USB: xHCI: Isoc urb enqueue
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blobf180db0de66cbc2163ce3dab641b46cb647226d2
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49 do { \
50 printk(KERN_DEBUG format , ## args); \
51 } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
63 * Central wireless core regulatory domains, we only need two,
64 * the current one and a world regulatory domain in case we have no
65 * information to give us an alpha2
67 const struct ieee80211_regdomain *cfg80211_regdomain;
70 * Protects static reg.c components:
71 * - cfg80211_world_regdom
72 * - cfg80211_regdom
73 * - last_request
75 static DEFINE_MUTEX(reg_mutex);
76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
78 /* Used to queue up regulatory hints */
79 static LIST_HEAD(reg_requests_list);
80 static spinlock_t reg_requests_lock;
82 /* Used to queue up beacon hints for review */
83 static LIST_HEAD(reg_pending_beacons);
84 static spinlock_t reg_pending_beacons_lock;
86 /* Used to keep track of processed beacon hints */
87 static LIST_HEAD(reg_beacon_list);
89 struct reg_beacon {
90 struct list_head list;
91 struct ieee80211_channel chan;
94 /* We keep a static world regulatory domain in case of the absence of CRDA */
95 static const struct ieee80211_regdomain world_regdom = {
96 .n_reg_rules = 5,
97 .alpha2 = "00",
98 .reg_rules = {
99 /* IEEE 802.11b/g, channels 1..11 */
100 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101 /* IEEE 802.11b/g, channels 12..13. No HT40
102 * channel fits here. */
103 REG_RULE(2467-10, 2472+10, 20, 6, 20,
104 NL80211_RRF_PASSIVE_SCAN |
105 NL80211_RRF_NO_IBSS),
106 /* IEEE 802.11 channel 14 - Only JP enables
107 * this and for 802.11b only */
108 REG_RULE(2484-10, 2484+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN |
110 NL80211_RRF_NO_IBSS |
111 NL80211_RRF_NO_OFDM),
112 /* IEEE 802.11a, channel 36..48 */
113 REG_RULE(5180-10, 5240+10, 40, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS),
117 /* NB: 5260 MHz - 5700 MHz requies DFS */
119 /* IEEE 802.11a, channel 149..165 */
120 REG_RULE(5745-10, 5825+10, 40, 6, 20,
121 NL80211_RRF_PASSIVE_SCAN |
122 NL80211_RRF_NO_IBSS),
126 static const struct ieee80211_regdomain *cfg80211_world_regdom =
127 &world_regdom;
129 static char *ieee80211_regdom = "00";
130 static char user_alpha2[2];
132 module_param(ieee80211_regdom, charp, 0444);
133 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
135 static void reset_regdomains(void)
137 /* avoid freeing static information or freeing something twice */
138 if (cfg80211_regdomain == cfg80211_world_regdom)
139 cfg80211_regdomain = NULL;
140 if (cfg80211_world_regdom == &world_regdom)
141 cfg80211_world_regdom = NULL;
142 if (cfg80211_regdomain == &world_regdom)
143 cfg80211_regdomain = NULL;
145 kfree(cfg80211_regdomain);
146 kfree(cfg80211_world_regdom);
148 cfg80211_world_regdom = &world_regdom;
149 cfg80211_regdomain = NULL;
153 * Dynamic world regulatory domain requested by the wireless
154 * core upon initialization
156 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
158 BUG_ON(!last_request);
160 reset_regdomains();
162 cfg80211_world_regdom = rd;
163 cfg80211_regdomain = rd;
166 bool is_world_regdom(const char *alpha2)
168 if (!alpha2)
169 return false;
170 if (alpha2[0] == '0' && alpha2[1] == '0')
171 return true;
172 return false;
175 static bool is_alpha2_set(const char *alpha2)
177 if (!alpha2)
178 return false;
179 if (alpha2[0] != 0 && alpha2[1] != 0)
180 return true;
181 return false;
184 static bool is_alpha_upper(char letter)
186 /* ASCII A - Z */
187 if (letter >= 65 && letter <= 90)
188 return true;
189 return false;
192 static bool is_unknown_alpha2(const char *alpha2)
194 if (!alpha2)
195 return false;
197 * Special case where regulatory domain was built by driver
198 * but a specific alpha2 cannot be determined
200 if (alpha2[0] == '9' && alpha2[1] == '9')
201 return true;
202 return false;
205 static bool is_intersected_alpha2(const char *alpha2)
207 if (!alpha2)
208 return false;
210 * Special case where regulatory domain is the
211 * result of an intersection between two regulatory domain
212 * structures
214 if (alpha2[0] == '9' && alpha2[1] == '8')
215 return true;
216 return false;
219 static bool is_an_alpha2(const char *alpha2)
221 if (!alpha2)
222 return false;
223 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
224 return true;
225 return false;
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
230 if (!alpha2_x || !alpha2_y)
231 return false;
232 if (alpha2_x[0] == alpha2_y[0] &&
233 alpha2_x[1] == alpha2_y[1])
234 return true;
235 return false;
238 static bool regdom_changes(const char *alpha2)
240 assert_cfg80211_lock();
242 if (!cfg80211_regdomain)
243 return true;
244 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245 return false;
246 return true;
250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252 * has ever been issued.
254 static bool is_user_regdom_saved(void)
256 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257 return false;
259 /* This would indicate a mistake on the design */
260 if (WARN((!is_world_regdom(user_alpha2) &&
261 !is_an_alpha2(user_alpha2)),
262 "Unexpected user alpha2: %c%c\n",
263 user_alpha2[0],
264 user_alpha2[1]))
265 return false;
267 return true;
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271 const struct ieee80211_regdomain *src_regd)
273 struct ieee80211_regdomain *regd;
274 int size_of_regd = 0;
275 unsigned int i;
277 size_of_regd = sizeof(struct ieee80211_regdomain) +
278 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
280 regd = kzalloc(size_of_regd, GFP_KERNEL);
281 if (!regd)
282 return -ENOMEM;
284 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
286 for (i = 0; i < src_regd->n_reg_rules; i++)
287 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288 sizeof(struct ieee80211_reg_rule));
290 *dst_regd = regd;
291 return 0;
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296 char alpha2[2];
297 struct list_head list;
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
303 static void reg_regdb_search(struct work_struct *work)
305 struct reg_regdb_search_request *request;
306 const struct ieee80211_regdomain *curdom, *regdom;
307 int i, r;
309 mutex_lock(&reg_regdb_search_mutex);
310 while (!list_empty(&reg_regdb_search_list)) {
311 request = list_first_entry(&reg_regdb_search_list,
312 struct reg_regdb_search_request,
313 list);
314 list_del(&request->list);
316 for (i=0; i<reg_regdb_size; i++) {
317 curdom = reg_regdb[i];
319 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320 r = reg_copy_regd(&regdom, curdom);
321 if (r)
322 break;
323 mutex_lock(&cfg80211_mutex);
324 set_regdom(regdom);
325 mutex_unlock(&cfg80211_mutex);
326 break;
330 kfree(request);
332 mutex_unlock(&reg_regdb_search_mutex);
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
337 static void reg_regdb_query(const char *alpha2)
339 struct reg_regdb_search_request *request;
341 if (!alpha2)
342 return;
344 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345 if (!request)
346 return;
348 memcpy(request->alpha2, alpha2, 2);
350 mutex_lock(&reg_regdb_search_mutex);
351 list_add_tail(&request->list, &reg_regdb_search_list);
352 mutex_unlock(&reg_regdb_search_mutex);
354 schedule_work(&reg_regdb_work);
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
361 * This lets us keep regulatory code which is updated on a regulatory
362 * basis in userspace.
364 static int call_crda(const char *alpha2)
366 char country_env[9 + 2] = "COUNTRY=";
367 char *envp[] = {
368 country_env,
369 NULL
372 if (!is_world_regdom((char *) alpha2))
373 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374 alpha2[0], alpha2[1]);
375 else
376 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377 "regulatory domain\n");
379 /* query internal regulatory database (if it exists) */
380 reg_regdb_query(alpha2);
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
391 assert_cfg80211_lock();
393 if (!last_request)
394 return false;
396 return alpha2_equal(last_request->alpha2, alpha2);
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 u32 freq_diff;
405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 return false;
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
415 return false;
417 return true;
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 const struct ieee80211_reg_rule *reg_rule = NULL;
423 unsigned int i;
425 if (!rd->n_reg_rules)
426 return false;
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
437 return true;
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
444 u32 start_freq_khz, end_freq_khz;
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
453 return false;
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
482 * Helper for regdom_intersect(), this does the real
483 * mathematical intersection fun
485 static int reg_rules_intersect(
486 const struct ieee80211_reg_rule *rule1,
487 const struct ieee80211_reg_rule *rule2,
488 struct ieee80211_reg_rule *intersected_rule)
490 const struct ieee80211_freq_range *freq_range1, *freq_range2;
491 struct ieee80211_freq_range *freq_range;
492 const struct ieee80211_power_rule *power_rule1, *power_rule2;
493 struct ieee80211_power_rule *power_rule;
494 u32 freq_diff;
496 freq_range1 = &rule1->freq_range;
497 freq_range2 = &rule2->freq_range;
498 freq_range = &intersected_rule->freq_range;
500 power_rule1 = &rule1->power_rule;
501 power_rule2 = &rule2->power_rule;
502 power_rule = &intersected_rule->power_rule;
504 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505 freq_range2->start_freq_khz);
506 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507 freq_range2->end_freq_khz);
508 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509 freq_range2->max_bandwidth_khz);
511 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512 if (freq_range->max_bandwidth_khz > freq_diff)
513 freq_range->max_bandwidth_khz = freq_diff;
515 power_rule->max_eirp = min(power_rule1->max_eirp,
516 power_rule2->max_eirp);
517 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518 power_rule2->max_antenna_gain);
520 intersected_rule->flags = (rule1->flags | rule2->flags);
522 if (!is_valid_reg_rule(intersected_rule))
523 return -EINVAL;
525 return 0;
529 * regdom_intersect - do the intersection between two regulatory domains
530 * @rd1: first regulatory domain
531 * @rd2: second regulatory domain
533 * Use this function to get the intersection between two regulatory domains.
534 * Once completed we will mark the alpha2 for the rd as intersected, "98",
535 * as no one single alpha2 can represent this regulatory domain.
537 * Returns a pointer to the regulatory domain structure which will hold the
538 * resulting intersection of rules between rd1 and rd2. We will
539 * kzalloc() this structure for you.
541 static struct ieee80211_regdomain *regdom_intersect(
542 const struct ieee80211_regdomain *rd1,
543 const struct ieee80211_regdomain *rd2)
545 int r, size_of_regd;
546 unsigned int x, y;
547 unsigned int num_rules = 0, rule_idx = 0;
548 const struct ieee80211_reg_rule *rule1, *rule2;
549 struct ieee80211_reg_rule *intersected_rule;
550 struct ieee80211_regdomain *rd;
551 /* This is just a dummy holder to help us count */
552 struct ieee80211_reg_rule irule;
554 /* Uses the stack temporarily for counter arithmetic */
555 intersected_rule = &irule;
557 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559 if (!rd1 || !rd2)
560 return NULL;
563 * First we get a count of the rules we'll need, then we actually
564 * build them. This is to so we can malloc() and free() a
565 * regdomain once. The reason we use reg_rules_intersect() here
566 * is it will return -EINVAL if the rule computed makes no sense.
567 * All rules that do check out OK are valid.
570 for (x = 0; x < rd1->n_reg_rules; x++) {
571 rule1 = &rd1->reg_rules[x];
572 for (y = 0; y < rd2->n_reg_rules; y++) {
573 rule2 = &rd2->reg_rules[y];
574 if (!reg_rules_intersect(rule1, rule2,
575 intersected_rule))
576 num_rules++;
577 memset(intersected_rule, 0,
578 sizeof(struct ieee80211_reg_rule));
582 if (!num_rules)
583 return NULL;
585 size_of_regd = sizeof(struct ieee80211_regdomain) +
586 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588 rd = kzalloc(size_of_regd, GFP_KERNEL);
589 if (!rd)
590 return NULL;
592 for (x = 0; x < rd1->n_reg_rules; x++) {
593 rule1 = &rd1->reg_rules[x];
594 for (y = 0; y < rd2->n_reg_rules; y++) {
595 rule2 = &rd2->reg_rules[y];
597 * This time around instead of using the stack lets
598 * write to the target rule directly saving ourselves
599 * a memcpy()
601 intersected_rule = &rd->reg_rules[rule_idx];
602 r = reg_rules_intersect(rule1, rule2,
603 intersected_rule);
605 * No need to memset here the intersected rule here as
606 * we're not using the stack anymore
608 if (r)
609 continue;
610 rule_idx++;
614 if (rule_idx != num_rules) {
615 kfree(rd);
616 return NULL;
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = '9';
621 rd->alpha2[1] = '8';
623 return rd;
627 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628 * want to just have the channel structure use these
630 static u32 map_regdom_flags(u32 rd_flags)
632 u32 channel_flags = 0;
633 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
634 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
635 if (rd_flags & NL80211_RRF_NO_IBSS)
636 channel_flags |= IEEE80211_CHAN_NO_IBSS;
637 if (rd_flags & NL80211_RRF_DFS)
638 channel_flags |= IEEE80211_CHAN_RADAR;
639 return channel_flags;
642 static int freq_reg_info_regd(struct wiphy *wiphy,
643 u32 center_freq,
644 u32 desired_bw_khz,
645 const struct ieee80211_reg_rule **reg_rule,
646 const struct ieee80211_regdomain *custom_regd)
648 int i;
649 bool band_rule_found = false;
650 const struct ieee80211_regdomain *regd;
651 bool bw_fits = false;
653 if (!desired_bw_khz)
654 desired_bw_khz = MHZ_TO_KHZ(20);
656 regd = custom_regd ? custom_regd : cfg80211_regdomain;
659 * Follow the driver's regulatory domain, if present, unless a country
660 * IE has been processed or a user wants to help complaince further
662 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 wiphy->regd)
665 regd = wiphy->regd;
667 if (!regd)
668 return -EINVAL;
670 for (i = 0; i < regd->n_reg_rules; i++) {
671 const struct ieee80211_reg_rule *rr;
672 const struct ieee80211_freq_range *fr = NULL;
673 const struct ieee80211_power_rule *pr = NULL;
675 rr = &regd->reg_rules[i];
676 fr = &rr->freq_range;
677 pr = &rr->power_rule;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
697 if (!band_rule_found)
698 return -ERANGE;
700 return -EINVAL;
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
715 EXPORT_SYMBOL(freq_reg_info);
718 * Note that right now we assume the desired channel bandwidth
719 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
720 * per channel, the primary and the extension channel). To support
721 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
722 * new ieee80211_channel.target_bw and re run the regulatory check
723 * on the wiphy with the target_bw specified. Then we can simply use
724 * that below for the desired_bw_khz below.
726 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
727 unsigned int chan_idx)
729 int r;
730 u32 flags, bw_flags = 0;
731 u32 desired_bw_khz = MHZ_TO_KHZ(20);
732 const struct ieee80211_reg_rule *reg_rule = NULL;
733 const struct ieee80211_power_rule *power_rule = NULL;
734 const struct ieee80211_freq_range *freq_range = NULL;
735 struct ieee80211_supported_band *sband;
736 struct ieee80211_channel *chan;
737 struct wiphy *request_wiphy = NULL;
739 assert_cfg80211_lock();
741 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
743 sband = wiphy->bands[band];
744 BUG_ON(chan_idx >= sband->n_channels);
745 chan = &sband->channels[chan_idx];
747 flags = chan->orig_flags;
749 r = freq_reg_info(wiphy,
750 MHZ_TO_KHZ(chan->center_freq),
751 desired_bw_khz,
752 &reg_rule);
754 if (r)
755 return;
757 power_rule = &reg_rule->power_rule;
758 freq_range = &reg_rule->freq_range;
760 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
761 bw_flags = IEEE80211_CHAN_NO_HT40;
763 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
764 request_wiphy && request_wiphy == wiphy &&
765 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
767 * This gaurantees the driver's requested regulatory domain
768 * will always be used as a base for further regulatory
769 * settings
771 chan->flags = chan->orig_flags =
772 map_regdom_flags(reg_rule->flags) | bw_flags;
773 chan->max_antenna_gain = chan->orig_mag =
774 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
775 chan->max_power = chan->orig_mpwr =
776 (int) MBM_TO_DBM(power_rule->max_eirp);
777 return;
780 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
781 chan->max_antenna_gain = min(chan->orig_mag,
782 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
783 if (chan->orig_mpwr)
784 chan->max_power = min(chan->orig_mpwr,
785 (int) MBM_TO_DBM(power_rule->max_eirp));
786 else
787 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
790 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
792 unsigned int i;
793 struct ieee80211_supported_band *sband;
795 BUG_ON(!wiphy->bands[band]);
796 sband = wiphy->bands[band];
798 for (i = 0; i < sband->n_channels; i++)
799 handle_channel(wiphy, band, i);
802 static bool ignore_reg_update(struct wiphy *wiphy,
803 enum nl80211_reg_initiator initiator)
805 if (!last_request)
806 return true;
807 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
808 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
809 return true;
811 * wiphy->regd will be set once the device has its own
812 * desired regulatory domain set
814 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
815 !is_world_regdom(last_request->alpha2))
816 return true;
817 return false;
820 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
822 struct cfg80211_registered_device *rdev;
824 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
825 wiphy_update_regulatory(&rdev->wiphy, initiator);
828 static void handle_reg_beacon(struct wiphy *wiphy,
829 unsigned int chan_idx,
830 struct reg_beacon *reg_beacon)
832 struct ieee80211_supported_band *sband;
833 struct ieee80211_channel *chan;
834 bool channel_changed = false;
835 struct ieee80211_channel chan_before;
837 assert_cfg80211_lock();
839 sband = wiphy->bands[reg_beacon->chan.band];
840 chan = &sband->channels[chan_idx];
842 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
843 return;
845 if (chan->beacon_found)
846 return;
848 chan->beacon_found = true;
850 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
851 return;
853 chan_before.center_freq = chan->center_freq;
854 chan_before.flags = chan->flags;
856 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
857 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
858 channel_changed = true;
861 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
862 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
863 channel_changed = true;
866 if (channel_changed)
867 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
871 * Called when a scan on a wiphy finds a beacon on
872 * new channel
874 static void wiphy_update_new_beacon(struct wiphy *wiphy,
875 struct reg_beacon *reg_beacon)
877 unsigned int i;
878 struct ieee80211_supported_band *sband;
880 assert_cfg80211_lock();
882 if (!wiphy->bands[reg_beacon->chan.band])
883 return;
885 sband = wiphy->bands[reg_beacon->chan.band];
887 for (i = 0; i < sband->n_channels; i++)
888 handle_reg_beacon(wiphy, i, reg_beacon);
892 * Called upon reg changes or a new wiphy is added
894 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
896 unsigned int i;
897 struct ieee80211_supported_band *sband;
898 struct reg_beacon *reg_beacon;
900 assert_cfg80211_lock();
902 if (list_empty(&reg_beacon_list))
903 return;
905 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
906 if (!wiphy->bands[reg_beacon->chan.band])
907 continue;
908 sband = wiphy->bands[reg_beacon->chan.band];
909 for (i = 0; i < sband->n_channels; i++)
910 handle_reg_beacon(wiphy, i, reg_beacon);
914 static bool reg_is_world_roaming(struct wiphy *wiphy)
916 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
917 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
918 return true;
919 if (last_request &&
920 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
921 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
922 return true;
923 return false;
926 /* Reap the advantages of previously found beacons */
927 static void reg_process_beacons(struct wiphy *wiphy)
930 * Means we are just firing up cfg80211, so no beacons would
931 * have been processed yet.
933 if (!last_request)
934 return;
935 if (!reg_is_world_roaming(wiphy))
936 return;
937 wiphy_update_beacon_reg(wiphy);
940 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
942 if (!chan)
943 return true;
944 if (chan->flags & IEEE80211_CHAN_DISABLED)
945 return true;
946 /* This would happen when regulatory rules disallow HT40 completely */
947 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
948 return true;
949 return false;
952 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
953 enum ieee80211_band band,
954 unsigned int chan_idx)
956 struct ieee80211_supported_band *sband;
957 struct ieee80211_channel *channel;
958 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
959 unsigned int i;
961 assert_cfg80211_lock();
963 sband = wiphy->bands[band];
964 BUG_ON(chan_idx >= sband->n_channels);
965 channel = &sband->channels[chan_idx];
967 if (is_ht40_not_allowed(channel)) {
968 channel->flags |= IEEE80211_CHAN_NO_HT40;
969 return;
973 * We need to ensure the extension channels exist to
974 * be able to use HT40- or HT40+, this finds them (or not)
976 for (i = 0; i < sband->n_channels; i++) {
977 struct ieee80211_channel *c = &sband->channels[i];
978 if (c->center_freq == (channel->center_freq - 20))
979 channel_before = c;
980 if (c->center_freq == (channel->center_freq + 20))
981 channel_after = c;
985 * Please note that this assumes target bandwidth is 20 MHz,
986 * if that ever changes we also need to change the below logic
987 * to include that as well.
989 if (is_ht40_not_allowed(channel_before))
990 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
991 else
992 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
994 if (is_ht40_not_allowed(channel_after))
995 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
996 else
997 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1000 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1001 enum ieee80211_band band)
1003 unsigned int i;
1004 struct ieee80211_supported_band *sband;
1006 BUG_ON(!wiphy->bands[band]);
1007 sband = wiphy->bands[band];
1009 for (i = 0; i < sband->n_channels; i++)
1010 reg_process_ht_flags_channel(wiphy, band, i);
1013 static void reg_process_ht_flags(struct wiphy *wiphy)
1015 enum ieee80211_band band;
1017 if (!wiphy)
1018 return;
1020 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1021 if (wiphy->bands[band])
1022 reg_process_ht_flags_band(wiphy, band);
1027 void wiphy_update_regulatory(struct wiphy *wiphy,
1028 enum nl80211_reg_initiator initiator)
1030 enum ieee80211_band band;
1032 if (ignore_reg_update(wiphy, initiator))
1033 goto out;
1034 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1035 if (wiphy->bands[band])
1036 handle_band(wiphy, band);
1038 out:
1039 reg_process_beacons(wiphy);
1040 reg_process_ht_flags(wiphy);
1041 if (wiphy->reg_notifier)
1042 wiphy->reg_notifier(wiphy, last_request);
1045 static void handle_channel_custom(struct wiphy *wiphy,
1046 enum ieee80211_band band,
1047 unsigned int chan_idx,
1048 const struct ieee80211_regdomain *regd)
1050 int r;
1051 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1052 u32 bw_flags = 0;
1053 const struct ieee80211_reg_rule *reg_rule = NULL;
1054 const struct ieee80211_power_rule *power_rule = NULL;
1055 const struct ieee80211_freq_range *freq_range = NULL;
1056 struct ieee80211_supported_band *sband;
1057 struct ieee80211_channel *chan;
1059 assert_reg_lock();
1061 sband = wiphy->bands[band];
1062 BUG_ON(chan_idx >= sband->n_channels);
1063 chan = &sband->channels[chan_idx];
1065 r = freq_reg_info_regd(wiphy,
1066 MHZ_TO_KHZ(chan->center_freq),
1067 desired_bw_khz,
1068 &reg_rule,
1069 regd);
1071 if (r) {
1072 chan->flags = IEEE80211_CHAN_DISABLED;
1073 return;
1076 power_rule = &reg_rule->power_rule;
1077 freq_range = &reg_rule->freq_range;
1079 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1080 bw_flags = IEEE80211_CHAN_NO_HT40;
1082 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1083 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1084 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1087 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1088 const struct ieee80211_regdomain *regd)
1090 unsigned int i;
1091 struct ieee80211_supported_band *sband;
1093 BUG_ON(!wiphy->bands[band]);
1094 sband = wiphy->bands[band];
1096 for (i = 0; i < sband->n_channels; i++)
1097 handle_channel_custom(wiphy, band, i, regd);
1100 /* Used by drivers prior to wiphy registration */
1101 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1102 const struct ieee80211_regdomain *regd)
1104 enum ieee80211_band band;
1105 unsigned int bands_set = 0;
1107 mutex_lock(&reg_mutex);
1108 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1109 if (!wiphy->bands[band])
1110 continue;
1111 handle_band_custom(wiphy, band, regd);
1112 bands_set++;
1114 mutex_unlock(&reg_mutex);
1117 * no point in calling this if it won't have any effect
1118 * on your device's supportd bands.
1120 WARN_ON(!bands_set);
1122 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1125 * Return value which can be used by ignore_request() to indicate
1126 * it has been determined we should intersect two regulatory domains
1128 #define REG_INTERSECT 1
1130 /* This has the logic which determines when a new request
1131 * should be ignored. */
1132 static int ignore_request(struct wiphy *wiphy,
1133 struct regulatory_request *pending_request)
1135 struct wiphy *last_wiphy = NULL;
1137 assert_cfg80211_lock();
1139 /* All initial requests are respected */
1140 if (!last_request)
1141 return 0;
1143 switch (pending_request->initiator) {
1144 case NL80211_REGDOM_SET_BY_CORE:
1145 return 0;
1146 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1148 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1150 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1151 return -EINVAL;
1152 if (last_request->initiator ==
1153 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1154 if (last_wiphy != wiphy) {
1156 * Two cards with two APs claiming different
1157 * Country IE alpha2s. We could
1158 * intersect them, but that seems unlikely
1159 * to be correct. Reject second one for now.
1161 if (regdom_changes(pending_request->alpha2))
1162 return -EOPNOTSUPP;
1163 return -EALREADY;
1166 * Two consecutive Country IE hints on the same wiphy.
1167 * This should be picked up early by the driver/stack
1169 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1170 return 0;
1171 return -EALREADY;
1173 return REG_INTERSECT;
1174 case NL80211_REGDOM_SET_BY_DRIVER:
1175 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1176 if (regdom_changes(pending_request->alpha2))
1177 return 0;
1178 return -EALREADY;
1182 * This would happen if you unplug and plug your card
1183 * back in or if you add a new device for which the previously
1184 * loaded card also agrees on the regulatory domain.
1186 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187 !regdom_changes(pending_request->alpha2))
1188 return -EALREADY;
1190 return REG_INTERSECT;
1191 case NL80211_REGDOM_SET_BY_USER:
1192 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1193 return REG_INTERSECT;
1195 * If the user knows better the user should set the regdom
1196 * to their country before the IE is picked up
1198 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1199 last_request->intersect)
1200 return -EOPNOTSUPP;
1202 * Process user requests only after previous user/driver/core
1203 * requests have been processed
1205 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1206 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1207 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1208 if (regdom_changes(last_request->alpha2))
1209 return -EAGAIN;
1212 if (!regdom_changes(pending_request->alpha2))
1213 return -EALREADY;
1215 return 0;
1218 return -EINVAL;
1222 * __regulatory_hint - hint to the wireless core a regulatory domain
1223 * @wiphy: if the hint comes from country information from an AP, this
1224 * is required to be set to the wiphy that received the information
1225 * @pending_request: the regulatory request currently being processed
1227 * The Wireless subsystem can use this function to hint to the wireless core
1228 * what it believes should be the current regulatory domain.
1230 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1231 * already been set or other standard error codes.
1233 * Caller must hold &cfg80211_mutex and &reg_mutex
1235 static int __regulatory_hint(struct wiphy *wiphy,
1236 struct regulatory_request *pending_request)
1238 bool intersect = false;
1239 int r = 0;
1241 assert_cfg80211_lock();
1243 r = ignore_request(wiphy, pending_request);
1245 if (r == REG_INTERSECT) {
1246 if (pending_request->initiator ==
1247 NL80211_REGDOM_SET_BY_DRIVER) {
1248 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1249 if (r) {
1250 kfree(pending_request);
1251 return r;
1254 intersect = true;
1255 } else if (r) {
1257 * If the regulatory domain being requested by the
1258 * driver has already been set just copy it to the
1259 * wiphy
1261 if (r == -EALREADY &&
1262 pending_request->initiator ==
1263 NL80211_REGDOM_SET_BY_DRIVER) {
1264 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1265 if (r) {
1266 kfree(pending_request);
1267 return r;
1269 r = -EALREADY;
1270 goto new_request;
1272 kfree(pending_request);
1273 return r;
1276 new_request:
1277 kfree(last_request);
1279 last_request = pending_request;
1280 last_request->intersect = intersect;
1282 pending_request = NULL;
1284 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1285 user_alpha2[0] = last_request->alpha2[0];
1286 user_alpha2[1] = last_request->alpha2[1];
1289 /* When r == REG_INTERSECT we do need to call CRDA */
1290 if (r < 0) {
1292 * Since CRDA will not be called in this case as we already
1293 * have applied the requested regulatory domain before we just
1294 * inform userspace we have processed the request
1296 if (r == -EALREADY)
1297 nl80211_send_reg_change_event(last_request);
1298 return r;
1301 return call_crda(last_request->alpha2);
1304 /* This processes *all* regulatory hints */
1305 static void reg_process_hint(struct regulatory_request *reg_request)
1307 int r = 0;
1308 struct wiphy *wiphy = NULL;
1309 enum nl80211_reg_initiator initiator = reg_request->initiator;
1311 BUG_ON(!reg_request->alpha2);
1313 mutex_lock(&cfg80211_mutex);
1314 mutex_lock(&reg_mutex);
1316 if (wiphy_idx_valid(reg_request->wiphy_idx))
1317 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1319 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1320 !wiphy) {
1321 kfree(reg_request);
1322 goto out;
1325 r = __regulatory_hint(wiphy, reg_request);
1326 /* This is required so that the orig_* parameters are saved */
1327 if (r == -EALREADY && wiphy &&
1328 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1329 wiphy_update_regulatory(wiphy, initiator);
1330 out:
1331 mutex_unlock(&reg_mutex);
1332 mutex_unlock(&cfg80211_mutex);
1335 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1336 static void reg_process_pending_hints(void)
1338 struct regulatory_request *reg_request;
1340 spin_lock(&reg_requests_lock);
1341 while (!list_empty(&reg_requests_list)) {
1342 reg_request = list_first_entry(&reg_requests_list,
1343 struct regulatory_request,
1344 list);
1345 list_del_init(&reg_request->list);
1347 spin_unlock(&reg_requests_lock);
1348 reg_process_hint(reg_request);
1349 spin_lock(&reg_requests_lock);
1351 spin_unlock(&reg_requests_lock);
1354 /* Processes beacon hints -- this has nothing to do with country IEs */
1355 static void reg_process_pending_beacon_hints(void)
1357 struct cfg80211_registered_device *rdev;
1358 struct reg_beacon *pending_beacon, *tmp;
1361 * No need to hold the reg_mutex here as we just touch wiphys
1362 * and do not read or access regulatory variables.
1364 mutex_lock(&cfg80211_mutex);
1366 /* This goes through the _pending_ beacon list */
1367 spin_lock_bh(&reg_pending_beacons_lock);
1369 if (list_empty(&reg_pending_beacons)) {
1370 spin_unlock_bh(&reg_pending_beacons_lock);
1371 goto out;
1374 list_for_each_entry_safe(pending_beacon, tmp,
1375 &reg_pending_beacons, list) {
1377 list_del_init(&pending_beacon->list);
1379 /* Applies the beacon hint to current wiphys */
1380 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1381 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1383 /* Remembers the beacon hint for new wiphys or reg changes */
1384 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1387 spin_unlock_bh(&reg_pending_beacons_lock);
1388 out:
1389 mutex_unlock(&cfg80211_mutex);
1392 static void reg_todo(struct work_struct *work)
1394 reg_process_pending_hints();
1395 reg_process_pending_beacon_hints();
1398 static DECLARE_WORK(reg_work, reg_todo);
1400 static void queue_regulatory_request(struct regulatory_request *request)
1402 spin_lock(&reg_requests_lock);
1403 list_add_tail(&request->list, &reg_requests_list);
1404 spin_unlock(&reg_requests_lock);
1406 schedule_work(&reg_work);
1410 * Core regulatory hint -- happens during cfg80211_init()
1411 * and when we restore regulatory settings.
1413 static int regulatory_hint_core(const char *alpha2)
1415 struct regulatory_request *request;
1417 kfree(last_request);
1418 last_request = NULL;
1420 request = kzalloc(sizeof(struct regulatory_request),
1421 GFP_KERNEL);
1422 if (!request)
1423 return -ENOMEM;
1425 request->alpha2[0] = alpha2[0];
1426 request->alpha2[1] = alpha2[1];
1427 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1430 * This ensures last_request is populated once modules
1431 * come swinging in and calling regulatory hints and
1432 * wiphy_apply_custom_regulatory().
1434 reg_process_hint(request);
1436 return 0;
1439 /* User hints */
1440 int regulatory_hint_user(const char *alpha2)
1442 struct regulatory_request *request;
1444 BUG_ON(!alpha2);
1446 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1447 if (!request)
1448 return -ENOMEM;
1450 request->wiphy_idx = WIPHY_IDX_STALE;
1451 request->alpha2[0] = alpha2[0];
1452 request->alpha2[1] = alpha2[1];
1453 request->initiator = NL80211_REGDOM_SET_BY_USER;
1455 queue_regulatory_request(request);
1457 return 0;
1460 /* Driver hints */
1461 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1463 struct regulatory_request *request;
1465 BUG_ON(!alpha2);
1466 BUG_ON(!wiphy);
1468 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1469 if (!request)
1470 return -ENOMEM;
1472 request->wiphy_idx = get_wiphy_idx(wiphy);
1474 /* Must have registered wiphy first */
1475 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1477 request->alpha2[0] = alpha2[0];
1478 request->alpha2[1] = alpha2[1];
1479 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1481 queue_regulatory_request(request);
1483 return 0;
1485 EXPORT_SYMBOL(regulatory_hint);
1488 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1489 * therefore cannot iterate over the rdev list here.
1491 void regulatory_hint_11d(struct wiphy *wiphy,
1492 enum ieee80211_band band,
1493 u8 *country_ie,
1494 u8 country_ie_len)
1496 char alpha2[2];
1497 enum environment_cap env = ENVIRON_ANY;
1498 struct regulatory_request *request;
1500 mutex_lock(&reg_mutex);
1502 if (unlikely(!last_request))
1503 goto out;
1505 /* IE len must be evenly divisible by 2 */
1506 if (country_ie_len & 0x01)
1507 goto out;
1509 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1510 goto out;
1512 alpha2[0] = country_ie[0];
1513 alpha2[1] = country_ie[1];
1515 if (country_ie[2] == 'I')
1516 env = ENVIRON_INDOOR;
1517 else if (country_ie[2] == 'O')
1518 env = ENVIRON_OUTDOOR;
1521 * We will run this only upon a successful connection on cfg80211.
1522 * We leave conflict resolution to the workqueue, where can hold
1523 * cfg80211_mutex.
1525 if (likely(last_request->initiator ==
1526 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1527 wiphy_idx_valid(last_request->wiphy_idx)))
1528 goto out;
1530 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1531 if (!request)
1532 goto out;
1534 request->wiphy_idx = get_wiphy_idx(wiphy);
1535 request->alpha2[0] = alpha2[0];
1536 request->alpha2[1] = alpha2[1];
1537 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1538 request->country_ie_env = env;
1540 mutex_unlock(&reg_mutex);
1542 queue_regulatory_request(request);
1544 return;
1546 out:
1547 mutex_unlock(&reg_mutex);
1550 static void restore_alpha2(char *alpha2, bool reset_user)
1552 /* indicates there is no alpha2 to consider for restoration */
1553 alpha2[0] = '9';
1554 alpha2[1] = '7';
1556 /* The user setting has precedence over the module parameter */
1557 if (is_user_regdom_saved()) {
1558 /* Unless we're asked to ignore it and reset it */
1559 if (reset_user) {
1560 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1561 "including user preference\n");
1562 user_alpha2[0] = '9';
1563 user_alpha2[1] = '7';
1566 * If we're ignoring user settings, we still need to
1567 * check the module parameter to ensure we put things
1568 * back as they were for a full restore.
1570 if (!is_world_regdom(ieee80211_regdom)) {
1571 REG_DBG_PRINT("cfg80211: Keeping preference on "
1572 "module parameter ieee80211_regdom: %c%c\n",
1573 ieee80211_regdom[0],
1574 ieee80211_regdom[1]);
1575 alpha2[0] = ieee80211_regdom[0];
1576 alpha2[1] = ieee80211_regdom[1];
1578 } else {
1579 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1580 "while preserving user preference for: %c%c\n",
1581 user_alpha2[0],
1582 user_alpha2[1]);
1583 alpha2[0] = user_alpha2[0];
1584 alpha2[1] = user_alpha2[1];
1586 } else if (!is_world_regdom(ieee80211_regdom)) {
1587 REG_DBG_PRINT("cfg80211: Keeping preference on "
1588 "module parameter ieee80211_regdom: %c%c\n",
1589 ieee80211_regdom[0],
1590 ieee80211_regdom[1]);
1591 alpha2[0] = ieee80211_regdom[0];
1592 alpha2[1] = ieee80211_regdom[1];
1593 } else
1594 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1598 * Restoring regulatory settings involves ingoring any
1599 * possibly stale country IE information and user regulatory
1600 * settings if so desired, this includes any beacon hints
1601 * learned as we could have traveled outside to another country
1602 * after disconnection. To restore regulatory settings we do
1603 * exactly what we did at bootup:
1605 * - send a core regulatory hint
1606 * - send a user regulatory hint if applicable
1608 * Device drivers that send a regulatory hint for a specific country
1609 * keep their own regulatory domain on wiphy->regd so that does does
1610 * not need to be remembered.
1612 static void restore_regulatory_settings(bool reset_user)
1614 char alpha2[2];
1615 struct reg_beacon *reg_beacon, *btmp;
1617 mutex_lock(&cfg80211_mutex);
1618 mutex_lock(&reg_mutex);
1620 reset_regdomains();
1621 restore_alpha2(alpha2, reset_user);
1623 /* Clear beacon hints */
1624 spin_lock_bh(&reg_pending_beacons_lock);
1625 if (!list_empty(&reg_pending_beacons)) {
1626 list_for_each_entry_safe(reg_beacon, btmp,
1627 &reg_pending_beacons, list) {
1628 list_del(&reg_beacon->list);
1629 kfree(reg_beacon);
1632 spin_unlock_bh(&reg_pending_beacons_lock);
1634 if (!list_empty(&reg_beacon_list)) {
1635 list_for_each_entry_safe(reg_beacon, btmp,
1636 &reg_beacon_list, list) {
1637 list_del(&reg_beacon->list);
1638 kfree(reg_beacon);
1642 /* First restore to the basic regulatory settings */
1643 cfg80211_regdomain = cfg80211_world_regdom;
1645 mutex_unlock(&reg_mutex);
1646 mutex_unlock(&cfg80211_mutex);
1648 regulatory_hint_core(cfg80211_regdomain->alpha2);
1651 * This restores the ieee80211_regdom module parameter
1652 * preference or the last user requested regulatory
1653 * settings, user regulatory settings takes precedence.
1655 if (is_an_alpha2(alpha2))
1656 regulatory_hint_user(user_alpha2);
1660 void regulatory_hint_disconnect(void)
1662 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1663 "restore regulatory settings\n");
1664 restore_regulatory_settings(false);
1667 static bool freq_is_chan_12_13_14(u16 freq)
1669 if (freq == ieee80211_channel_to_frequency(12) ||
1670 freq == ieee80211_channel_to_frequency(13) ||
1671 freq == ieee80211_channel_to_frequency(14))
1672 return true;
1673 return false;
1676 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1677 struct ieee80211_channel *beacon_chan,
1678 gfp_t gfp)
1680 struct reg_beacon *reg_beacon;
1682 if (likely((beacon_chan->beacon_found ||
1683 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1684 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1685 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1686 return 0;
1688 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1689 if (!reg_beacon)
1690 return -ENOMEM;
1692 REG_DBG_PRINT("cfg80211: Found new beacon on "
1693 "frequency: %d MHz (Ch %d) on %s\n",
1694 beacon_chan->center_freq,
1695 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1696 wiphy_name(wiphy));
1698 memcpy(&reg_beacon->chan, beacon_chan,
1699 sizeof(struct ieee80211_channel));
1703 * Since we can be called from BH or and non-BH context
1704 * we must use spin_lock_bh()
1706 spin_lock_bh(&reg_pending_beacons_lock);
1707 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1708 spin_unlock_bh(&reg_pending_beacons_lock);
1710 schedule_work(&reg_work);
1712 return 0;
1715 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1717 unsigned int i;
1718 const struct ieee80211_reg_rule *reg_rule = NULL;
1719 const struct ieee80211_freq_range *freq_range = NULL;
1720 const struct ieee80211_power_rule *power_rule = NULL;
1722 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
1723 "(max_antenna_gain, max_eirp)\n");
1725 for (i = 0; i < rd->n_reg_rules; i++) {
1726 reg_rule = &rd->reg_rules[i];
1727 freq_range = &reg_rule->freq_range;
1728 power_rule = &reg_rule->power_rule;
1731 * There may not be documentation for max antenna gain
1732 * in certain regions
1734 if (power_rule->max_antenna_gain)
1735 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1736 "(%d mBi, %d mBm)\n",
1737 freq_range->start_freq_khz,
1738 freq_range->end_freq_khz,
1739 freq_range->max_bandwidth_khz,
1740 power_rule->max_antenna_gain,
1741 power_rule->max_eirp);
1742 else
1743 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1744 "(N/A, %d mBm)\n",
1745 freq_range->start_freq_khz,
1746 freq_range->end_freq_khz,
1747 freq_range->max_bandwidth_khz,
1748 power_rule->max_eirp);
1752 static void print_regdomain(const struct ieee80211_regdomain *rd)
1755 if (is_intersected_alpha2(rd->alpha2)) {
1757 if (last_request->initiator ==
1758 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1759 struct cfg80211_registered_device *rdev;
1760 rdev = cfg80211_rdev_by_wiphy_idx(
1761 last_request->wiphy_idx);
1762 if (rdev) {
1763 printk(KERN_INFO "cfg80211: Current regulatory "
1764 "domain updated by AP to: %c%c\n",
1765 rdev->country_ie_alpha2[0],
1766 rdev->country_ie_alpha2[1]);
1767 } else
1768 printk(KERN_INFO "cfg80211: Current regulatory "
1769 "domain intersected:\n");
1770 } else
1771 printk(KERN_INFO "cfg80211: Current regulatory "
1772 "domain intersected:\n");
1773 } else if (is_world_regdom(rd->alpha2))
1774 printk(KERN_INFO "cfg80211: World regulatory "
1775 "domain updated:\n");
1776 else {
1777 if (is_unknown_alpha2(rd->alpha2))
1778 printk(KERN_INFO "cfg80211: Regulatory domain "
1779 "changed to driver built-in settings "
1780 "(unknown country)\n");
1781 else
1782 printk(KERN_INFO "cfg80211: Regulatory domain "
1783 "changed to country: %c%c\n",
1784 rd->alpha2[0], rd->alpha2[1]);
1786 print_rd_rules(rd);
1789 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1791 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1792 rd->alpha2[0], rd->alpha2[1]);
1793 print_rd_rules(rd);
1796 /* Takes ownership of rd only if it doesn't fail */
1797 static int __set_regdom(const struct ieee80211_regdomain *rd)
1799 const struct ieee80211_regdomain *intersected_rd = NULL;
1800 struct cfg80211_registered_device *rdev = NULL;
1801 struct wiphy *request_wiphy;
1802 /* Some basic sanity checks first */
1804 if (is_world_regdom(rd->alpha2)) {
1805 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1806 return -EINVAL;
1807 update_world_regdomain(rd);
1808 return 0;
1811 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1812 !is_unknown_alpha2(rd->alpha2))
1813 return -EINVAL;
1815 if (!last_request)
1816 return -EINVAL;
1819 * Lets only bother proceeding on the same alpha2 if the current
1820 * rd is non static (it means CRDA was present and was used last)
1821 * and the pending request came in from a country IE
1823 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1825 * If someone else asked us to change the rd lets only bother
1826 * checking if the alpha2 changes if CRDA was already called
1828 if (!regdom_changes(rd->alpha2))
1829 return -EINVAL;
1833 * Now lets set the regulatory domain, update all driver channels
1834 * and finally inform them of what we have done, in case they want
1835 * to review or adjust their own settings based on their own
1836 * internal EEPROM data
1839 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1840 return -EINVAL;
1842 if (!is_valid_rd(rd)) {
1843 printk(KERN_ERR "cfg80211: Invalid "
1844 "regulatory domain detected:\n");
1845 print_regdomain_info(rd);
1846 return -EINVAL;
1849 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1851 if (!last_request->intersect) {
1852 int r;
1854 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1855 reset_regdomains();
1856 cfg80211_regdomain = rd;
1857 return 0;
1861 * For a driver hint, lets copy the regulatory domain the
1862 * driver wanted to the wiphy to deal with conflicts
1866 * Userspace could have sent two replies with only
1867 * one kernel request.
1869 if (request_wiphy->regd)
1870 return -EALREADY;
1872 r = reg_copy_regd(&request_wiphy->regd, rd);
1873 if (r)
1874 return r;
1876 reset_regdomains();
1877 cfg80211_regdomain = rd;
1878 return 0;
1881 /* Intersection requires a bit more work */
1883 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1885 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1886 if (!intersected_rd)
1887 return -EINVAL;
1890 * We can trash what CRDA provided now.
1891 * However if a driver requested this specific regulatory
1892 * domain we keep it for its private use
1894 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1895 request_wiphy->regd = rd;
1896 else
1897 kfree(rd);
1899 rd = NULL;
1901 reset_regdomains();
1902 cfg80211_regdomain = intersected_rd;
1904 return 0;
1907 if (!intersected_rd)
1908 return -EINVAL;
1910 rdev = wiphy_to_dev(request_wiphy);
1912 rdev->country_ie_alpha2[0] = rd->alpha2[0];
1913 rdev->country_ie_alpha2[1] = rd->alpha2[1];
1914 rdev->env = last_request->country_ie_env;
1916 BUG_ON(intersected_rd == rd);
1918 kfree(rd);
1919 rd = NULL;
1921 reset_regdomains();
1922 cfg80211_regdomain = intersected_rd;
1924 return 0;
1929 * Use this call to set the current regulatory domain. Conflicts with
1930 * multiple drivers can be ironed out later. Caller must've already
1931 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1933 int set_regdom(const struct ieee80211_regdomain *rd)
1935 int r;
1937 assert_cfg80211_lock();
1939 mutex_lock(&reg_mutex);
1941 /* Note that this doesn't update the wiphys, this is done below */
1942 r = __set_regdom(rd);
1943 if (r) {
1944 kfree(rd);
1945 mutex_unlock(&reg_mutex);
1946 return r;
1949 /* This would make this whole thing pointless */
1950 if (!last_request->intersect)
1951 BUG_ON(rd != cfg80211_regdomain);
1953 /* update all wiphys now with the new established regulatory domain */
1954 update_all_wiphy_regulatory(last_request->initiator);
1956 print_regdomain(cfg80211_regdomain);
1958 nl80211_send_reg_change_event(last_request);
1960 mutex_unlock(&reg_mutex);
1962 return r;
1965 /* Caller must hold cfg80211_mutex */
1966 void reg_device_remove(struct wiphy *wiphy)
1968 struct wiphy *request_wiphy = NULL;
1970 assert_cfg80211_lock();
1972 mutex_lock(&reg_mutex);
1974 kfree(wiphy->regd);
1976 if (last_request)
1977 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1979 if (!request_wiphy || request_wiphy != wiphy)
1980 goto out;
1982 last_request->wiphy_idx = WIPHY_IDX_STALE;
1983 last_request->country_ie_env = ENVIRON_ANY;
1984 out:
1985 mutex_unlock(&reg_mutex);
1988 int __init regulatory_init(void)
1990 int err = 0;
1992 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1993 if (IS_ERR(reg_pdev))
1994 return PTR_ERR(reg_pdev);
1996 spin_lock_init(&reg_requests_lock);
1997 spin_lock_init(&reg_pending_beacons_lock);
1999 cfg80211_regdomain = cfg80211_world_regdom;
2001 user_alpha2[0] = '9';
2002 user_alpha2[1] = '7';
2004 /* We always try to get an update for the static regdomain */
2005 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2006 if (err) {
2007 if (err == -ENOMEM)
2008 return err;
2010 * N.B. kobject_uevent_env() can fail mainly for when we're out
2011 * memory which is handled and propagated appropriately above
2012 * but it can also fail during a netlink_broadcast() or during
2013 * early boot for call_usermodehelper(). For now treat these
2014 * errors as non-fatal.
2016 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2017 "to call CRDA during init");
2018 #ifdef CONFIG_CFG80211_REG_DEBUG
2019 /* We want to find out exactly why when debugging */
2020 WARN_ON(err);
2021 #endif
2025 * Finally, if the user set the module parameter treat it
2026 * as a user hint.
2028 if (!is_world_regdom(ieee80211_regdom))
2029 regulatory_hint_user(ieee80211_regdom);
2031 return 0;
2034 void /* __init_or_exit */ regulatory_exit(void)
2036 struct regulatory_request *reg_request, *tmp;
2037 struct reg_beacon *reg_beacon, *btmp;
2039 cancel_work_sync(&reg_work);
2041 mutex_lock(&cfg80211_mutex);
2042 mutex_lock(&reg_mutex);
2044 reset_regdomains();
2046 kfree(last_request);
2048 platform_device_unregister(reg_pdev);
2050 spin_lock_bh(&reg_pending_beacons_lock);
2051 if (!list_empty(&reg_pending_beacons)) {
2052 list_for_each_entry_safe(reg_beacon, btmp,
2053 &reg_pending_beacons, list) {
2054 list_del(&reg_beacon->list);
2055 kfree(reg_beacon);
2058 spin_unlock_bh(&reg_pending_beacons_lock);
2060 if (!list_empty(&reg_beacon_list)) {
2061 list_for_each_entry_safe(reg_beacon, btmp,
2062 &reg_beacon_list, list) {
2063 list_del(&reg_beacon->list);
2064 kfree(reg_beacon);
2068 spin_lock(&reg_requests_lock);
2069 if (!list_empty(&reg_requests_list)) {
2070 list_for_each_entry_safe(reg_request, tmp,
2071 &reg_requests_list, list) {
2072 list_del(&reg_request->list);
2073 kfree(reg_request);
2076 spin_unlock(&reg_requests_lock);
2078 mutex_unlock(&reg_mutex);
2079 mutex_unlock(&cfg80211_mutex);