973 * The VFS layer already does all the dentry stuff for rename,
1974 * we just have to decrement the usage count for the target if
1975 * it exists so that the VFS layer correctly free's it when it
1978 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1980 struct inode
*inode
= old_dentry
->d_inode
;
1981 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1983 if (!simple_empty(new_dentry
))
1986 if (new_dentry
->d_inode
) {
1987 (void) shmem_unlink(new_dir
, new_dentry
);
1989 drop_nlink(old_dir
);
1990 } else if (they_are_dirs
) {
1991 drop_nlink(old_dir
);
1995 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1996 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1997 old_dir
->i_ctime
= old_dir
->i_mtime
=
1998 new_dir
->i_ctime
= new_dir
->i_mtime
=
1999 inode
->i_ctime
= CURRENT_TIME
;
2003 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2007 struct inode
*inode
;
2008 struct page
*page
= NULL
;
2010 struct shmem_inode_info
*info
;
2012 len
= strlen(symname
) + 1;
2013 if (len
> PAGE_CACHE_SIZE
)
2014 return -ENAMETOOLONG
;
2016 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2020 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
, NULL
,
2023 if (error
!= -EOPNOTSUPP
) {
2030 info
= SHMEM_I(inode
);
2031 inode
->i_size
= len
-1;
2032 if (len
<= SHMEM_SYMLINK_INLINE_LEN
) {
2034 memcpy(info
->inline_symlink
, symname
, len
);
2035 inode
->i_op
= &shmem_symlink_inline_operations
;
2037 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2042 inode
->i_mapping
->a_ops
= &shmem_aops
;
2043 inode
->i_op
= &shmem_symlink_inode_operations
;
2044 kaddr
= kmap_atomic(page
, KM_USER0
);
2045 memcpy(kaddr
, symname
, len
);
2046 kunmap_atomic(kaddr
, KM_USER0
);
2047 set_page_dirty(page
);
2049 page_cache_release(page
);
2051 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2052 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2053 d_instantiate(dentry
, inode
);
2058 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
2060 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->inline_symlink
);
2064 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2066 struct page
*page
= NULL
;
2067 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2068 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2074 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2076 if (!IS_ERR(nd_get_link(nd
))) {
2077 struct page
*page
= cookie
;
2079 mark_page_accessed(page
);
2080 page_cache_release(page
);
2084 #ifdef CONFIG_TMPFS_XATTR
2086 * Superblocks without xattr inode operations may get some security.* xattr
2087 * support from the LSM "for free". As soon as we have any other xattrs
2088 * like ACLs, we also need to implement the security.* handlers at
2089 * filesystem level, though.
2092 static int shmem_xattr_get(struct dentry
*dentry
, const char *name
,
2093 void *buffer
, size_t size
)
2095 struct shmem_inode_info
*info
;
2096 struct shmem_xattr
*xattr
;
2099 info
= SHMEM_I(dentry
->d_inode
);
2101 spin_lock(&info
->lock
);
2102 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2103 if (strcmp(name
, xattr
->name
))
2108 if (size
< xattr
->size
)
2111 memcpy(buffer
, xattr
->value
, xattr
->size
);
2115 spin_unlock(&info
->lock
);
2119 static int shmem_xattr_set(struct dentry
*dentry
, const char *name
,
2120 const void *value
, size_t size
, int flags
)
2122 struct inode
*inode
= dentry
->d_inode
;
2123 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2124 struct shmem_xattr
*xattr
;
2125 struct shmem_xattr
*new_xattr
= NULL
;
2129 /* value == NULL means remove */
2132 len
= sizeof(*new_xattr
) + size
;
2133 if (len
<= sizeof(*new_xattr
))
2136 new_xattr
= kmalloc(len
, GFP_KERNEL
);
2140 new_xattr
->name
= kstrdup(name
, GFP_KERNEL
);
2141 if (!new_xattr
->name
) {
2146 new_xattr
->size
= size
;
2147 memcpy(new_xattr
->value
, value
, size
);
2150 spin_lock(&info
->lock
);
2151 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2152 if (!strcmp(name
, xattr
->name
)) {
2153 if (flags
& XATTR_CREATE
) {
2156 } else if (new_xattr
) {
2157 list_replace(&xattr
->list
, &new_xattr
->list
);
2159 list_del(&xattr
->list
);
2164 if (flags
& XATTR_REPLACE
) {
2168 list_add(&new_xattr
->list
, &info
->xattr_list
);
2172 spin_unlock(&info
->lock
);
2180 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2181 #ifdef CONFIG_TMPFS_POSIX_ACL
2182 &generic_acl_access_handler
,
2183 &generic_acl_default_handler
,
2188 static int shmem_xattr_validate(const char *name
)
2190 struct { const char *prefix
; size_t len
; } arr
[] = {
2191 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2192 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2196 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2197 size_t preflen
= arr
[i
].len
;
2198 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2207 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2208 void *buffer
, size_t size
)
2213 * If this is a request for a synthetic attribute in the system.*
2214 * namespace use the generic infrastructure to resolve a handler
2215 * for it via sb->s_xattr.
2217 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2218 return generic_getxattr(dentry
, name
, buffer
, size
);
2220 err
= shmem_xattr_validate(name
);
2224 return shmem_xattr_get(dentry
, name
, buffer
, size
);
2227 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2228 const void *value
, size_t size
, int flags
)
2233 * If this is a request for a synthetic attribute in the system.*
2234 * namespace use the generic infrastructure to resolve a handler
2235 * for it via sb->s_xattr.
2237 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2238 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2240 err
= shmem_xattr_validate(name
);
2245 value
= ""; /* empty EA, do not remove */
2247 return shmem_xattr_set(dentry
, name
, value
, size
, flags
);
2251 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2256 * If this is a request for a synthetic attribute in the system.*
2257 * namespace use the generic infrastructure to resolve a handler
2258 * for it via sb->s_xattr.
2260 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2261 return generic_removexattr(dentry
, name
);
2263 err
= shmem_xattr_validate(name
);
2267 return shmem_xattr_set(dentry
, name
, NULL
, 0, XATTR_REPLACE
);
2270 static bool xattr_is_trusted(const char *name
)
2272 return !strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
);
2275 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2277 bool trusted
= capable(CAP_SYS_ADMIN
);
2278 struct shmem_xattr
*xattr
;
2279 struct shmem_inode_info
*info
;
2282 info
= SHMEM_I(dentry
->d_inode
);
2284 spin_lock(&info
->lock
);
2285 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2288 /* skip "trusted." attributes for unprivileged callers */
2289 if (!trusted
&& xattr_is_trusted(xattr
->name
))
2292 len
= strlen(xattr
->name
) + 1;
2299 memcpy(buffer
, xattr
->name
, len
);
2303 spin_unlock(&info
->lock
);
2307 #endif /* CONFIG_TMPFS_XATTR */
2309 static const struct inode_operations shmem_symlink_inline_operations
= {
2310 .readlink
= generic_readlink
,
2311 .follow_link
= shmem_follow_link_inline
,
2312 #ifdef CONFIG_TMPFS_XATTR
2313 .setxattr
= shmem_setxattr
,
2314 .getxattr
= shmem_getxattr
,
2315 .listxattr
= shmem_listxattr
,
2316 .removexattr
= shmem_removexattr
,
2320 static const struct inode_operations shmem_symlink_inode_operations
= {
2321 .readlink
= generic_readlink
,
2322 .follow_link
= shmem_follow_link
,
2323 .put_link
= shmem_put_link
,
2324 #ifdef CONFIG_TMPFS_XATTR
2325 .setxattr
= shmem_setxattr
,
2326 .getxattr
= shmem_getxattr
,
2327 .listxattr
= shmem_listxattr
,
2328 .removexattr
= shmem_removexattr
,
2332 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2334 return ERR_PTR(-ESTALE
);
2337 static int shmem_match(struct inode
*ino
, void *vfh
)
2341 inum
= (inum
<< 32) | fh
[1];
2342 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2345 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2346 struct fid
*fid
, int fh_len
, int fh_type
)
2348 struct inode
*inode
;
2349 struct dentry
*dentry
= NULL
;
2350 u64 inum
= fid
->raw
[2];
2351 inum
= (inum
<< 32) | fid
->raw
[1];
2356 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2357 shmem_match
, fid
->raw
);
2359 dentry
= d_find_alias(inode
);
2366 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2369 struct inode
*inode
= dentry
->d_inode
;
2376 if (inode_unhashed(inode
)) {
2377 /* Unfortunately insert_inode_hash is not idempotent,
2378 * so as we hash inodes here rather than at creation
2379 * time, we need a lock to ensure we only try
2382 static DEFINE_SPINLOCK(lock
);
2384 if (inode_unhashed(inode
))
2385 __insert_inode_hash(inode
,
2386 inode
->i_ino
+ inode
->i_generation
);
2390 fh
[0] = inode
->i_generation
;
2391 fh
[1] = inode
->i_ino
;
2392 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2398 static const struct export_operations shmem_export_ops
= {
2399 .get_parent
= shmem_get_parent
,
2400 .encode_fh
= shmem_encode_fh
,
2401 .fh_to_dentry
= shmem_fh_to_dentry
,
2404 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2407 char *this_char
, *value
, *rest
;
2409 while (options
!= NULL
) {
2410 this_char
= options
;
2413 * NUL-terminate this option: unfortunately,
2414 * mount options form a comma-separated list,
2415 * but mpol's nodelist may also contain commas.
2417 options
= strchr(options
, ',');
2418 if (options
== NULL
)
2421 if (!isdigit(*options
)) {
2428 if ((value
= strchr(this_char
,'=')) != NULL
) {
2432 "tmpfs: No value for mount option '%s'\n",
2437 if (!strcmp(this_char
,"size")) {
2438 unsigned long long size
;
2439 size
= memparse(value
,&rest
);
2441 size
<<= PAGE_SHIFT
;
2442 size
*= totalram_pages
;
2448 sbinfo
->max_blocks
=
2449 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2450 } else if (!strcmp(this_char
,"nr_blocks")) {
2451 sbinfo
->max_blocks
= memparse(value
, &rest
);
2454 } else if (!strcmp(this_char
,"nr_inodes")) {
2455 sbinfo
->max_inodes
= memparse(value
, &rest
);
2458 } else if (!strcmp(this_char
,"mode")) {
2461 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2464 } else if (!strcmp(this_char
,"uid")) {
2467 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2470 } else if (!strcmp(this_char
,"gid")) {
2473 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2476 } else if (!strcmp(this_char
,"mpol")) {
2477 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2480 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2488 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2494 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2496 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2497 struct shmem_sb_info config
= *sbinfo
;
2498 unsigned long inodes
;
2499 int error
= -EINVAL
;
2501 if (shmem_parse_options(data
, &config
, true))
2504 spin_lock(&sbinfo
->stat_lock
);
2505 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2506 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2508 if (config
.max_inodes
< inodes
)
2511 * Those tests also disallow limited->unlimited while any are in
2512 * use, so i_blocks will always be zero when max_blocks is zero;
2513 * but we must separately disallow unlimited->limited, because
2514 * in that case we have no record of how much is already in use.
2516 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2518 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2522 sbinfo
->max_blocks
= config
.max_blocks
;
2523 sbinfo
->max_inodes
= config
.max_inodes
;
2524 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2526 mpol_put(sbinfo
->mpol
);
2527 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2529 spin_unlock(&sbinfo
->stat_lock
);
2533 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2535 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2537 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2538 seq_printf(seq
, ",size=%luk",
2539 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2540 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2541 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2542 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2543 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2544 if (sbinfo
->uid
!= 0)
2545 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2546 if (sbinfo
->gid
!= 0)
2547 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2548 shmem_show_mpol(seq
, sbinfo
->mpol
);
2551 #endif /* CONFIG_TMPFS */
2553 static void shmem_put_super(struct super_block
*sb
)
2555 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2557 percpu_counter_destroy(&sbinfo
->used_blocks
);
2559 sb
->s_fs_info
= NULL
;
2562 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2564 struct inode
*inode
;
2565 struct dentry
*root
;
2566 struct shmem_sb_info
*sbinfo
;
2569 /* Round up to L1_CACHE_BYTES to resist false sharing */
2570 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2571 L1_CACHE_BYTES
), GFP_KERNEL
);
2575 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2576 sbinfo
->uid
= current_fsuid();
2577 sbinfo
->gid
= current_fsgid();
2578 sb
->s_fs_info
= sbinfo
;
2582 * Per default we only allow half of the physical ram per
2583 * tmpfs instance, limiting inodes to one per page of lowmem;
2584 * but the internal instance is left unlimited.
2586 if (!(sb
->s_flags
& MS_NOUSER
)) {
2587 sbinfo
->max_blocks
= shmem_default_max_blocks();
2588 sbinfo
->max_inodes
= shmem_default_max_inodes();
2589 if (shmem_parse_options(data
, sbinfo
, false)) {
2594 sb
->s_export_op
= &shmem_export_ops
;
2596 sb
->s_flags
|= MS_NOUSER
;
2599 spin_lock_init(&sbinfo
->stat_lock
);
2600 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2602 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2604 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2605 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2606 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2607 sb
->s_magic
= TMPFS_MAGIC
;
2608 sb
->s_op
= &shmem_ops
;
2609 sb
->s_time_gran
= 1;
2610 #ifdef CONFIG_TMPFS_XATTR
2611 sb
->s_xattr
= shmem_xattr_handlers
;
2613 #ifdef CONFIG_TMPFS_POSIX_ACL
2614 sb
->s_flags
|= MS_POSIXACL
;
2617 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2620 inode
->i_uid
= sbinfo
->uid
;
2621 inode
->i_gid
= sbinfo
->gid
;
2622 root
= d_alloc_root(inode
);
2631 shmem_put_super(sb
);
2635 static struct kmem_cache
*shmem_inode_cachep
;
2637 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2639 struct shmem_inode_info
*p
;
2640 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2643 return &p
->vfs_inode
;
2646 static void shmem_i_callback(struct rcu_head
*head
)
2648 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2649 INIT_LIST_HEAD(&inode
->i_dentry
);
2650 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2653 static void shmem_destroy_inode(struct inode
*inode
)
2655 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2656 /* only struct inode is valid if it's an inline symlink */
2657 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2659 call_rcu(&inode
->i_rcu
, shmem_i_callback
);
2662 static void init_once(void *foo
)
2664 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2666 inode_init_once(&p
->vfs_inode
);
2669 static int init_inodecache(void)
2671 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2672 sizeof(struct shmem_inode_info
),
2673 0, SLAB_PANIC
, init_once
);
2677 static void destroy_inodecache(void)
2679 kmem_cache_destroy(shmem_inode_cachep
);
2682 static const struct address_space_operations shmem_aops
= {
2683 .writepage
= shmem_writepage
,
2684 .set_page_dirty
= __set_page_dirty_no_writeback
,
2686 .readpage
= shmem_readpage
,
2687 .write_begin
= shmem_write_begin
,
2688 .write_end
= shmem_write_end
,
2690 .migratepage
= migrate_page
,
2691 .error_remove_page
= generic_error_remove_page
,
2694 static const struct file_operations shmem_file_operations
= {
2697 .llseek
= generic_file_llseek
,
2698 .read
= do_sync_read
,
2699 .write
= do_sync_write
,
2700 .aio_read
= shmem_file_aio_read
,
2701 .aio_write
= generic_file_aio_write
,
2702 .fsync
= noop_fsync
,
2703 .splice_read
= generic_file_splice_read
,
2704 .splice_write
= generic_file_splice_write
,
2708 static const struct inode_operations shmem_inode_operations
= {
2709 .setattr
= shmem_notify_change
,
2710 .truncate_range
= shmem_truncate_range
,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 .setxattr
= shmem_setxattr
,
2713 .getxattr
= shmem_getxattr
,
2714 .listxattr
= shmem_listxattr
,
2715 .removexattr
= shmem_removexattr
,
2717 #ifdef CONFIG_TMPFS_POSIX_ACL
2718 .check_acl
= generic_check_acl
,
2723 static const struct inode_operations shmem_dir_inode_operations
= {
2725 .create
= shmem_create
,
2726 .lookup
= simple_lookup
,
2728 .unlink
= shmem_unlink
,
2729 .symlink
= shmem_symlink
,
2730 .mkdir
= shmem_mkdir
,
2731 .rmdir
= shmem_rmdir
,
2732 .mknod
= shmem_mknod
,
2733 .rename
= shmem_rename
,
2735 #ifdef CONFIG_TMPFS_XATTR
2736 .setxattr
= shmem_setxattr
,
2737 .getxattr
= shmem_getxattr
,
2738 .listxattr
= shmem_listxattr
,
2739 .removexattr
= shmem_removexattr
,
2741 #ifdef CONFIG_TMPFS_POSIX_ACL
2742 .setattr
= shmem_notify_change
,
2743 .check_acl
= generic_check_acl
,
2747 static const struct inode_operations shmem_special_inode_operations
= {
2748 #ifdef CONFIG_TMPFS_XATTR
2749 .setxattr
= shmem_setxattr
,
2750 .getxattr
= shmem_getxattr
,
2751 .listxattr
= shmem_listxattr
,
2752 .removexattr
= shmem_removexattr
,
2754 #ifdef CONFIG_TMPFS_POSIX_ACL
2755 .setattr
= shmem_notify_change
,
2756 .check_acl
= generic_check_acl
,
2760 static const struct super_operations shmem_ops
= {
2761 .alloc_inode
= shmem_alloc_inode
,
2762 .destroy_inode
= shmem_destroy_inode
,
2764 .statfs
= shmem_statfs
,
2765 .remount_fs
= shmem_remount_fs
,
2766 .show_options
= shmem_show_options
,
2768 .evict_inode
= shmem_evict_inode
,
2769 .drop_inode
= generic_delete_inode
,
2770 .put_super
= shmem_put_super
,
2773 static const struct vm_operations_struct shmem_vm_ops
= {
2774 .fault
= shmem_fault
,
2776 .set_policy
= shmem_set_policy
,
2777 .get_policy
= shmem_get_policy
,
2782 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2783 int flags
, const char *dev_name
, void *data
)
2785 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2788 static struct file_system_type tmpfs_fs_type
= {
2789 .owner
= THIS_MODULE
,
2791 .mount
= shmem_mount
,
2792 .kill_sb
= kill_litter_super
,
2795 int __init
init_tmpfs(void)
2799 error
= bdi_init(&shmem_backing_dev_info
);
2803 error
= init_inodecache();
2807 error
= register_filesystem(&tmpfs_fs_type
);
2809 printk(KERN_ERR
"Could not register tmpfs\n");
2813 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2814 tmpfs_fs_type
.name
, NULL
);
2815 if (IS_ERR(shm_mnt
)) {
2816 error
= PTR_ERR(shm_mnt
);
2817 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2823 unregister_filesystem(&tmpfs_fs_type
);
2825 destroy_inodecache();
2827 bdi_destroy(&shmem_backing_dev_info
);
2829 shm_mnt
= ERR_PTR(error
);
2833 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2835 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2836 * @inode: the inode to be searched
2837 * @pgoff: the offset to be searched
2838 * @pagep: the pointer for the found page to be stored
2839 * @ent: the pointer for the found swap entry to be stored
2841 * If a page is found, refcount of it is incremented. Callers should handle
2844 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2845 struct page
**pagep
, swp_entry_t
*ent
)
2847 swp_entry_t entry
= { .val
= 0 }, *ptr
;
2848 struct page
*page
= NULL
;
2849 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2851 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2854 spin_lock(&info
->lock
);
2855 ptr
= shmem_swp_entry(info
, pgoff
, NULL
);
2857 if (ptr
&& ptr
->val
) {
2858 entry
.val
= ptr
->val
;
2859 page
= find_get_page(&swapper_space
, entry
.val
);
2862 page
= find_get_page(inode
->i_mapping
, pgoff
);
2864 shmem_swp_unmap(ptr
);
2865 spin_unlock(&info
->lock
);
2872 #else /* !CONFIG_SHMEM */
2875 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2877 * This is intended for small system where the benefits of the full
2878 * shmem code (swap-backed and resource-limited) are outweighed by
2879 * their complexity. On systems without swap this code should be
2880 * effectively equivalent, but much lighter weight.
2883 #include <linux/ramfs.h>
2885 static struct file_system_type tmpfs_fs_type
= {
2887 .mount
= ramfs_mount
,
2888 .kill_sb
= kill_litter_super
,
2891 int __init
init_tmpfs(void)
2893 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2895 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2896 BUG_ON(IS_ERR(shm_mnt
));
2901 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2906 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2913 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2914 * @inode: the inode to be searched
2915 * @pgoff: the offset to be searched
2916 * @pagep: the pointer for the found page to be stored
2917 * @ent: the pointer for the found swap entry to be stored
2919 * If a page is found, refcount of it is incremented. Callers should handle
2922 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2923 struct page
**pagep
, swp_entry_t
*ent
)
2925 struct page
*page
= NULL
;
2927 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2929 page
= find_get_page(inode
->i_mapping
, pgoff
);
2932 *ent
= (swp_entry_t
){ .val
= 0 };
2936 #define shmem_vm_ops generic_file_vm_ops
2937 #define shmem_file_operations ramfs_file_operations
2938 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2939 #define shmem_acct_size(flags, size) 0
2940 #define shmem_unacct_size(flags, size) do {} while (0)
2941 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2943 #endif /* CONFIG_SHMEM */
2948 * shmem_file_setup - get an unlinked file living in tmpfs
2949 * @name: name for dentry (to be seen in /proc/<pid>/maps
2950 * @size: size to be set for the file
2951 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2953 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2957 struct inode
*inode
;
2959 struct dentry
*root
;
2962 if (IS_ERR(shm_mnt
))
2963 return (void *)shm_mnt
;
2965 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2966 return ERR_PTR(-EINVAL
);
2968 if (shmem_acct_size(flags
, size
))
2969 return ERR_PTR(-ENOMEM
);
2973 this.len
= strlen(name
);
2974 this.hash
= 0; /* will go */
2975 root
= shm_mnt
->mnt_root
;
2976 path
.dentry
= d_alloc(root
, &this);
2979 path
.mnt
= mntget(shm_mnt
);
2982 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2986 d_instantiate(path
.dentry
, inode
);
2987 inode
->i_size
= size
;
2988 inode
->i_nlink
= 0; /* It is unlinked */
2990 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2996 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2997 &shmem_file_operations
);
3006 shmem_unacct_size(flags
, size
);
3007 return ERR_PTR(error
);
3009 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3012 * shmem_zero_setup - setup a shared anonymous mapping
3013 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3015 int shmem_zero_setup(struct vm_area_struct
*vma
)
3018 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3020 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3022 return PTR_ERR(file
);
3026 vma
->vm_file
= file
;
3027 vma
->vm_ops
= &shmem_vm_ops
;
3028 vma
->vm_flags
|= VM_CAN_NONLINEAR
;