1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle
= 3;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
106 static void esp_log_fill_regs(struct esp
*esp
,
107 struct esp_event_ent
*p
)
110 p
->seqreg
= esp
->seqreg
;
111 p
->sreg2
= esp
->sreg2
;
113 p
->select_state
= esp
->select_state
;
114 p
->event
= esp
->event
;
117 void scsi_esp_cmd(struct esp
*esp
, u8 val
)
119 struct esp_event_ent
*p
;
120 int idx
= esp
->esp_event_cur
;
122 p
= &esp
->esp_event_log
[idx
];
123 p
->type
= ESP_EVENT_TYPE_CMD
;
125 esp_log_fill_regs(esp
, p
);
127 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
129 esp_write8(val
, ESP_CMD
);
131 EXPORT_SYMBOL(scsi_esp_cmd
);
133 static void esp_event(struct esp
*esp
, u8 val
)
135 struct esp_event_ent
*p
;
136 int idx
= esp
->esp_event_cur
;
138 p
= &esp
->esp_event_log
[idx
];
139 p
->type
= ESP_EVENT_TYPE_EVENT
;
141 esp_log_fill_regs(esp
, p
);
143 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
148 static void esp_dump_cmd_log(struct esp
*esp
)
150 int idx
= esp
->esp_event_cur
;
153 printk(KERN_INFO PFX
"esp%d: Dumping command log\n",
154 esp
->host
->unique_id
);
156 struct esp_event_ent
*p
= &esp
->esp_event_log
[idx
];
158 printk(KERN_INFO PFX
"esp%d: ent[%d] %s ",
159 esp
->host
->unique_id
, idx
,
160 p
->type
== ESP_EVENT_TYPE_CMD
? "CMD" : "EVENT");
162 printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 p
->val
, p
->sreg
, p
->seqreg
,
165 p
->sreg2
, p
->ireg
, p
->select_state
, p
->event
);
167 idx
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
168 } while (idx
!= stop
);
171 static void esp_flush_fifo(struct esp
*esp
)
173 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
174 if (esp
->rev
== ESP236
) {
177 while (esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
) {
179 printk(KERN_ALERT PFX
"esp%d: ESP_FF_BYTES "
181 esp
->host
->unique_id
);
189 static void hme_read_fifo(struct esp
*esp
)
191 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
195 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
196 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
198 if (esp
->sreg2
& ESP_STAT2_F1BYTE
) {
199 esp_write8(0, ESP_FDATA
);
200 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
201 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
206 static void esp_set_all_config3(struct esp
*esp
, u8 val
)
210 for (i
= 0; i
< ESP_MAX_TARGET
; i
++)
211 esp
->target
[i
].esp_config3
= val
;
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp
*esp
)
217 u8 family_code
, version
;
219 /* Now reset the ESP chip */
220 scsi_esp_cmd(esp
, ESP_CMD_RC
);
221 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
222 if (esp
->rev
== FAST
)
223 esp_write8(ESP_CONFIG2_FENAB
, ESP_CFG2
);
224 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
226 /* This is the only point at which it is reliable to read
227 * the ID-code for a fast ESP chip variants.
229 esp
->max_period
= ((35 * esp
->ccycle
) / 1000);
230 if (esp
->rev
== FAST
) {
231 version
= esp_read8(ESP_UID
);
232 family_code
= (version
& 0xf8) >> 3;
233 if (family_code
== 0x02)
235 else if (family_code
== 0x0a)
236 esp
->rev
= FASHME
; /* Version is usually '5'. */
239 esp
->min_period
= ((4 * esp
->ccycle
) / 1000);
241 esp
->min_period
= ((5 * esp
->ccycle
) / 1000);
243 esp
->max_period
= (esp
->max_period
+ 3)>>2;
244 esp
->min_period
= (esp
->min_period
+ 3)>>2;
246 esp_write8(esp
->config1
, ESP_CFG1
);
253 esp_write8(esp
->config2
, ESP_CFG2
);
258 esp_write8(esp
->config2
, ESP_CFG2
);
259 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
260 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
264 esp
->config2
|= (ESP_CONFIG2_HME32
| ESP_CONFIG2_HMEFENAB
);
268 /* Fast 236 or HME */
269 esp_write8(esp
->config2
, ESP_CFG2
);
270 if (esp
->rev
== FASHME
) {
271 u8 cfg3
= esp
->target
[0].esp_config3
;
273 cfg3
|= ESP_CONFIG3_FCLOCK
| ESP_CONFIG3_OBPUSH
;
274 if (esp
->scsi_id
>= 8)
275 cfg3
|= ESP_CONFIG3_IDBIT3
;
276 esp_set_all_config3(esp
, cfg3
);
278 u32 cfg3
= esp
->target
[0].esp_config3
;
280 cfg3
|= ESP_CONFIG3_FCLK
;
281 esp_set_all_config3(esp
, cfg3
);
283 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
284 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
285 if (esp
->rev
== FASHME
) {
288 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
297 esp_write8(esp
->config2
, ESP_CFG2
);
298 esp_set_all_config3(esp
,
299 (esp
->target
[0].esp_config3
|
300 ESP_CONFIG3_FCLOCK
));
301 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
302 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
310 /* Reload the configuration registers */
311 esp_write8(esp
->cfact
, ESP_CFACT
);
314 esp_write8(esp
->prev_stp
, ESP_STP
);
317 esp_write8(esp
->prev_soff
, ESP_SOFF
);
319 esp_write8(esp
->neg_defp
, ESP_TIMEO
);
321 /* Eat any bitrot in the chip */
322 esp_read8(ESP_INTRPT
);
326 static void esp_map_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
328 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
329 struct scatterlist
*sg
= scsi_sglist(cmd
);
330 int dir
= cmd
->sc_data_direction
;
336 spriv
->u
.num_sg
= esp
->ops
->map_sg(esp
, sg
, scsi_sg_count(cmd
), dir
);
337 spriv
->cur_residue
= sg_dma_len(sg
);
341 for (i
= 0; i
< spriv
->u
.num_sg
; i
++)
342 total
+= sg_dma_len(&sg
[i
]);
343 spriv
->tot_residue
= total
;
346 static dma_addr_t
esp_cur_dma_addr(struct esp_cmd_entry
*ent
,
347 struct scsi_cmnd
*cmd
)
349 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
351 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
352 return ent
->sense_dma
+
353 (ent
->sense_ptr
- cmd
->sense_buffer
);
356 return sg_dma_address(p
->cur_sg
) +
357 (sg_dma_len(p
->cur_sg
) -
361 static unsigned int esp_cur_dma_len(struct esp_cmd_entry
*ent
,
362 struct scsi_cmnd
*cmd
)
364 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
366 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
367 return SCSI_SENSE_BUFFERSIZE
-
368 (ent
->sense_ptr
- cmd
->sense_buffer
);
370 return p
->cur_residue
;
373 static void esp_advance_dma(struct esp
*esp
, struct esp_cmd_entry
*ent
,
374 struct scsi_cmnd
*cmd
, unsigned int len
)
376 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
378 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
379 ent
->sense_ptr
+= len
;
383 p
->cur_residue
-= len
;
384 p
->tot_residue
-= len
;
385 if (p
->cur_residue
< 0 || p
->tot_residue
< 0) {
386 printk(KERN_ERR PFX
"esp%d: Data transfer overflow.\n",
387 esp
->host
->unique_id
);
388 printk(KERN_ERR PFX
"esp%d: cur_residue[%d] tot_residue[%d] "
390 esp
->host
->unique_id
,
391 p
->cur_residue
, p
->tot_residue
, len
);
395 if (!p
->cur_residue
&& p
->tot_residue
) {
397 p
->cur_residue
= sg_dma_len(p
->cur_sg
);
401 static void esp_unmap_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
403 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
404 int dir
= cmd
->sc_data_direction
;
409 esp
->ops
->unmap_sg(esp
, scsi_sglist(cmd
), spriv
->u
.num_sg
, dir
);
412 static void esp_save_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
414 struct scsi_cmnd
*cmd
= ent
->cmd
;
415 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
417 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
418 ent
->saved_sense_ptr
= ent
->sense_ptr
;
421 ent
->saved_cur_residue
= spriv
->cur_residue
;
422 ent
->saved_cur_sg
= spriv
->cur_sg
;
423 ent
->saved_tot_residue
= spriv
->tot_residue
;
426 static void esp_restore_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
428 struct scsi_cmnd
*cmd
= ent
->cmd
;
429 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
431 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
432 ent
->sense_ptr
= ent
->saved_sense_ptr
;
435 spriv
->cur_residue
= ent
->saved_cur_residue
;
436 spriv
->cur_sg
= ent
->saved_cur_sg
;
437 spriv
->tot_residue
= ent
->saved_tot_residue
;
440 static void esp_check_command_len(struct esp
*esp
, struct scsi_cmnd
*cmd
)
442 if (cmd
->cmd_len
== 6 ||
443 cmd
->cmd_len
== 10 ||
444 cmd
->cmd_len
== 12) {
445 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
447 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
451 static void esp_write_tgt_config3(struct esp
*esp
, int tgt
)
453 if (esp
->rev
> ESP100A
) {
454 u8 val
= esp
->target
[tgt
].esp_config3
;
456 if (val
!= esp
->prev_cfg3
) {
457 esp
->prev_cfg3
= val
;
458 esp_write8(val
, ESP_CFG3
);
463 static void esp_write_tgt_sync(struct esp
*esp
, int tgt
)
465 u8 off
= esp
->target
[tgt
].esp_offset
;
466 u8 per
= esp
->target
[tgt
].esp_period
;
468 if (off
!= esp
->prev_soff
) {
469 esp
->prev_soff
= off
;
470 esp_write8(off
, ESP_SOFF
);
472 if (per
!= esp
->prev_stp
) {
474 esp_write8(per
, ESP_STP
);
478 static u32
esp_dma_length_limit(struct esp
*esp
, u32 dma_addr
, u32 dma_len
)
480 if (esp
->rev
== FASHME
) {
481 /* Arbitrary segment boundaries, 24-bit counts. */
482 if (dma_len
> (1U << 24))
483 dma_len
= (1U << 24);
487 /* ESP chip limits other variants by 16-bits of transfer
488 * count. Actually on FAS100A and FAS236 we could get
489 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
490 * in the ESP_CFG2 register but that causes other unwanted
491 * changes so we don't use it currently.
493 if (dma_len
> (1U << 16))
494 dma_len
= (1U << 16);
496 /* All of the DMA variants hooked up to these chips
497 * cannot handle crossing a 24-bit address boundary.
499 base
= dma_addr
& ((1U << 24) - 1U);
500 end
= base
+ dma_len
;
501 if (end
> (1U << 24))
503 dma_len
= end
- base
;
508 static int esp_need_to_nego_wide(struct esp_target_data
*tp
)
510 struct scsi_target
*target
= tp
->starget
;
512 return spi_width(target
) != tp
->nego_goal_width
;
515 static int esp_need_to_nego_sync(struct esp_target_data
*tp
)
517 struct scsi_target
*target
= tp
->starget
;
519 /* When offset is zero, period is "don't care". */
520 if (!spi_offset(target
) && !tp
->nego_goal_offset
)
523 if (spi_offset(target
) == tp
->nego_goal_offset
&&
524 spi_period(target
) == tp
->nego_goal_period
)
530 static int esp_alloc_lun_tag(struct esp_cmd_entry
*ent
,
531 struct esp_lun_data
*lp
)
534 /* Non-tagged, slot already taken? */
535 if (lp
->non_tagged_cmd
)
539 /* We are being held by active tagged
545 /* Tagged commands completed, we can unplug
546 * the queue and run this untagged command.
549 } else if (lp
->num_tagged
) {
550 /* Plug the queue until num_tagged decreases
551 * to zero in esp_free_lun_tag.
557 lp
->non_tagged_cmd
= ent
;
560 /* Tagged command, see if blocked by a
563 if (lp
->non_tagged_cmd
|| lp
->hold
)
567 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]]);
569 lp
->tagged_cmds
[ent
->tag
[1]] = ent
;
575 static void esp_free_lun_tag(struct esp_cmd_entry
*ent
,
576 struct esp_lun_data
*lp
)
579 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]] != ent
);
580 lp
->tagged_cmds
[ent
->tag
[1]] = NULL
;
583 BUG_ON(lp
->non_tagged_cmd
!= ent
);
584 lp
->non_tagged_cmd
= NULL
;
588 /* When a contingent allegiance conditon is created, we force feed a
589 * REQUEST_SENSE command to the device to fetch the sense data. I
590 * tried many other schemes, relying on the scsi error handling layer
591 * to send out the REQUEST_SENSE automatically, but this was difficult
592 * to get right especially in the presence of applications like smartd
593 * which use SG_IO to send out their own REQUEST_SENSE commands.
595 static void esp_autosense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
597 struct scsi_cmnd
*cmd
= ent
->cmd
;
598 struct scsi_device
*dev
= cmd
->device
;
606 if (!ent
->sense_ptr
) {
607 esp_log_autosense("esp%d: Doing auto-sense for "
609 esp
->host
->unique_id
, tgt
, lun
);
611 ent
->sense_ptr
= cmd
->sense_buffer
;
612 ent
->sense_dma
= esp
->ops
->map_single(esp
,
614 SCSI_SENSE_BUFFERSIZE
,
617 ent
->saved_sense_ptr
= ent
->sense_ptr
;
619 esp
->active_cmd
= ent
;
621 p
= esp
->command_block
;
622 esp
->msg_out_len
= 0;
624 *p
++ = IDENTIFY(0, lun
);
625 *p
++ = REQUEST_SENSE
;
626 *p
++ = ((dev
->scsi_level
<= SCSI_2
) ?
630 *p
++ = SCSI_SENSE_BUFFERSIZE
;
633 esp
->select_state
= ESP_SELECT_BASIC
;
636 if (esp
->rev
== FASHME
)
637 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
638 esp_write8(val
, ESP_BUSID
);
640 esp_write_tgt_sync(esp
, tgt
);
641 esp_write_tgt_config3(esp
, tgt
);
643 val
= (p
- esp
->command_block
);
645 if (esp
->rev
== FASHME
)
646 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
647 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
648 val
, 16, 0, ESP_CMD_DMA
| ESP_CMD_SELA
);
651 static struct esp_cmd_entry
*find_and_prep_issuable_command(struct esp
*esp
)
653 struct esp_cmd_entry
*ent
;
655 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
656 struct scsi_cmnd
*cmd
= ent
->cmd
;
657 struct scsi_device
*dev
= cmd
->device
;
658 struct esp_lun_data
*lp
= dev
->hostdata
;
660 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
666 if (!scsi_populate_tag_msg(cmd
, &ent
->tag
[0])) {
671 if (esp_alloc_lun_tag(ent
, lp
) < 0)
680 static void esp_maybe_execute_command(struct esp
*esp
)
682 struct esp_target_data
*tp
;
683 struct esp_lun_data
*lp
;
684 struct scsi_device
*dev
;
685 struct scsi_cmnd
*cmd
;
686 struct esp_cmd_entry
*ent
;
691 if (esp
->active_cmd
||
692 (esp
->flags
& ESP_FLAG_RESETTING
))
695 ent
= find_and_prep_issuable_command(esp
);
699 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
700 esp_autosense(esp
, ent
);
708 tp
= &esp
->target
[tgt
];
711 list_del(&ent
->list
);
712 list_add(&ent
->list
, &esp
->active_cmds
);
714 esp
->active_cmd
= ent
;
716 esp_map_dma(esp
, cmd
);
717 esp_save_pointers(esp
, ent
);
719 esp_check_command_len(esp
, cmd
);
721 p
= esp
->command_block
;
723 esp
->msg_out_len
= 0;
724 if (tp
->flags
& ESP_TGT_CHECK_NEGO
) {
725 /* Need to negotiate. If the target is broken
726 * go for synchronous transfers and non-wide.
728 if (tp
->flags
& ESP_TGT_BROKEN
) {
729 tp
->flags
&= ~ESP_TGT_DISCONNECT
;
730 tp
->nego_goal_period
= 0;
731 tp
->nego_goal_offset
= 0;
732 tp
->nego_goal_width
= 0;
733 tp
->nego_goal_tags
= 0;
736 /* If the settings are not changing, skip this. */
737 if (spi_width(tp
->starget
) == tp
->nego_goal_width
&&
738 spi_period(tp
->starget
) == tp
->nego_goal_period
&&
739 spi_offset(tp
->starget
) == tp
->nego_goal_offset
) {
740 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
744 if (esp
->rev
== FASHME
&& esp_need_to_nego_wide(tp
)) {
746 spi_populate_width_msg(&esp
->msg_out
[0],
747 (tp
->nego_goal_width
?
749 tp
->flags
|= ESP_TGT_NEGO_WIDE
;
750 } else if (esp_need_to_nego_sync(tp
)) {
752 spi_populate_sync_msg(&esp
->msg_out
[0],
753 tp
->nego_goal_period
,
754 tp
->nego_goal_offset
);
755 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
757 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
760 /* Process it like a slow command. */
761 if (tp
->flags
& (ESP_TGT_NEGO_WIDE
| ESP_TGT_NEGO_SYNC
))
762 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
766 /* If we don't have a lun-data struct yet, we're probing
767 * so do not disconnect. Also, do not disconnect unless
768 * we have a tag on this command.
770 if (lp
&& (tp
->flags
& ESP_TGT_DISCONNECT
) && ent
->tag
[0])
771 *p
++ = IDENTIFY(1, lun
);
773 *p
++ = IDENTIFY(0, lun
);
775 if (ent
->tag
[0] && esp
->rev
== ESP100
) {
776 /* ESP100 lacks select w/atn3 command, use select
779 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
782 if (!(esp
->flags
& ESP_FLAG_DOING_SLOWCMD
)) {
783 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELA
;
788 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SA3
;
791 for (i
= 0; i
< cmd
->cmd_len
; i
++)
794 esp
->select_state
= ESP_SELECT_BASIC
;
796 esp
->cmd_bytes_left
= cmd
->cmd_len
;
797 esp
->cmd_bytes_ptr
= &cmd
->cmnd
[0];
800 for (i
= esp
->msg_out_len
- 1;
802 esp
->msg_out
[i
+ 2] = esp
->msg_out
[i
];
803 esp
->msg_out
[0] = ent
->tag
[0];
804 esp
->msg_out
[1] = ent
->tag
[1];
805 esp
->msg_out_len
+= 2;
808 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELAS
;
809 esp
->select_state
= ESP_SELECT_MSGOUT
;
812 if (esp
->rev
== FASHME
)
813 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
814 esp_write8(val
, ESP_BUSID
);
816 esp_write_tgt_sync(esp
, tgt
);
817 esp_write_tgt_config3(esp
, tgt
);
819 val
= (p
- esp
->command_block
);
821 if (esp_debug
& ESP_DEBUG_SCSICMD
) {
822 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt
, lun
);
823 for (i
= 0; i
< cmd
->cmd_len
; i
++)
824 printk("%02x ", cmd
->cmnd
[i
]);
828 if (esp
->rev
== FASHME
)
829 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
830 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
831 val
, 16, 0, start_cmd
);
834 static struct esp_cmd_entry
*esp_get_ent(struct esp
*esp
)
836 struct list_head
*head
= &esp
->esp_cmd_pool
;
837 struct esp_cmd_entry
*ret
;
839 if (list_empty(head
)) {
840 ret
= kzalloc(sizeof(struct esp_cmd_entry
), GFP_ATOMIC
);
842 ret
= list_entry(head
->next
, struct esp_cmd_entry
, list
);
843 list_del(&ret
->list
);
844 memset(ret
, 0, sizeof(*ret
));
849 static void esp_put_ent(struct esp
*esp
, struct esp_cmd_entry
*ent
)
851 list_add(&ent
->list
, &esp
->esp_cmd_pool
);
854 static void esp_cmd_is_done(struct esp
*esp
, struct esp_cmd_entry
*ent
,
855 struct scsi_cmnd
*cmd
, unsigned int result
)
857 struct scsi_device
*dev
= cmd
->device
;
861 esp
->active_cmd
= NULL
;
862 esp_unmap_dma(esp
, cmd
);
863 esp_free_lun_tag(ent
, dev
->hostdata
);
864 cmd
->result
= result
;
867 complete(ent
->eh_done
);
871 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
872 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
873 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
874 ent
->sense_ptr
= NULL
;
876 /* Restore the message/status bytes to what we actually
877 * saw originally. Also, report that we are providing
880 cmd
->result
= ((DRIVER_SENSE
<< 24) |
882 (COMMAND_COMPLETE
<< 8) |
883 (SAM_STAT_CHECK_CONDITION
<< 0));
885 ent
->flags
&= ~ESP_CMD_FLAG_AUTOSENSE
;
886 if (esp_debug
& ESP_DEBUG_AUTOSENSE
) {
889 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
890 esp
->host
->unique_id
, tgt
, lun
);
891 for (i
= 0; i
< 18; i
++)
892 printk("%02x ", cmd
->sense_buffer
[i
]);
899 list_del(&ent
->list
);
900 esp_put_ent(esp
, ent
);
902 esp_maybe_execute_command(esp
);
905 static unsigned int compose_result(unsigned int status
, unsigned int message
,
906 unsigned int driver_code
)
908 return (status
| (message
<< 8) | (driver_code
<< 16));
911 static void esp_event_queue_full(struct esp
*esp
, struct esp_cmd_entry
*ent
)
913 struct scsi_device
*dev
= ent
->cmd
->device
;
914 struct esp_lun_data
*lp
= dev
->hostdata
;
916 scsi_track_queue_full(dev
, lp
->num_tagged
- 1);
919 static int esp_queuecommand_lck(struct scsi_cmnd
*cmd
, void (*done
)(struct scsi_cmnd
*))
921 struct scsi_device
*dev
= cmd
->device
;
922 struct esp
*esp
= shost_priv(dev
->host
);
923 struct esp_cmd_priv
*spriv
;
924 struct esp_cmd_entry
*ent
;
926 ent
= esp_get_ent(esp
);
928 return SCSI_MLQUEUE_HOST_BUSY
;
932 cmd
->scsi_done
= done
;
934 spriv
= ESP_CMD_PRIV(cmd
);
935 spriv
->u
.dma_addr
= ~(dma_addr_t
)0x0;
937 list_add_tail(&ent
->list
, &esp
->queued_cmds
);
939 esp_maybe_execute_command(esp
);
944 static DEF_SCSI_QCMD(esp_queuecommand
)
946 static int esp_check_gross_error(struct esp
*esp
)
948 if (esp
->sreg
& ESP_STAT_SPAM
) {
949 /* Gross Error, could be one of:
950 * - top of fifo overwritten
951 * - top of command register overwritten
952 * - DMA programmed with wrong direction
953 * - improper phase change
955 printk(KERN_ERR PFX
"esp%d: Gross error sreg[%02x]\n",
956 esp
->host
->unique_id
, esp
->sreg
);
957 /* XXX Reset the chip. XXX */
963 static int esp_check_spur_intr(struct esp
*esp
)
968 /* The interrupt pending bit of the status register cannot
969 * be trusted on these revisions.
971 esp
->sreg
&= ~ESP_STAT_INTR
;
975 if (!(esp
->sreg
& ESP_STAT_INTR
)) {
976 esp
->ireg
= esp_read8(ESP_INTRPT
);
977 if (esp
->ireg
& ESP_INTR_SR
)
980 /* If the DMA is indicating interrupt pending and the
981 * ESP is not, the only possibility is a DMA error.
983 if (!esp
->ops
->dma_error(esp
)) {
984 printk(KERN_ERR PFX
"esp%d: Spurious irq, "
986 esp
->host
->unique_id
, esp
->sreg
);
990 printk(KERN_ERR PFX
"esp%d: DMA error\n",
991 esp
->host
->unique_id
);
993 /* XXX Reset the chip. XXX */
1002 static void esp_schedule_reset(struct esp
*esp
)
1004 esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1005 __builtin_return_address(0));
1006 esp
->flags
|= ESP_FLAG_RESETTING
;
1007 esp_event(esp
, ESP_EVENT_RESET
);
1010 /* In order to avoid having to add a special half-reconnected state
1011 * into the driver we just sit here and poll through the rest of
1012 * the reselection process to get the tag message bytes.
1014 static struct esp_cmd_entry
*esp_reconnect_with_tag(struct esp
*esp
,
1015 struct esp_lun_data
*lp
)
1017 struct esp_cmd_entry
*ent
;
1020 if (!lp
->num_tagged
) {
1021 printk(KERN_ERR PFX
"esp%d: Reconnect w/num_tagged==0\n",
1022 esp
->host
->unique_id
);
1026 esp_log_reconnect("ESP: reconnect tag, ");
1028 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
1029 if (esp
->ops
->irq_pending(esp
))
1032 if (i
== ESP_QUICKIRQ_LIMIT
) {
1033 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ1 timeout\n",
1034 esp
->host
->unique_id
);
1038 esp
->sreg
= esp_read8(ESP_STATUS
);
1039 esp
->ireg
= esp_read8(ESP_INTRPT
);
1041 esp_log_reconnect("IRQ(%d:%x:%x), ",
1042 i
, esp
->ireg
, esp
->sreg
);
1044 if (esp
->ireg
& ESP_INTR_DC
) {
1045 printk(KERN_ERR PFX
"esp%d: Reconnect, got disconnect.\n",
1046 esp
->host
->unique_id
);
1050 if ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_MIP
) {
1051 printk(KERN_ERR PFX
"esp%d: Reconnect, not MIP sreg[%02x].\n",
1052 esp
->host
->unique_id
, esp
->sreg
);
1056 /* DMA in the tag bytes... */
1057 esp
->command_block
[0] = 0xff;
1058 esp
->command_block
[1] = 0xff;
1059 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1060 2, 2, 1, ESP_CMD_DMA
| ESP_CMD_TI
);
1062 /* ACK the msssage. */
1063 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1065 for (i
= 0; i
< ESP_RESELECT_TAG_LIMIT
; i
++) {
1066 if (esp
->ops
->irq_pending(esp
)) {
1067 esp
->sreg
= esp_read8(ESP_STATUS
);
1068 esp
->ireg
= esp_read8(ESP_INTRPT
);
1069 if (esp
->ireg
& ESP_INTR_FDONE
)
1074 if (i
== ESP_RESELECT_TAG_LIMIT
) {
1075 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ2 timeout\n",
1076 esp
->host
->unique_id
);
1079 esp
->ops
->dma_drain(esp
);
1080 esp
->ops
->dma_invalidate(esp
);
1082 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1083 i
, esp
->ireg
, esp
->sreg
,
1084 esp
->command_block
[0],
1085 esp
->command_block
[1]);
1087 if (esp
->command_block
[0] < SIMPLE_QUEUE_TAG
||
1088 esp
->command_block
[0] > ORDERED_QUEUE_TAG
) {
1089 printk(KERN_ERR PFX
"esp%d: Reconnect, bad tag "
1091 esp
->host
->unique_id
, esp
->command_block
[0]);
1095 ent
= lp
->tagged_cmds
[esp
->command_block
[1]];
1097 printk(KERN_ERR PFX
"esp%d: Reconnect, no entry for "
1099 esp
->host
->unique_id
, esp
->command_block
[1]);
1106 static int esp_reconnect(struct esp
*esp
)
1108 struct esp_cmd_entry
*ent
;
1109 struct esp_target_data
*tp
;
1110 struct esp_lun_data
*lp
;
1111 struct scsi_device
*dev
;
1114 BUG_ON(esp
->active_cmd
);
1115 if (esp
->rev
== FASHME
) {
1116 /* FASHME puts the target and lun numbers directly
1119 target
= esp
->fifo
[0];
1120 lun
= esp
->fifo
[1] & 0x7;
1122 u8 bits
= esp_read8(ESP_FDATA
);
1124 /* Older chips put the lun directly into the fifo, but
1125 * the target is given as a sample of the arbitration
1126 * lines on the bus at reselection time. So we should
1127 * see the ID of the ESP and the one reconnecting target
1128 * set in the bitmap.
1130 if (!(bits
& esp
->scsi_id_mask
))
1132 bits
&= ~esp
->scsi_id_mask
;
1133 if (!bits
|| (bits
& (bits
- 1)))
1136 target
= ffs(bits
) - 1;
1137 lun
= (esp_read8(ESP_FDATA
) & 0x7);
1139 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1140 if (esp
->rev
== ESP100
) {
1141 u8 ireg
= esp_read8(ESP_INTRPT
);
1142 /* This chip has a bug during reselection that can
1143 * cause a spurious illegal-command interrupt, which
1144 * we simply ACK here. Another possibility is a bus
1145 * reset so we must check for that.
1147 if (ireg
& ESP_INTR_SR
)
1150 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1153 esp_write_tgt_sync(esp
, target
);
1154 esp_write_tgt_config3(esp
, target
);
1156 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1158 if (esp
->rev
== FASHME
)
1159 esp_write8(target
| ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
,
1162 tp
= &esp
->target
[target
];
1163 dev
= __scsi_device_lookup_by_target(tp
->starget
, lun
);
1165 printk(KERN_ERR PFX
"esp%d: Reconnect, no lp "
1166 "tgt[%u] lun[%u]\n",
1167 esp
->host
->unique_id
, target
, lun
);
1172 ent
= lp
->non_tagged_cmd
;
1174 ent
= esp_reconnect_with_tag(esp
, lp
);
1179 esp
->active_cmd
= ent
;
1181 if (ent
->flags
& ESP_CMD_FLAG_ABORT
) {
1182 esp
->msg_out
[0] = ABORT_TASK_SET
;
1183 esp
->msg_out_len
= 1;
1184 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1187 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1188 esp_restore_pointers(esp
, ent
);
1189 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1193 esp_schedule_reset(esp
);
1197 static int esp_finish_select(struct esp
*esp
)
1199 struct esp_cmd_entry
*ent
;
1200 struct scsi_cmnd
*cmd
;
1201 u8 orig_select_state
;
1203 orig_select_state
= esp
->select_state
;
1205 /* No longer selecting. */
1206 esp
->select_state
= ESP_SELECT_NONE
;
1208 esp
->seqreg
= esp_read8(ESP_SSTEP
) & ESP_STEP_VBITS
;
1209 ent
= esp
->active_cmd
;
1212 if (esp
->ops
->dma_error(esp
)) {
1213 /* If we see a DMA error during or as a result of selection,
1216 esp_schedule_reset(esp
);
1217 esp_cmd_is_done(esp
, ent
, cmd
, (DID_ERROR
<< 16));
1221 esp
->ops
->dma_invalidate(esp
);
1223 if (esp
->ireg
== (ESP_INTR_RSEL
| ESP_INTR_FDONE
)) {
1224 struct esp_target_data
*tp
= &esp
->target
[cmd
->device
->id
];
1226 /* Carefully back out of the selection attempt. Release
1227 * resources (such as DMA mapping & TAG) and reset state (such
1228 * as message out and command delivery variables).
1230 if (!(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1231 esp_unmap_dma(esp
, cmd
);
1232 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1233 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_NEGO_WIDE
);
1234 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
1235 esp
->cmd_bytes_ptr
= NULL
;
1236 esp
->cmd_bytes_left
= 0;
1238 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1239 SCSI_SENSE_BUFFERSIZE
,
1241 ent
->sense_ptr
= NULL
;
1244 /* Now that the state is unwound properly, put back onto
1245 * the issue queue. This command is no longer active.
1247 list_del(&ent
->list
);
1248 list_add(&ent
->list
, &esp
->queued_cmds
);
1249 esp
->active_cmd
= NULL
;
1251 /* Return value ignored by caller, it directly invokes
1257 if (esp
->ireg
== ESP_INTR_DC
) {
1258 struct scsi_device
*dev
= cmd
->device
;
1260 /* Disconnect. Make sure we re-negotiate sync and
1261 * wide parameters if this target starts responding
1262 * again in the future.
1264 esp
->target
[dev
->id
].flags
|= ESP_TGT_CHECK_NEGO
;
1266 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1267 esp_cmd_is_done(esp
, ent
, cmd
, (DID_BAD_TARGET
<< 16));
1271 if (esp
->ireg
== (ESP_INTR_FDONE
| ESP_INTR_BSERV
)) {
1272 /* Selection successful. On pre-FAST chips we have
1273 * to do a NOP and possibly clean out the FIFO.
1275 if (esp
->rev
<= ESP236
) {
1276 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1278 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1282 ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_DIP
)))
1283 esp_flush_fifo(esp
);
1286 /* If we are doing a slow command, negotiation, etc.
1287 * we'll do the right thing as we transition to the
1290 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1294 printk("ESP: Unexpected selection completion ireg[%x].\n",
1296 esp_schedule_reset(esp
);
1300 static int esp_data_bytes_sent(struct esp
*esp
, struct esp_cmd_entry
*ent
,
1301 struct scsi_cmnd
*cmd
)
1303 int fifo_cnt
, ecount
, bytes_sent
, flush_fifo
;
1305 fifo_cnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1306 if (esp
->prev_cfg3
& ESP_CONFIG3_EWIDE
)
1310 if (!(esp
->sreg
& ESP_STAT_TCNT
)) {
1311 ecount
= ((unsigned int)esp_read8(ESP_TCLOW
) |
1312 (((unsigned int)esp_read8(ESP_TCMED
)) << 8));
1313 if (esp
->rev
== FASHME
)
1314 ecount
|= ((unsigned int)esp_read8(FAS_RLO
)) << 16;
1317 bytes_sent
= esp
->data_dma_len
;
1318 bytes_sent
-= ecount
;
1320 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1321 bytes_sent
-= fifo_cnt
;
1324 if (!esp
->prev_soff
) {
1325 /* Synchronous data transfer, always flush fifo. */
1328 if (esp
->rev
== ESP100
) {
1331 /* ESP100 has a chip bug where in the synchronous data
1332 * phase it can mistake a final long REQ pulse from the
1333 * target as an extra data byte. Fun.
1335 * To detect this case we resample the status register
1336 * and fifo flags. If we're still in a data phase and
1337 * we see spurious chunks in the fifo, we return error
1338 * to the caller which should reset and set things up
1339 * such that we only try future transfers to this
1340 * target in synchronous mode.
1342 esp
->sreg
= esp_read8(ESP_STATUS
);
1343 phase
= esp
->sreg
& ESP_STAT_PMASK
;
1344 fflags
= esp_read8(ESP_FFLAGS
);
1346 if ((phase
== ESP_DOP
&&
1347 (fflags
& ESP_FF_ONOTZERO
)) ||
1348 (phase
== ESP_DIP
&&
1349 (fflags
& ESP_FF_FBYTES
)))
1352 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1357 esp_flush_fifo(esp
);
1362 static void esp_setsync(struct esp
*esp
, struct esp_target_data
*tp
,
1363 u8 scsi_period
, u8 scsi_offset
,
1364 u8 esp_stp
, u8 esp_soff
)
1366 spi_period(tp
->starget
) = scsi_period
;
1367 spi_offset(tp
->starget
) = scsi_offset
;
1368 spi_width(tp
->starget
) = (tp
->flags
& ESP_TGT_WIDE
) ? 1 : 0;
1372 esp_soff
|= esp
->radelay
;
1373 if (esp
->rev
>= FAS236
) {
1374 u8 bit
= ESP_CONFIG3_FSCSI
;
1375 if (esp
->rev
>= FAS100A
)
1376 bit
= ESP_CONFIG3_FAST
;
1378 if (scsi_period
< 50) {
1379 if (esp
->rev
== FASHME
)
1380 esp_soff
&= ~esp
->radelay
;
1381 tp
->esp_config3
|= bit
;
1383 tp
->esp_config3
&= ~bit
;
1385 esp
->prev_cfg3
= tp
->esp_config3
;
1386 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
1390 tp
->esp_period
= esp
->prev_stp
= esp_stp
;
1391 tp
->esp_offset
= esp
->prev_soff
= esp_soff
;
1393 esp_write8(esp_soff
, ESP_SOFF
);
1394 esp_write8(esp_stp
, ESP_STP
);
1396 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1398 spi_display_xfer_agreement(tp
->starget
);
1401 static void esp_msgin_reject(struct esp
*esp
)
1403 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1404 struct scsi_cmnd
*cmd
= ent
->cmd
;
1405 struct esp_target_data
*tp
;
1408 tgt
= cmd
->device
->id
;
1409 tp
= &esp
->target
[tgt
];
1411 if (tp
->flags
& ESP_TGT_NEGO_WIDE
) {
1412 tp
->flags
&= ~(ESP_TGT_NEGO_WIDE
| ESP_TGT_WIDE
);
1414 if (!esp_need_to_nego_sync(tp
)) {
1415 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1416 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1419 spi_populate_sync_msg(&esp
->msg_out
[0],
1420 tp
->nego_goal_period
,
1421 tp
->nego_goal_offset
);
1422 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1423 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1428 if (tp
->flags
& ESP_TGT_NEGO_SYNC
) {
1429 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1432 esp_setsync(esp
, tp
, 0, 0, 0, 0);
1433 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1437 esp
->msg_out
[0] = ABORT_TASK_SET
;
1438 esp
->msg_out_len
= 1;
1439 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1442 static void esp_msgin_sdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1444 u8 period
= esp
->msg_in
[3];
1445 u8 offset
= esp
->msg_in
[4];
1448 if (!(tp
->flags
& ESP_TGT_NEGO_SYNC
))
1457 if (period
> esp
->max_period
) {
1458 period
= offset
= 0;
1461 if (period
< esp
->min_period
)
1464 one_clock
= esp
->ccycle
/ 1000;
1465 stp
= DIV_ROUND_UP(period
<< 2, one_clock
);
1466 if (stp
&& esp
->rev
>= FAS236
) {
1474 esp_setsync(esp
, tp
, period
, offset
, stp
, offset
);
1478 esp
->msg_out
[0] = MESSAGE_REJECT
;
1479 esp
->msg_out_len
= 1;
1480 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1484 tp
->nego_goal_period
= period
;
1485 tp
->nego_goal_offset
= offset
;
1487 spi_populate_sync_msg(&esp
->msg_out
[0],
1488 tp
->nego_goal_period
,
1489 tp
->nego_goal_offset
);
1490 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1493 static void esp_msgin_wdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1495 int size
= 8 << esp
->msg_in
[3];
1498 if (esp
->rev
!= FASHME
)
1501 if (size
!= 8 && size
!= 16)
1504 if (!(tp
->flags
& ESP_TGT_NEGO_WIDE
))
1507 cfg3
= tp
->esp_config3
;
1509 tp
->flags
|= ESP_TGT_WIDE
;
1510 cfg3
|= ESP_CONFIG3_EWIDE
;
1512 tp
->flags
&= ~ESP_TGT_WIDE
;
1513 cfg3
&= ~ESP_CONFIG3_EWIDE
;
1515 tp
->esp_config3
= cfg3
;
1516 esp
->prev_cfg3
= cfg3
;
1517 esp_write8(cfg3
, ESP_CFG3
);
1519 tp
->flags
&= ~ESP_TGT_NEGO_WIDE
;
1521 spi_period(tp
->starget
) = 0;
1522 spi_offset(tp
->starget
) = 0;
1523 if (!esp_need_to_nego_sync(tp
)) {
1524 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1525 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1528 spi_populate_sync_msg(&esp
->msg_out
[0],
1529 tp
->nego_goal_period
,
1530 tp
->nego_goal_offset
);
1531 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1532 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1537 esp
->msg_out
[0] = MESSAGE_REJECT
;
1538 esp
->msg_out_len
= 1;
1539 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1542 static void esp_msgin_extended(struct esp
*esp
)
1544 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1545 struct scsi_cmnd
*cmd
= ent
->cmd
;
1546 struct esp_target_data
*tp
;
1547 int tgt
= cmd
->device
->id
;
1549 tp
= &esp
->target
[tgt
];
1550 if (esp
->msg_in
[2] == EXTENDED_SDTR
) {
1551 esp_msgin_sdtr(esp
, tp
);
1554 if (esp
->msg_in
[2] == EXTENDED_WDTR
) {
1555 esp_msgin_wdtr(esp
, tp
);
1559 printk("ESP: Unexpected extended msg type %x\n",
1562 esp
->msg_out
[0] = ABORT_TASK_SET
;
1563 esp
->msg_out_len
= 1;
1564 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1567 /* Analyze msgin bytes received from target so far. Return non-zero
1568 * if there are more bytes needed to complete the message.
1570 static int esp_msgin_process(struct esp
*esp
)
1572 u8 msg0
= esp
->msg_in
[0];
1573 int len
= esp
->msg_in_len
;
1577 printk("ESP: Unexpected msgin identify\n");
1582 case EXTENDED_MESSAGE
:
1585 if (len
< esp
->msg_in
[1] + 2)
1587 esp_msgin_extended(esp
);
1590 case IGNORE_WIDE_RESIDUE
: {
1591 struct esp_cmd_entry
*ent
;
1592 struct esp_cmd_priv
*spriv
;
1596 if (esp
->msg_in
[1] != 1)
1599 ent
= esp
->active_cmd
;
1600 spriv
= ESP_CMD_PRIV(ent
->cmd
);
1602 if (spriv
->cur_residue
== sg_dma_len(spriv
->cur_sg
)) {
1604 spriv
->cur_residue
= 1;
1606 spriv
->cur_residue
++;
1607 spriv
->tot_residue
++;
1612 case RESTORE_POINTERS
:
1613 esp_restore_pointers(esp
, esp
->active_cmd
);
1616 esp_save_pointers(esp
, esp
->active_cmd
);
1619 case COMMAND_COMPLETE
:
1621 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1623 ent
->message
= msg0
;
1624 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1625 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1628 case MESSAGE_REJECT
:
1629 esp_msgin_reject(esp
);
1634 esp
->msg_out
[0] = MESSAGE_REJECT
;
1635 esp
->msg_out_len
= 1;
1636 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1641 static int esp_process_event(struct esp
*esp
)
1647 switch (esp
->event
) {
1648 case ESP_EVENT_CHECK_PHASE
:
1649 switch (esp
->sreg
& ESP_STAT_PMASK
) {
1651 esp_event(esp
, ESP_EVENT_DATA_OUT
);
1654 esp_event(esp
, ESP_EVENT_DATA_IN
);
1657 esp_flush_fifo(esp
);
1658 scsi_esp_cmd(esp
, ESP_CMD_ICCSEQ
);
1659 esp_event(esp
, ESP_EVENT_STATUS
);
1660 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1664 esp_event(esp
, ESP_EVENT_MSGOUT
);
1668 esp_event(esp
, ESP_EVENT_MSGIN
);
1672 esp_event(esp
, ESP_EVENT_CMD_START
);
1676 printk("ESP: Unexpected phase, sreg=%02x\n",
1678 esp_schedule_reset(esp
);
1684 case ESP_EVENT_DATA_IN
:
1688 case ESP_EVENT_DATA_OUT
: {
1689 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1690 struct scsi_cmnd
*cmd
= ent
->cmd
;
1691 dma_addr_t dma_addr
= esp_cur_dma_addr(ent
, cmd
);
1692 unsigned int dma_len
= esp_cur_dma_len(ent
, cmd
);
1694 if (esp
->rev
== ESP100
)
1695 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1698 ent
->flags
|= ESP_CMD_FLAG_WRITE
;
1700 ent
->flags
&= ~ESP_CMD_FLAG_WRITE
;
1702 if (esp
->ops
->dma_length_limit
)
1703 dma_len
= esp
->ops
->dma_length_limit(esp
, dma_addr
,
1706 dma_len
= esp_dma_length_limit(esp
, dma_addr
, dma_len
);
1708 esp
->data_dma_len
= dma_len
;
1711 printk(KERN_ERR PFX
"esp%d: DMA length is zero!\n",
1712 esp
->host
->unique_id
);
1713 printk(KERN_ERR PFX
"esp%d: cur adr[%08llx] len[%08x]\n",
1714 esp
->host
->unique_id
,
1715 (unsigned long long)esp_cur_dma_addr(ent
, cmd
),
1716 esp_cur_dma_len(ent
, cmd
));
1717 esp_schedule_reset(esp
);
1721 esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1723 (unsigned long long)dma_addr
, dma_len
, write
);
1725 esp
->ops
->send_dma_cmd(esp
, dma_addr
, dma_len
, dma_len
,
1726 write
, ESP_CMD_DMA
| ESP_CMD_TI
);
1727 esp_event(esp
, ESP_EVENT_DATA_DONE
);
1730 case ESP_EVENT_DATA_DONE
: {
1731 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1732 struct scsi_cmnd
*cmd
= ent
->cmd
;
1735 if (esp
->ops
->dma_error(esp
)) {
1736 printk("ESP: data done, DMA error, resetting\n");
1737 esp_schedule_reset(esp
);
1741 if (ent
->flags
& ESP_CMD_FLAG_WRITE
) {
1742 /* XXX parity errors, etc. XXX */
1744 esp
->ops
->dma_drain(esp
);
1746 esp
->ops
->dma_invalidate(esp
);
1748 if (esp
->ireg
!= ESP_INTR_BSERV
) {
1749 /* We should always see exactly a bus-service
1750 * interrupt at the end of a successful transfer.
1752 printk("ESP: data done, not BSERV, resetting\n");
1753 esp_schedule_reset(esp
);
1757 bytes_sent
= esp_data_bytes_sent(esp
, ent
, cmd
);
1759 esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1760 ent
->flags
, bytes_sent
);
1762 if (bytes_sent
< 0) {
1763 /* XXX force sync mode for this target XXX */
1764 esp_schedule_reset(esp
);
1768 esp_advance_dma(esp
, ent
, cmd
, bytes_sent
);
1769 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1773 case ESP_EVENT_STATUS
: {
1774 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1776 if (esp
->ireg
& ESP_INTR_FDONE
) {
1777 ent
->status
= esp_read8(ESP_FDATA
);
1778 ent
->message
= esp_read8(ESP_FDATA
);
1779 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1780 } else if (esp
->ireg
== ESP_INTR_BSERV
) {
1781 ent
->status
= esp_read8(ESP_FDATA
);
1782 ent
->message
= 0xff;
1783 esp_event(esp
, ESP_EVENT_MSGIN
);
1787 if (ent
->message
!= COMMAND_COMPLETE
) {
1788 printk("ESP: Unexpected message %x in status\n",
1790 esp_schedule_reset(esp
);
1794 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1795 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1798 case ESP_EVENT_FREE_BUS
: {
1799 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1800 struct scsi_cmnd
*cmd
= ent
->cmd
;
1802 if (ent
->message
== COMMAND_COMPLETE
||
1803 ent
->message
== DISCONNECT
)
1804 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1806 if (ent
->message
== COMMAND_COMPLETE
) {
1807 esp_log_cmddone("ESP: Command done status[%x] "
1809 ent
->status
, ent
->message
);
1810 if (ent
->status
== SAM_STAT_TASK_SET_FULL
)
1811 esp_event_queue_full(esp
, ent
);
1813 if (ent
->status
== SAM_STAT_CHECK_CONDITION
&&
1814 !(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1815 ent
->flags
|= ESP_CMD_FLAG_AUTOSENSE
;
1816 esp_autosense(esp
, ent
);
1818 esp_cmd_is_done(esp
, ent
, cmd
,
1819 compose_result(ent
->status
,
1823 } else if (ent
->message
== DISCONNECT
) {
1824 esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1827 ent
->tag
[0], ent
->tag
[1]);
1829 esp
->active_cmd
= NULL
;
1830 esp_maybe_execute_command(esp
);
1832 printk("ESP: Unexpected message %x in freebus\n",
1834 esp_schedule_reset(esp
);
1837 if (esp
->active_cmd
)
1838 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1841 case ESP_EVENT_MSGOUT
: {
1842 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1844 if (esp_debug
& ESP_DEBUG_MSGOUT
) {
1846 printk("ESP: Sending message [ ");
1847 for (i
= 0; i
< esp
->msg_out_len
; i
++)
1848 printk("%02x ", esp
->msg_out
[i
]);
1852 if (esp
->rev
== FASHME
) {
1855 /* Always use the fifo. */
1856 for (i
= 0; i
< esp
->msg_out_len
; i
++) {
1857 esp_write8(esp
->msg_out
[i
], ESP_FDATA
);
1858 esp_write8(0, ESP_FDATA
);
1860 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1862 if (esp
->msg_out_len
== 1) {
1863 esp_write8(esp
->msg_out
[0], ESP_FDATA
);
1864 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1867 memcpy(esp
->command_block
,
1871 esp
->ops
->send_dma_cmd(esp
,
1872 esp
->command_block_dma
,
1876 ESP_CMD_DMA
|ESP_CMD_TI
);
1879 esp_event(esp
, ESP_EVENT_MSGOUT_DONE
);
1882 case ESP_EVENT_MSGOUT_DONE
:
1883 if (esp
->rev
== FASHME
) {
1884 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1886 if (esp
->msg_out_len
> 1)
1887 esp
->ops
->dma_invalidate(esp
);
1890 if (!(esp
->ireg
& ESP_INTR_DC
)) {
1891 if (esp
->rev
!= FASHME
)
1892 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1894 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1896 case ESP_EVENT_MSGIN
:
1897 if (esp
->ireg
& ESP_INTR_BSERV
) {
1898 if (esp
->rev
== FASHME
) {
1899 if (!(esp_read8(ESP_STATUS2
) &
1901 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1903 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1904 if (esp
->rev
== ESP100
)
1905 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1907 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1908 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1911 if (esp
->ireg
& ESP_INTR_FDONE
) {
1914 if (esp
->rev
== FASHME
)
1917 val
= esp_read8(ESP_FDATA
);
1918 esp
->msg_in
[esp
->msg_in_len
++] = val
;
1920 esp_log_msgin("ESP: Got msgin byte %x\n", val
);
1922 if (!esp_msgin_process(esp
))
1923 esp
->msg_in_len
= 0;
1925 if (esp
->rev
== FASHME
)
1926 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1928 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1930 if (esp
->event
!= ESP_EVENT_FREE_BUS
)
1931 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1933 printk("ESP: MSGIN neither BSERV not FDON, resetting");
1934 esp_schedule_reset(esp
);
1938 case ESP_EVENT_CMD_START
:
1939 memcpy(esp
->command_block
, esp
->cmd_bytes_ptr
,
1940 esp
->cmd_bytes_left
);
1941 if (esp
->rev
== FASHME
)
1942 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1943 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1944 esp
->cmd_bytes_left
, 16, 0,
1945 ESP_CMD_DMA
| ESP_CMD_TI
);
1946 esp_event(esp
, ESP_EVENT_CMD_DONE
);
1947 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1949 case ESP_EVENT_CMD_DONE
:
1950 esp
->ops
->dma_invalidate(esp
);
1951 if (esp
->ireg
& ESP_INTR_BSERV
) {
1952 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1955 esp_schedule_reset(esp
);
1959 case ESP_EVENT_RESET
:
1960 scsi_esp_cmd(esp
, ESP_CMD_RS
);
1964 printk("ESP: Unexpected event %x, resetting\n",
1966 esp_schedule_reset(esp
);
1973 static void esp_reset_cleanup_one(struct esp
*esp
, struct esp_cmd_entry
*ent
)
1975 struct scsi_cmnd
*cmd
= ent
->cmd
;
1977 esp_unmap_dma(esp
, cmd
);
1978 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1979 cmd
->result
= DID_RESET
<< 16;
1981 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
1982 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1983 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1984 ent
->sense_ptr
= NULL
;
1987 cmd
->scsi_done(cmd
);
1988 list_del(&ent
->list
);
1989 esp_put_ent(esp
, ent
);
1992 static void esp_clear_hold(struct scsi_device
*dev
, void *data
)
1994 struct esp_lun_data
*lp
= dev
->hostdata
;
1996 BUG_ON(lp
->num_tagged
);
2000 static void esp_reset_cleanup(struct esp
*esp
)
2002 struct esp_cmd_entry
*ent
, *tmp
;
2005 list_for_each_entry_safe(ent
, tmp
, &esp
->queued_cmds
, list
) {
2006 struct scsi_cmnd
*cmd
= ent
->cmd
;
2008 list_del(&ent
->list
);
2009 cmd
->result
= DID_RESET
<< 16;
2010 cmd
->scsi_done(cmd
);
2011 esp_put_ent(esp
, ent
);
2014 list_for_each_entry_safe(ent
, tmp
, &esp
->active_cmds
, list
) {
2015 if (ent
== esp
->active_cmd
)
2016 esp
->active_cmd
= NULL
;
2017 esp_reset_cleanup_one(esp
, ent
);
2020 BUG_ON(esp
->active_cmd
!= NULL
);
2022 /* Force renegotiation of sync/wide transfers. */
2023 for (i
= 0; i
< ESP_MAX_TARGET
; i
++) {
2024 struct esp_target_data
*tp
= &esp
->target
[i
];
2028 tp
->esp_config3
&= ~(ESP_CONFIG3_EWIDE
|
2031 tp
->flags
&= ~ESP_TGT_WIDE
;
2032 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2035 __starget_for_each_device(tp
->starget
, NULL
,
2038 esp
->flags
&= ~ESP_FLAG_RESETTING
;
2041 /* Runs under host->lock */
2042 static void __esp_interrupt(struct esp
*esp
)
2044 int finish_reset
, intr_done
;
2047 esp
->sreg
= esp_read8(ESP_STATUS
);
2049 if (esp
->flags
& ESP_FLAG_RESETTING
) {
2052 if (esp_check_gross_error(esp
))
2055 finish_reset
= esp_check_spur_intr(esp
);
2056 if (finish_reset
< 0)
2060 esp
->ireg
= esp_read8(ESP_INTRPT
);
2062 if (esp
->ireg
& ESP_INTR_SR
)
2066 esp_reset_cleanup(esp
);
2067 if (esp
->eh_reset
) {
2068 complete(esp
->eh_reset
);
2069 esp
->eh_reset
= NULL
;
2074 phase
= (esp
->sreg
& ESP_STAT_PMASK
);
2075 if (esp
->rev
== FASHME
) {
2076 if (((phase
!= ESP_DIP
&& phase
!= ESP_DOP
) &&
2077 esp
->select_state
== ESP_SELECT_NONE
&&
2078 esp
->event
!= ESP_EVENT_STATUS
&&
2079 esp
->event
!= ESP_EVENT_DATA_DONE
) ||
2080 (esp
->ireg
& ESP_INTR_RSEL
)) {
2081 esp
->sreg2
= esp_read8(ESP_STATUS2
);
2082 if (!(esp
->sreg2
& ESP_STAT2_FEMPTY
) ||
2083 (esp
->sreg2
& ESP_STAT2_F1BYTE
))
2088 esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2089 "sreg2[%02x] ireg[%02x]\n",
2090 esp
->sreg
, esp
->seqreg
, esp
->sreg2
, esp
->ireg
);
2094 if (esp
->ireg
& (ESP_INTR_S
| ESP_INTR_SATN
| ESP_INTR_IC
)) {
2095 printk("ESP: unexpected IREG %02x\n", esp
->ireg
);
2096 if (esp
->ireg
& ESP_INTR_IC
)
2097 esp_dump_cmd_log(esp
);
2099 esp_schedule_reset(esp
);
2101 if (!(esp
->ireg
& ESP_INTR_RSEL
)) {
2102 /* Some combination of FDONE, BSERV, DC. */
2103 if (esp
->select_state
!= ESP_SELECT_NONE
)
2104 intr_done
= esp_finish_select(esp
);
2105 } else if (esp
->ireg
& ESP_INTR_RSEL
) {
2106 if (esp
->active_cmd
)
2107 (void) esp_finish_select(esp
);
2108 intr_done
= esp_reconnect(esp
);
2112 intr_done
= esp_process_event(esp
);
2115 irqreturn_t
scsi_esp_intr(int irq
, void *dev_id
)
2117 struct esp
*esp
= dev_id
;
2118 unsigned long flags
;
2121 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2123 if (esp
->ops
->irq_pending(esp
)) {
2128 __esp_interrupt(esp
);
2129 if (!(esp
->flags
& ESP_FLAG_QUICKIRQ_CHECK
))
2131 esp
->flags
&= ~ESP_FLAG_QUICKIRQ_CHECK
;
2133 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
2134 if (esp
->ops
->irq_pending(esp
))
2137 if (i
== ESP_QUICKIRQ_LIMIT
)
2141 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2145 EXPORT_SYMBOL(scsi_esp_intr
);
2147 static void esp_get_revision(struct esp
*esp
)
2151 esp
->config1
= (ESP_CONFIG1_PENABLE
| (esp
->scsi_id
& 7));
2152 esp
->config2
= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
);
2153 esp_write8(esp
->config2
, ESP_CFG2
);
2155 val
= esp_read8(ESP_CFG2
);
2156 val
&= ~ESP_CONFIG2_MAGIC
;
2157 if (val
!= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
)) {
2158 /* If what we write to cfg2 does not come back, cfg2 is not
2159 * implemented, therefore this must be a plain esp100.
2164 esp_set_all_config3(esp
, 5);
2166 esp_write8(esp
->config2
, ESP_CFG2
);
2167 esp_write8(0, ESP_CFG3
);
2168 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2170 val
= esp_read8(ESP_CFG3
);
2172 /* The cfg2 register is implemented, however
2173 * cfg3 is not, must be esp100a.
2177 esp_set_all_config3(esp
, 0);
2179 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2181 /* All of cfg{1,2,3} implemented, must be one of
2182 * the fas variants, figure out which one.
2184 if (esp
->cfact
== 0 || esp
->cfact
> ESP_CCF_F5
) {
2186 esp
->sync_defp
= SYNC_DEFP_FAST
;
2191 esp_write8(esp
->config2
, ESP_CFG2
);
2196 static void esp_init_swstate(struct esp
*esp
)
2200 INIT_LIST_HEAD(&esp
->queued_cmds
);
2201 INIT_LIST_HEAD(&esp
->active_cmds
);
2202 INIT_LIST_HEAD(&esp
->esp_cmd_pool
);
2204 /* Start with a clear state, domain validation (via ->slave_configure,
2205 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2208 for (i
= 0 ; i
< ESP_MAX_TARGET
; i
++) {
2209 esp
->target
[i
].flags
= 0;
2210 esp
->target
[i
].nego_goal_period
= 0;
2211 esp
->target
[i
].nego_goal_offset
= 0;
2212 esp
->target
[i
].nego_goal_width
= 0;
2213 esp
->target
[i
].nego_goal_tags
= 0;
2217 /* This places the ESP into a known state at boot time. */
2218 static void esp_bootup_reset(struct esp
*esp
)
2223 esp
->ops
->reset_dma(esp
);
2228 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2229 val
= esp_read8(ESP_CFG1
);
2230 val
|= ESP_CONFIG1_SRRDISAB
;
2231 esp_write8(val
, ESP_CFG1
);
2233 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2236 esp_write8(esp
->config1
, ESP_CFG1
);
2238 /* Eat any bitrot in the chip and we are done... */
2239 esp_read8(ESP_INTRPT
);
2242 static void esp_set_clock_params(struct esp
*esp
)
2247 /* This is getting messy but it has to be done correctly or else
2248 * you get weird behavior all over the place. We are trying to
2249 * basically figure out three pieces of information.
2251 * a) Clock Conversion Factor
2253 * This is a representation of the input crystal clock frequency
2254 * going into the ESP on this machine. Any operation whose timing
2255 * is longer than 400ns depends on this value being correct. For
2256 * example, you'll get blips for arbitration/selection during high
2257 * load or with multiple targets if this is not set correctly.
2259 * b) Selection Time-Out
2261 * The ESP isn't very bright and will arbitrate for the bus and try
2262 * to select a target forever if you let it. This value tells the
2263 * ESP when it has taken too long to negotiate and that it should
2264 * interrupt the CPU so we can see what happened. The value is
2265 * computed as follows (from NCR/Symbios chip docs).
2267 * (Time Out Period) * (Input Clock)
2268 * STO = ----------------------------------
2269 * (8192) * (Clock Conversion Factor)
2271 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2273 * c) Imperical constants for synchronous offset and transfer period
2276 * This entails the smallest and largest sync period we could ever
2277 * handle on this ESP.
2281 ccf
= ((fhz
/ 1000000) + 4) / 5;
2285 /* If we can't find anything reasonable, just assume 20MHZ.
2286 * This is the clock frequency of the older sun4c's where I've
2287 * been unable to find the clock-frequency PROM property. All
2288 * other machines provide useful values it seems.
2290 if (fhz
<= 5000000 || ccf
< 1 || ccf
> 8) {
2295 esp
->cfact
= (ccf
== 8 ? 0 : ccf
);
2297 esp
->ccycle
= ESP_HZ_TO_CYCLE(fhz
);
2298 esp
->ctick
= ESP_TICK(ccf
, esp
->ccycle
);
2299 esp
->neg_defp
= ESP_NEG_DEFP(fhz
, ccf
);
2300 esp
->sync_defp
= SYNC_DEFP_SLOW
;
2303 static const char *esp_chip_names
[] = {
2313 static struct scsi_transport_template
*esp_transport_template
;
2315 int scsi_esp_register(struct esp
*esp
, struct device
*dev
)
2317 static int instance
;
2320 esp
->host
->transportt
= esp_transport_template
;
2321 esp
->host
->max_lun
= ESP_MAX_LUN
;
2322 esp
->host
->cmd_per_lun
= 2;
2323 esp
->host
->unique_id
= instance
;
2325 esp_set_clock_params(esp
);
2327 esp_get_revision(esp
);
2329 esp_init_swstate(esp
);
2331 esp_bootup_reset(esp
);
2333 printk(KERN_INFO PFX
"esp%u, regs[%1p:%1p] irq[%u]\n",
2334 esp
->host
->unique_id
, esp
->regs
, esp
->dma_regs
,
2336 printk(KERN_INFO PFX
"esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2337 esp
->host
->unique_id
, esp_chip_names
[esp
->rev
],
2338 esp
->cfreq
/ 1000000, esp
->cfact
, esp
->scsi_id
);
2340 /* Let the SCSI bus reset settle. */
2341 ssleep(esp_bus_reset_settle
);
2343 err
= scsi_add_host(esp
->host
, dev
);
2349 scsi_scan_host(esp
->host
);
2353 EXPORT_SYMBOL(scsi_esp_register
);
2355 void scsi_esp_unregister(struct esp
*esp
)
2357 scsi_remove_host(esp
->host
);
2359 EXPORT_SYMBOL(scsi_esp_unregister
);
2361 static int esp_target_alloc(struct scsi_target
*starget
)
2363 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2364 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2366 tp
->starget
= starget
;
2371 static void esp_target_destroy(struct scsi_target
*starget
)
2373 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2374 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2379 static int esp_slave_alloc(struct scsi_device
*dev
)
2381 struct esp
*esp
= shost_priv(dev
->host
);
2382 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2383 struct esp_lun_data
*lp
;
2385 lp
= kzalloc(sizeof(*lp
), GFP_KERNEL
);
2390 spi_min_period(tp
->starget
) = esp
->min_period
;
2391 spi_max_offset(tp
->starget
) = 15;
2393 if (esp
->flags
& ESP_FLAG_WIDE_CAPABLE
)
2394 spi_max_width(tp
->starget
) = 1;
2396 spi_max_width(tp
->starget
) = 0;
2401 static int esp_slave_configure(struct scsi_device
*dev
)
2403 struct esp
*esp
= shost_priv(dev
->host
);
2404 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2405 int goal_tags
, queue_depth
;
2409 if (dev
->tagged_supported
) {
2410 /* XXX make this configurable somehow XXX */
2411 goal_tags
= ESP_DEFAULT_TAGS
;
2413 if (goal_tags
> ESP_MAX_TAG
)
2414 goal_tags
= ESP_MAX_TAG
;
2417 queue_depth
= goal_tags
;
2418 if (queue_depth
< dev
->host
->cmd_per_lun
)
2419 queue_depth
= dev
->host
->cmd_per_lun
;
2422 scsi_set_tag_type(dev
, MSG_ORDERED_TAG
);
2423 scsi_activate_tcq(dev
, queue_depth
);
2425 scsi_deactivate_tcq(dev
, queue_depth
);
2427 tp
->flags
|= ESP_TGT_DISCONNECT
;
2429 if (!spi_initial_dv(dev
->sdev_target
))
2435 static void esp_slave_destroy(struct scsi_device
*dev
)
2437 struct esp_lun_data
*lp
= dev
->hostdata
;
2440 dev
->hostdata
= NULL
;
2443 static int esp_eh_abort_handler(struct scsi_cmnd
*cmd
)
2445 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2446 struct esp_cmd_entry
*ent
, *tmp
;
2447 struct completion eh_done
;
2448 unsigned long flags
;
2450 /* XXX This helps a lot with debugging but might be a bit
2451 * XXX much for the final driver.
2453 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2454 printk(KERN_ERR PFX
"esp%d: Aborting command [%p:%02x]\n",
2455 esp
->host
->unique_id
, cmd
, cmd
->cmnd
[0]);
2456 ent
= esp
->active_cmd
;
2458 printk(KERN_ERR PFX
"esp%d: Current command [%p:%02x]\n",
2459 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2460 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
2461 printk(KERN_ERR PFX
"esp%d: Queued command [%p:%02x]\n",
2462 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2464 list_for_each_entry(ent
, &esp
->active_cmds
, list
) {
2465 printk(KERN_ERR PFX
"esp%d: Active command [%p:%02x]\n",
2466 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2468 esp_dump_cmd_log(esp
);
2469 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2471 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2474 list_for_each_entry(tmp
, &esp
->queued_cmds
, list
) {
2475 if (tmp
->cmd
== cmd
) {
2482 /* Easiest case, we didn't even issue the command
2483 * yet so it is trivial to abort.
2485 list_del(&ent
->list
);
2487 cmd
->result
= DID_ABORT
<< 16;
2488 cmd
->scsi_done(cmd
);
2490 esp_put_ent(esp
, ent
);
2495 init_completion(&eh_done
);
2497 ent
= esp
->active_cmd
;
2498 if (ent
&& ent
->cmd
== cmd
) {
2499 /* Command is the currently active command on
2500 * the bus. If we already have an output message
2503 if (esp
->msg_out_len
)
2506 /* Send out an abort, encouraging the target to
2507 * go to MSGOUT phase by asserting ATN.
2509 esp
->msg_out
[0] = ABORT_TASK_SET
;
2510 esp
->msg_out_len
= 1;
2511 ent
->eh_done
= &eh_done
;
2513 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
2515 /* The command is disconnected. This is not easy to
2516 * abort. For now we fail and let the scsi error
2517 * handling layer go try a scsi bus reset or host
2520 * What we could do is put together a scsi command
2521 * solely for the purpose of sending an abort message
2522 * to the target. Coming up with all the code to
2523 * cook up scsi commands, special case them everywhere,
2524 * etc. is for questionable gain and it would be better
2525 * if the generic scsi error handling layer could do at
2526 * least some of that for us.
2528 * Anyways this is an area for potential future improvement
2534 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2536 if (!wait_for_completion_timeout(&eh_done
, 5 * HZ
)) {
2537 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2538 ent
->eh_done
= NULL
;
2539 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2547 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2551 /* XXX This might be a good location to set ESP_TGT_BROKEN
2552 * XXX since we know which target/lun in particular is
2553 * XXX causing trouble.
2555 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2559 static int esp_eh_bus_reset_handler(struct scsi_cmnd
*cmd
)
2561 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2562 struct completion eh_reset
;
2563 unsigned long flags
;
2565 init_completion(&eh_reset
);
2567 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2569 esp
->eh_reset
= &eh_reset
;
2571 /* XXX This is too simple... We should add lots of
2572 * XXX checks here so that if we find that the chip is
2573 * XXX very wedged we return failure immediately so
2574 * XXX that we can perform a full chip reset.
2576 esp
->flags
|= ESP_FLAG_RESETTING
;
2577 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2579 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2581 ssleep(esp_bus_reset_settle
);
2583 if (!wait_for_completion_timeout(&eh_reset
, 5 * HZ
)) {
2584 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2585 esp
->eh_reset
= NULL
;
2586 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2594 /* All bets are off, reset the entire device. */
2595 static int esp_eh_host_reset_handler(struct scsi_cmnd
*cmd
)
2597 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2598 unsigned long flags
;
2600 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2601 esp_bootup_reset(esp
);
2602 esp_reset_cleanup(esp
);
2603 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2605 ssleep(esp_bus_reset_settle
);
2610 static const char *esp_info(struct Scsi_Host
*host
)
2615 struct scsi_host_template scsi_esp_template
= {
2616 .module
= THIS_MODULE
,
2619 .queuecommand
= esp_queuecommand
,
2620 .target_alloc
= esp_target_alloc
,
2621 .target_destroy
= esp_target_destroy
,
2622 .slave_alloc
= esp_slave_alloc
,
2623 .slave_configure
= esp_slave_configure
,
2624 .slave_destroy
= esp_slave_destroy
,
2625 .eh_abort_handler
= esp_eh_abort_handler
,
2626 .eh_bus_reset_handler
= esp_eh_bus_reset_handler
,
2627 .eh_host_reset_handler
= esp_eh_host_reset_handler
,
2630 .sg_tablesize
= SG_ALL
,
2631 .use_clustering
= ENABLE_CLUSTERING
,
2632 .max_sectors
= 0xffff,
2633 .skip_settle_delay
= 1,
2635 EXPORT_SYMBOL(scsi_esp_template
);
2637 static void esp_get_signalling(struct Scsi_Host
*host
)
2639 struct esp
*esp
= shost_priv(host
);
2640 enum spi_signal_type type
;
2642 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
2643 type
= SPI_SIGNAL_HVD
;
2645 type
= SPI_SIGNAL_SE
;
2647 spi_signalling(host
) = type
;
2650 static void esp_set_offset(struct scsi_target
*target
, int offset
)
2652 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2653 struct esp
*esp
= shost_priv(host
);
2654 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2656 if (esp
->flags
& ESP_FLAG_DISABLE_SYNC
)
2657 tp
->nego_goal_offset
= 0;
2659 tp
->nego_goal_offset
= offset
;
2660 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2663 static void esp_set_period(struct scsi_target
*target
, int period
)
2665 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2666 struct esp
*esp
= shost_priv(host
);
2667 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2669 tp
->nego_goal_period
= period
;
2670 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2673 static void esp_set_width(struct scsi_target
*target
, int width
)
2675 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2676 struct esp
*esp
= shost_priv(host
);
2677 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2679 tp
->nego_goal_width
= (width
? 1 : 0);
2680 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2683 static struct spi_function_template esp_transport_ops
= {
2684 .set_offset
= esp_set_offset
,
2686 .set_period
= esp_set_period
,
2688 .set_width
= esp_set_width
,
2690 .get_signalling
= esp_get_signalling
,
2693 static int __init
esp_init(void)
2695 BUILD_BUG_ON(sizeof(struct scsi_pointer
) <
2696 sizeof(struct esp_cmd_priv
));
2698 esp_transport_template
= spi_attach_transport(&esp_transport_ops
);
2699 if (!esp_transport_template
)
2705 static void __exit
esp_exit(void)
2707 spi_release_transport(esp_transport_template
);
2710 MODULE_DESCRIPTION("ESP SCSI driver core");
2711 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2712 MODULE_LICENSE("GPL");
2713 MODULE_VERSION(DRV_VERSION
);
2715 module_param(esp_bus_reset_settle
, int, 0);
2716 MODULE_PARM_DESC(esp_bus_reset_settle
,
2717 "ESP scsi bus reset delay in seconds");
2719 module_param(esp_debug
, int, 0);
2720 MODULE_PARM_DESC(esp_debug
,
2721 "ESP bitmapped debugging message enable value:\n"
2722 " 0x00000001 Log interrupt events\n"
2723 " 0x00000002 Log scsi commands\n"
2724 " 0x00000004 Log resets\n"
2725 " 0x00000008 Log message in events\n"
2726 " 0x00000010 Log message out events\n"
2727 " 0x00000020 Log command completion\n"
2728 " 0x00000040 Log disconnects\n"
2729 " 0x00000080 Log data start\n"
2730 " 0x00000100 Log data done\n"
2731 " 0x00000200 Log reconnects\n"
2732 " 0x00000400 Log auto-sense data\n"
2735 module_init(esp_init
);
2736 module_exit(esp_exit
);