2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
40 struct pipe_buffer
*buf
)
42 struct page
*page
= buf
->page
;
43 struct address_space
*mapping
;
47 mapping
= page_mapping(page
);
49 WARN_ON(!PageUptodate(page
));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
59 wait_on_page_writeback(page
);
61 if (PagePrivate(page
) && !try_to_release_page(page
, GFP_KERNEL
))
65 * If we succeeded in removing the mapping, set LRU flag
68 if (remove_mapping(mapping
, page
)) {
69 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
83 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
86 page_cache_release(buf
->page
);
87 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
91 * Check whether the contents of buf is OK to access. Since the content
92 * is a page cache page, IO may be in flight.
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
95 struct pipe_buffer
*buf
)
97 struct page
*page
= buf
->page
;
100 if (!PageUptodate(page
)) {
104 * Page got truncated/unhashed. This will cause a 0-byte
105 * splice, if this is the first page.
107 if (!page
->mapping
) {
113 * Uh oh, read-error from disk.
115 if (!PageUptodate(page
)) {
121 * Page is ok afterall, we are done.
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
134 .map
= generic_pipe_buf_map
,
135 .unmap
= generic_pipe_buf_unmap
,
136 .confirm
= page_cache_pipe_buf_confirm
,
137 .release
= page_cache_pipe_buf_release
,
138 .steal
= page_cache_pipe_buf_steal
,
139 .get
= generic_pipe_buf_get
,
142 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
143 struct pipe_buffer
*buf
)
145 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
148 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
149 return generic_pipe_buf_steal(pipe
, buf
);
152 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
154 .map
= generic_pipe_buf_map
,
155 .unmap
= generic_pipe_buf_unmap
,
156 .confirm
= generic_pipe_buf_confirm
,
157 .release
= page_cache_pipe_buf_release
,
158 .steal
= user_page_pipe_buf_steal
,
159 .get
= generic_pipe_buf_get
,
163 * splice_to_pipe - fill passed data into a pipe
164 * @pipe: pipe to fill
168 * @spd contains a map of pages and len/offset tuples, along with
169 * the struct pipe_buf_operations associated with these pages. This
170 * function will link that data to the pipe.
173 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
174 struct splice_pipe_desc
*spd
)
176 unsigned int spd_pages
= spd
->nr_pages
;
177 int ret
, do_wakeup
, page_nr
;
184 mutex_lock(&pipe
->inode
->i_mutex
);
187 if (!pipe
->readers
) {
188 send_sig(SIGPIPE
, current
, 0);
194 if (pipe
->nrbufs
< PIPE_BUFFERS
) {
195 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
196 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
198 buf
->page
= spd
->pages
[page_nr
];
199 buf
->offset
= spd
->partial
[page_nr
].offset
;
200 buf
->len
= spd
->partial
[page_nr
].len
;
201 buf
->private = spd
->partial
[page_nr
].private;
203 if (spd
->flags
& SPLICE_F_GIFT
)
204 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
213 if (!--spd
->nr_pages
)
215 if (pipe
->nrbufs
< PIPE_BUFFERS
)
221 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
227 if (signal_pending(current
)) {
235 if (waitqueue_active(&pipe
->wait
))
236 wake_up_interruptible_sync(&pipe
->wait
);
237 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
241 pipe
->waiting_writers
++;
243 pipe
->waiting_writers
--;
247 mutex_unlock(&pipe
->inode
->i_mutex
);
251 if (waitqueue_active(&pipe
->wait
))
252 wake_up_interruptible(&pipe
->wait
);
253 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
257 while (page_nr
< spd_pages
)
258 spd
->spd_release(spd
, page_nr
++);
263 static void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
265 page_cache_release(spd
->pages
[i
]);
269 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
270 struct pipe_inode_info
*pipe
, size_t len
,
273 struct address_space
*mapping
= in
->f_mapping
;
274 unsigned int loff
, nr_pages
, req_pages
;
275 struct page
*pages
[PIPE_BUFFERS
];
276 struct partial_page partial
[PIPE_BUFFERS
];
278 pgoff_t index
, end_index
;
281 struct splice_pipe_desc spd
= {
285 .ops
= &page_cache_pipe_buf_ops
,
286 .spd_release
= spd_release_page
,
289 index
= *ppos
>> PAGE_CACHE_SHIFT
;
290 loff
= *ppos
& ~PAGE_CACHE_MASK
;
291 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
292 nr_pages
= min(req_pages
, (unsigned)PIPE_BUFFERS
);
295 * Lookup the (hopefully) full range of pages we need.
297 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, pages
);
298 index
+= spd
.nr_pages
;
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * readahead/allocate the rest and fill in the holes.
304 if (spd
.nr_pages
< nr_pages
)
305 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
306 index
, req_pages
- spd
.nr_pages
);
309 while (spd
.nr_pages
< nr_pages
) {
311 * Page could be there, find_get_pages_contig() breaks on
314 page
= find_get_page(mapping
, index
);
317 * page didn't exist, allocate one.
319 page
= page_cache_alloc_cold(mapping
);
323 error
= add_to_page_cache_lru(page
, mapping
, index
,
324 mapping_gfp_mask(mapping
));
325 if (unlikely(error
)) {
326 page_cache_release(page
);
327 if (error
== -EEXIST
)
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
338 pages
[spd
.nr_pages
++] = page
;
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
346 index
= *ppos
>> PAGE_CACHE_SHIFT
;
347 nr_pages
= spd
.nr_pages
;
349 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
350 unsigned int this_len
;
356 * this_len is the max we'll use from this page
358 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
359 page
= pages
[page_nr
];
361 if (PageReadahead(page
))
362 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
363 page
, index
, req_pages
- page_nr
);
366 * If the page isn't uptodate, we may need to start io on it
368 if (!PageUptodate(page
)) {
370 * If in nonblock mode then dont block on waiting
371 * for an in-flight io page
373 if (flags
& SPLICE_F_NONBLOCK
) {
374 if (TestSetPageLocked(page
)) {
382 * Page was truncated, or invalidated by the
383 * filesystem. Redo the find/create, but this time the
384 * page is kept locked, so there's no chance of another
385 * race with truncate/invalidate.
387 if (!page
->mapping
) {
389 page
= find_or_create_page(mapping
, index
,
390 mapping_gfp_mask(mapping
));
396 page_cache_release(pages
[page_nr
]);
397 pages
[page_nr
] = page
;
400 * page was already under io and is now done, great
402 if (PageUptodate(page
)) {
408 * need to read in the page
410 error
= mapping
->a_ops
->readpage(in
, page
);
411 if (unlikely(error
)) {
413 * We really should re-lookup the page here,
414 * but it complicates things a lot. Instead
415 * lets just do what we already stored, and
416 * we'll get it the next time we are called.
418 if (error
== AOP_TRUNCATED_PAGE
)
426 * i_size must be checked after PageUptodate.
428 isize
= i_size_read(mapping
->host
);
429 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
430 if (unlikely(!isize
|| index
> end_index
))
434 * if this is the last page, see if we need to shrink
435 * the length and stop
437 if (end_index
== index
) {
441 * max good bytes in this page
443 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
448 * force quit after adding this page
450 this_len
= min(this_len
, plen
- loff
);
454 partial
[page_nr
].offset
= loff
;
455 partial
[page_nr
].len
= this_len
;
463 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 * we got, 'nr_pages' is how many pages are in the map.
466 while (page_nr
< nr_pages
)
467 page_cache_release(pages
[page_nr
++]);
468 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
471 return splice_to_pipe(pipe
, &spd
);
477 * generic_file_splice_read - splice data from file to a pipe
478 * @in: file to splice from
479 * @ppos: position in @in
480 * @pipe: pipe to splice to
481 * @len: number of bytes to splice
482 * @flags: splice modifier flags
485 * Will read pages from given file and fill them into a pipe. Can be
486 * used as long as the address_space operations for the source implements
490 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
491 struct pipe_inode_info
*pipe
, size_t len
,
497 isize
= i_size_read(in
->f_mapping
->host
);
498 if (unlikely(*ppos
>= isize
))
501 left
= isize
- *ppos
;
502 if (unlikely(left
< len
))
505 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
512 EXPORT_SYMBOL(generic_file_splice_read
);
515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516 * using sendpage(). Return the number of bytes sent.
518 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
519 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
521 struct file
*file
= sd
->u
.file
;
522 loff_t pos
= sd
->pos
;
525 ret
= buf
->ops
->confirm(pipe
, buf
);
527 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
529 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
530 sd
->len
, &pos
, more
);
537 * This is a little more tricky than the file -> pipe splicing. There are
538 * basically three cases:
540 * - Destination page already exists in the address space and there
541 * are users of it. For that case we have no other option that
542 * copying the data. Tough luck.
543 * - Destination page already exists in the address space, but there
544 * are no users of it. Make sure it's uptodate, then drop it. Fall
545 * through to last case.
546 * - Destination page does not exist, we can add the pipe page to
547 * the page cache and avoid the copy.
549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550 * sd->flags), we attempt to migrate pages from the pipe to the output
551 * file address space page cache. This is possible if no one else has
552 * the pipe page referenced outside of the pipe and page cache. If
553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554 * a new page in the output file page cache and fill/dirty that.
556 static int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
557 struct splice_desc
*sd
)
559 struct file
*file
= sd
->u
.file
;
560 struct address_space
*mapping
= file
->f_mapping
;
561 unsigned int offset
, this_len
;
567 * make sure the data in this buffer is uptodate
569 ret
= buf
->ops
->confirm(pipe
, buf
);
573 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
576 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
577 this_len
= PAGE_CACHE_SIZE
- offset
;
579 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
580 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
584 if (buf
->page
!= page
) {
586 * Careful, ->map() uses KM_USER0!
588 char *src
= buf
->ops
->map(pipe
, buf
, 1);
589 char *dst
= kmap_atomic(page
, KM_USER1
);
591 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
592 flush_dcache_page(page
);
593 kunmap_atomic(dst
, KM_USER1
);
594 buf
->ops
->unmap(pipe
, buf
, src
);
596 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
603 * __splice_from_pipe - splice data from a pipe to given actor
604 * @pipe: pipe to splice from
605 * @sd: information to @actor
606 * @actor: handler that splices the data
609 * This function does little more than loop over the pipe and call
610 * @actor to do the actual moving of a single struct pipe_buffer to
611 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
615 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
618 int ret
, do_wakeup
, err
;
625 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
626 const struct pipe_buf_operations
*ops
= buf
->ops
;
629 if (sd
->len
> sd
->total_len
)
630 sd
->len
= sd
->total_len
;
632 err
= actor(pipe
, buf
, sd
);
634 if (!ret
&& err
!= -ENODATA
)
646 sd
->total_len
-= err
;
652 ops
->release(pipe
, buf
);
653 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (PIPE_BUFFERS
- 1);
667 if (!pipe
->waiting_writers
) {
672 if (sd
->flags
& SPLICE_F_NONBLOCK
) {
678 if (signal_pending(current
)) {
686 if (waitqueue_active(&pipe
->wait
))
687 wake_up_interruptible_sync(&pipe
->wait
);
688 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
697 if (waitqueue_active(&pipe
->wait
))
698 wake_up_interruptible(&pipe
->wait
);
699 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
704 EXPORT_SYMBOL(__splice_from_pipe
);
707 * splice_from_pipe - splice data from a pipe to a file
708 * @pipe: pipe to splice from
709 * @out: file to splice to
710 * @ppos: position in @out
711 * @len: how many bytes to splice
712 * @flags: splice modifier flags
713 * @actor: handler that splices the data
716 * See __splice_from_pipe. This function locks the input and output inodes,
717 * otherwise it's identical to __splice_from_pipe().
720 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
721 loff_t
*ppos
, size_t len
, unsigned int flags
,
725 struct inode
*inode
= out
->f_mapping
->host
;
726 struct splice_desc sd
= {
734 * The actor worker might be calling ->prepare_write and
735 * ->commit_write. Most of the time, these expect i_mutex to
736 * be held. Since this may result in an ABBA deadlock with
737 * pipe->inode, we have to order lock acquiry here.
739 inode_double_lock(inode
, pipe
->inode
);
740 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
741 inode_double_unlock(inode
, pipe
->inode
);
747 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
749 * @out: file to write to
750 * @ppos: position in @out
751 * @len: number of bytes to splice
752 * @flags: splice modifier flags
755 * Will either move or copy pages (determined by @flags options) from
756 * the given pipe inode to the given file. The caller is responsible
757 * for acquiring i_mutex on both inodes.
761 generic_file_splice_write_nolock(struct pipe_inode_info
*pipe
, struct file
*out
,
762 loff_t
*ppos
, size_t len
, unsigned int flags
)
764 struct address_space
*mapping
= out
->f_mapping
;
765 struct inode
*inode
= mapping
->host
;
766 struct splice_desc sd
= {
775 err
= file_remove_suid(out
);
779 ret
= __splice_from_pipe(pipe
, &sd
, pipe_to_file
);
781 unsigned long nr_pages
;
784 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
787 * If file or inode is SYNC and we actually wrote some data,
790 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
791 err
= generic_osync_inode(inode
, mapping
,
792 OSYNC_METADATA
|OSYNC_DATA
);
797 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
803 EXPORT_SYMBOL(generic_file_splice_write_nolock
);
806 * generic_file_splice_write - splice data from a pipe to a file
808 * @out: file to write to
809 * @ppos: position in @out
810 * @len: number of bytes to splice
811 * @flags: splice modifier flags
814 * Will either move or copy pages (determined by @flags options) from
815 * the given pipe inode to the given file.
819 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
820 loff_t
*ppos
, size_t len
, unsigned int flags
)
822 struct address_space
*mapping
= out
->f_mapping
;
823 struct inode
*inode
= mapping
->host
;
824 struct splice_desc sd
= {
832 inode_double_lock(inode
, pipe
->inode
);
833 ret
= file_remove_suid(out
);
835 ret
= __splice_from_pipe(pipe
, &sd
, pipe_to_file
);
836 inode_double_unlock(inode
, pipe
->inode
);
838 unsigned long nr_pages
;
841 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
844 * If file or inode is SYNC and we actually wrote some data,
847 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
850 mutex_lock(&inode
->i_mutex
);
851 err
= generic_osync_inode(inode
, mapping
,
852 OSYNC_METADATA
|OSYNC_DATA
);
853 mutex_unlock(&inode
->i_mutex
);
858 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
864 EXPORT_SYMBOL(generic_file_splice_write
);
867 * generic_splice_sendpage - splice data from a pipe to a socket
868 * @pipe: pipe to splice from
869 * @out: socket to write to
870 * @ppos: position in @out
871 * @len: number of bytes to splice
872 * @flags: splice modifier flags
875 * Will send @len bytes from the pipe to a network socket. No data copying
879 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
880 loff_t
*ppos
, size_t len
, unsigned int flags
)
882 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
885 EXPORT_SYMBOL(generic_splice_sendpage
);
888 * Attempt to initiate a splice from pipe to file.
890 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
891 loff_t
*ppos
, size_t len
, unsigned int flags
)
895 if (unlikely(!out
->f_op
|| !out
->f_op
->splice_write
))
898 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
901 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
902 if (unlikely(ret
< 0))
905 return out
->f_op
->splice_write(pipe
, out
, ppos
, len
, flags
);
909 * Attempt to initiate a splice from a file to a pipe.
911 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
912 struct pipe_inode_info
*pipe
, size_t len
,
917 if (unlikely(!in
->f_op
|| !in
->f_op
->splice_read
))
920 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
923 ret
= rw_verify_area(READ
, in
, ppos
, len
);
924 if (unlikely(ret
< 0))
927 return in
->f_op
->splice_read(in
, ppos
, pipe
, len
, flags
);
931 * splice_direct_to_actor - splices data directly between two non-pipes
932 * @in: file to splice from
933 * @sd: actor information on where to splice to
934 * @actor: handles the data splicing
937 * This is a special case helper to splice directly between two
938 * points, without requiring an explicit pipe. Internally an allocated
939 * pipe is cached in the process, and reused during the lifetime of
943 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
944 splice_direct_actor
*actor
)
946 struct pipe_inode_info
*pipe
;
953 * We require the input being a regular file, as we don't want to
954 * randomly drop data for eg socket -> socket splicing. Use the
955 * piped splicing for that!
957 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
958 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
962 * neither in nor out is a pipe, setup an internal pipe attached to
963 * 'out' and transfer the wanted data from 'in' to 'out' through that
965 pipe
= current
->splice_pipe
;
966 if (unlikely(!pipe
)) {
967 pipe
= alloc_pipe_info(NULL
);
972 * We don't have an immediate reader, but we'll read the stuff
973 * out of the pipe right after the splice_to_pipe(). So set
974 * PIPE_READERS appropriately.
978 current
->splice_pipe
= pipe
;
990 * Don't block on output, we have to drain the direct pipe.
992 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
996 loff_t pos
= sd
->pos
, prev_pos
= pos
;
998 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
999 if (unlikely(ret
<= 0))
1003 sd
->total_len
= read_len
;
1006 * NOTE: nonblocking mode only applies to the input. We
1007 * must not do the output in nonblocking mode as then we
1008 * could get stuck data in the internal pipe:
1010 ret
= actor(pipe
, sd
);
1011 if (unlikely(ret
<= 0)) {
1020 if (ret
< read_len
) {
1021 sd
->pos
= prev_pos
+ ret
;
1027 pipe
->nrbufs
= pipe
->curbuf
= 0;
1033 * If we did an incomplete transfer we must release
1034 * the pipe buffers in question:
1036 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
1037 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1040 buf
->ops
->release(pipe
, buf
);
1050 EXPORT_SYMBOL(splice_direct_to_actor
);
1052 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1053 struct splice_desc
*sd
)
1055 struct file
*file
= sd
->u
.file
;
1057 return do_splice_from(pipe
, file
, &sd
->pos
, sd
->total_len
, sd
->flags
);
1061 * do_splice_direct - splices data directly between two files
1062 * @in: file to splice from
1063 * @ppos: input file offset
1064 * @out: file to splice to
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1069 * For use by do_sendfile(). splice can easily emulate sendfile, but
1070 * doing it in the application would incur an extra system call
1071 * (splice in + splice out, as compared to just sendfile()). So this helper
1072 * can splice directly through a process-private pipe.
1075 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1076 size_t len
, unsigned int flags
)
1078 struct splice_desc sd
= {
1087 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1095 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1096 * location, so checking ->i_pipe is not enough to verify that this is a
1099 static inline struct pipe_inode_info
*pipe_info(struct inode
*inode
)
1101 if (S_ISFIFO(inode
->i_mode
))
1102 return inode
->i_pipe
;
1108 * Determine where to splice to/from.
1110 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1111 struct file
*out
, loff_t __user
*off_out
,
1112 size_t len
, unsigned int flags
)
1114 struct pipe_inode_info
*pipe
;
1115 loff_t offset
, *off
;
1118 pipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1123 if (out
->f_op
->llseek
== no_llseek
)
1125 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1131 ret
= do_splice_from(pipe
, out
, off
, len
, flags
);
1133 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1139 pipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1144 if (in
->f_op
->llseek
== no_llseek
)
1146 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1152 ret
= do_splice_to(in
, off
, pipe
, len
, flags
);
1154 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1164 * Map an iov into an array of pages and offset/length tupples. With the
1165 * partial_page structure, we can map several non-contiguous ranges into
1166 * our ones pages[] map instead of splitting that operation into pieces.
1167 * Could easily be exported as a generic helper for other users, in which
1168 * case one would probably want to add a 'max_nr_pages' parameter as well.
1170 static int get_iovec_page_array(const struct iovec __user
*iov
,
1171 unsigned int nr_vecs
, struct page
**pages
,
1172 struct partial_page
*partial
, int aligned
)
1174 int buffers
= 0, error
= 0;
1177 unsigned long off
, npages
;
1184 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1187 base
= entry
.iov_base
;
1188 len
= entry
.iov_len
;
1191 * Sanity check this iovec. 0 read succeeds.
1197 if (!access_ok(VERIFY_READ
, base
, len
))
1201 * Get this base offset and number of pages, then map
1202 * in the user pages.
1204 off
= (unsigned long) base
& ~PAGE_MASK
;
1207 * If asked for alignment, the offset must be zero and the
1208 * length a multiple of the PAGE_SIZE.
1211 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1214 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1215 if (npages
> PIPE_BUFFERS
- buffers
)
1216 npages
= PIPE_BUFFERS
- buffers
;
1218 error
= get_user_pages_fast((unsigned long)base
, npages
,
1219 0, &pages
[buffers
]);
1221 if (unlikely(error
<= 0))
1225 * Fill this contiguous range into the partial page map.
1227 for (i
= 0; i
< error
; i
++) {
1228 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1230 partial
[buffers
].offset
= off
;
1231 partial
[buffers
].len
= plen
;
1239 * We didn't complete this iov, stop here since it probably
1240 * means we have to move some of this into a pipe to
1241 * be able to continue.
1247 * Don't continue if we mapped fewer pages than we asked for,
1248 * or if we mapped the max number of pages that we have
1251 if (error
< npages
|| buffers
== PIPE_BUFFERS
)
1264 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1265 struct splice_desc
*sd
)
1270 ret
= buf
->ops
->confirm(pipe
, buf
);
1275 * See if we can use the atomic maps, by prefaulting in the
1276 * pages and doing an atomic copy
1278 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1279 src
= buf
->ops
->map(pipe
, buf
, 1);
1280 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1282 buf
->ops
->unmap(pipe
, buf
, src
);
1290 * No dice, use slow non-atomic map and copy
1292 src
= buf
->ops
->map(pipe
, buf
, 0);
1295 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1298 buf
->ops
->unmap(pipe
, buf
, src
);
1301 sd
->u
.userptr
+= ret
;
1306 * For lack of a better implementation, implement vmsplice() to userspace
1307 * as a simple copy of the pipes pages to the user iov.
1309 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1310 unsigned long nr_segs
, unsigned int flags
)
1312 struct pipe_inode_info
*pipe
;
1313 struct splice_desc sd
;
1318 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1323 mutex_lock(&pipe
->inode
->i_mutex
);
1331 * Get user address base and length for this iovec.
1333 error
= get_user(base
, &iov
->iov_base
);
1334 if (unlikely(error
))
1336 error
= get_user(len
, &iov
->iov_len
);
1337 if (unlikely(error
))
1341 * Sanity check this iovec. 0 read succeeds.
1345 if (unlikely(!base
)) {
1350 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1358 sd
.u
.userptr
= base
;
1361 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1379 mutex_unlock(&pipe
->inode
->i_mutex
);
1388 * vmsplice splices a user address range into a pipe. It can be thought of
1389 * as splice-from-memory, where the regular splice is splice-from-file (or
1390 * to file). In both cases the output is a pipe, naturally.
1392 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1393 unsigned long nr_segs
, unsigned int flags
)
1395 struct pipe_inode_info
*pipe
;
1396 struct page
*pages
[PIPE_BUFFERS
];
1397 struct partial_page partial
[PIPE_BUFFERS
];
1398 struct splice_pipe_desc spd
= {
1402 .ops
= &user_page_pipe_buf_ops
,
1403 .spd_release
= spd_release_page
,
1406 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1410 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, pages
, partial
,
1411 flags
& SPLICE_F_GIFT
);
1412 if (spd
.nr_pages
<= 0)
1413 return spd
.nr_pages
;
1415 return splice_to_pipe(pipe
, &spd
);
1419 * Note that vmsplice only really supports true splicing _from_ user memory
1420 * to a pipe, not the other way around. Splicing from user memory is a simple
1421 * operation that can be supported without any funky alignment restrictions
1422 * or nasty vm tricks. We simply map in the user memory and fill them into
1423 * a pipe. The reverse isn't quite as easy, though. There are two possible
1424 * solutions for that:
1426 * - memcpy() the data internally, at which point we might as well just
1427 * do a regular read() on the buffer anyway.
1428 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1429 * has restriction limitations on both ends of the pipe).
1431 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1434 asmlinkage
long sys_vmsplice(int fd
, const struct iovec __user
*iov
,
1435 unsigned long nr_segs
, unsigned int flags
)
1441 if (unlikely(nr_segs
> UIO_MAXIOV
))
1443 else if (unlikely(!nr_segs
))
1447 file
= fget_light(fd
, &fput
);
1449 if (file
->f_mode
& FMODE_WRITE
)
1450 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1451 else if (file
->f_mode
& FMODE_READ
)
1452 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1454 fput_light(file
, fput
);
1460 asmlinkage
long sys_splice(int fd_in
, loff_t __user
*off_in
,
1461 int fd_out
, loff_t __user
*off_out
,
1462 size_t len
, unsigned int flags
)
1465 struct file
*in
, *out
;
1466 int fput_in
, fput_out
;
1472 in
= fget_light(fd_in
, &fput_in
);
1474 if (in
->f_mode
& FMODE_READ
) {
1475 out
= fget_light(fd_out
, &fput_out
);
1477 if (out
->f_mode
& FMODE_WRITE
)
1478 error
= do_splice(in
, off_in
,
1481 fput_light(out
, fput_out
);
1485 fput_light(in
, fput_in
);
1492 * Make sure there's data to read. Wait for input if we can, otherwise
1493 * return an appropriate error.
1495 static int link_ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1500 * Check ->nrbufs without the inode lock first. This function
1501 * is speculative anyways, so missing one is ok.
1507 mutex_lock(&pipe
->inode
->i_mutex
);
1509 while (!pipe
->nrbufs
) {
1510 if (signal_pending(current
)) {
1516 if (!pipe
->waiting_writers
) {
1517 if (flags
& SPLICE_F_NONBLOCK
) {
1525 mutex_unlock(&pipe
->inode
->i_mutex
);
1530 * Make sure there's writeable room. Wait for room if we can, otherwise
1531 * return an appropriate error.
1533 static int link_opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1538 * Check ->nrbufs without the inode lock first. This function
1539 * is speculative anyways, so missing one is ok.
1541 if (pipe
->nrbufs
< PIPE_BUFFERS
)
1545 mutex_lock(&pipe
->inode
->i_mutex
);
1547 while (pipe
->nrbufs
>= PIPE_BUFFERS
) {
1548 if (!pipe
->readers
) {
1549 send_sig(SIGPIPE
, current
, 0);
1553 if (flags
& SPLICE_F_NONBLOCK
) {
1557 if (signal_pending(current
)) {
1561 pipe
->waiting_writers
++;
1563 pipe
->waiting_writers
--;
1566 mutex_unlock(&pipe
->inode
->i_mutex
);
1571 * Link contents of ipipe to opipe.
1573 static int link_pipe(struct pipe_inode_info
*ipipe
,
1574 struct pipe_inode_info
*opipe
,
1575 size_t len
, unsigned int flags
)
1577 struct pipe_buffer
*ibuf
, *obuf
;
1578 int ret
= 0, i
= 0, nbuf
;
1581 * Potential ABBA deadlock, work around it by ordering lock
1582 * grabbing by inode address. Otherwise two different processes
1583 * could deadlock (one doing tee from A -> B, the other from B -> A).
1585 inode_double_lock(ipipe
->inode
, opipe
->inode
);
1588 if (!opipe
->readers
) {
1589 send_sig(SIGPIPE
, current
, 0);
1596 * If we have iterated all input buffers or ran out of
1597 * output room, break.
1599 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= PIPE_BUFFERS
)
1602 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (PIPE_BUFFERS
- 1));
1603 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
1606 * Get a reference to this pipe buffer,
1607 * so we can copy the contents over.
1609 ibuf
->ops
->get(ipipe
, ibuf
);
1611 obuf
= opipe
->bufs
+ nbuf
;
1615 * Don't inherit the gift flag, we need to
1616 * prevent multiple steals of this page.
1618 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1620 if (obuf
->len
> len
)
1630 * return EAGAIN if we have the potential of some data in the
1631 * future, otherwise just return 0
1633 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1636 inode_double_unlock(ipipe
->inode
, opipe
->inode
);
1639 * If we put data in the output pipe, wakeup any potential readers.
1643 if (waitqueue_active(&opipe
->wait
))
1644 wake_up_interruptible(&opipe
->wait
);
1645 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1652 * This is a tee(1) implementation that works on pipes. It doesn't copy
1653 * any data, it simply references the 'in' pages on the 'out' pipe.
1654 * The 'flags' used are the SPLICE_F_* variants, currently the only
1655 * applicable one is SPLICE_F_NONBLOCK.
1657 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1660 struct pipe_inode_info
*ipipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1661 struct pipe_inode_info
*opipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1665 * Duplicate the contents of ipipe to opipe without actually
1668 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
1670 * Keep going, unless we encounter an error. The ipipe/opipe
1671 * ordering doesn't really matter.
1673 ret
= link_ipipe_prep(ipipe
, flags
);
1675 ret
= link_opipe_prep(opipe
, flags
);
1677 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
1684 asmlinkage
long sys_tee(int fdin
, int fdout
, size_t len
, unsigned int flags
)
1693 in
= fget_light(fdin
, &fput_in
);
1695 if (in
->f_mode
& FMODE_READ
) {
1697 struct file
*out
= fget_light(fdout
, &fput_out
);
1700 if (out
->f_mode
& FMODE_WRITE
)
1701 error
= do_tee(in
, out
, len
, flags
);
1702 fput_light(out
, fput_out
);
1705 fput_light(in
, fput_in
);