Merge tag 'iommu-updates-v3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / pid.c
blob36aa02ff17d6c9cf67dcf39b0434898c700915ae
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_fs.h>
41 #define pid_hashfn(nr, ns) \
42 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
43 static struct hlist_head *pid_hash;
44 static unsigned int pidhash_shift = 4;
45 struct pid init_struct_pid = INIT_STRUCT_PID;
47 int pid_max = PID_MAX_DEFAULT;
49 #define RESERVED_PIDS 300
51 int pid_max_min = RESERVED_PIDS + 1;
52 int pid_max_max = PID_MAX_LIMIT;
54 #define BITS_PER_PAGE (PAGE_SIZE*8)
55 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
57 static inline int mk_pid(struct pid_namespace *pid_ns,
58 struct pidmap *map, int off)
60 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
63 #define find_next_offset(map, off) \
64 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
67 * PID-map pages start out as NULL, they get allocated upon
68 * first use and are never deallocated. This way a low pid_max
69 * value does not cause lots of bitmaps to be allocated, but
70 * the scheme scales to up to 4 million PIDs, runtime.
72 struct pid_namespace init_pid_ns = {
73 .kref = {
74 .refcount = ATOMIC_INIT(2),
76 .pidmap = {
77 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
79 .last_pid = 0,
80 .level = 0,
81 .child_reaper = &init_task,
82 .user_ns = &init_user_ns,
83 .proc_inum = PROC_PID_INIT_INO,
85 EXPORT_SYMBOL_GPL(init_pid_ns);
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103 static void free_pidmap(struct upid *upid)
105 int nr = upid->nr;
106 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
107 int offset = nr & BITS_PER_PAGE_MASK;
109 clear_bit(offset, map->page);
110 atomic_inc(&map->nr_free);
114 * If we started walking pids at 'base', is 'a' seen before 'b'?
116 static int pid_before(int base, int a, int b)
119 * This is the same as saying
121 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
122 * and that mapping orders 'a' and 'b' with respect to 'base'.
124 return (unsigned)(a - base) < (unsigned)(b - base);
128 * We might be racing with someone else trying to set pid_ns->last_pid
129 * at the pid allocation time (there's also a sysctl for this, but racing
130 * with this one is OK, see comment in kernel/pid_namespace.c about it).
131 * We want the winner to have the "later" value, because if the
132 * "earlier" value prevails, then a pid may get reused immediately.
134 * Since pids rollover, it is not sufficient to just pick the bigger
135 * value. We have to consider where we started counting from.
137 * 'base' is the value of pid_ns->last_pid that we observed when
138 * we started looking for a pid.
140 * 'pid' is the pid that we eventually found.
142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
144 int prev;
145 int last_write = base;
146 do {
147 prev = last_write;
148 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
149 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
152 static int alloc_pidmap(struct pid_namespace *pid_ns)
154 int i, offset, max_scan, pid, last = pid_ns->last_pid;
155 struct pidmap *map;
157 pid = last + 1;
158 if (pid >= pid_max)
159 pid = RESERVED_PIDS;
160 offset = pid & BITS_PER_PAGE_MASK;
161 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
163 * If last_pid points into the middle of the map->page we
164 * want to scan this bitmap block twice, the second time
165 * we start with offset == 0 (or RESERVED_PIDS).
167 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
168 for (i = 0; i <= max_scan; ++i) {
169 if (unlikely(!map->page)) {
170 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
172 * Free the page if someone raced with us
173 * installing it:
175 spin_lock_irq(&pidmap_lock);
176 if (!map->page) {
177 map->page = page;
178 page = NULL;
180 spin_unlock_irq(&pidmap_lock);
181 kfree(page);
182 if (unlikely(!map->page))
183 break;
185 if (likely(atomic_read(&map->nr_free))) {
186 do {
187 if (!test_and_set_bit(offset, map->page)) {
188 atomic_dec(&map->nr_free);
189 set_last_pid(pid_ns, last, pid);
190 return pid;
192 offset = find_next_offset(map, offset);
193 pid = mk_pid(pid_ns, map, offset);
194 } while (offset < BITS_PER_PAGE && pid < pid_max);
196 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
197 ++map;
198 offset = 0;
199 } else {
200 map = &pid_ns->pidmap[0];
201 offset = RESERVED_PIDS;
202 if (unlikely(last == offset))
203 break;
205 pid = mk_pid(pid_ns, map, offset);
207 return -1;
210 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
212 int offset;
213 struct pidmap *map, *end;
215 if (last >= PID_MAX_LIMIT)
216 return -1;
218 offset = (last + 1) & BITS_PER_PAGE_MASK;
219 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
220 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
221 for (; map < end; map++, offset = 0) {
222 if (unlikely(!map->page))
223 continue;
224 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
225 if (offset < BITS_PER_PAGE)
226 return mk_pid(pid_ns, map, offset);
228 return -1;
231 void put_pid(struct pid *pid)
233 struct pid_namespace *ns;
235 if (!pid)
236 return;
238 ns = pid->numbers[pid->level].ns;
239 if ((atomic_read(&pid->count) == 1) ||
240 atomic_dec_and_test(&pid->count)) {
241 kmem_cache_free(ns->pid_cachep, pid);
242 put_pid_ns(ns);
245 EXPORT_SYMBOL_GPL(put_pid);
247 static void delayed_put_pid(struct rcu_head *rhp)
249 struct pid *pid = container_of(rhp, struct pid, rcu);
250 put_pid(pid);
253 void free_pid(struct pid *pid)
255 /* We can be called with write_lock_irq(&tasklist_lock) held */
256 int i;
257 unsigned long flags;
259 spin_lock_irqsave(&pidmap_lock, flags);
260 for (i = 0; i <= pid->level; i++) {
261 struct upid *upid = pid->numbers + i;
262 struct pid_namespace *ns = upid->ns;
263 hlist_del_rcu(&upid->pid_chain);
264 switch(--ns->nr_hashed) {
265 case 1:
266 /* When all that is left in the pid namespace
267 * is the reaper wake up the reaper. The reaper
268 * may be sleeping in zap_pid_ns_processes().
270 wake_up_process(ns->child_reaper);
271 break;
272 case 0:
273 ns->nr_hashed = -1;
274 schedule_work(&ns->proc_work);
275 break;
278 spin_unlock_irqrestore(&pidmap_lock, flags);
280 for (i = 0; i <= pid->level; i++)
281 free_pidmap(pid->numbers + i);
283 call_rcu(&pid->rcu, delayed_put_pid);
286 struct pid *alloc_pid(struct pid_namespace *ns)
288 struct pid *pid;
289 enum pid_type type;
290 int i, nr;
291 struct pid_namespace *tmp;
292 struct upid *upid;
294 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
295 if (!pid)
296 goto out;
298 tmp = ns;
299 pid->level = ns->level;
300 for (i = ns->level; i >= 0; i--) {
301 nr = alloc_pidmap(tmp);
302 if (nr < 0)
303 goto out_free;
305 pid->numbers[i].nr = nr;
306 pid->numbers[i].ns = tmp;
307 tmp = tmp->parent;
310 if (unlikely(is_child_reaper(pid))) {
311 if (pid_ns_prepare_proc(ns))
312 goto out_free;
315 get_pid_ns(ns);
316 atomic_set(&pid->count, 1);
317 for (type = 0; type < PIDTYPE_MAX; ++type)
318 INIT_HLIST_HEAD(&pid->tasks[type]);
320 upid = pid->numbers + ns->level;
321 spin_lock_irq(&pidmap_lock);
322 if (ns->nr_hashed < 0)
323 goto out_unlock;
324 for ( ; upid >= pid->numbers; --upid) {
325 hlist_add_head_rcu(&upid->pid_chain,
326 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
327 upid->ns->nr_hashed++;
329 spin_unlock_irq(&pidmap_lock);
331 out:
332 return pid;
334 out_unlock:
335 spin_unlock(&pidmap_lock);
336 out_free:
337 while (++i <= ns->level)
338 free_pidmap(pid->numbers + i);
340 kmem_cache_free(ns->pid_cachep, pid);
341 pid = NULL;
342 goto out;
345 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
347 struct hlist_node *elem;
348 struct upid *pnr;
350 hlist_for_each_entry_rcu(pnr, elem,
351 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
352 if (pnr->nr == nr && pnr->ns == ns)
353 return container_of(pnr, struct pid,
354 numbers[ns->level]);
356 return NULL;
358 EXPORT_SYMBOL_GPL(find_pid_ns);
360 struct pid *find_vpid(int nr)
362 return find_pid_ns(nr, task_active_pid_ns(current));
364 EXPORT_SYMBOL_GPL(find_vpid);
367 * attach_pid() must be called with the tasklist_lock write-held.
369 void attach_pid(struct task_struct *task, enum pid_type type,
370 struct pid *pid)
372 struct pid_link *link;
374 link = &task->pids[type];
375 link->pid = pid;
376 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
379 static void __change_pid(struct task_struct *task, enum pid_type type,
380 struct pid *new)
382 struct pid_link *link;
383 struct pid *pid;
384 int tmp;
386 link = &task->pids[type];
387 pid = link->pid;
389 hlist_del_rcu(&link->node);
390 link->pid = new;
392 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
393 if (!hlist_empty(&pid->tasks[tmp]))
394 return;
396 free_pid(pid);
399 void detach_pid(struct task_struct *task, enum pid_type type)
401 __change_pid(task, type, NULL);
404 void change_pid(struct task_struct *task, enum pid_type type,
405 struct pid *pid)
407 __change_pid(task, type, pid);
408 attach_pid(task, type, pid);
411 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
412 void transfer_pid(struct task_struct *old, struct task_struct *new,
413 enum pid_type type)
415 new->pids[type].pid = old->pids[type].pid;
416 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
419 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
421 struct task_struct *result = NULL;
422 if (pid) {
423 struct hlist_node *first;
424 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
425 lockdep_tasklist_lock_is_held());
426 if (first)
427 result = hlist_entry(first, struct task_struct, pids[(type)].node);
429 return result;
431 EXPORT_SYMBOL(pid_task);
434 * Must be called under rcu_read_lock().
436 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
438 rcu_lockdep_assert(rcu_read_lock_held(),
439 "find_task_by_pid_ns() needs rcu_read_lock()"
440 " protection");
441 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
444 struct task_struct *find_task_by_vpid(pid_t vnr)
446 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
449 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
451 struct pid *pid;
452 rcu_read_lock();
453 if (type != PIDTYPE_PID)
454 task = task->group_leader;
455 pid = get_pid(task->pids[type].pid);
456 rcu_read_unlock();
457 return pid;
459 EXPORT_SYMBOL_GPL(get_task_pid);
461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
463 struct task_struct *result;
464 rcu_read_lock();
465 result = pid_task(pid, type);
466 if (result)
467 get_task_struct(result);
468 rcu_read_unlock();
469 return result;
471 EXPORT_SYMBOL_GPL(get_pid_task);
473 struct pid *find_get_pid(pid_t nr)
475 struct pid *pid;
477 rcu_read_lock();
478 pid = get_pid(find_vpid(nr));
479 rcu_read_unlock();
481 return pid;
483 EXPORT_SYMBOL_GPL(find_get_pid);
485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
487 struct upid *upid;
488 pid_t nr = 0;
490 if (pid && ns->level <= pid->level) {
491 upid = &pid->numbers[ns->level];
492 if (upid->ns == ns)
493 nr = upid->nr;
495 return nr;
497 EXPORT_SYMBOL_GPL(pid_nr_ns);
499 pid_t pid_vnr(struct pid *pid)
501 return pid_nr_ns(pid, task_active_pid_ns(current));
503 EXPORT_SYMBOL_GPL(pid_vnr);
505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506 struct pid_namespace *ns)
508 pid_t nr = 0;
510 rcu_read_lock();
511 if (!ns)
512 ns = task_active_pid_ns(current);
513 if (likely(pid_alive(task))) {
514 if (type != PIDTYPE_PID)
515 task = task->group_leader;
516 nr = pid_nr_ns(task->pids[type].pid, ns);
518 rcu_read_unlock();
520 return nr;
522 EXPORT_SYMBOL(__task_pid_nr_ns);
524 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
526 return pid_nr_ns(task_tgid(tsk), ns);
528 EXPORT_SYMBOL(task_tgid_nr_ns);
530 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
532 return ns_of_pid(task_pid(tsk));
534 EXPORT_SYMBOL_GPL(task_active_pid_ns);
537 * Used by proc to find the first pid that is greater than or equal to nr.
539 * If there is a pid at nr this function is exactly the same as find_pid_ns.
541 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
543 struct pid *pid;
545 do {
546 pid = find_pid_ns(nr, ns);
547 if (pid)
548 break;
549 nr = next_pidmap(ns, nr);
550 } while (nr > 0);
552 return pid;
556 * The pid hash table is scaled according to the amount of memory in the
557 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
558 * more.
560 void __init pidhash_init(void)
562 unsigned int i, pidhash_size;
564 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
565 HASH_EARLY | HASH_SMALL,
566 &pidhash_shift, NULL,
567 0, 4096);
568 pidhash_size = 1U << pidhash_shift;
570 for (i = 0; i < pidhash_size; i++)
571 INIT_HLIST_HEAD(&pid_hash[i]);
574 void __init pidmap_init(void)
576 /* bump default and minimum pid_max based on number of cpus */
577 pid_max = min(pid_max_max, max_t(int, pid_max,
578 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
579 pid_max_min = max_t(int, pid_max_min,
580 PIDS_PER_CPU_MIN * num_possible_cpus());
581 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
583 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
584 /* Reserve PID 0. We never call free_pidmap(0) */
585 set_bit(0, init_pid_ns.pidmap[0].page);
586 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
587 init_pid_ns.nr_hashed = 1;
589 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
590 SLAB_HWCACHE_ALIGN | SLAB_PANIC);