2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
97 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
98 unsigned long nr_segs
, loff_t pos
);
99 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
100 unsigned long nr_segs
, loff_t pos
);
101 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
103 static int sock_close(struct inode
*inode
, struct file
*file
);
104 static unsigned int sock_poll(struct file
*file
,
105 struct poll_table_struct
*wait
);
106 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
108 static long compat_sock_ioctl(struct file
*file
,
109 unsigned int cmd
, unsigned long arg
);
111 static int sock_fasync(int fd
, struct file
*filp
, int on
);
112 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
113 int offset
, size_t size
, loff_t
*ppos
, int more
);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops
= {
121 .owner
= THIS_MODULE
,
123 .aio_read
= sock_aio_read
,
124 .aio_write
= sock_aio_write
,
126 .unlocked_ioctl
= sock_ioctl
,
128 .compat_ioctl
= compat_sock_ioctl
,
131 .open
= sock_no_open
, /* special open code to disallow open via /proc */
132 .release
= sock_close
,
133 .fasync
= sock_fasync
,
134 .sendpage
= sock_sendpage
,
135 .splice_write
= generic_splice_sendpage
,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock
);
143 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
179 if (ulen
< 0 || ulen
> MAX_SOCK_ADDR
)
183 if (copy_from_user(kaddr
, uaddr
, ulen
))
185 return audit_sockaddr(ulen
, kaddr
);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
,
211 err
= get_user(len
, ulen
);
216 if (len
< 0 || len
> MAX_SOCK_ADDR
)
219 if (audit_sockaddr(klen
, kaddr
))
221 if (copy_to_user(uaddr
, kaddr
, len
))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen
, ulen
);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
235 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
237 struct socket_alloc
*ei
;
239 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
242 init_waitqueue_head(&ei
->socket
.wait
);
244 ei
->socket
.fasync_list
= NULL
;
245 ei
->socket
.state
= SS_UNCONNECTED
;
246 ei
->socket
.flags
= 0;
247 ei
->socket
.ops
= NULL
;
248 ei
->socket
.sk
= NULL
;
249 ei
->socket
.file
= NULL
;
251 return &ei
->vfs_inode
;
254 static void sock_destroy_inode(struct inode
*inode
)
256 kmem_cache_free(sock_inode_cachep
,
257 container_of(inode
, struct socket_alloc
, vfs_inode
));
260 static void init_once(void *foo
, struct kmem_cache
*cachep
, unsigned long flags
)
262 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
264 inode_init_once(&ei
->vfs_inode
);
267 static int init_inodecache(void)
269 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
270 sizeof(struct socket_alloc
),
272 (SLAB_HWCACHE_ALIGN
|
273 SLAB_RECLAIM_ACCOUNT
|
277 if (sock_inode_cachep
== NULL
)
282 static struct super_operations sockfs_ops
= {
283 .alloc_inode
= sock_alloc_inode
,
284 .destroy_inode
=sock_destroy_inode
,
285 .statfs
= simple_statfs
,
288 static int sockfs_get_sb(struct file_system_type
*fs_type
,
289 int flags
, const char *dev_name
, void *data
,
290 struct vfsmount
*mnt
)
292 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
296 static struct vfsmount
*sock_mnt __read_mostly
;
298 static struct file_system_type sock_fs_type
= {
300 .get_sb
= sockfs_get_sb
,
301 .kill_sb
= kill_anon_super
,
304 static int sockfs_delete_dentry(struct dentry
*dentry
)
307 * At creation time, we pretended this dentry was hashed
308 * (by clearing DCACHE_UNHASHED bit in d_flags)
309 * At delete time, we restore the truth : not hashed.
310 * (so that dput() can proceed correctly)
312 dentry
->d_flags
|= DCACHE_UNHASHED
;
317 * sockfs_dname() is called from d_path().
319 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
321 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
322 dentry
->d_inode
->i_ino
);
325 static struct dentry_operations sockfs_dentry_operations
= {
326 .d_delete
= sockfs_delete_dentry
,
327 .d_dname
= sockfs_dname
,
331 * Obtains the first available file descriptor and sets it up for use.
333 * These functions create file structures and maps them to fd space
334 * of the current process. On success it returns file descriptor
335 * and file struct implicitly stored in sock->file.
336 * Note that another thread may close file descriptor before we return
337 * from this function. We use the fact that now we do not refer
338 * to socket after mapping. If one day we will need it, this
339 * function will increment ref. count on file by 1.
341 * In any case returned fd MAY BE not valid!
342 * This race condition is unavoidable
343 * with shared fd spaces, we cannot solve it inside kernel,
344 * but we take care of internal coherence yet.
347 static int sock_alloc_fd(struct file
**filep
)
351 fd
= get_unused_fd();
352 if (likely(fd
>= 0)) {
353 struct file
*file
= get_empty_filp();
356 if (unlikely(!file
)) {
365 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
367 struct qstr name
= { .name
= "" };
369 file
->f_path
.dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
370 if (unlikely(!file
->f_path
.dentry
))
373 file
->f_path
.dentry
->d_op
= &sockfs_dentry_operations
;
375 * We dont want to push this dentry into global dentry hash table.
376 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
377 * This permits a working /proc/$pid/fd/XXX on sockets
379 file
->f_path
.dentry
->d_flags
&= ~DCACHE_UNHASHED
;
380 d_instantiate(file
->f_path
.dentry
, SOCK_INODE(sock
));
381 file
->f_path
.mnt
= mntget(sock_mnt
);
382 file
->f_mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
385 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
386 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
387 file
->f_flags
= O_RDWR
;
389 file
->private_data
= sock
;
394 int sock_map_fd(struct socket
*sock
)
396 struct file
*newfile
;
397 int fd
= sock_alloc_fd(&newfile
);
399 if (likely(fd
>= 0)) {
400 int err
= sock_attach_fd(sock
, newfile
);
402 if (unlikely(err
< 0)) {
407 fd_install(fd
, newfile
);
412 static struct socket
*sock_from_file(struct file
*file
, int *err
)
414 if (file
->f_op
== &socket_file_ops
)
415 return file
->private_data
; /* set in sock_map_fd */
422 * sockfd_lookup - Go from a file number to its socket slot
424 * @err: pointer to an error code return
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
431 * On a success the socket object pointer is returned.
434 struct socket
*sockfd_lookup(int fd
, int *err
)
445 sock
= sock_from_file(file
, err
);
451 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
457 file
= fget_light(fd
, fput_needed
);
459 sock
= sock_from_file(file
, err
);
462 fput_light(file
, *fput_needed
);
468 * sock_alloc - allocate a socket
470 * Allocate a new inode and socket object. The two are bound together
471 * and initialised. The socket is then returned. If we are out of inodes
475 static struct socket
*sock_alloc(void)
480 inode
= new_inode(sock_mnt
->mnt_sb
);
484 sock
= SOCKET_I(inode
);
486 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
487 inode
->i_uid
= current
->fsuid
;
488 inode
->i_gid
= current
->fsgid
;
490 get_cpu_var(sockets_in_use
)++;
491 put_cpu_var(sockets_in_use
);
496 * In theory you can't get an open on this inode, but /proc provides
497 * a back door. Remember to keep it shut otherwise you'll let the
498 * creepy crawlies in.
501 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
506 const struct file_operations bad_sock_fops
= {
507 .owner
= THIS_MODULE
,
508 .open
= sock_no_open
,
512 * sock_release - close a socket
513 * @sock: socket to close
515 * The socket is released from the protocol stack if it has a release
516 * callback, and the inode is then released if the socket is bound to
517 * an inode not a file.
520 void sock_release(struct socket
*sock
)
523 struct module
*owner
= sock
->ops
->owner
;
525 sock
->ops
->release(sock
);
530 if (sock
->fasync_list
)
531 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
533 get_cpu_var(sockets_in_use
)--;
534 put_cpu_var(sockets_in_use
);
536 iput(SOCK_INODE(sock
));
542 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
543 struct msghdr
*msg
, size_t size
)
545 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
553 err
= security_socket_sendmsg(sock
, msg
, size
);
557 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
560 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
563 struct sock_iocb siocb
;
566 init_sync_kiocb(&iocb
, NULL
);
567 iocb
.private = &siocb
;
568 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
569 if (-EIOCBQUEUED
== ret
)
570 ret
= wait_on_sync_kiocb(&iocb
);
574 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
575 struct kvec
*vec
, size_t num
, size_t size
)
577 mm_segment_t oldfs
= get_fs();
582 * the following is safe, since for compiler definitions of kvec and
583 * iovec are identical, yielding the same in-core layout and alignment
585 msg
->msg_iov
= (struct iovec
*)vec
;
586 msg
->msg_iovlen
= num
;
587 result
= sock_sendmsg(sock
, msg
, size
);
593 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
595 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
598 ktime_t kt
= skb
->tstamp
;
600 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
602 /* Race occurred between timestamp enabling and packet
603 receiving. Fill in the current time for now. */
605 kt
= ktime_get_real();
607 tv
= ktime_to_timeval(kt
);
608 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
, sizeof(tv
), &tv
);
611 /* Race occurred between timestamp enabling and packet
612 receiving. Fill in the current time for now. */
614 kt
= ktime_get_real();
616 ts
= ktime_to_timespec(kt
);
617 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
, sizeof(ts
), &ts
);
621 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
623 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
624 struct msghdr
*msg
, size_t size
, int flags
)
627 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
635 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
639 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
642 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
643 size_t size
, int flags
)
646 struct sock_iocb siocb
;
649 init_sync_kiocb(&iocb
, NULL
);
650 iocb
.private = &siocb
;
651 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
652 if (-EIOCBQUEUED
== ret
)
653 ret
= wait_on_sync_kiocb(&iocb
);
657 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
658 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
660 mm_segment_t oldfs
= get_fs();
665 * the following is safe, since for compiler definitions of kvec and
666 * iovec are identical, yielding the same in-core layout and alignment
668 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
669 result
= sock_recvmsg(sock
, msg
, size
, flags
);
674 static void sock_aio_dtor(struct kiocb
*iocb
)
676 kfree(iocb
->private);
679 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
680 int offset
, size_t size
, loff_t
*ppos
, int more
)
685 sock
= file
->private_data
;
687 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
691 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
694 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
695 struct sock_iocb
*siocb
)
697 if (!is_sync_kiocb(iocb
)) {
698 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
701 iocb
->ki_dtor
= sock_aio_dtor
;
705 iocb
->private = siocb
;
709 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
710 struct file
*file
, const struct iovec
*iov
,
711 unsigned long nr_segs
)
713 struct socket
*sock
= file
->private_data
;
717 for (i
= 0; i
< nr_segs
; i
++)
718 size
+= iov
[i
].iov_len
;
720 msg
->msg_name
= NULL
;
721 msg
->msg_namelen
= 0;
722 msg
->msg_control
= NULL
;
723 msg
->msg_controllen
= 0;
724 msg
->msg_iov
= (struct iovec
*)iov
;
725 msg
->msg_iovlen
= nr_segs
;
726 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
728 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
731 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
732 unsigned long nr_segs
, loff_t pos
)
734 struct sock_iocb siocb
, *x
;
739 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
743 x
= alloc_sock_iocb(iocb
, &siocb
);
746 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
749 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
750 struct file
*file
, const struct iovec
*iov
,
751 unsigned long nr_segs
)
753 struct socket
*sock
= file
->private_data
;
757 for (i
= 0; i
< nr_segs
; i
++)
758 size
+= iov
[i
].iov_len
;
760 msg
->msg_name
= NULL
;
761 msg
->msg_namelen
= 0;
762 msg
->msg_control
= NULL
;
763 msg
->msg_controllen
= 0;
764 msg
->msg_iov
= (struct iovec
*)iov
;
765 msg
->msg_iovlen
= nr_segs
;
766 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
767 if (sock
->type
== SOCK_SEQPACKET
)
768 msg
->msg_flags
|= MSG_EOR
;
770 return __sock_sendmsg(iocb
, sock
, msg
, size
);
773 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
774 unsigned long nr_segs
, loff_t pos
)
776 struct sock_iocb siocb
, *x
;
781 x
= alloc_sock_iocb(iocb
, &siocb
);
785 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
789 * Atomic setting of ioctl hooks to avoid race
790 * with module unload.
793 static DEFINE_MUTEX(br_ioctl_mutex
);
794 static int (*br_ioctl_hook
) (unsigned int cmd
, void __user
*arg
) = NULL
;
796 void brioctl_set(int (*hook
) (unsigned int, void __user
*))
798 mutex_lock(&br_ioctl_mutex
);
799 br_ioctl_hook
= hook
;
800 mutex_unlock(&br_ioctl_mutex
);
803 EXPORT_SYMBOL(brioctl_set
);
805 static DEFINE_MUTEX(vlan_ioctl_mutex
);
806 static int (*vlan_ioctl_hook
) (void __user
*arg
);
808 void vlan_ioctl_set(int (*hook
) (void __user
*))
810 mutex_lock(&vlan_ioctl_mutex
);
811 vlan_ioctl_hook
= hook
;
812 mutex_unlock(&vlan_ioctl_mutex
);
815 EXPORT_SYMBOL(vlan_ioctl_set
);
817 static DEFINE_MUTEX(dlci_ioctl_mutex
);
818 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
820 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
822 mutex_lock(&dlci_ioctl_mutex
);
823 dlci_ioctl_hook
= hook
;
824 mutex_unlock(&dlci_ioctl_mutex
);
827 EXPORT_SYMBOL(dlci_ioctl_set
);
830 * With an ioctl, arg may well be a user mode pointer, but we don't know
831 * what to do with it - that's up to the protocol still.
834 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
837 void __user
*argp
= (void __user
*)arg
;
840 sock
= file
->private_data
;
841 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
842 err
= dev_ioctl(cmd
, argp
);
844 #ifdef CONFIG_WIRELESS_EXT
845 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
846 err
= dev_ioctl(cmd
, argp
);
848 #endif /* CONFIG_WIRELESS_EXT */
853 if (get_user(pid
, (int __user
*)argp
))
855 err
= f_setown(sock
->file
, pid
, 1);
859 err
= put_user(f_getown(sock
->file
),
868 request_module("bridge");
870 mutex_lock(&br_ioctl_mutex
);
872 err
= br_ioctl_hook(cmd
, argp
);
873 mutex_unlock(&br_ioctl_mutex
);
878 if (!vlan_ioctl_hook
)
879 request_module("8021q");
881 mutex_lock(&vlan_ioctl_mutex
);
883 err
= vlan_ioctl_hook(argp
);
884 mutex_unlock(&vlan_ioctl_mutex
);
889 if (!dlci_ioctl_hook
)
890 request_module("dlci");
892 if (dlci_ioctl_hook
) {
893 mutex_lock(&dlci_ioctl_mutex
);
894 err
= dlci_ioctl_hook(cmd
, argp
);
895 mutex_unlock(&dlci_ioctl_mutex
);
899 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
902 * If this ioctl is unknown try to hand it down
905 if (err
== -ENOIOCTLCMD
)
906 err
= dev_ioctl(cmd
, argp
);
912 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
915 struct socket
*sock
= NULL
;
917 err
= security_socket_create(family
, type
, protocol
, 1);
928 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
941 /* No kernel lock held - perfect */
942 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
947 * We can't return errors to poll, so it's either yes or no.
949 sock
= file
->private_data
;
950 return sock
->ops
->poll(file
, sock
, wait
);
953 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
955 struct socket
*sock
= file
->private_data
;
957 return sock
->ops
->mmap(file
, sock
, vma
);
960 static int sock_close(struct inode
*inode
, struct file
*filp
)
963 * It was possible the inode is NULL we were
964 * closing an unfinished socket.
968 printk(KERN_DEBUG
"sock_close: NULL inode\n");
971 sock_fasync(-1, filp
, 0);
972 sock_release(SOCKET_I(inode
));
977 * Update the socket async list
979 * Fasync_list locking strategy.
981 * 1. fasync_list is modified only under process context socket lock
982 * i.e. under semaphore.
983 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
984 * or under socket lock.
985 * 3. fasync_list can be used from softirq context, so that
986 * modification under socket lock have to be enhanced with
987 * write_lock_bh(&sk->sk_callback_lock).
991 static int sock_fasync(int fd
, struct file
*filp
, int on
)
993 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
998 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1003 sock
= filp
->private_data
;
1013 prev
= &(sock
->fasync_list
);
1015 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1016 if (fa
->fa_file
== filp
)
1021 write_lock_bh(&sk
->sk_callback_lock
);
1023 write_unlock_bh(&sk
->sk_callback_lock
);
1028 fna
->fa_file
= filp
;
1030 fna
->magic
= FASYNC_MAGIC
;
1031 fna
->fa_next
= sock
->fasync_list
;
1032 write_lock_bh(&sk
->sk_callback_lock
);
1033 sock
->fasync_list
= fna
;
1034 write_unlock_bh(&sk
->sk_callback_lock
);
1037 write_lock_bh(&sk
->sk_callback_lock
);
1038 *prev
= fa
->fa_next
;
1039 write_unlock_bh(&sk
->sk_callback_lock
);
1045 release_sock(sock
->sk
);
1049 /* This function may be called only under socket lock or callback_lock */
1051 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1053 if (!sock
|| !sock
->fasync_list
)
1058 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1067 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1070 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1075 static int __sock_create(int family
, int type
, int protocol
,
1076 struct socket
**res
, int kern
)
1079 struct socket
*sock
;
1080 const struct net_proto_family
*pf
;
1083 * Check protocol is in range
1085 if (family
< 0 || family
>= NPROTO
)
1086 return -EAFNOSUPPORT
;
1087 if (type
< 0 || type
>= SOCK_MAX
)
1092 This uglymoron is moved from INET layer to here to avoid
1093 deadlock in module load.
1095 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1099 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1105 err
= security_socket_create(family
, type
, protocol
, kern
);
1110 * Allocate the socket and allow the family to set things up. if
1111 * the protocol is 0, the family is instructed to select an appropriate
1114 sock
= sock_alloc();
1116 if (net_ratelimit())
1117 printk(KERN_WARNING
"socket: no more sockets\n");
1118 return -ENFILE
; /* Not exactly a match, but its the
1119 closest posix thing */
1124 #if defined(CONFIG_KMOD)
1125 /* Attempt to load a protocol module if the find failed.
1127 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1128 * requested real, full-featured networking support upon configuration.
1129 * Otherwise module support will break!
1131 if (net_families
[family
] == NULL
)
1132 request_module("net-pf-%d", family
);
1136 pf
= rcu_dereference(net_families
[family
]);
1137 err
= -EAFNOSUPPORT
;
1142 * We will call the ->create function, that possibly is in a loadable
1143 * module, so we have to bump that loadable module refcnt first.
1145 if (!try_module_get(pf
->owner
))
1148 /* Now protected by module ref count */
1151 err
= pf
->create(sock
, protocol
);
1153 goto out_module_put
;
1156 * Now to bump the refcnt of the [loadable] module that owns this
1157 * socket at sock_release time we decrement its refcnt.
1159 if (!try_module_get(sock
->ops
->owner
))
1160 goto out_module_busy
;
1163 * Now that we're done with the ->create function, the [loadable]
1164 * module can have its refcnt decremented
1166 module_put(pf
->owner
);
1167 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1169 goto out_sock_release
;
1175 err
= -EAFNOSUPPORT
;
1178 module_put(pf
->owner
);
1185 goto out_sock_release
;
1188 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1190 return __sock_create(family
, type
, protocol
, res
, 0);
1193 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1195 return __sock_create(family
, type
, protocol
, res
, 1);
1198 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1201 struct socket
*sock
;
1203 retval
= sock_create(family
, type
, protocol
, &sock
);
1207 retval
= sock_map_fd(sock
);
1212 /* It may be already another descriptor 8) Not kernel problem. */
1221 * Create a pair of connected sockets.
1224 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1225 int __user
*usockvec
)
1227 struct socket
*sock1
, *sock2
;
1229 struct file
*newfile1
, *newfile2
;
1232 * Obtain the first socket and check if the underlying protocol
1233 * supports the socketpair call.
1236 err
= sock_create(family
, type
, protocol
, &sock1
);
1240 err
= sock_create(family
, type
, protocol
, &sock2
);
1244 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1246 goto out_release_both
;
1248 fd1
= sock_alloc_fd(&newfile1
);
1249 if (unlikely(fd1
< 0))
1250 goto out_release_both
;
1252 fd2
= sock_alloc_fd(&newfile2
);
1253 if (unlikely(fd2
< 0)) {
1256 goto out_release_both
;
1259 err
= sock_attach_fd(sock1
, newfile1
);
1260 if (unlikely(err
< 0)) {
1264 err
= sock_attach_fd(sock2
, newfile2
);
1265 if (unlikely(err
< 0)) {
1270 err
= audit_fd_pair(fd1
, fd2
);
1277 fd_install(fd1
, newfile1
);
1278 fd_install(fd2
, newfile2
);
1279 /* fd1 and fd2 may be already another descriptors.
1280 * Not kernel problem.
1283 err
= put_user(fd1
, &usockvec
[0]);
1285 err
= put_user(fd2
, &usockvec
[1]);
1294 sock_release(sock2
);
1296 sock_release(sock1
);
1302 sock_release(sock1
);
1305 sock_release(sock2
);
1313 * Bind a name to a socket. Nothing much to do here since it's
1314 * the protocol's responsibility to handle the local address.
1316 * We move the socket address to kernel space before we call
1317 * the protocol layer (having also checked the address is ok).
1320 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1322 struct socket
*sock
;
1323 char address
[MAX_SOCK_ADDR
];
1324 int err
, fput_needed
;
1326 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1328 err
= move_addr_to_kernel(umyaddr
, addrlen
, address
);
1330 err
= security_socket_bind(sock
,
1331 (struct sockaddr
*)address
,
1334 err
= sock
->ops
->bind(sock
,
1338 fput_light(sock
->file
, fput_needed
);
1344 * Perform a listen. Basically, we allow the protocol to do anything
1345 * necessary for a listen, and if that works, we mark the socket as
1346 * ready for listening.
1349 int sysctl_somaxconn __read_mostly
= SOMAXCONN
;
1351 asmlinkage
long sys_listen(int fd
, int backlog
)
1353 struct socket
*sock
;
1354 int err
, fput_needed
;
1356 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1358 if ((unsigned)backlog
> sysctl_somaxconn
)
1359 backlog
= sysctl_somaxconn
;
1361 err
= security_socket_listen(sock
, backlog
);
1363 err
= sock
->ops
->listen(sock
, backlog
);
1365 fput_light(sock
->file
, fput_needed
);
1371 * For accept, we attempt to create a new socket, set up the link
1372 * with the client, wake up the client, then return the new
1373 * connected fd. We collect the address of the connector in kernel
1374 * space and move it to user at the very end. This is unclean because
1375 * we open the socket then return an error.
1377 * 1003.1g adds the ability to recvmsg() to query connection pending
1378 * status to recvmsg. We need to add that support in a way thats
1379 * clean when we restucture accept also.
1382 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1383 int __user
*upeer_addrlen
)
1385 struct socket
*sock
, *newsock
;
1386 struct file
*newfile
;
1387 int err
, len
, newfd
, fput_needed
;
1388 char address
[MAX_SOCK_ADDR
];
1390 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1395 if (!(newsock
= sock_alloc()))
1398 newsock
->type
= sock
->type
;
1399 newsock
->ops
= sock
->ops
;
1402 * We don't need try_module_get here, as the listening socket (sock)
1403 * has the protocol module (sock->ops->owner) held.
1405 __module_get(newsock
->ops
->owner
);
1407 newfd
= sock_alloc_fd(&newfile
);
1408 if (unlikely(newfd
< 0)) {
1410 sock_release(newsock
);
1414 err
= sock_attach_fd(newsock
, newfile
);
1418 err
= security_socket_accept(sock
, newsock
);
1422 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1426 if (upeer_sockaddr
) {
1427 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
,
1429 err
= -ECONNABORTED
;
1432 err
= move_addr_to_user(address
, len
, upeer_sockaddr
,
1438 /* File flags are not inherited via accept() unlike another OSes. */
1440 fd_install(newfd
, newfile
);
1443 security_socket_post_accept(sock
, newsock
);
1446 fput_light(sock
->file
, fput_needed
);
1450 sock_release(newsock
);
1452 put_unused_fd(newfd
);
1456 put_unused_fd(newfd
);
1461 * Attempt to connect to a socket with the server address. The address
1462 * is in user space so we verify it is OK and move it to kernel space.
1464 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1467 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1468 * other SEQPACKET protocols that take time to connect() as it doesn't
1469 * include the -EINPROGRESS status for such sockets.
1472 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1475 struct socket
*sock
;
1476 char address
[MAX_SOCK_ADDR
];
1477 int err
, fput_needed
;
1479 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1482 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1487 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1491 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1492 sock
->file
->f_flags
);
1494 fput_light(sock
->file
, fput_needed
);
1500 * Get the local address ('name') of a socket object. Move the obtained
1501 * name to user space.
1504 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1505 int __user
*usockaddr_len
)
1507 struct socket
*sock
;
1508 char address
[MAX_SOCK_ADDR
];
1509 int len
, err
, fput_needed
;
1511 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1515 err
= security_socket_getsockname(sock
);
1519 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1522 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1525 fput_light(sock
->file
, fput_needed
);
1531 * Get the remote address ('name') of a socket object. Move the obtained
1532 * name to user space.
1535 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1536 int __user
*usockaddr_len
)
1538 struct socket
*sock
;
1539 char address
[MAX_SOCK_ADDR
];
1540 int len
, err
, fput_needed
;
1542 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1544 err
= security_socket_getpeername(sock
);
1546 fput_light(sock
->file
, fput_needed
);
1551 sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
,
1554 err
= move_addr_to_user(address
, len
, usockaddr
,
1556 fput_light(sock
->file
, fput_needed
);
1562 * Send a datagram to a given address. We move the address into kernel
1563 * space and check the user space data area is readable before invoking
1567 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1568 unsigned flags
, struct sockaddr __user
*addr
,
1571 struct socket
*sock
;
1572 char address
[MAX_SOCK_ADDR
];
1577 struct file
*sock_file
;
1579 sock_file
= fget_light(fd
, &fput_needed
);
1584 sock
= sock_from_file(sock_file
, &err
);
1587 iov
.iov_base
= buff
;
1589 msg
.msg_name
= NULL
;
1592 msg
.msg_control
= NULL
;
1593 msg
.msg_controllen
= 0;
1594 msg
.msg_namelen
= 0;
1596 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1599 msg
.msg_name
= address
;
1600 msg
.msg_namelen
= addr_len
;
1602 if (sock
->file
->f_flags
& O_NONBLOCK
)
1603 flags
|= MSG_DONTWAIT
;
1604 msg
.msg_flags
= flags
;
1605 err
= sock_sendmsg(sock
, &msg
, len
);
1608 fput_light(sock_file
, fput_needed
);
1614 * Send a datagram down a socket.
1617 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1619 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1623 * Receive a frame from the socket and optionally record the address of the
1624 * sender. We verify the buffers are writable and if needed move the
1625 * sender address from kernel to user space.
1628 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1629 unsigned flags
, struct sockaddr __user
*addr
,
1630 int __user
*addr_len
)
1632 struct socket
*sock
;
1635 char address
[MAX_SOCK_ADDR
];
1637 struct file
*sock_file
;
1640 sock_file
= fget_light(fd
, &fput_needed
);
1645 sock
= sock_from_file(sock_file
, &err
);
1649 msg
.msg_control
= NULL
;
1650 msg
.msg_controllen
= 0;
1654 iov
.iov_base
= ubuf
;
1655 msg
.msg_name
= address
;
1656 msg
.msg_namelen
= MAX_SOCK_ADDR
;
1657 if (sock
->file
->f_flags
& O_NONBLOCK
)
1658 flags
|= MSG_DONTWAIT
;
1659 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1661 if (err
>= 0 && addr
!= NULL
) {
1662 err2
= move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1667 fput_light(sock_file
, fput_needed
);
1673 * Receive a datagram from a socket.
1676 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1679 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1683 * Set a socket option. Because we don't know the option lengths we have
1684 * to pass the user mode parameter for the protocols to sort out.
1687 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1688 char __user
*optval
, int optlen
)
1690 int err
, fput_needed
;
1691 struct socket
*sock
;
1696 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1698 err
= security_socket_setsockopt(sock
, level
, optname
);
1702 if (level
== SOL_SOCKET
)
1704 sock_setsockopt(sock
, level
, optname
, optval
,
1708 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1711 fput_light(sock
->file
, fput_needed
);
1717 * Get a socket option. Because we don't know the option lengths we have
1718 * to pass a user mode parameter for the protocols to sort out.
1721 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1722 char __user
*optval
, int __user
*optlen
)
1724 int err
, fput_needed
;
1725 struct socket
*sock
;
1727 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1729 err
= security_socket_getsockopt(sock
, level
, optname
);
1733 if (level
== SOL_SOCKET
)
1735 sock_getsockopt(sock
, level
, optname
, optval
,
1739 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1742 fput_light(sock
->file
, fput_needed
);
1748 * Shutdown a socket.
1751 asmlinkage
long sys_shutdown(int fd
, int how
)
1753 int err
, fput_needed
;
1754 struct socket
*sock
;
1756 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1758 err
= security_socket_shutdown(sock
, how
);
1760 err
= sock
->ops
->shutdown(sock
, how
);
1761 fput_light(sock
->file
, fput_needed
);
1766 /* A couple of helpful macros for getting the address of the 32/64 bit
1767 * fields which are the same type (int / unsigned) on our platforms.
1769 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1770 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1771 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1774 * BSD sendmsg interface
1777 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1779 struct compat_msghdr __user
*msg_compat
=
1780 (struct compat_msghdr __user
*)msg
;
1781 struct socket
*sock
;
1782 char address
[MAX_SOCK_ADDR
];
1783 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1784 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1785 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1786 /* 20 is size of ipv6_pktinfo */
1787 unsigned char *ctl_buf
= ctl
;
1788 struct msghdr msg_sys
;
1789 int err
, ctl_len
, iov_size
, total_len
;
1793 if (MSG_CMSG_COMPAT
& flags
) {
1794 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1797 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1800 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1804 /* do not move before msg_sys is valid */
1806 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1809 /* Check whether to allocate the iovec area */
1811 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1812 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1813 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1818 /* This will also move the address data into kernel space */
1819 if (MSG_CMSG_COMPAT
& flags
) {
1820 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1822 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1829 if (msg_sys
.msg_controllen
> INT_MAX
)
1831 ctl_len
= msg_sys
.msg_controllen
;
1832 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1834 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1838 ctl_buf
= msg_sys
.msg_control
;
1839 ctl_len
= msg_sys
.msg_controllen
;
1840 } else if (ctl_len
) {
1841 if (ctl_len
> sizeof(ctl
)) {
1842 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1843 if (ctl_buf
== NULL
)
1848 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1849 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1850 * checking falls down on this.
1852 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1855 msg_sys
.msg_control
= ctl_buf
;
1857 msg_sys
.msg_flags
= flags
;
1859 if (sock
->file
->f_flags
& O_NONBLOCK
)
1860 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1861 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1865 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1867 if (iov
!= iovstack
)
1868 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1870 fput_light(sock
->file
, fput_needed
);
1876 * BSD recvmsg interface
1879 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1882 struct compat_msghdr __user
*msg_compat
=
1883 (struct compat_msghdr __user
*)msg
;
1884 struct socket
*sock
;
1885 struct iovec iovstack
[UIO_FASTIOV
];
1886 struct iovec
*iov
= iovstack
;
1887 struct msghdr msg_sys
;
1888 unsigned long cmsg_ptr
;
1889 int err
, iov_size
, total_len
, len
;
1892 /* kernel mode address */
1893 char addr
[MAX_SOCK_ADDR
];
1895 /* user mode address pointers */
1896 struct sockaddr __user
*uaddr
;
1897 int __user
*uaddr_len
;
1899 if (MSG_CMSG_COMPAT
& flags
) {
1900 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1903 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1906 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1911 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1914 /* Check whether to allocate the iovec area */
1916 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1917 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1918 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1924 * Save the user-mode address (verify_iovec will change the
1925 * kernel msghdr to use the kernel address space)
1928 uaddr
= (void __user
*)msg_sys
.msg_name
;
1929 uaddr_len
= COMPAT_NAMELEN(msg
);
1930 if (MSG_CMSG_COMPAT
& flags
) {
1931 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1933 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1938 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1939 msg_sys
.msg_flags
= 0;
1940 if (MSG_CMSG_COMPAT
& flags
)
1941 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1943 if (sock
->file
->f_flags
& O_NONBLOCK
)
1944 flags
|= MSG_DONTWAIT
;
1945 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1950 if (uaddr
!= NULL
) {
1951 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
,
1956 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1960 if (MSG_CMSG_COMPAT
& flags
)
1961 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1962 &msg_compat
->msg_controllen
);
1964 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1965 &msg
->msg_controllen
);
1971 if (iov
!= iovstack
)
1972 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1974 fput_light(sock
->file
, fput_needed
);
1979 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1981 /* Argument list sizes for sys_socketcall */
1982 #define AL(x) ((x) * sizeof(unsigned long))
1983 static const unsigned char nargs
[18]={
1984 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1985 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1986 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1992 * System call vectors.
1994 * Argument checking cleaned up. Saved 20% in size.
1995 * This function doesn't need to set the kernel lock because
1996 * it is set by the callees.
1999 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
2002 unsigned long a0
, a1
;
2005 if (call
< 1 || call
> SYS_RECVMSG
)
2008 /* copy_from_user should be SMP safe. */
2009 if (copy_from_user(a
, args
, nargs
[call
]))
2012 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2021 err
= sys_socket(a0
, a1
, a
[2]);
2024 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2027 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2030 err
= sys_listen(a0
, a1
);
2034 sys_accept(a0
, (struct sockaddr __user
*)a1
,
2035 (int __user
*)a
[2]);
2037 case SYS_GETSOCKNAME
:
2039 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2040 (int __user
*)a
[2]);
2042 case SYS_GETPEERNAME
:
2044 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2045 (int __user
*)a
[2]);
2047 case SYS_SOCKETPAIR
:
2048 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2051 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2054 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2055 (struct sockaddr __user
*)a
[4], a
[5]);
2058 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2061 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2062 (struct sockaddr __user
*)a
[4],
2063 (int __user
*)a
[5]);
2066 err
= sys_shutdown(a0
, a1
);
2068 case SYS_SETSOCKOPT
:
2069 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2071 case SYS_GETSOCKOPT
:
2073 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2074 (int __user
*)a
[4]);
2077 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2080 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2089 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2092 * sock_register - add a socket protocol handler
2093 * @ops: description of protocol
2095 * This function is called by a protocol handler that wants to
2096 * advertise its address family, and have it linked into the
2097 * socket interface. The value ops->family coresponds to the
2098 * socket system call protocol family.
2100 int sock_register(const struct net_proto_family
*ops
)
2104 if (ops
->family
>= NPROTO
) {
2105 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2110 spin_lock(&net_family_lock
);
2111 if (net_families
[ops
->family
])
2114 net_families
[ops
->family
] = ops
;
2117 spin_unlock(&net_family_lock
);
2119 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2124 * sock_unregister - remove a protocol handler
2125 * @family: protocol family to remove
2127 * This function is called by a protocol handler that wants to
2128 * remove its address family, and have it unlinked from the
2129 * new socket creation.
2131 * If protocol handler is a module, then it can use module reference
2132 * counts to protect against new references. If protocol handler is not
2133 * a module then it needs to provide its own protection in
2134 * the ops->create routine.
2136 void sock_unregister(int family
)
2138 BUG_ON(family
< 0 || family
>= NPROTO
);
2140 spin_lock(&net_family_lock
);
2141 net_families
[family
] = NULL
;
2142 spin_unlock(&net_family_lock
);
2146 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2149 static int __init
sock_init(void)
2152 * Initialize sock SLAB cache.
2158 * Initialize skbuff SLAB cache
2163 * Initialize the protocols module.
2167 register_filesystem(&sock_fs_type
);
2168 sock_mnt
= kern_mount(&sock_fs_type
);
2170 /* The real protocol initialization is performed in later initcalls.
2173 #ifdef CONFIG_NETFILTER
2180 core_initcall(sock_init
); /* early initcall */
2182 #ifdef CONFIG_PROC_FS
2183 void socket_seq_show(struct seq_file
*seq
)
2188 for_each_possible_cpu(cpu
)
2189 counter
+= per_cpu(sockets_in_use
, cpu
);
2191 /* It can be negative, by the way. 8) */
2195 seq_printf(seq
, "sockets: used %d\n", counter
);
2197 #endif /* CONFIG_PROC_FS */
2199 #ifdef CONFIG_COMPAT
2200 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2203 struct socket
*sock
= file
->private_data
;
2204 int ret
= -ENOIOCTLCMD
;
2206 if (sock
->ops
->compat_ioctl
)
2207 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2213 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2215 return sock
->ops
->bind(sock
, addr
, addrlen
);
2218 int kernel_listen(struct socket
*sock
, int backlog
)
2220 return sock
->ops
->listen(sock
, backlog
);
2223 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2225 struct sock
*sk
= sock
->sk
;
2228 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2233 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2235 sock_release(*newsock
);
2239 (*newsock
)->ops
= sock
->ops
;
2245 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2248 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2251 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2254 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2257 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2260 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2263 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2264 char *optval
, int *optlen
)
2266 mm_segment_t oldfs
= get_fs();
2270 if (level
== SOL_SOCKET
)
2271 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2273 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2279 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2280 char *optval
, int optlen
)
2282 mm_segment_t oldfs
= get_fs();
2286 if (level
== SOL_SOCKET
)
2287 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2289 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2295 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2296 size_t size
, int flags
)
2298 if (sock
->ops
->sendpage
)
2299 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2301 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2304 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2306 mm_segment_t oldfs
= get_fs();
2310 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2316 /* ABI emulation layers need these two */
2317 EXPORT_SYMBOL(move_addr_to_kernel
);
2318 EXPORT_SYMBOL(move_addr_to_user
);
2319 EXPORT_SYMBOL(sock_create
);
2320 EXPORT_SYMBOL(sock_create_kern
);
2321 EXPORT_SYMBOL(sock_create_lite
);
2322 EXPORT_SYMBOL(sock_map_fd
);
2323 EXPORT_SYMBOL(sock_recvmsg
);
2324 EXPORT_SYMBOL(sock_register
);
2325 EXPORT_SYMBOL(sock_release
);
2326 EXPORT_SYMBOL(sock_sendmsg
);
2327 EXPORT_SYMBOL(sock_unregister
);
2328 EXPORT_SYMBOL(sock_wake_async
);
2329 EXPORT_SYMBOL(sockfd_lookup
);
2330 EXPORT_SYMBOL(kernel_sendmsg
);
2331 EXPORT_SYMBOL(kernel_recvmsg
);
2332 EXPORT_SYMBOL(kernel_bind
);
2333 EXPORT_SYMBOL(kernel_listen
);
2334 EXPORT_SYMBOL(kernel_accept
);
2335 EXPORT_SYMBOL(kernel_connect
);
2336 EXPORT_SYMBOL(kernel_getsockname
);
2337 EXPORT_SYMBOL(kernel_getpeername
);
2338 EXPORT_SYMBOL(kernel_getsockopt
);
2339 EXPORT_SYMBOL(kernel_setsockopt
);
2340 EXPORT_SYMBOL(kernel_sendpage
);
2341 EXPORT_SYMBOL(kernel_sock_ioctl
);