libata: improve post-reset device ready test
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blobe2b8e769f510d676997698b8fd28ef4346478d2c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/ptrace.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 #include <linux/seq_file.h>
14 #include <asm/elf.h>
15 #include <asm/uaccess.h>
16 #include <asm/tlbflush.h>
17 #include "internal.h"
19 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 unsigned long data, text, lib;
22 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
25 * Note: to minimize their overhead, mm maintains hiwater_vm and
26 * hiwater_rss only when about to *lower* total_vm or rss. Any
27 * collector of these hiwater stats must therefore get total_vm
28 * and rss too, which will usually be the higher. Barriers? not
29 * worth the effort, such snapshots can always be inconsistent.
31 hiwater_vm = total_vm = mm->total_vm;
32 if (hiwater_vm < mm->hiwater_vm)
33 hiwater_vm = mm->hiwater_vm;
34 hiwater_rss = total_rss = get_mm_rss(mm);
35 if (hiwater_rss < mm->hiwater_rss)
36 hiwater_rss = mm->hiwater_rss;
38 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
39 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
40 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n",
52 hiwater_vm << (PAGE_SHIFT-10),
53 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
54 mm->locked_vm << (PAGE_SHIFT-10),
55 hiwater_rss << (PAGE_SHIFT-10),
56 total_rss << (PAGE_SHIFT-10),
57 data << (PAGE_SHIFT-10),
58 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
59 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
62 unsigned long task_vsize(struct mm_struct *mm)
64 return PAGE_SIZE * mm->total_vm;
67 int task_statm(struct mm_struct *mm, int *shared, int *text,
68 int *data, int *resident)
70 *shared = get_mm_counter(mm, file_rss);
71 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
72 >> PAGE_SHIFT;
73 *data = mm->total_vm - mm->shared_vm;
74 *resident = *shared + get_mm_counter(mm, anon_rss);
75 return mm->total_vm;
78 static void pad_len_spaces(struct seq_file *m, int len)
80 len = 25 + sizeof(void*) * 6 - len;
81 if (len < 1)
82 len = 1;
83 seq_printf(m, "%*c", len, ' ');
86 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
88 if (vma && vma != priv->tail_vma) {
89 struct mm_struct *mm = vma->vm_mm;
90 up_read(&mm->mmap_sem);
91 mmput(mm);
95 static void *m_start(struct seq_file *m, loff_t *pos)
97 struct proc_maps_private *priv = m->private;
98 unsigned long last_addr = m->version;
99 struct mm_struct *mm;
100 struct vm_area_struct *vma, *tail_vma = NULL;
101 loff_t l = *pos;
103 /* Clear the per syscall fields in priv */
104 priv->task = NULL;
105 priv->tail_vma = NULL;
108 * We remember last_addr rather than next_addr to hit with
109 * mmap_cache most of the time. We have zero last_addr at
110 * the beginning and also after lseek. We will have -1 last_addr
111 * after the end of the vmas.
114 if (last_addr == -1UL)
115 return NULL;
117 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
118 if (!priv->task)
119 return NULL;
121 mm = mm_for_maps(priv->task);
122 if (!mm)
123 return NULL;
125 tail_vma = get_gate_vma(priv->task);
126 priv->tail_vma = tail_vma;
128 /* Start with last addr hint */
129 vma = find_vma(mm, last_addr);
130 if (last_addr && vma) {
131 vma = vma->vm_next;
132 goto out;
136 * Check the vma index is within the range and do
137 * sequential scan until m_index.
139 vma = NULL;
140 if ((unsigned long)l < mm->map_count) {
141 vma = mm->mmap;
142 while (l-- && vma)
143 vma = vma->vm_next;
144 goto out;
147 if (l != mm->map_count)
148 tail_vma = NULL; /* After gate vma */
150 out:
151 if (vma)
152 return vma;
154 /* End of vmas has been reached */
155 m->version = (tail_vma != NULL)? 0: -1UL;
156 up_read(&mm->mmap_sem);
157 mmput(mm);
158 return tail_vma;
161 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
163 struct proc_maps_private *priv = m->private;
164 struct vm_area_struct *vma = v;
165 struct vm_area_struct *tail_vma = priv->tail_vma;
167 (*pos)++;
168 if (vma && (vma != tail_vma) && vma->vm_next)
169 return vma->vm_next;
170 vma_stop(priv, vma);
171 return (vma != tail_vma)? tail_vma: NULL;
174 static void m_stop(struct seq_file *m, void *v)
176 struct proc_maps_private *priv = m->private;
177 struct vm_area_struct *vma = v;
179 vma_stop(priv, vma);
180 if (priv->task)
181 put_task_struct(priv->task);
184 static int do_maps_open(struct inode *inode, struct file *file,
185 const struct seq_operations *ops)
187 struct proc_maps_private *priv;
188 int ret = -ENOMEM;
189 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
190 if (priv) {
191 priv->pid = proc_pid(inode);
192 ret = seq_open(file, ops);
193 if (!ret) {
194 struct seq_file *m = file->private_data;
195 m->private = priv;
196 } else {
197 kfree(priv);
200 return ret;
203 static int show_map(struct seq_file *m, void *v)
205 struct proc_maps_private *priv = m->private;
206 struct task_struct *task = priv->task;
207 struct vm_area_struct *vma = v;
208 struct mm_struct *mm = vma->vm_mm;
209 struct file *file = vma->vm_file;
210 int flags = vma->vm_flags;
211 unsigned long ino = 0;
212 dev_t dev = 0;
213 int len;
215 if (maps_protect && !ptrace_may_attach(task))
216 return -EACCES;
218 if (file) {
219 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
220 dev = inode->i_sb->s_dev;
221 ino = inode->i_ino;
224 seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
225 vma->vm_start,
226 vma->vm_end,
227 flags & VM_READ ? 'r' : '-',
228 flags & VM_WRITE ? 'w' : '-',
229 flags & VM_EXEC ? 'x' : '-',
230 flags & VM_MAYSHARE ? 's' : 'p',
231 vma->vm_pgoff << PAGE_SHIFT,
232 MAJOR(dev), MINOR(dev), ino, &len);
235 * Print the dentry name for named mappings, and a
236 * special [heap] marker for the heap:
238 if (file) {
239 pad_len_spaces(m, len);
240 seq_path(m, &file->f_path, "\n");
241 } else {
242 const char *name = arch_vma_name(vma);
243 if (!name) {
244 if (mm) {
245 if (vma->vm_start <= mm->start_brk &&
246 vma->vm_end >= mm->brk) {
247 name = "[heap]";
248 } else if (vma->vm_start <= mm->start_stack &&
249 vma->vm_end >= mm->start_stack) {
250 name = "[stack]";
252 } else {
253 name = "[vdso]";
256 if (name) {
257 pad_len_spaces(m, len);
258 seq_puts(m, name);
261 seq_putc(m, '\n');
263 if (m->count < m->size) /* vma is copied successfully */
264 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
265 return 0;
268 static const struct seq_operations proc_pid_maps_op = {
269 .start = m_start,
270 .next = m_next,
271 .stop = m_stop,
272 .show = show_map
275 static int maps_open(struct inode *inode, struct file *file)
277 return do_maps_open(inode, file, &proc_pid_maps_op);
280 const struct file_operations proc_maps_operations = {
281 .open = maps_open,
282 .read = seq_read,
283 .llseek = seq_lseek,
284 .release = seq_release_private,
288 * Proportional Set Size(PSS): my share of RSS.
290 * PSS of a process is the count of pages it has in memory, where each
291 * page is divided by the number of processes sharing it. So if a
292 * process has 1000 pages all to itself, and 1000 shared with one other
293 * process, its PSS will be 1500.
295 * To keep (accumulated) division errors low, we adopt a 64bit
296 * fixed-point pss counter to minimize division errors. So (pss >>
297 * PSS_SHIFT) would be the real byte count.
299 * A shift of 12 before division means (assuming 4K page size):
300 * - 1M 3-user-pages add up to 8KB errors;
301 * - supports mapcount up to 2^24, or 16M;
302 * - supports PSS up to 2^52 bytes, or 4PB.
304 #define PSS_SHIFT 12
306 #ifdef CONFIG_PROC_PAGE_MONITOR
307 struct mem_size_stats {
308 struct vm_area_struct *vma;
309 unsigned long resident;
310 unsigned long shared_clean;
311 unsigned long shared_dirty;
312 unsigned long private_clean;
313 unsigned long private_dirty;
314 unsigned long referenced;
315 unsigned long swap;
316 u64 pss;
319 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
320 void *private)
322 struct mem_size_stats *mss = private;
323 struct vm_area_struct *vma = mss->vma;
324 pte_t *pte, ptent;
325 spinlock_t *ptl;
326 struct page *page;
327 int mapcount;
329 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
330 for (; addr != end; pte++, addr += PAGE_SIZE) {
331 ptent = *pte;
333 if (is_swap_pte(ptent)) {
334 mss->swap += PAGE_SIZE;
335 continue;
338 if (!pte_present(ptent))
339 continue;
341 mss->resident += PAGE_SIZE;
343 page = vm_normal_page(vma, addr, ptent);
344 if (!page)
345 continue;
347 /* Accumulate the size in pages that have been accessed. */
348 if (pte_young(ptent) || PageReferenced(page))
349 mss->referenced += PAGE_SIZE;
350 mapcount = page_mapcount(page);
351 if (mapcount >= 2) {
352 if (pte_dirty(ptent))
353 mss->shared_dirty += PAGE_SIZE;
354 else
355 mss->shared_clean += PAGE_SIZE;
356 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
357 } else {
358 if (pte_dirty(ptent))
359 mss->private_dirty += PAGE_SIZE;
360 else
361 mss->private_clean += PAGE_SIZE;
362 mss->pss += (PAGE_SIZE << PSS_SHIFT);
365 pte_unmap_unlock(pte - 1, ptl);
366 cond_resched();
367 return 0;
370 static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range };
372 static int show_smap(struct seq_file *m, void *v)
374 struct vm_area_struct *vma = v;
375 struct mem_size_stats mss;
376 int ret;
378 memset(&mss, 0, sizeof mss);
379 mss.vma = vma;
380 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
381 walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end,
382 &smaps_walk, &mss);
384 ret = show_map(m, v);
385 if (ret)
386 return ret;
388 seq_printf(m,
389 "Size: %8lu kB\n"
390 "Rss: %8lu kB\n"
391 "Pss: %8lu kB\n"
392 "Shared_Clean: %8lu kB\n"
393 "Shared_Dirty: %8lu kB\n"
394 "Private_Clean: %8lu kB\n"
395 "Private_Dirty: %8lu kB\n"
396 "Referenced: %8lu kB\n"
397 "Swap: %8lu kB\n",
398 (vma->vm_end - vma->vm_start) >> 10,
399 mss.resident >> 10,
400 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
401 mss.shared_clean >> 10,
402 mss.shared_dirty >> 10,
403 mss.private_clean >> 10,
404 mss.private_dirty >> 10,
405 mss.referenced >> 10,
406 mss.swap >> 10);
408 return ret;
411 static const struct seq_operations proc_pid_smaps_op = {
412 .start = m_start,
413 .next = m_next,
414 .stop = m_stop,
415 .show = show_smap
418 static int smaps_open(struct inode *inode, struct file *file)
420 return do_maps_open(inode, file, &proc_pid_smaps_op);
423 const struct file_operations proc_smaps_operations = {
424 .open = smaps_open,
425 .read = seq_read,
426 .llseek = seq_lseek,
427 .release = seq_release_private,
430 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
431 unsigned long end, void *private)
433 struct vm_area_struct *vma = private;
434 pte_t *pte, ptent;
435 spinlock_t *ptl;
436 struct page *page;
438 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
439 for (; addr != end; pte++, addr += PAGE_SIZE) {
440 ptent = *pte;
441 if (!pte_present(ptent))
442 continue;
444 page = vm_normal_page(vma, addr, ptent);
445 if (!page)
446 continue;
448 /* Clear accessed and referenced bits. */
449 ptep_test_and_clear_young(vma, addr, pte);
450 ClearPageReferenced(page);
452 pte_unmap_unlock(pte - 1, ptl);
453 cond_resched();
454 return 0;
457 static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range };
459 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
460 size_t count, loff_t *ppos)
462 struct task_struct *task;
463 char buffer[PROC_NUMBUF], *end;
464 struct mm_struct *mm;
465 struct vm_area_struct *vma;
467 memset(buffer, 0, sizeof(buffer));
468 if (count > sizeof(buffer) - 1)
469 count = sizeof(buffer) - 1;
470 if (copy_from_user(buffer, buf, count))
471 return -EFAULT;
472 if (!simple_strtol(buffer, &end, 0))
473 return -EINVAL;
474 if (*end == '\n')
475 end++;
476 task = get_proc_task(file->f_path.dentry->d_inode);
477 if (!task)
478 return -ESRCH;
479 mm = get_task_mm(task);
480 if (mm) {
481 down_read(&mm->mmap_sem);
482 for (vma = mm->mmap; vma; vma = vma->vm_next)
483 if (!is_vm_hugetlb_page(vma))
484 walk_page_range(mm, vma->vm_start, vma->vm_end,
485 &clear_refs_walk, vma);
486 flush_tlb_mm(mm);
487 up_read(&mm->mmap_sem);
488 mmput(mm);
490 put_task_struct(task);
491 if (end - buffer == 0)
492 return -EIO;
493 return end - buffer;
496 const struct file_operations proc_clear_refs_operations = {
497 .write = clear_refs_write,
500 struct pagemapread {
501 char __user *out, *end;
504 #define PM_ENTRY_BYTES sizeof(u64)
505 #define PM_STATUS_BITS 3
506 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
507 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
508 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
509 #define PM_PSHIFT_BITS 6
510 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
511 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
512 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
513 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
514 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
516 #define PM_PRESENT PM_STATUS(4LL)
517 #define PM_SWAP PM_STATUS(2LL)
518 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
519 #define PM_END_OF_BUFFER 1
521 static int add_to_pagemap(unsigned long addr, u64 pfn,
522 struct pagemapread *pm)
525 * Make sure there's room in the buffer for an
526 * entire entry. Otherwise, only copy part of
527 * the pfn.
529 if (pm->out + PM_ENTRY_BYTES >= pm->end) {
530 if (copy_to_user(pm->out, &pfn, pm->end - pm->out))
531 return -EFAULT;
532 pm->out = pm->end;
533 return PM_END_OF_BUFFER;
536 if (put_user(pfn, pm->out))
537 return -EFAULT;
538 pm->out += PM_ENTRY_BYTES;
539 return 0;
542 static int pagemap_pte_hole(unsigned long start, unsigned long end,
543 void *private)
545 struct pagemapread *pm = private;
546 unsigned long addr;
547 int err = 0;
548 for (addr = start; addr < end; addr += PAGE_SIZE) {
549 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
550 if (err)
551 break;
553 return err;
556 static u64 swap_pte_to_pagemap_entry(pte_t pte)
558 swp_entry_t e = pte_to_swp_entry(pte);
559 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
562 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
563 void *private)
565 struct pagemapread *pm = private;
566 pte_t *pte;
567 int err = 0;
569 for (; addr != end; addr += PAGE_SIZE) {
570 u64 pfn = PM_NOT_PRESENT;
571 pte = pte_offset_map(pmd, addr);
572 if (is_swap_pte(*pte))
573 pfn = PM_PFRAME(swap_pte_to_pagemap_entry(*pte))
574 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
575 else if (pte_present(*pte))
576 pfn = PM_PFRAME(pte_pfn(*pte))
577 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
578 /* unmap so we're not in atomic when we copy to userspace */
579 pte_unmap(pte);
580 err = add_to_pagemap(addr, pfn, pm);
581 if (err)
582 return err;
585 cond_resched();
587 return err;
590 static struct mm_walk pagemap_walk = {
591 .pmd_entry = pagemap_pte_range,
592 .pte_hole = pagemap_pte_hole
596 * /proc/pid/pagemap - an array mapping virtual pages to pfns
598 * For each page in the address space, this file contains one 64-bit entry
599 * consisting of the following:
601 * Bits 0-55 page frame number (PFN) if present
602 * Bits 0-4 swap type if swapped
603 * Bits 5-55 swap offset if swapped
604 * Bits 55-60 page shift (page size = 1<<page shift)
605 * Bit 61 reserved for future use
606 * Bit 62 page swapped
607 * Bit 63 page present
609 * If the page is not present but in swap, then the PFN contains an
610 * encoding of the swap file number and the page's offset into the
611 * swap. Unmapped pages return a null PFN. This allows determining
612 * precisely which pages are mapped (or in swap) and comparing mapped
613 * pages between processes.
615 * Efficient users of this interface will use /proc/pid/maps to
616 * determine which areas of memory are actually mapped and llseek to
617 * skip over unmapped regions.
619 static ssize_t pagemap_read(struct file *file, char __user *buf,
620 size_t count, loff_t *ppos)
622 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
623 struct page **pages, *page;
624 unsigned long uaddr, uend;
625 struct mm_struct *mm;
626 struct pagemapread pm;
627 int pagecount;
628 int ret = -ESRCH;
630 if (!task)
631 goto out;
633 ret = -EACCES;
634 if (!ptrace_may_attach(task))
635 goto out_task;
637 ret = -EINVAL;
638 /* file position must be aligned */
639 if (*ppos % PM_ENTRY_BYTES)
640 goto out_task;
642 ret = 0;
643 mm = get_task_mm(task);
644 if (!mm)
645 goto out_task;
647 ret = -ENOMEM;
648 uaddr = (unsigned long)buf & PAGE_MASK;
649 uend = (unsigned long)(buf + count);
650 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
651 pages = kmalloc(pagecount * sizeof(struct page *), GFP_KERNEL);
652 if (!pages)
653 goto out_mm;
655 down_read(&current->mm->mmap_sem);
656 ret = get_user_pages(current, current->mm, uaddr, pagecount,
657 1, 0, pages, NULL);
658 up_read(&current->mm->mmap_sem);
660 if (ret < 0)
661 goto out_free;
663 if (ret != pagecount) {
664 pagecount = ret;
665 ret = -EFAULT;
666 goto out_pages;
669 pm.out = buf;
670 pm.end = buf + count;
672 if (!ptrace_may_attach(task)) {
673 ret = -EIO;
674 } else {
675 unsigned long src = *ppos;
676 unsigned long svpfn = src / PM_ENTRY_BYTES;
677 unsigned long start_vaddr = svpfn << PAGE_SHIFT;
678 unsigned long end_vaddr = TASK_SIZE_OF(task);
680 /* watch out for wraparound */
681 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
682 start_vaddr = end_vaddr;
685 * The odds are that this will stop walking way
686 * before end_vaddr, because the length of the
687 * user buffer is tracked in "pm", and the walk
688 * will stop when we hit the end of the buffer.
690 ret = walk_page_range(mm, start_vaddr, end_vaddr,
691 &pagemap_walk, &pm);
692 if (ret == PM_END_OF_BUFFER)
693 ret = 0;
694 /* don't need mmap_sem for these, but this looks cleaner */
695 *ppos += pm.out - buf;
696 if (!ret)
697 ret = pm.out - buf;
700 out_pages:
701 for (; pagecount; pagecount--) {
702 page = pages[pagecount-1];
703 if (!PageReserved(page))
704 SetPageDirty(page);
705 page_cache_release(page);
707 out_free:
708 kfree(pages);
709 out_mm:
710 mmput(mm);
711 out_task:
712 put_task_struct(task);
713 out:
714 return ret;
717 const struct file_operations proc_pagemap_operations = {
718 .llseek = mem_lseek, /* borrow this */
719 .read = pagemap_read,
721 #endif /* CONFIG_PROC_PAGE_MONITOR */
723 #ifdef CONFIG_NUMA
724 extern int show_numa_map(struct seq_file *m, void *v);
726 static int show_numa_map_checked(struct seq_file *m, void *v)
728 struct proc_maps_private *priv = m->private;
729 struct task_struct *task = priv->task;
731 if (maps_protect && !ptrace_may_attach(task))
732 return -EACCES;
734 return show_numa_map(m, v);
737 static const struct seq_operations proc_pid_numa_maps_op = {
738 .start = m_start,
739 .next = m_next,
740 .stop = m_stop,
741 .show = show_numa_map_checked
744 static int numa_maps_open(struct inode *inode, struct file *file)
746 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
749 const struct file_operations proc_numa_maps_operations = {
750 .open = numa_maps_open,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = seq_release_private,
755 #endif