ath9k: propagate hw initialization errors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
blob2e09204fc8ac385232bd52910b917aea0bcb36c2
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
20 #include "ath9k.h"
21 #include "initvals.h"
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
27 #define ATH9K_CLOCK_RATE_CCK 22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33 enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35 struct ar5416_eeprom_def *pEepData,
36 u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
40 /********************/
41 /* Helper Functions */
42 /********************/
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
46 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
48 if (!ah->curchan) /* should really check for CCK instead */
49 return clks / ATH9K_CLOCK_RATE_CCK;
50 if (conf->channel->band == IEEE80211_BAND_2GHZ)
51 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
58 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
60 if (conf_is_ht40(conf))
61 return ath9k_hw_mac_usec(ah, clks) / 2;
62 else
63 return ath9k_hw_mac_usec(ah, clks);
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
68 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
70 if (!ah->curchan) /* should really check for CCK instead */
71 return usecs *ATH9K_CLOCK_RATE_CCK;
72 if (conf->channel->band == IEEE80211_BAND_2GHZ)
73 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
79 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
81 if (conf_is_ht40(conf))
82 return ath9k_hw_mac_clks(ah, usecs) * 2;
83 else
84 return ath9k_hw_mac_clks(ah, usecs);
88 * Read and write, they both share the same lock. We do this to serialize
89 * reads and writes on Atheros 802.11n PCI devices only. This is required
90 * as the FIFO on these devices can only accept sanely 2 requests. After
91 * that the device goes bananas. Serializing the reads/writes prevents this
92 * from happening.
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
97 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98 unsigned long flags;
99 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100 iowrite32(val, ah->ah_sc->mem + reg_offset);
101 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102 } else
103 iowrite32(val, ah->ah_sc->mem + reg_offset);
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
108 u32 val;
109 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110 unsigned long flags;
111 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112 val = ioread32(ah->ah_sc->mem + reg_offset);
113 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114 } else
115 val = ioread32(ah->ah_sc->mem + reg_offset);
116 return val;
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
121 int i;
123 BUG_ON(timeout < AH_TIME_QUANTUM);
125 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126 if ((REG_READ(ah, reg) & mask) == val)
127 return true;
129 udelay(AH_TIME_QUANTUM);
132 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 timeout, reg, REG_READ(ah, reg), mask, val);
136 return false;
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
141 u32 retval;
142 int i;
144 for (i = 0, retval = 0; i < n; i++) {
145 retval = (retval << 1) | (val & 1);
146 val >>= 1;
148 return retval;
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152 u16 flags, u16 *low,
153 u16 *high)
155 struct ath9k_hw_capabilities *pCap = &ah->caps;
157 if (flags & CHANNEL_5GHZ) {
158 *low = pCap->low_5ghz_chan;
159 *high = pCap->high_5ghz_chan;
160 return true;
162 if ((flags & CHANNEL_2GHZ)) {
163 *low = pCap->low_2ghz_chan;
164 *high = pCap->high_2ghz_chan;
165 return true;
167 return false;
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 const struct ath_rate_table *rates,
172 u32 frameLen, u16 rateix,
173 bool shortPreamble)
175 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 u32 kbps;
178 kbps = rates->info[rateix].ratekbps;
180 if (kbps == 0)
181 return 0;
183 switch (rates->info[rateix].phy) {
184 case WLAN_RC_PHY_CCK:
185 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186 if (shortPreamble && rates->info[rateix].short_preamble)
187 phyTime >>= 1;
188 numBits = frameLen << 3;
189 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190 break;
191 case WLAN_RC_PHY_OFDM:
192 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194 numBits = OFDM_PLCP_BITS + (frameLen << 3);
195 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196 txTime = OFDM_SIFS_TIME_QUARTER
197 + OFDM_PREAMBLE_TIME_QUARTER
198 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199 } else if (ah->curchan &&
200 IS_CHAN_HALF_RATE(ah->curchan)) {
201 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202 numBits = OFDM_PLCP_BITS + (frameLen << 3);
203 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204 txTime = OFDM_SIFS_TIME_HALF +
205 OFDM_PREAMBLE_TIME_HALF
206 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207 } else {
208 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209 numBits = OFDM_PLCP_BITS + (frameLen << 3);
210 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212 + (numSymbols * OFDM_SYMBOL_TIME);
214 break;
215 default:
216 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217 "Unknown phy %u (rate ix %u)\n",
218 rates->info[rateix].phy, rateix);
219 txTime = 0;
220 break;
223 return txTime;
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227 struct ath9k_channel *chan,
228 struct chan_centers *centers)
230 int8_t extoff;
232 if (!IS_CHAN_HT40(chan)) {
233 centers->ctl_center = centers->ext_center =
234 centers->synth_center = chan->channel;
235 return;
238 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240 centers->synth_center =
241 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242 extoff = 1;
243 } else {
244 centers->synth_center =
245 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246 extoff = -1;
249 centers->ctl_center =
250 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 centers->ext_center =
252 centers->synth_center + (extoff *
253 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254 HT40_CHANNEL_CENTER_SHIFT : 15));
257 /******************/
258 /* Chip Revisions */
259 /******************/
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
263 u32 val;
265 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
267 if (val == 0xFF) {
268 val = REG_READ(ah, AR_SREV);
269 ah->hw_version.macVersion =
270 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273 } else {
274 if (!AR_SREV_9100(ah))
275 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
277 ah->hw_version.macRev = val & AR_SREV_REVISION;
279 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280 ah->is_pciexpress = true;
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
286 u32 val;
287 int i;
289 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
291 for (i = 0; i < 8; i++)
292 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
296 return ath9k_hw_reverse_bits(val, 8);
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
305 if (AR_SREV_9100(ah))
306 return;
308 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
318 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
323 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324 u32 regHold[2];
325 u32 patternData[4] = { 0x55555555,
326 0xaaaaaaaa,
327 0x66666666,
328 0x99999999 };
329 int i, j;
331 for (i = 0; i < 2; i++) {
332 u32 addr = regAddr[i];
333 u32 wrData, rdData;
335 regHold[i] = REG_READ(ah, addr);
336 for (j = 0; j < 0x100; j++) {
337 wrData = (j << 16) | j;
338 REG_WRITE(ah, addr, wrData);
339 rdData = REG_READ(ah, addr);
340 if (rdData != wrData) {
341 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342 "address test failed "
343 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344 addr, wrData, rdData);
345 return false;
348 for (j = 0; j < 4; j++) {
349 wrData = patternData[j];
350 REG_WRITE(ah, addr, wrData);
351 rdData = REG_READ(ah, addr);
352 if (wrData != rdData) {
353 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354 "address test failed "
355 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356 addr, wrData, rdData);
357 return false;
360 REG_WRITE(ah, regAddr[i], regHold[i]);
362 udelay(100);
364 return true;
367 static const char *ath9k_hw_devname(u16 devid)
369 switch (devid) {
370 case AR5416_DEVID_PCI:
371 return "Atheros 5416";
372 case AR5416_DEVID_PCIE:
373 return "Atheros 5418";
374 case AR9160_DEVID_PCI:
375 return "Atheros 9160";
376 case AR5416_AR9100_DEVID:
377 return "Atheros 9100";
378 case AR9280_DEVID_PCI:
379 case AR9280_DEVID_PCIE:
380 return "Atheros 9280";
381 case AR9285_DEVID_PCIE:
382 return "Atheros 9285";
383 case AR5416_DEVID_AR9287_PCI:
384 case AR5416_DEVID_AR9287_PCIE:
385 return "Atheros 9287";
388 return NULL;
391 static void ath9k_hw_set_defaults(struct ath_hw *ah)
393 int i;
395 ah->config.dma_beacon_response_time = 2;
396 ah->config.sw_beacon_response_time = 10;
397 ah->config.additional_swba_backoff = 0;
398 ah->config.ack_6mb = 0x0;
399 ah->config.cwm_ignore_extcca = 0;
400 ah->config.pcie_powersave_enable = 0;
401 ah->config.pcie_clock_req = 0;
402 ah->config.pcie_waen = 0;
403 ah->config.analog_shiftreg = 1;
404 ah->config.ht_enable = 1;
405 ah->config.ofdm_trig_low = 200;
406 ah->config.ofdm_trig_high = 500;
407 ah->config.cck_trig_high = 200;
408 ah->config.cck_trig_low = 100;
409 ah->config.enable_ani = 1;
410 ah->config.diversity_control = 0;
411 ah->config.antenna_switch_swap = 0;
413 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
414 ah->config.spurchans[i][0] = AR_NO_SPUR;
415 ah->config.spurchans[i][1] = AR_NO_SPUR;
418 ah->config.intr_mitigation = true;
421 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
422 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
423 * This means we use it for all AR5416 devices, and the few
424 * minor PCI AR9280 devices out there.
426 * Serialization is required because these devices do not handle
427 * well the case of two concurrent reads/writes due to the latency
428 * involved. During one read/write another read/write can be issued
429 * on another CPU while the previous read/write may still be working
430 * on our hardware, if we hit this case the hardware poops in a loop.
431 * We prevent this by serializing reads and writes.
433 * This issue is not present on PCI-Express devices or pre-AR5416
434 * devices (legacy, 802.11abg).
436 if (num_possible_cpus() > 1)
437 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
440 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
441 int *status)
443 struct ath_hw *ah;
445 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
446 if (ah == NULL) {
447 DPRINTF(sc, ATH_DBG_FATAL,
448 "Cannot allocate memory for state block\n");
449 *status = -ENOMEM;
450 return NULL;
453 ah->ah_sc = sc;
454 ah->hw_version.magic = AR5416_MAGIC;
455 ah->regulatory.country_code = CTRY_DEFAULT;
456 ah->hw_version.devid = devid;
457 ah->hw_version.subvendorid = 0;
459 ah->ah_flags = 0;
460 if ((devid == AR5416_AR9100_DEVID))
461 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
462 if (!AR_SREV_9100(ah))
463 ah->ah_flags = AH_USE_EEPROM;
465 ah->regulatory.power_limit = MAX_RATE_POWER;
466 ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
467 ah->atim_window = 0;
468 ah->diversity_control = ah->config.diversity_control;
469 ah->antenna_switch_swap =
470 ah->config.antenna_switch_swap;
471 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
472 ah->beacon_interval = 100;
473 ah->enable_32kHz_clock = DONT_USE_32KHZ;
474 ah->slottime = (u32) -1;
475 ah->acktimeout = (u32) -1;
476 ah->ctstimeout = (u32) -1;
477 ah->globaltxtimeout = (u32) -1;
479 ah->gbeacon_rate = 0;
481 ah->power_mode = ATH9K_PM_UNDEFINED;
483 return ah;
486 static int ath9k_hw_rfattach(struct ath_hw *ah)
488 bool rfStatus = false;
489 int ecode = 0;
491 rfStatus = ath9k_hw_init_rf(ah, &ecode);
492 if (!rfStatus) {
493 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
494 "RF setup failed, status: %u\n", ecode);
495 return ecode;
498 return 0;
501 static int ath9k_hw_rf_claim(struct ath_hw *ah)
503 u32 val;
505 REG_WRITE(ah, AR_PHY(0), 0x00000007);
507 val = ath9k_hw_get_radiorev(ah);
508 switch (val & AR_RADIO_SREV_MAJOR) {
509 case 0:
510 val = AR_RAD5133_SREV_MAJOR;
511 break;
512 case AR_RAD5133_SREV_MAJOR:
513 case AR_RAD5122_SREV_MAJOR:
514 case AR_RAD2133_SREV_MAJOR:
515 case AR_RAD2122_SREV_MAJOR:
516 break;
517 default:
518 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
519 "Radio Chip Rev 0x%02X not supported\n",
520 val & AR_RADIO_SREV_MAJOR);
521 return -EOPNOTSUPP;
524 ah->hw_version.analog5GhzRev = val;
526 return 0;
529 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
531 u32 sum;
532 int i;
533 u16 eeval;
535 sum = 0;
536 for (i = 0; i < 3; i++) {
537 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
538 sum += eeval;
539 ah->macaddr[2 * i] = eeval >> 8;
540 ah->macaddr[2 * i + 1] = eeval & 0xff;
542 if (sum == 0 || sum == 0xffff * 3)
543 return -EADDRNOTAVAIL;
545 return 0;
548 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
550 u32 rxgain_type;
552 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
553 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
555 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
556 INIT_INI_ARRAY(&ah->iniModesRxGain,
557 ar9280Modes_backoff_13db_rxgain_9280_2,
558 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
559 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
560 INIT_INI_ARRAY(&ah->iniModesRxGain,
561 ar9280Modes_backoff_23db_rxgain_9280_2,
562 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
563 else
564 INIT_INI_ARRAY(&ah->iniModesRxGain,
565 ar9280Modes_original_rxgain_9280_2,
566 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
567 } else {
568 INIT_INI_ARRAY(&ah->iniModesRxGain,
569 ar9280Modes_original_rxgain_9280_2,
570 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
574 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
576 u32 txgain_type;
578 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
579 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
581 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
582 INIT_INI_ARRAY(&ah->iniModesTxGain,
583 ar9280Modes_high_power_tx_gain_9280_2,
584 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
585 else
586 INIT_INI_ARRAY(&ah->iniModesTxGain,
587 ar9280Modes_original_tx_gain_9280_2,
588 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
589 } else {
590 INIT_INI_ARRAY(&ah->iniModesTxGain,
591 ar9280Modes_original_tx_gain_9280_2,
592 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
596 static int ath9k_hw_post_attach(struct ath_hw *ah)
598 int ecode;
600 if (!ath9k_hw_chip_test(ah))
601 return -ENODEV;
603 ecode = ath9k_hw_rf_claim(ah);
604 if (ecode != 0)
605 return ecode;
607 ecode = ath9k_hw_eeprom_attach(ah);
608 if (ecode != 0)
609 return ecode;
611 DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
612 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
614 ecode = ath9k_hw_rfattach(ah);
615 if (ecode != 0)
616 return ecode;
618 if (!AR_SREV_9100(ah)) {
619 ath9k_hw_ani_setup(ah);
620 ath9k_hw_ani_attach(ah);
623 return 0;
626 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
627 int *status)
629 struct ath_hw *ah;
630 int ecode;
631 u32 i, j;
633 ah = ath9k_hw_newstate(devid, sc, status);
634 if (ah == NULL)
635 return NULL;
637 ath9k_hw_set_defaults(ah);
639 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
640 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
641 ecode = -EIO;
642 goto bad;
645 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
646 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
647 ecode = -EIO;
648 goto bad;
651 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
652 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
653 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
654 ah->config.serialize_regmode =
655 SER_REG_MODE_ON;
656 } else {
657 ah->config.serialize_regmode =
658 SER_REG_MODE_OFF;
662 DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
663 ah->config.serialize_regmode);
665 switch (ah->hw_version.macVersion) {
666 case AR_SREV_VERSION_5416_PCI:
667 case AR_SREV_VERSION_5416_PCIE:
668 case AR_SREV_VERSION_9160:
669 case AR_SREV_VERSION_9100:
670 case AR_SREV_VERSION_9280:
671 case AR_SREV_VERSION_9285:
672 case AR_SREV_VERSION_9287:
673 break;
674 default:
675 DPRINTF(sc, ATH_DBG_FATAL,
676 "Mac Chip Rev 0x%02x.%x is not supported by "
677 "this driver\n", ah->hw_version.macVersion,
678 ah->hw_version.macRev);
679 ecode = -EOPNOTSUPP;
680 goto bad;
683 if (AR_SREV_9100(ah)) {
684 ah->iq_caldata.calData = &iq_cal_multi_sample;
685 ah->supp_cals = IQ_MISMATCH_CAL;
686 ah->is_pciexpress = false;
688 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
690 if (AR_SREV_9160_10_OR_LATER(ah)) {
691 if (AR_SREV_9280_10_OR_LATER(ah)) {
692 ah->iq_caldata.calData = &iq_cal_single_sample;
693 ah->adcgain_caldata.calData =
694 &adc_gain_cal_single_sample;
695 ah->adcdc_caldata.calData =
696 &adc_dc_cal_single_sample;
697 ah->adcdc_calinitdata.calData =
698 &adc_init_dc_cal;
699 } else {
700 ah->iq_caldata.calData = &iq_cal_multi_sample;
701 ah->adcgain_caldata.calData =
702 &adc_gain_cal_multi_sample;
703 ah->adcdc_caldata.calData =
704 &adc_dc_cal_multi_sample;
705 ah->adcdc_calinitdata.calData =
706 &adc_init_dc_cal;
708 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
711 ah->ani_function = ATH9K_ANI_ALL;
712 if (AR_SREV_9280_10_OR_LATER(ah))
713 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
714 if (AR_SREV_9287_11_OR_LATER(ah)) {
715 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
716 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
717 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
718 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
719 if (ah->config.pcie_clock_req)
720 INIT_INI_ARRAY(&ah->iniPcieSerdes,
721 ar9287PciePhy_clkreq_off_L1_9287_1_1,
722 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
723 else
724 INIT_INI_ARRAY(&ah->iniPcieSerdes,
725 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
726 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
728 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
729 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
730 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
731 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
732 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
734 if (ah->config.pcie_clock_req)
735 INIT_INI_ARRAY(&ah->iniPcieSerdes,
736 ar9287PciePhy_clkreq_off_L1_9287_1_0,
737 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
738 else
739 INIT_INI_ARRAY(&ah->iniPcieSerdes,
740 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
741 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
743 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
746 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
747 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
748 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
749 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
751 if (ah->config.pcie_clock_req) {
752 INIT_INI_ARRAY(&ah->iniPcieSerdes,
753 ar9285PciePhy_clkreq_off_L1_9285_1_2,
754 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
755 } else {
756 INIT_INI_ARRAY(&ah->iniPcieSerdes,
757 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
758 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
761 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
762 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
763 ARRAY_SIZE(ar9285Modes_9285), 6);
764 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
765 ARRAY_SIZE(ar9285Common_9285), 2);
767 if (ah->config.pcie_clock_req) {
768 INIT_INI_ARRAY(&ah->iniPcieSerdes,
769 ar9285PciePhy_clkreq_off_L1_9285,
770 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
771 } else {
772 INIT_INI_ARRAY(&ah->iniPcieSerdes,
773 ar9285PciePhy_clkreq_always_on_L1_9285,
774 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
776 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
777 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
778 ARRAY_SIZE(ar9280Modes_9280_2), 6);
779 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
780 ARRAY_SIZE(ar9280Common_9280_2), 2);
782 if (ah->config.pcie_clock_req) {
783 INIT_INI_ARRAY(&ah->iniPcieSerdes,
784 ar9280PciePhy_clkreq_off_L1_9280,
785 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
786 } else {
787 INIT_INI_ARRAY(&ah->iniPcieSerdes,
788 ar9280PciePhy_clkreq_always_on_L1_9280,
789 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
791 INIT_INI_ARRAY(&ah->iniModesAdditional,
792 ar9280Modes_fast_clock_9280_2,
793 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
794 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
795 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
796 ARRAY_SIZE(ar9280Modes_9280), 6);
797 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
798 ARRAY_SIZE(ar9280Common_9280), 2);
799 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
800 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
801 ARRAY_SIZE(ar5416Modes_9160), 6);
802 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
803 ARRAY_SIZE(ar5416Common_9160), 2);
804 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
805 ARRAY_SIZE(ar5416Bank0_9160), 2);
806 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
807 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
808 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
809 ARRAY_SIZE(ar5416Bank1_9160), 2);
810 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
811 ARRAY_SIZE(ar5416Bank2_9160), 2);
812 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
813 ARRAY_SIZE(ar5416Bank3_9160), 3);
814 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
815 ARRAY_SIZE(ar5416Bank6_9160), 3);
816 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
817 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
818 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
819 ARRAY_SIZE(ar5416Bank7_9160), 2);
820 if (AR_SREV_9160_11(ah)) {
821 INIT_INI_ARRAY(&ah->iniAddac,
822 ar5416Addac_91601_1,
823 ARRAY_SIZE(ar5416Addac_91601_1), 2);
824 } else {
825 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
826 ARRAY_SIZE(ar5416Addac_9160), 2);
828 } else if (AR_SREV_9100_OR_LATER(ah)) {
829 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
830 ARRAY_SIZE(ar5416Modes_9100), 6);
831 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
832 ARRAY_SIZE(ar5416Common_9100), 2);
833 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
834 ARRAY_SIZE(ar5416Bank0_9100), 2);
835 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
836 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
837 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
838 ARRAY_SIZE(ar5416Bank1_9100), 2);
839 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
840 ARRAY_SIZE(ar5416Bank2_9100), 2);
841 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
842 ARRAY_SIZE(ar5416Bank3_9100), 3);
843 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
844 ARRAY_SIZE(ar5416Bank6_9100), 3);
845 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
846 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
847 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
848 ARRAY_SIZE(ar5416Bank7_9100), 2);
849 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
850 ARRAY_SIZE(ar5416Addac_9100), 2);
851 } else {
852 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
853 ARRAY_SIZE(ar5416Modes), 6);
854 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
855 ARRAY_SIZE(ar5416Common), 2);
856 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
857 ARRAY_SIZE(ar5416Bank0), 2);
858 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
859 ARRAY_SIZE(ar5416BB_RfGain), 3);
860 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
861 ARRAY_SIZE(ar5416Bank1), 2);
862 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
863 ARRAY_SIZE(ar5416Bank2), 2);
864 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
865 ARRAY_SIZE(ar5416Bank3), 3);
866 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
867 ARRAY_SIZE(ar5416Bank6), 3);
868 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
869 ARRAY_SIZE(ar5416Bank6TPC), 3);
870 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
871 ARRAY_SIZE(ar5416Bank7), 2);
872 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
873 ARRAY_SIZE(ar5416Addac), 2);
876 if (ah->is_pciexpress)
877 ath9k_hw_configpcipowersave(ah, 0);
878 else
879 ath9k_hw_disablepcie(ah);
881 ecode = ath9k_hw_post_attach(ah);
882 if (ecode != 0)
883 goto bad;
885 if (AR_SREV_9287_11(ah))
886 INIT_INI_ARRAY(&ah->iniModesRxGain,
887 ar9287Modes_rx_gain_9287_1_1,
888 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
889 else if (AR_SREV_9287_10(ah))
890 INIT_INI_ARRAY(&ah->iniModesRxGain,
891 ar9287Modes_rx_gain_9287_1_0,
892 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
893 else if (AR_SREV_9280_20(ah))
894 ath9k_hw_init_rxgain_ini(ah);
896 if (AR_SREV_9287_11(ah)) {
897 INIT_INI_ARRAY(&ah->iniModesTxGain,
898 ar9287Modes_tx_gain_9287_1_1,
899 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
900 } else if (AR_SREV_9287_10(ah)) {
901 INIT_INI_ARRAY(&ah->iniModesTxGain,
902 ar9287Modes_tx_gain_9287_1_0,
903 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
904 } else if (AR_SREV_9280_20(ah)) {
905 ath9k_hw_init_txgain_ini(ah);
906 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
907 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
909 /* txgain table */
910 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
911 INIT_INI_ARRAY(&ah->iniModesTxGain,
912 ar9285Modes_high_power_tx_gain_9285_1_2,
913 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
914 } else {
915 INIT_INI_ARRAY(&ah->iniModesTxGain,
916 ar9285Modes_original_tx_gain_9285_1_2,
917 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
922 ath9k_hw_fill_cap_info(ah);
924 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
925 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
927 /* EEPROM Fixup */
928 for (i = 0; i < ah->iniModes.ia_rows; i++) {
929 u32 reg = INI_RA(&ah->iniModes, i, 0);
931 for (j = 1; j < ah->iniModes.ia_columns; j++) {
932 u32 val = INI_RA(&ah->iniModes, i, j);
934 INI_RA(&ah->iniModes, i, j) =
935 ath9k_hw_ini_fixup(ah,
936 &ah->eeprom.def,
937 reg, val);
942 ecode = ath9k_hw_init_macaddr(ah);
943 if (ecode != 0) {
944 DPRINTF(sc, ATH_DBG_FATAL,
945 "Failed to initialize MAC address\n");
946 goto bad;
949 if (AR_SREV_9285(ah))
950 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
951 else
952 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
954 ath9k_init_nfcal_hist_buffer(ah);
956 return ah;
957 bad:
958 if (ah)
959 ath9k_hw_detach(ah);
960 if (status)
961 *status = ecode;
963 return NULL;
966 static void ath9k_hw_init_bb(struct ath_hw *ah,
967 struct ath9k_channel *chan)
969 u32 synthDelay;
971 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
972 if (IS_CHAN_B(chan))
973 synthDelay = (4 * synthDelay) / 22;
974 else
975 synthDelay /= 10;
977 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
979 udelay(synthDelay + BASE_ACTIVATE_DELAY);
982 static void ath9k_hw_init_qos(struct ath_hw *ah)
984 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
985 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
987 REG_WRITE(ah, AR_QOS_NO_ACK,
988 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
989 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
990 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
992 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
993 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
994 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
995 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
996 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
999 static void ath9k_hw_init_pll(struct ath_hw *ah,
1000 struct ath9k_channel *chan)
1002 u32 pll;
1004 if (AR_SREV_9100(ah)) {
1005 if (chan && IS_CHAN_5GHZ(chan))
1006 pll = 0x1450;
1007 else
1008 pll = 0x1458;
1009 } else {
1010 if (AR_SREV_9280_10_OR_LATER(ah)) {
1011 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1013 if (chan && IS_CHAN_HALF_RATE(chan))
1014 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1015 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1016 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1018 if (chan && IS_CHAN_5GHZ(chan)) {
1019 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1022 if (AR_SREV_9280_20(ah)) {
1023 if (((chan->channel % 20) == 0)
1024 || ((chan->channel % 10) == 0))
1025 pll = 0x2850;
1026 else
1027 pll = 0x142c;
1029 } else {
1030 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1033 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1035 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1037 if (chan && IS_CHAN_HALF_RATE(chan))
1038 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1039 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1040 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1042 if (chan && IS_CHAN_5GHZ(chan))
1043 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1044 else
1045 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1046 } else {
1047 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1049 if (chan && IS_CHAN_HALF_RATE(chan))
1050 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1051 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1052 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1054 if (chan && IS_CHAN_5GHZ(chan))
1055 pll |= SM(0xa, AR_RTC_PLL_DIV);
1056 else
1057 pll |= SM(0xb, AR_RTC_PLL_DIV);
1060 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1062 udelay(RTC_PLL_SETTLE_DELAY);
1064 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1067 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1069 int rx_chainmask, tx_chainmask;
1071 rx_chainmask = ah->rxchainmask;
1072 tx_chainmask = ah->txchainmask;
1074 switch (rx_chainmask) {
1075 case 0x5:
1076 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1077 AR_PHY_SWAP_ALT_CHAIN);
1078 case 0x3:
1079 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1080 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1081 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1082 break;
1084 case 0x1:
1085 case 0x2:
1086 case 0x7:
1087 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1088 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1089 break;
1090 default:
1091 break;
1094 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1095 if (tx_chainmask == 0x5) {
1096 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1097 AR_PHY_SWAP_ALT_CHAIN);
1099 if (AR_SREV_9100(ah))
1100 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1101 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1104 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1105 enum nl80211_iftype opmode)
1107 ah->mask_reg = AR_IMR_TXERR |
1108 AR_IMR_TXURN |
1109 AR_IMR_RXERR |
1110 AR_IMR_RXORN |
1111 AR_IMR_BCNMISC;
1113 if (ah->config.intr_mitigation)
1114 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1115 else
1116 ah->mask_reg |= AR_IMR_RXOK;
1118 ah->mask_reg |= AR_IMR_TXOK;
1120 if (opmode == NL80211_IFTYPE_AP)
1121 ah->mask_reg |= AR_IMR_MIB;
1123 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1124 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1126 if (!AR_SREV_9100(ah)) {
1127 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1128 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1129 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1133 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1135 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1136 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1137 ah->acktimeout = (u32) -1;
1138 return false;
1139 } else {
1140 REG_RMW_FIELD(ah, AR_TIME_OUT,
1141 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1142 ah->acktimeout = us;
1143 return true;
1147 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1149 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1150 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1151 ah->ctstimeout = (u32) -1;
1152 return false;
1153 } else {
1154 REG_RMW_FIELD(ah, AR_TIME_OUT,
1155 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1156 ah->ctstimeout = us;
1157 return true;
1161 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1163 if (tu > 0xFFFF) {
1164 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1165 "bad global tx timeout %u\n", tu);
1166 ah->globaltxtimeout = (u32) -1;
1167 return false;
1168 } else {
1169 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1170 ah->globaltxtimeout = tu;
1171 return true;
1175 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1177 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1178 ah->misc_mode);
1180 if (ah->misc_mode != 0)
1181 REG_WRITE(ah, AR_PCU_MISC,
1182 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1183 if (ah->slottime != (u32) -1)
1184 ath9k_hw_setslottime(ah, ah->slottime);
1185 if (ah->acktimeout != (u32) -1)
1186 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1187 if (ah->ctstimeout != (u32) -1)
1188 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1189 if (ah->globaltxtimeout != (u32) -1)
1190 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1193 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1195 return vendorid == ATHEROS_VENDOR_ID ?
1196 ath9k_hw_devname(devid) : NULL;
1199 void ath9k_hw_detach(struct ath_hw *ah)
1201 if (!AR_SREV_9100(ah))
1202 ath9k_hw_ani_detach(ah);
1204 ath9k_hw_rfdetach(ah);
1205 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1206 kfree(ah);
1209 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1211 struct ath_hw *ah = NULL;
1213 switch (devid) {
1214 case AR5416_DEVID_PCI:
1215 case AR5416_DEVID_PCIE:
1216 case AR5416_AR9100_DEVID:
1217 case AR9160_DEVID_PCI:
1218 case AR9280_DEVID_PCI:
1219 case AR9280_DEVID_PCIE:
1220 case AR9285_DEVID_PCIE:
1221 case AR5416_DEVID_AR9287_PCI:
1222 case AR5416_DEVID_AR9287_PCIE:
1223 ah = ath9k_hw_do_attach(devid, sc, error);
1224 break;
1225 default:
1226 *error = -EOPNOTSUPP;
1227 break;
1230 return ah;
1233 /*******/
1234 /* INI */
1235 /*******/
1237 static void ath9k_hw_override_ini(struct ath_hw *ah,
1238 struct ath9k_channel *chan)
1241 * Set the RX_ABORT and RX_DIS and clear if off only after
1242 * RXE is set for MAC. This prevents frames with corrupted
1243 * descriptor status.
1245 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1248 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1249 AR_SREV_9280_10_OR_LATER(ah))
1250 return;
1252 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1255 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1256 struct ar5416_eeprom_def *pEepData,
1257 u32 reg, u32 value)
1259 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1261 switch (ah->hw_version.devid) {
1262 case AR9280_DEVID_PCI:
1263 if (reg == 0x7894) {
1264 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1265 "ini VAL: %x EEPROM: %x\n", value,
1266 (pBase->version & 0xff));
1268 if ((pBase->version & 0xff) > 0x0a) {
1269 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1270 "PWDCLKIND: %d\n",
1271 pBase->pwdclkind);
1272 value &= ~AR_AN_TOP2_PWDCLKIND;
1273 value |= AR_AN_TOP2_PWDCLKIND &
1274 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1275 } else {
1276 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1277 "PWDCLKIND Earlier Rev\n");
1280 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1281 "final ini VAL: %x\n", value);
1283 break;
1286 return value;
1289 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1290 struct ar5416_eeprom_def *pEepData,
1291 u32 reg, u32 value)
1293 if (ah->eep_map == EEP_MAP_4KBITS)
1294 return value;
1295 else
1296 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1299 static void ath9k_olc_init(struct ath_hw *ah)
1301 u32 i;
1303 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1304 ah->originalGain[i] =
1305 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1306 AR_PHY_TX_GAIN);
1307 ah->PDADCdelta = 0;
1310 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1311 struct ath9k_channel *chan)
1313 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1315 if (IS_CHAN_B(chan))
1316 ctl |= CTL_11B;
1317 else if (IS_CHAN_G(chan))
1318 ctl |= CTL_11G;
1319 else
1320 ctl |= CTL_11A;
1322 return ctl;
1325 static int ath9k_hw_process_ini(struct ath_hw *ah,
1326 struct ath9k_channel *chan,
1327 enum ath9k_ht_macmode macmode)
1329 int i, regWrites = 0;
1330 struct ieee80211_channel *channel = chan->chan;
1331 u32 modesIndex, freqIndex;
1333 switch (chan->chanmode) {
1334 case CHANNEL_A:
1335 case CHANNEL_A_HT20:
1336 modesIndex = 1;
1337 freqIndex = 1;
1338 break;
1339 case CHANNEL_A_HT40PLUS:
1340 case CHANNEL_A_HT40MINUS:
1341 modesIndex = 2;
1342 freqIndex = 1;
1343 break;
1344 case CHANNEL_G:
1345 case CHANNEL_G_HT20:
1346 case CHANNEL_B:
1347 modesIndex = 4;
1348 freqIndex = 2;
1349 break;
1350 case CHANNEL_G_HT40PLUS:
1351 case CHANNEL_G_HT40MINUS:
1352 modesIndex = 3;
1353 freqIndex = 2;
1354 break;
1356 default:
1357 return -EINVAL;
1360 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1361 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1362 ah->eep_ops->set_addac(ah, chan);
1364 if (AR_SREV_5416_22_OR_LATER(ah)) {
1365 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1366 } else {
1367 struct ar5416IniArray temp;
1368 u32 addacSize =
1369 sizeof(u32) * ah->iniAddac.ia_rows *
1370 ah->iniAddac.ia_columns;
1372 memcpy(ah->addac5416_21,
1373 ah->iniAddac.ia_array, addacSize);
1375 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1377 temp.ia_array = ah->addac5416_21;
1378 temp.ia_columns = ah->iniAddac.ia_columns;
1379 temp.ia_rows = ah->iniAddac.ia_rows;
1380 REG_WRITE_ARRAY(&temp, 1, regWrites);
1383 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1385 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1386 u32 reg = INI_RA(&ah->iniModes, i, 0);
1387 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1389 REG_WRITE(ah, reg, val);
1391 if (reg >= 0x7800 && reg < 0x78a0
1392 && ah->config.analog_shiftreg) {
1393 udelay(100);
1396 DO_DELAY(regWrites);
1399 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1400 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1402 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1403 AR_SREV_9287_10_OR_LATER(ah))
1404 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1406 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1407 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1408 u32 val = INI_RA(&ah->iniCommon, i, 1);
1410 REG_WRITE(ah, reg, val);
1412 if (reg >= 0x7800 && reg < 0x78a0
1413 && ah->config.analog_shiftreg) {
1414 udelay(100);
1417 DO_DELAY(regWrites);
1420 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1422 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1423 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1424 regWrites);
1427 ath9k_hw_override_ini(ah, chan);
1428 ath9k_hw_set_regs(ah, chan, macmode);
1429 ath9k_hw_init_chain_masks(ah);
1431 if (OLC_FOR_AR9280_20_LATER)
1432 ath9k_olc_init(ah);
1434 ah->eep_ops->set_txpower(ah, chan,
1435 ath9k_regd_get_ctl(&ah->regulatory, chan),
1436 channel->max_antenna_gain * 2,
1437 channel->max_power * 2,
1438 min((u32) MAX_RATE_POWER,
1439 (u32) ah->regulatory.power_limit));
1441 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1442 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1443 "ar5416SetRfRegs failed\n");
1444 return -EIO;
1447 return 0;
1450 /****************************************/
1451 /* Reset and Channel Switching Routines */
1452 /****************************************/
1454 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1456 u32 rfMode = 0;
1458 if (chan == NULL)
1459 return;
1461 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1462 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1464 if (!AR_SREV_9280_10_OR_LATER(ah))
1465 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1466 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1468 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1469 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1471 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1474 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1476 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1479 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1481 u32 regval;
1483 regval = REG_READ(ah, AR_AHB_MODE);
1484 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1486 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1487 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1489 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1491 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1492 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1494 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1496 if (AR_SREV_9285(ah)) {
1497 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1498 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1499 } else {
1500 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1501 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1505 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1507 u32 val;
1509 val = REG_READ(ah, AR_STA_ID1);
1510 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1511 switch (opmode) {
1512 case NL80211_IFTYPE_AP:
1513 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1514 | AR_STA_ID1_KSRCH_MODE);
1515 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1516 break;
1517 case NL80211_IFTYPE_ADHOC:
1518 case NL80211_IFTYPE_MESH_POINT:
1519 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1520 | AR_STA_ID1_KSRCH_MODE);
1521 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1522 break;
1523 case NL80211_IFTYPE_STATION:
1524 case NL80211_IFTYPE_MONITOR:
1525 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1526 break;
1530 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1531 u32 coef_scaled,
1532 u32 *coef_mantissa,
1533 u32 *coef_exponent)
1535 u32 coef_exp, coef_man;
1537 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1538 if ((coef_scaled >> coef_exp) & 0x1)
1539 break;
1541 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1543 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1545 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1546 *coef_exponent = coef_exp - 16;
1549 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1550 struct ath9k_channel *chan)
1552 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1553 u32 clockMhzScaled = 0x64000000;
1554 struct chan_centers centers;
1556 if (IS_CHAN_HALF_RATE(chan))
1557 clockMhzScaled = clockMhzScaled >> 1;
1558 else if (IS_CHAN_QUARTER_RATE(chan))
1559 clockMhzScaled = clockMhzScaled >> 2;
1561 ath9k_hw_get_channel_centers(ah, chan, &centers);
1562 coef_scaled = clockMhzScaled / centers.synth_center;
1564 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1565 &ds_coef_exp);
1567 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1568 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1569 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1570 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1572 coef_scaled = (9 * coef_scaled) / 10;
1574 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1575 &ds_coef_exp);
1577 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1578 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1579 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1580 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1583 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1585 u32 rst_flags;
1586 u32 tmpReg;
1588 if (AR_SREV_9100(ah)) {
1589 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1590 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1591 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1592 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1593 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1596 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1597 AR_RTC_FORCE_WAKE_ON_INT);
1599 if (AR_SREV_9100(ah)) {
1600 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1601 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1602 } else {
1603 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1604 if (tmpReg &
1605 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1606 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1607 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1608 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1609 } else {
1610 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1613 rst_flags = AR_RTC_RC_MAC_WARM;
1614 if (type == ATH9K_RESET_COLD)
1615 rst_flags |= AR_RTC_RC_MAC_COLD;
1618 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1619 udelay(50);
1621 REG_WRITE(ah, AR_RTC_RC, 0);
1622 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1623 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1624 "RTC stuck in MAC reset\n");
1625 return false;
1628 if (!AR_SREV_9100(ah))
1629 REG_WRITE(ah, AR_RC, 0);
1631 ath9k_hw_init_pll(ah, NULL);
1633 if (AR_SREV_9100(ah))
1634 udelay(50);
1636 return true;
1639 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1641 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1642 AR_RTC_FORCE_WAKE_ON_INT);
1644 REG_WRITE(ah, AR_RTC_RESET, 0);
1645 udelay(2);
1646 REG_WRITE(ah, AR_RTC_RESET, 1);
1648 if (!ath9k_hw_wait(ah,
1649 AR_RTC_STATUS,
1650 AR_RTC_STATUS_M,
1651 AR_RTC_STATUS_ON,
1652 AH_WAIT_TIMEOUT)) {
1653 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1654 return false;
1657 ath9k_hw_read_revisions(ah);
1659 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1662 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1664 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1665 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1667 switch (type) {
1668 case ATH9K_RESET_POWER_ON:
1669 return ath9k_hw_set_reset_power_on(ah);
1670 case ATH9K_RESET_WARM:
1671 case ATH9K_RESET_COLD:
1672 return ath9k_hw_set_reset(ah, type);
1673 default:
1674 return false;
1678 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1679 enum ath9k_ht_macmode macmode)
1681 u32 phymode;
1682 u32 enableDacFifo = 0;
1684 if (AR_SREV_9285_10_OR_LATER(ah))
1685 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1686 AR_PHY_FC_ENABLE_DAC_FIFO);
1688 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1689 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1691 if (IS_CHAN_HT40(chan)) {
1692 phymode |= AR_PHY_FC_DYN2040_EN;
1694 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1695 (chan->chanmode == CHANNEL_G_HT40PLUS))
1696 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1698 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1699 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1701 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1703 ath9k_hw_set11nmac2040(ah, macmode);
1705 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1706 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1709 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1710 struct ath9k_channel *chan)
1712 if (OLC_FOR_AR9280_20_LATER) {
1713 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1714 return false;
1715 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1716 return false;
1718 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1719 return false;
1721 ah->chip_fullsleep = false;
1722 ath9k_hw_init_pll(ah, chan);
1723 ath9k_hw_set_rfmode(ah, chan);
1725 return true;
1728 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1729 struct ath9k_channel *chan,
1730 enum ath9k_ht_macmode macmode)
1732 struct ieee80211_channel *channel = chan->chan;
1733 u32 synthDelay, qnum;
1735 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1736 if (ath9k_hw_numtxpending(ah, qnum)) {
1737 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1738 "Transmit frames pending on queue %d\n", qnum);
1739 return false;
1743 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1744 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1745 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1746 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1747 "Could not kill baseband RX\n");
1748 return false;
1751 ath9k_hw_set_regs(ah, chan, macmode);
1753 if (AR_SREV_9280_10_OR_LATER(ah)) {
1754 ath9k_hw_ar9280_set_channel(ah, chan);
1755 } else {
1756 if (!(ath9k_hw_set_channel(ah, chan))) {
1757 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1758 "Failed to set channel\n");
1759 return false;
1763 ah->eep_ops->set_txpower(ah, chan,
1764 ath9k_regd_get_ctl(&ah->regulatory, chan),
1765 channel->max_antenna_gain * 2,
1766 channel->max_power * 2,
1767 min((u32) MAX_RATE_POWER,
1768 (u32) ah->regulatory.power_limit));
1770 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1771 if (IS_CHAN_B(chan))
1772 synthDelay = (4 * synthDelay) / 22;
1773 else
1774 synthDelay /= 10;
1776 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1778 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1780 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1781 ath9k_hw_set_delta_slope(ah, chan);
1783 if (AR_SREV_9280_10_OR_LATER(ah))
1784 ath9k_hw_9280_spur_mitigate(ah, chan);
1785 else
1786 ath9k_hw_spur_mitigate(ah, chan);
1788 if (!chan->oneTimeCalsDone)
1789 chan->oneTimeCalsDone = true;
1791 return true;
1794 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1796 int bb_spur = AR_NO_SPUR;
1797 int freq;
1798 int bin, cur_bin;
1799 int bb_spur_off, spur_subchannel_sd;
1800 int spur_freq_sd;
1801 int spur_delta_phase;
1802 int denominator;
1803 int upper, lower, cur_vit_mask;
1804 int tmp, newVal;
1805 int i;
1806 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1807 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1809 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1810 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1812 int inc[4] = { 0, 100, 0, 0 };
1813 struct chan_centers centers;
1815 int8_t mask_m[123];
1816 int8_t mask_p[123];
1817 int8_t mask_amt;
1818 int tmp_mask;
1819 int cur_bb_spur;
1820 bool is2GHz = IS_CHAN_2GHZ(chan);
1822 memset(&mask_m, 0, sizeof(int8_t) * 123);
1823 memset(&mask_p, 0, sizeof(int8_t) * 123);
1825 ath9k_hw_get_channel_centers(ah, chan, &centers);
1826 freq = centers.synth_center;
1828 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1829 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1830 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1832 if (is2GHz)
1833 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1834 else
1835 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1837 if (AR_NO_SPUR == cur_bb_spur)
1838 break;
1839 cur_bb_spur = cur_bb_spur - freq;
1841 if (IS_CHAN_HT40(chan)) {
1842 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1843 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1844 bb_spur = cur_bb_spur;
1845 break;
1847 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1848 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1849 bb_spur = cur_bb_spur;
1850 break;
1854 if (AR_NO_SPUR == bb_spur) {
1855 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1856 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1857 return;
1858 } else {
1859 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1860 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1863 bin = bb_spur * 320;
1865 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1867 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1868 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1869 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1870 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1871 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1873 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1874 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1875 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1876 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1877 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1878 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1880 if (IS_CHAN_HT40(chan)) {
1881 if (bb_spur < 0) {
1882 spur_subchannel_sd = 1;
1883 bb_spur_off = bb_spur + 10;
1884 } else {
1885 spur_subchannel_sd = 0;
1886 bb_spur_off = bb_spur - 10;
1888 } else {
1889 spur_subchannel_sd = 0;
1890 bb_spur_off = bb_spur;
1893 if (IS_CHAN_HT40(chan))
1894 spur_delta_phase =
1895 ((bb_spur * 262144) /
1896 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1897 else
1898 spur_delta_phase =
1899 ((bb_spur * 524288) /
1900 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1902 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1903 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1905 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1906 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1907 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1908 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1910 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1911 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1913 cur_bin = -6000;
1914 upper = bin + 100;
1915 lower = bin - 100;
1917 for (i = 0; i < 4; i++) {
1918 int pilot_mask = 0;
1919 int chan_mask = 0;
1920 int bp = 0;
1921 for (bp = 0; bp < 30; bp++) {
1922 if ((cur_bin > lower) && (cur_bin < upper)) {
1923 pilot_mask = pilot_mask | 0x1 << bp;
1924 chan_mask = chan_mask | 0x1 << bp;
1926 cur_bin += 100;
1928 cur_bin += inc[i];
1929 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1930 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1933 cur_vit_mask = 6100;
1934 upper = bin + 120;
1935 lower = bin - 120;
1937 for (i = 0; i < 123; i++) {
1938 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1940 /* workaround for gcc bug #37014 */
1941 volatile int tmp_v = abs(cur_vit_mask - bin);
1943 if (tmp_v < 75)
1944 mask_amt = 1;
1945 else
1946 mask_amt = 0;
1947 if (cur_vit_mask < 0)
1948 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1949 else
1950 mask_p[cur_vit_mask / 100] = mask_amt;
1952 cur_vit_mask -= 100;
1955 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1956 | (mask_m[48] << 26) | (mask_m[49] << 24)
1957 | (mask_m[50] << 22) | (mask_m[51] << 20)
1958 | (mask_m[52] << 18) | (mask_m[53] << 16)
1959 | (mask_m[54] << 14) | (mask_m[55] << 12)
1960 | (mask_m[56] << 10) | (mask_m[57] << 8)
1961 | (mask_m[58] << 6) | (mask_m[59] << 4)
1962 | (mask_m[60] << 2) | (mask_m[61] << 0);
1963 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1964 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1966 tmp_mask = (mask_m[31] << 28)
1967 | (mask_m[32] << 26) | (mask_m[33] << 24)
1968 | (mask_m[34] << 22) | (mask_m[35] << 20)
1969 | (mask_m[36] << 18) | (mask_m[37] << 16)
1970 | (mask_m[48] << 14) | (mask_m[39] << 12)
1971 | (mask_m[40] << 10) | (mask_m[41] << 8)
1972 | (mask_m[42] << 6) | (mask_m[43] << 4)
1973 | (mask_m[44] << 2) | (mask_m[45] << 0);
1974 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1975 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1977 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1978 | (mask_m[18] << 26) | (mask_m[18] << 24)
1979 | (mask_m[20] << 22) | (mask_m[20] << 20)
1980 | (mask_m[22] << 18) | (mask_m[22] << 16)
1981 | (mask_m[24] << 14) | (mask_m[24] << 12)
1982 | (mask_m[25] << 10) | (mask_m[26] << 8)
1983 | (mask_m[27] << 6) | (mask_m[28] << 4)
1984 | (mask_m[29] << 2) | (mask_m[30] << 0);
1985 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1986 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1988 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1989 | (mask_m[2] << 26) | (mask_m[3] << 24)
1990 | (mask_m[4] << 22) | (mask_m[5] << 20)
1991 | (mask_m[6] << 18) | (mask_m[7] << 16)
1992 | (mask_m[8] << 14) | (mask_m[9] << 12)
1993 | (mask_m[10] << 10) | (mask_m[11] << 8)
1994 | (mask_m[12] << 6) | (mask_m[13] << 4)
1995 | (mask_m[14] << 2) | (mask_m[15] << 0);
1996 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1997 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1999 tmp_mask = (mask_p[15] << 28)
2000 | (mask_p[14] << 26) | (mask_p[13] << 24)
2001 | (mask_p[12] << 22) | (mask_p[11] << 20)
2002 | (mask_p[10] << 18) | (mask_p[9] << 16)
2003 | (mask_p[8] << 14) | (mask_p[7] << 12)
2004 | (mask_p[6] << 10) | (mask_p[5] << 8)
2005 | (mask_p[4] << 6) | (mask_p[3] << 4)
2006 | (mask_p[2] << 2) | (mask_p[1] << 0);
2007 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2008 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2010 tmp_mask = (mask_p[30] << 28)
2011 | (mask_p[29] << 26) | (mask_p[28] << 24)
2012 | (mask_p[27] << 22) | (mask_p[26] << 20)
2013 | (mask_p[25] << 18) | (mask_p[24] << 16)
2014 | (mask_p[23] << 14) | (mask_p[22] << 12)
2015 | (mask_p[21] << 10) | (mask_p[20] << 8)
2016 | (mask_p[19] << 6) | (mask_p[18] << 4)
2017 | (mask_p[17] << 2) | (mask_p[16] << 0);
2018 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2019 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2021 tmp_mask = (mask_p[45] << 28)
2022 | (mask_p[44] << 26) | (mask_p[43] << 24)
2023 | (mask_p[42] << 22) | (mask_p[41] << 20)
2024 | (mask_p[40] << 18) | (mask_p[39] << 16)
2025 | (mask_p[38] << 14) | (mask_p[37] << 12)
2026 | (mask_p[36] << 10) | (mask_p[35] << 8)
2027 | (mask_p[34] << 6) | (mask_p[33] << 4)
2028 | (mask_p[32] << 2) | (mask_p[31] << 0);
2029 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2030 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2032 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2033 | (mask_p[59] << 26) | (mask_p[58] << 24)
2034 | (mask_p[57] << 22) | (mask_p[56] << 20)
2035 | (mask_p[55] << 18) | (mask_p[54] << 16)
2036 | (mask_p[53] << 14) | (mask_p[52] << 12)
2037 | (mask_p[51] << 10) | (mask_p[50] << 8)
2038 | (mask_p[49] << 6) | (mask_p[48] << 4)
2039 | (mask_p[47] << 2) | (mask_p[46] << 0);
2040 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2041 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2044 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2046 int bb_spur = AR_NO_SPUR;
2047 int bin, cur_bin;
2048 int spur_freq_sd;
2049 int spur_delta_phase;
2050 int denominator;
2051 int upper, lower, cur_vit_mask;
2052 int tmp, new;
2053 int i;
2054 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2055 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2057 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2058 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2060 int inc[4] = { 0, 100, 0, 0 };
2062 int8_t mask_m[123];
2063 int8_t mask_p[123];
2064 int8_t mask_amt;
2065 int tmp_mask;
2066 int cur_bb_spur;
2067 bool is2GHz = IS_CHAN_2GHZ(chan);
2069 memset(&mask_m, 0, sizeof(int8_t) * 123);
2070 memset(&mask_p, 0, sizeof(int8_t) * 123);
2072 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2073 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2074 if (AR_NO_SPUR == cur_bb_spur)
2075 break;
2076 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2077 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2078 bb_spur = cur_bb_spur;
2079 break;
2083 if (AR_NO_SPUR == bb_spur)
2084 return;
2086 bin = bb_spur * 32;
2088 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2089 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2090 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2091 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2092 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2094 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2096 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2097 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2098 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2099 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2100 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2101 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2103 spur_delta_phase = ((bb_spur * 524288) / 100) &
2104 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2106 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2107 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2109 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2110 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2111 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2112 REG_WRITE(ah, AR_PHY_TIMING11, new);
2114 cur_bin = -6000;
2115 upper = bin + 100;
2116 lower = bin - 100;
2118 for (i = 0; i < 4; i++) {
2119 int pilot_mask = 0;
2120 int chan_mask = 0;
2121 int bp = 0;
2122 for (bp = 0; bp < 30; bp++) {
2123 if ((cur_bin > lower) && (cur_bin < upper)) {
2124 pilot_mask = pilot_mask | 0x1 << bp;
2125 chan_mask = chan_mask | 0x1 << bp;
2127 cur_bin += 100;
2129 cur_bin += inc[i];
2130 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2131 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2134 cur_vit_mask = 6100;
2135 upper = bin + 120;
2136 lower = bin - 120;
2138 for (i = 0; i < 123; i++) {
2139 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2141 /* workaround for gcc bug #37014 */
2142 volatile int tmp_v = abs(cur_vit_mask - bin);
2144 if (tmp_v < 75)
2145 mask_amt = 1;
2146 else
2147 mask_amt = 0;
2148 if (cur_vit_mask < 0)
2149 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2150 else
2151 mask_p[cur_vit_mask / 100] = mask_amt;
2153 cur_vit_mask -= 100;
2156 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2157 | (mask_m[48] << 26) | (mask_m[49] << 24)
2158 | (mask_m[50] << 22) | (mask_m[51] << 20)
2159 | (mask_m[52] << 18) | (mask_m[53] << 16)
2160 | (mask_m[54] << 14) | (mask_m[55] << 12)
2161 | (mask_m[56] << 10) | (mask_m[57] << 8)
2162 | (mask_m[58] << 6) | (mask_m[59] << 4)
2163 | (mask_m[60] << 2) | (mask_m[61] << 0);
2164 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2165 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2167 tmp_mask = (mask_m[31] << 28)
2168 | (mask_m[32] << 26) | (mask_m[33] << 24)
2169 | (mask_m[34] << 22) | (mask_m[35] << 20)
2170 | (mask_m[36] << 18) | (mask_m[37] << 16)
2171 | (mask_m[48] << 14) | (mask_m[39] << 12)
2172 | (mask_m[40] << 10) | (mask_m[41] << 8)
2173 | (mask_m[42] << 6) | (mask_m[43] << 4)
2174 | (mask_m[44] << 2) | (mask_m[45] << 0);
2175 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2176 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2178 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2179 | (mask_m[18] << 26) | (mask_m[18] << 24)
2180 | (mask_m[20] << 22) | (mask_m[20] << 20)
2181 | (mask_m[22] << 18) | (mask_m[22] << 16)
2182 | (mask_m[24] << 14) | (mask_m[24] << 12)
2183 | (mask_m[25] << 10) | (mask_m[26] << 8)
2184 | (mask_m[27] << 6) | (mask_m[28] << 4)
2185 | (mask_m[29] << 2) | (mask_m[30] << 0);
2186 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2187 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2189 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2190 | (mask_m[2] << 26) | (mask_m[3] << 24)
2191 | (mask_m[4] << 22) | (mask_m[5] << 20)
2192 | (mask_m[6] << 18) | (mask_m[7] << 16)
2193 | (mask_m[8] << 14) | (mask_m[9] << 12)
2194 | (mask_m[10] << 10) | (mask_m[11] << 8)
2195 | (mask_m[12] << 6) | (mask_m[13] << 4)
2196 | (mask_m[14] << 2) | (mask_m[15] << 0);
2197 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2198 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2200 tmp_mask = (mask_p[15] << 28)
2201 | (mask_p[14] << 26) | (mask_p[13] << 24)
2202 | (mask_p[12] << 22) | (mask_p[11] << 20)
2203 | (mask_p[10] << 18) | (mask_p[9] << 16)
2204 | (mask_p[8] << 14) | (mask_p[7] << 12)
2205 | (mask_p[6] << 10) | (mask_p[5] << 8)
2206 | (mask_p[4] << 6) | (mask_p[3] << 4)
2207 | (mask_p[2] << 2) | (mask_p[1] << 0);
2208 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2209 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2211 tmp_mask = (mask_p[30] << 28)
2212 | (mask_p[29] << 26) | (mask_p[28] << 24)
2213 | (mask_p[27] << 22) | (mask_p[26] << 20)
2214 | (mask_p[25] << 18) | (mask_p[24] << 16)
2215 | (mask_p[23] << 14) | (mask_p[22] << 12)
2216 | (mask_p[21] << 10) | (mask_p[20] << 8)
2217 | (mask_p[19] << 6) | (mask_p[18] << 4)
2218 | (mask_p[17] << 2) | (mask_p[16] << 0);
2219 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2220 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2222 tmp_mask = (mask_p[45] << 28)
2223 | (mask_p[44] << 26) | (mask_p[43] << 24)
2224 | (mask_p[42] << 22) | (mask_p[41] << 20)
2225 | (mask_p[40] << 18) | (mask_p[39] << 16)
2226 | (mask_p[38] << 14) | (mask_p[37] << 12)
2227 | (mask_p[36] << 10) | (mask_p[35] << 8)
2228 | (mask_p[34] << 6) | (mask_p[33] << 4)
2229 | (mask_p[32] << 2) | (mask_p[31] << 0);
2230 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2231 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2233 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2234 | (mask_p[59] << 26) | (mask_p[58] << 24)
2235 | (mask_p[57] << 22) | (mask_p[56] << 20)
2236 | (mask_p[55] << 18) | (mask_p[54] << 16)
2237 | (mask_p[53] << 14) | (mask_p[52] << 12)
2238 | (mask_p[51] << 10) | (mask_p[50] << 8)
2239 | (mask_p[49] << 6) | (mask_p[48] << 4)
2240 | (mask_p[47] << 2) | (mask_p[46] << 0);
2241 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2242 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2245 static void ath9k_enable_rfkill(struct ath_hw *ah)
2247 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2248 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2250 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2251 AR_GPIO_INPUT_MUX2_RFSILENT);
2253 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2254 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2257 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2258 bool bChannelChange)
2260 u32 saveLedState;
2261 struct ath_softc *sc = ah->ah_sc;
2262 struct ath9k_channel *curchan = ah->curchan;
2263 u32 saveDefAntenna;
2264 u32 macStaId1;
2265 int i, rx_chainmask, r;
2267 ah->extprotspacing = sc->ht_extprotspacing;
2268 ah->txchainmask = sc->tx_chainmask;
2269 ah->rxchainmask = sc->rx_chainmask;
2271 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2272 return -EIO;
2274 if (curchan)
2275 ath9k_hw_getnf(ah, curchan);
2277 if (bChannelChange &&
2278 (ah->chip_fullsleep != true) &&
2279 (ah->curchan != NULL) &&
2280 (chan->channel != ah->curchan->channel) &&
2281 ((chan->channelFlags & CHANNEL_ALL) ==
2282 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2283 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2284 !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2286 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2287 ath9k_hw_loadnf(ah, ah->curchan);
2288 ath9k_hw_start_nfcal(ah);
2289 return 0;
2293 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2294 if (saveDefAntenna == 0)
2295 saveDefAntenna = 1;
2297 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2299 saveLedState = REG_READ(ah, AR_CFG_LED) &
2300 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2301 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2303 ath9k_hw_mark_phy_inactive(ah);
2305 if (!ath9k_hw_chip_reset(ah, chan)) {
2306 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2307 return -EINVAL;
2310 if (AR_SREV_9280_10_OR_LATER(ah))
2311 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2313 if (AR_SREV_9287_10_OR_LATER(ah)) {
2314 /* Enable ASYNC FIFO */
2315 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2316 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2317 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2318 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2319 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2320 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2321 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2323 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2324 if (r)
2325 return r;
2327 /* Setup MFP options for CCMP */
2328 if (AR_SREV_9280_20_OR_LATER(ah)) {
2329 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2330 * frames when constructing CCMP AAD. */
2331 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2332 0xc7ff);
2333 ah->sw_mgmt_crypto = false;
2334 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2335 /* Disable hardware crypto for management frames */
2336 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2337 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2338 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2339 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2340 ah->sw_mgmt_crypto = true;
2341 } else
2342 ah->sw_mgmt_crypto = true;
2344 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2345 ath9k_hw_set_delta_slope(ah, chan);
2347 if (AR_SREV_9280_10_OR_LATER(ah))
2348 ath9k_hw_9280_spur_mitigate(ah, chan);
2349 else
2350 ath9k_hw_spur_mitigate(ah, chan);
2352 ah->eep_ops->set_board_values(ah, chan);
2354 ath9k_hw_decrease_chain_power(ah, chan);
2356 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2357 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2358 | macStaId1
2359 | AR_STA_ID1_RTS_USE_DEF
2360 | (ah->config.
2361 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2362 | ah->sta_id1_defaults);
2363 ath9k_hw_set_operating_mode(ah, ah->opmode);
2365 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2366 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2368 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2370 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2371 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2372 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2374 REG_WRITE(ah, AR_ISR, ~0);
2376 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2378 if (AR_SREV_9280_10_OR_LATER(ah))
2379 ath9k_hw_ar9280_set_channel(ah, chan);
2380 else
2381 if (!(ath9k_hw_set_channel(ah, chan)))
2382 return -EIO;
2384 for (i = 0; i < AR_NUM_DCU; i++)
2385 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2387 ah->intr_txqs = 0;
2388 for (i = 0; i < ah->caps.total_queues; i++)
2389 ath9k_hw_resettxqueue(ah, i);
2391 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2392 ath9k_hw_init_qos(ah);
2394 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2395 ath9k_enable_rfkill(ah);
2397 ath9k_hw_init_user_settings(ah);
2399 if (AR_SREV_9287_10_OR_LATER(ah)) {
2400 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2401 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2402 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2403 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2404 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2405 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2407 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2408 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2410 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2411 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2412 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2413 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2415 if (AR_SREV_9287_10_OR_LATER(ah)) {
2416 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2417 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2420 REG_WRITE(ah, AR_STA_ID1,
2421 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2423 ath9k_hw_set_dma(ah);
2425 REG_WRITE(ah, AR_OBS, 8);
2427 if (ah->config.intr_mitigation) {
2428 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2429 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2432 ath9k_hw_init_bb(ah, chan);
2434 if (!ath9k_hw_init_cal(ah, chan))
2435 return -EIO;
2437 rx_chainmask = ah->rxchainmask;
2438 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2439 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2440 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2443 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2445 if (AR_SREV_9100(ah)) {
2446 u32 mask;
2447 mask = REG_READ(ah, AR_CFG);
2448 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2449 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2450 "CFG Byte Swap Set 0x%x\n", mask);
2451 } else {
2452 mask =
2453 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2454 REG_WRITE(ah, AR_CFG, mask);
2455 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2456 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2458 } else {
2459 #ifdef __BIG_ENDIAN
2460 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2461 #endif
2464 return 0;
2467 /************************/
2468 /* Key Cache Management */
2469 /************************/
2471 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2473 u32 keyType;
2475 if (entry >= ah->caps.keycache_size) {
2476 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2477 "keychache entry %u out of range\n", entry);
2478 return false;
2481 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2483 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2484 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2485 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2486 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2487 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2488 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2489 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2490 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2492 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2493 u16 micentry = entry + 64;
2495 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2496 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2497 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2498 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2502 if (ah->curchan == NULL)
2503 return true;
2505 return true;
2508 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2510 u32 macHi, macLo;
2512 if (entry >= ah->caps.keycache_size) {
2513 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2514 "keychache entry %u out of range\n", entry);
2515 return false;
2518 if (mac != NULL) {
2519 macHi = (mac[5] << 8) | mac[4];
2520 macLo = (mac[3] << 24) |
2521 (mac[2] << 16) |
2522 (mac[1] << 8) |
2523 mac[0];
2524 macLo >>= 1;
2525 macLo |= (macHi & 1) << 31;
2526 macHi >>= 1;
2527 } else {
2528 macLo = macHi = 0;
2530 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2531 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2533 return true;
2536 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2537 const struct ath9k_keyval *k,
2538 const u8 *mac)
2540 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2541 u32 key0, key1, key2, key3, key4;
2542 u32 keyType;
2544 if (entry >= pCap->keycache_size) {
2545 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2546 "keycache entry %u out of range\n", entry);
2547 return false;
2550 switch (k->kv_type) {
2551 case ATH9K_CIPHER_AES_OCB:
2552 keyType = AR_KEYTABLE_TYPE_AES;
2553 break;
2554 case ATH9K_CIPHER_AES_CCM:
2555 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2556 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2557 "AES-CCM not supported by mac rev 0x%x\n",
2558 ah->hw_version.macRev);
2559 return false;
2561 keyType = AR_KEYTABLE_TYPE_CCM;
2562 break;
2563 case ATH9K_CIPHER_TKIP:
2564 keyType = AR_KEYTABLE_TYPE_TKIP;
2565 if (ATH9K_IS_MIC_ENABLED(ah)
2566 && entry + 64 >= pCap->keycache_size) {
2567 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2568 "entry %u inappropriate for TKIP\n", entry);
2569 return false;
2571 break;
2572 case ATH9K_CIPHER_WEP:
2573 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2574 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2575 "WEP key length %u too small\n", k->kv_len);
2576 return false;
2578 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2579 keyType = AR_KEYTABLE_TYPE_40;
2580 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2581 keyType = AR_KEYTABLE_TYPE_104;
2582 else
2583 keyType = AR_KEYTABLE_TYPE_128;
2584 break;
2585 case ATH9K_CIPHER_CLR:
2586 keyType = AR_KEYTABLE_TYPE_CLR;
2587 break;
2588 default:
2589 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2590 "cipher %u not supported\n", k->kv_type);
2591 return false;
2594 key0 = get_unaligned_le32(k->kv_val + 0);
2595 key1 = get_unaligned_le16(k->kv_val + 4);
2596 key2 = get_unaligned_le32(k->kv_val + 6);
2597 key3 = get_unaligned_le16(k->kv_val + 10);
2598 key4 = get_unaligned_le32(k->kv_val + 12);
2599 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2600 key4 &= 0xff;
2603 * Note: Key cache registers access special memory area that requires
2604 * two 32-bit writes to actually update the values in the internal
2605 * memory. Consequently, the exact order and pairs used here must be
2606 * maintained.
2609 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2610 u16 micentry = entry + 64;
2613 * Write inverted key[47:0] first to avoid Michael MIC errors
2614 * on frames that could be sent or received at the same time.
2615 * The correct key will be written in the end once everything
2616 * else is ready.
2618 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2619 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2621 /* Write key[95:48] */
2622 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2623 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2625 /* Write key[127:96] and key type */
2626 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2627 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2629 /* Write MAC address for the entry */
2630 (void) ath9k_hw_keysetmac(ah, entry, mac);
2632 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2634 * TKIP uses two key cache entries:
2635 * Michael MIC TX/RX keys in the same key cache entry
2636 * (idx = main index + 64):
2637 * key0 [31:0] = RX key [31:0]
2638 * key1 [15:0] = TX key [31:16]
2639 * key1 [31:16] = reserved
2640 * key2 [31:0] = RX key [63:32]
2641 * key3 [15:0] = TX key [15:0]
2642 * key3 [31:16] = reserved
2643 * key4 [31:0] = TX key [63:32]
2645 u32 mic0, mic1, mic2, mic3, mic4;
2647 mic0 = get_unaligned_le32(k->kv_mic + 0);
2648 mic2 = get_unaligned_le32(k->kv_mic + 4);
2649 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2650 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2651 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2653 /* Write RX[31:0] and TX[31:16] */
2654 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2655 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2657 /* Write RX[63:32] and TX[15:0] */
2658 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2659 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2661 /* Write TX[63:32] and keyType(reserved) */
2662 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2663 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2664 AR_KEYTABLE_TYPE_CLR);
2666 } else {
2668 * TKIP uses four key cache entries (two for group
2669 * keys):
2670 * Michael MIC TX/RX keys are in different key cache
2671 * entries (idx = main index + 64 for TX and
2672 * main index + 32 + 96 for RX):
2673 * key0 [31:0] = TX/RX MIC key [31:0]
2674 * key1 [31:0] = reserved
2675 * key2 [31:0] = TX/RX MIC key [63:32]
2676 * key3 [31:0] = reserved
2677 * key4 [31:0] = reserved
2679 * Upper layer code will call this function separately
2680 * for TX and RX keys when these registers offsets are
2681 * used.
2683 u32 mic0, mic2;
2685 mic0 = get_unaligned_le32(k->kv_mic + 0);
2686 mic2 = get_unaligned_le32(k->kv_mic + 4);
2688 /* Write MIC key[31:0] */
2689 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2690 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2692 /* Write MIC key[63:32] */
2693 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2694 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2696 /* Write TX[63:32] and keyType(reserved) */
2697 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2698 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2699 AR_KEYTABLE_TYPE_CLR);
2702 /* MAC address registers are reserved for the MIC entry */
2703 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2704 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2707 * Write the correct (un-inverted) key[47:0] last to enable
2708 * TKIP now that all other registers are set with correct
2709 * values.
2711 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2712 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2713 } else {
2714 /* Write key[47:0] */
2715 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2716 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2718 /* Write key[95:48] */
2719 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2720 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2722 /* Write key[127:96] and key type */
2723 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2724 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2726 /* Write MAC address for the entry */
2727 (void) ath9k_hw_keysetmac(ah, entry, mac);
2730 return true;
2733 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2735 if (entry < ah->caps.keycache_size) {
2736 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2737 if (val & AR_KEYTABLE_VALID)
2738 return true;
2740 return false;
2743 /******************************/
2744 /* Power Management (Chipset) */
2745 /******************************/
2747 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2749 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2750 if (setChip) {
2751 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2752 AR_RTC_FORCE_WAKE_EN);
2753 if (!AR_SREV_9100(ah))
2754 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2756 REG_CLR_BIT(ah, (AR_RTC_RESET),
2757 AR_RTC_RESET_EN);
2761 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2763 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2764 if (setChip) {
2765 struct ath9k_hw_capabilities *pCap = &ah->caps;
2767 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2768 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2769 AR_RTC_FORCE_WAKE_ON_INT);
2770 } else {
2771 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2772 AR_RTC_FORCE_WAKE_EN);
2777 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2779 u32 val;
2780 int i;
2782 if (setChip) {
2783 if ((REG_READ(ah, AR_RTC_STATUS) &
2784 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2785 if (ath9k_hw_set_reset_reg(ah,
2786 ATH9K_RESET_POWER_ON) != true) {
2787 return false;
2790 if (AR_SREV_9100(ah))
2791 REG_SET_BIT(ah, AR_RTC_RESET,
2792 AR_RTC_RESET_EN);
2794 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2795 AR_RTC_FORCE_WAKE_EN);
2796 udelay(50);
2798 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2799 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2800 if (val == AR_RTC_STATUS_ON)
2801 break;
2802 udelay(50);
2803 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2804 AR_RTC_FORCE_WAKE_EN);
2806 if (i == 0) {
2807 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2808 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2809 return false;
2813 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2815 return true;
2818 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2819 enum ath9k_power_mode mode)
2821 int status = true, setChip = true;
2822 static const char *modes[] = {
2823 "AWAKE",
2824 "FULL-SLEEP",
2825 "NETWORK SLEEP",
2826 "UNDEFINED"
2829 if (ah->power_mode == mode)
2830 return status;
2832 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2833 modes[ah->power_mode], modes[mode]);
2835 switch (mode) {
2836 case ATH9K_PM_AWAKE:
2837 status = ath9k_hw_set_power_awake(ah, setChip);
2838 break;
2839 case ATH9K_PM_FULL_SLEEP:
2840 ath9k_set_power_sleep(ah, setChip);
2841 ah->chip_fullsleep = true;
2842 break;
2843 case ATH9K_PM_NETWORK_SLEEP:
2844 ath9k_set_power_network_sleep(ah, setChip);
2845 break;
2846 default:
2847 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2848 "Unknown power mode %u\n", mode);
2849 return false;
2851 ah->power_mode = mode;
2853 return status;
2856 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2858 unsigned long flags;
2859 bool ret;
2861 spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2862 ret = ath9k_hw_setpower_nolock(ah, mode);
2863 spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2865 return ret;
2868 void ath9k_ps_wakeup(struct ath_softc *sc)
2870 unsigned long flags;
2872 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2873 if (++sc->ps_usecount != 1)
2874 goto unlock;
2876 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2878 unlock:
2879 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2882 void ath9k_ps_restore(struct ath_softc *sc)
2884 unsigned long flags;
2886 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2887 if (--sc->ps_usecount != 0)
2888 goto unlock;
2890 if (sc->ps_enabled &&
2891 !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
2892 SC_OP_WAIT_FOR_CAB |
2893 SC_OP_WAIT_FOR_PSPOLL_DATA |
2894 SC_OP_WAIT_FOR_TX_ACK)))
2895 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2897 unlock:
2898 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2902 * Helper for ASPM support.
2904 * Disable PLL when in L0s as well as receiver clock when in L1.
2905 * This power saving option must be enabled through the SerDes.
2907 * Programming the SerDes must go through the same 288 bit serial shift
2908 * register as the other analog registers. Hence the 9 writes.
2910 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2912 u8 i;
2914 if (ah->is_pciexpress != true)
2915 return;
2917 /* Do not touch SerDes registers */
2918 if (ah->config.pcie_powersave_enable == 2)
2919 return;
2921 /* Nothing to do on restore for 11N */
2922 if (restore)
2923 return;
2925 if (AR_SREV_9280_20_OR_LATER(ah)) {
2927 * AR9280 2.0 or later chips use SerDes values from the
2928 * initvals.h initialized depending on chipset during
2929 * ath9k_hw_do_attach()
2931 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2932 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2933 INI_RA(&ah->iniPcieSerdes, i, 1));
2935 } else if (AR_SREV_9280(ah) &&
2936 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2937 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2938 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2940 /* RX shut off when elecidle is asserted */
2941 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2942 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2943 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2945 /* Shut off CLKREQ active in L1 */
2946 if (ah->config.pcie_clock_req)
2947 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2948 else
2949 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2951 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2952 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2953 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2955 /* Load the new settings */
2956 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2958 } else {
2959 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2960 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2962 /* RX shut off when elecidle is asserted */
2963 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2964 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2965 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2968 * Ignore ah->ah_config.pcie_clock_req setting for
2969 * pre-AR9280 11n
2971 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2973 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2974 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2975 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2977 /* Load the new settings */
2978 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2981 udelay(1000);
2983 /* set bit 19 to allow forcing of pcie core into L1 state */
2984 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2986 /* Several PCIe massages to ensure proper behaviour */
2987 if (ah->config.pcie_waen) {
2988 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2989 } else {
2990 if (AR_SREV_9285(ah))
2991 REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2993 * On AR9280 chips bit 22 of 0x4004 needs to be set to
2994 * otherwise card may disappear.
2996 else if (AR_SREV_9280(ah))
2997 REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2998 else
2999 REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
3003 /**********************/
3004 /* Interrupt Handling */
3005 /**********************/
3007 bool ath9k_hw_intrpend(struct ath_hw *ah)
3009 u32 host_isr;
3011 if (AR_SREV_9100(ah))
3012 return true;
3014 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3015 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3016 return true;
3018 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3019 if ((host_isr & AR_INTR_SYNC_DEFAULT)
3020 && (host_isr != AR_INTR_SPURIOUS))
3021 return true;
3023 return false;
3026 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3028 u32 isr = 0;
3029 u32 mask2 = 0;
3030 struct ath9k_hw_capabilities *pCap = &ah->caps;
3031 u32 sync_cause = 0;
3032 bool fatal_int = false;
3034 if (!AR_SREV_9100(ah)) {
3035 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3036 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3037 == AR_RTC_STATUS_ON) {
3038 isr = REG_READ(ah, AR_ISR);
3042 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3043 AR_INTR_SYNC_DEFAULT;
3045 *masked = 0;
3047 if (!isr && !sync_cause)
3048 return false;
3049 } else {
3050 *masked = 0;
3051 isr = REG_READ(ah, AR_ISR);
3054 if (isr) {
3055 if (isr & AR_ISR_BCNMISC) {
3056 u32 isr2;
3057 isr2 = REG_READ(ah, AR_ISR_S2);
3058 if (isr2 & AR_ISR_S2_TIM)
3059 mask2 |= ATH9K_INT_TIM;
3060 if (isr2 & AR_ISR_S2_DTIM)
3061 mask2 |= ATH9K_INT_DTIM;
3062 if (isr2 & AR_ISR_S2_DTIMSYNC)
3063 mask2 |= ATH9K_INT_DTIMSYNC;
3064 if (isr2 & (AR_ISR_S2_CABEND))
3065 mask2 |= ATH9K_INT_CABEND;
3066 if (isr2 & AR_ISR_S2_GTT)
3067 mask2 |= ATH9K_INT_GTT;
3068 if (isr2 & AR_ISR_S2_CST)
3069 mask2 |= ATH9K_INT_CST;
3070 if (isr2 & AR_ISR_S2_TSFOOR)
3071 mask2 |= ATH9K_INT_TSFOOR;
3074 isr = REG_READ(ah, AR_ISR_RAC);
3075 if (isr == 0xffffffff) {
3076 *masked = 0;
3077 return false;
3080 *masked = isr & ATH9K_INT_COMMON;
3082 if (ah->config.intr_mitigation) {
3083 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3084 *masked |= ATH9K_INT_RX;
3087 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3088 *masked |= ATH9K_INT_RX;
3089 if (isr &
3090 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3091 AR_ISR_TXEOL)) {
3092 u32 s0_s, s1_s;
3094 *masked |= ATH9K_INT_TX;
3096 s0_s = REG_READ(ah, AR_ISR_S0_S);
3097 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3098 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3100 s1_s = REG_READ(ah, AR_ISR_S1_S);
3101 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3102 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3105 if (isr & AR_ISR_RXORN) {
3106 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3107 "receive FIFO overrun interrupt\n");
3110 if (!AR_SREV_9100(ah)) {
3111 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3112 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3113 if (isr5 & AR_ISR_S5_TIM_TIMER)
3114 *masked |= ATH9K_INT_TIM_TIMER;
3118 *masked |= mask2;
3121 if (AR_SREV_9100(ah))
3122 return true;
3124 if (sync_cause) {
3125 fatal_int =
3126 (sync_cause &
3127 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3128 ? true : false;
3130 if (fatal_int) {
3131 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3132 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3133 "received PCI FATAL interrupt\n");
3135 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3136 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3137 "received PCI PERR interrupt\n");
3139 *masked |= ATH9K_INT_FATAL;
3141 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3142 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3143 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3144 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3145 REG_WRITE(ah, AR_RC, 0);
3146 *masked |= ATH9K_INT_FATAL;
3148 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3149 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3150 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3153 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3154 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3157 return true;
3160 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3162 u32 omask = ah->mask_reg;
3163 u32 mask, mask2;
3164 struct ath9k_hw_capabilities *pCap = &ah->caps;
3166 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3168 if (omask & ATH9K_INT_GLOBAL) {
3169 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3170 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3171 (void) REG_READ(ah, AR_IER);
3172 if (!AR_SREV_9100(ah)) {
3173 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3174 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3176 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3177 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3181 mask = ints & ATH9K_INT_COMMON;
3182 mask2 = 0;
3184 if (ints & ATH9K_INT_TX) {
3185 if (ah->txok_interrupt_mask)
3186 mask |= AR_IMR_TXOK;
3187 if (ah->txdesc_interrupt_mask)
3188 mask |= AR_IMR_TXDESC;
3189 if (ah->txerr_interrupt_mask)
3190 mask |= AR_IMR_TXERR;
3191 if (ah->txeol_interrupt_mask)
3192 mask |= AR_IMR_TXEOL;
3194 if (ints & ATH9K_INT_RX) {
3195 mask |= AR_IMR_RXERR;
3196 if (ah->config.intr_mitigation)
3197 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3198 else
3199 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3200 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3201 mask |= AR_IMR_GENTMR;
3204 if (ints & (ATH9K_INT_BMISC)) {
3205 mask |= AR_IMR_BCNMISC;
3206 if (ints & ATH9K_INT_TIM)
3207 mask2 |= AR_IMR_S2_TIM;
3208 if (ints & ATH9K_INT_DTIM)
3209 mask2 |= AR_IMR_S2_DTIM;
3210 if (ints & ATH9K_INT_DTIMSYNC)
3211 mask2 |= AR_IMR_S2_DTIMSYNC;
3212 if (ints & ATH9K_INT_CABEND)
3213 mask2 |= AR_IMR_S2_CABEND;
3214 if (ints & ATH9K_INT_TSFOOR)
3215 mask2 |= AR_IMR_S2_TSFOOR;
3218 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3219 mask |= AR_IMR_BCNMISC;
3220 if (ints & ATH9K_INT_GTT)
3221 mask2 |= AR_IMR_S2_GTT;
3222 if (ints & ATH9K_INT_CST)
3223 mask2 |= AR_IMR_S2_CST;
3226 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3227 REG_WRITE(ah, AR_IMR, mask);
3228 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3229 AR_IMR_S2_DTIM |
3230 AR_IMR_S2_DTIMSYNC |
3231 AR_IMR_S2_CABEND |
3232 AR_IMR_S2_CABTO |
3233 AR_IMR_S2_TSFOOR |
3234 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3235 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3236 ah->mask_reg = ints;
3238 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3239 if (ints & ATH9K_INT_TIM_TIMER)
3240 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3241 else
3242 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3245 if (ints & ATH9K_INT_GLOBAL) {
3246 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3247 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3248 if (!AR_SREV_9100(ah)) {
3249 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3250 AR_INTR_MAC_IRQ);
3251 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3254 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3255 AR_INTR_SYNC_DEFAULT);
3256 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3257 AR_INTR_SYNC_DEFAULT);
3259 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3260 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3263 return omask;
3266 /*******************/
3267 /* Beacon Handling */
3268 /*******************/
3270 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3272 int flags = 0;
3274 ah->beacon_interval = beacon_period;
3276 switch (ah->opmode) {
3277 case NL80211_IFTYPE_STATION:
3278 case NL80211_IFTYPE_MONITOR:
3279 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3280 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3281 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3282 flags |= AR_TBTT_TIMER_EN;
3283 break;
3284 case NL80211_IFTYPE_ADHOC:
3285 case NL80211_IFTYPE_MESH_POINT:
3286 REG_SET_BIT(ah, AR_TXCFG,
3287 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3288 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3289 TU_TO_USEC(next_beacon +
3290 (ah->atim_window ? ah->
3291 atim_window : 1)));
3292 flags |= AR_NDP_TIMER_EN;
3293 case NL80211_IFTYPE_AP:
3294 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3295 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3296 TU_TO_USEC(next_beacon -
3297 ah->config.
3298 dma_beacon_response_time));
3299 REG_WRITE(ah, AR_NEXT_SWBA,
3300 TU_TO_USEC(next_beacon -
3301 ah->config.
3302 sw_beacon_response_time));
3303 flags |=
3304 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3305 break;
3306 default:
3307 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3308 "%s: unsupported opmode: %d\n",
3309 __func__, ah->opmode);
3310 return;
3311 break;
3314 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3315 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3316 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3317 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3319 beacon_period &= ~ATH9K_BEACON_ENA;
3320 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3321 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3322 ath9k_hw_reset_tsf(ah);
3325 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3328 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3329 const struct ath9k_beacon_state *bs)
3331 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3332 struct ath9k_hw_capabilities *pCap = &ah->caps;
3334 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3336 REG_WRITE(ah, AR_BEACON_PERIOD,
3337 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3338 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3339 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3341 REG_RMW_FIELD(ah, AR_RSSI_THR,
3342 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3344 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3346 if (bs->bs_sleepduration > beaconintval)
3347 beaconintval = bs->bs_sleepduration;
3349 dtimperiod = bs->bs_dtimperiod;
3350 if (bs->bs_sleepduration > dtimperiod)
3351 dtimperiod = bs->bs_sleepduration;
3353 if (beaconintval == dtimperiod)
3354 nextTbtt = bs->bs_nextdtim;
3355 else
3356 nextTbtt = bs->bs_nexttbtt;
3358 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3359 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3360 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3361 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3363 REG_WRITE(ah, AR_NEXT_DTIM,
3364 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3365 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3367 REG_WRITE(ah, AR_SLEEP1,
3368 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3369 | AR_SLEEP1_ASSUME_DTIM);
3371 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3372 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3373 else
3374 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3376 REG_WRITE(ah, AR_SLEEP2,
3377 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3379 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3380 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3382 REG_SET_BIT(ah, AR_TIMER_MODE,
3383 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3384 AR_DTIM_TIMER_EN);
3386 /* TSF Out of Range Threshold */
3387 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3390 /*******************/
3391 /* HW Capabilities */
3392 /*******************/
3394 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3396 struct ath9k_hw_capabilities *pCap = &ah->caps;
3397 u16 capField = 0, eeval;
3399 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3400 ah->regulatory.current_rd = eeval;
3402 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3403 if (AR_SREV_9285_10_OR_LATER(ah))
3404 eeval |= AR9285_RDEXT_DEFAULT;
3405 ah->regulatory.current_rd_ext = eeval;
3407 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3409 if (ah->opmode != NL80211_IFTYPE_AP &&
3410 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3411 if (ah->regulatory.current_rd == 0x64 ||
3412 ah->regulatory.current_rd == 0x65)
3413 ah->regulatory.current_rd += 5;
3414 else if (ah->regulatory.current_rd == 0x41)
3415 ah->regulatory.current_rd = 0x43;
3416 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3417 "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3420 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3421 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3423 if (eeval & AR5416_OPFLAGS_11A) {
3424 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3425 if (ah->config.ht_enable) {
3426 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3427 set_bit(ATH9K_MODE_11NA_HT20,
3428 pCap->wireless_modes);
3429 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3430 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3431 pCap->wireless_modes);
3432 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3433 pCap->wireless_modes);
3438 if (eeval & AR5416_OPFLAGS_11G) {
3439 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3440 if (ah->config.ht_enable) {
3441 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3442 set_bit(ATH9K_MODE_11NG_HT20,
3443 pCap->wireless_modes);
3444 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3445 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3446 pCap->wireless_modes);
3447 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3448 pCap->wireless_modes);
3453 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3454 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3455 !(eeval & AR5416_OPFLAGS_11A))
3456 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3457 else
3458 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3460 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3461 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3463 pCap->low_2ghz_chan = 2312;
3464 pCap->high_2ghz_chan = 2732;
3466 pCap->low_5ghz_chan = 4920;
3467 pCap->high_5ghz_chan = 6100;
3469 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3470 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3471 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3473 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3474 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3475 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3477 if (ah->config.ht_enable)
3478 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3479 else
3480 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3482 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3483 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3484 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3485 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3487 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3488 pCap->total_queues =
3489 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3490 else
3491 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3493 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3494 pCap->keycache_size =
3495 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3496 else
3497 pCap->keycache_size = AR_KEYTABLE_SIZE;
3499 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3500 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3502 if (AR_SREV_9285_10_OR_LATER(ah))
3503 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3504 else if (AR_SREV_9280_10_OR_LATER(ah))
3505 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3506 else
3507 pCap->num_gpio_pins = AR_NUM_GPIO;
3509 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3510 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3511 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3512 } else {
3513 pCap->rts_aggr_limit = (8 * 1024);
3516 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3518 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3519 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3520 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3521 ah->rfkill_gpio =
3522 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3523 ah->rfkill_polarity =
3524 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3526 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3528 #endif
3530 if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3531 (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3532 (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3533 (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3534 (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3535 (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3536 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3537 else
3538 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3540 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3541 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3542 else
3543 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3545 if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3546 pCap->reg_cap =
3547 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3548 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3549 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3550 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3551 } else {
3552 pCap->reg_cap =
3553 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3554 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3557 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3559 pCap->num_antcfg_5ghz =
3560 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3561 pCap->num_antcfg_2ghz =
3562 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3564 if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3565 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3566 ah->btactive_gpio = 6;
3567 ah->wlanactive_gpio = 5;
3571 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3572 u32 capability, u32 *result)
3574 switch (type) {
3575 case ATH9K_CAP_CIPHER:
3576 switch (capability) {
3577 case ATH9K_CIPHER_AES_CCM:
3578 case ATH9K_CIPHER_AES_OCB:
3579 case ATH9K_CIPHER_TKIP:
3580 case ATH9K_CIPHER_WEP:
3581 case ATH9K_CIPHER_MIC:
3582 case ATH9K_CIPHER_CLR:
3583 return true;
3584 default:
3585 return false;
3587 case ATH9K_CAP_TKIP_MIC:
3588 switch (capability) {
3589 case 0:
3590 return true;
3591 case 1:
3592 return (ah->sta_id1_defaults &
3593 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3594 false;
3596 case ATH9K_CAP_TKIP_SPLIT:
3597 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3598 false : true;
3599 case ATH9K_CAP_DIVERSITY:
3600 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3601 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3602 true : false;
3603 case ATH9K_CAP_MCAST_KEYSRCH:
3604 switch (capability) {
3605 case 0:
3606 return true;
3607 case 1:
3608 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3609 return false;
3610 } else {
3611 return (ah->sta_id1_defaults &
3612 AR_STA_ID1_MCAST_KSRCH) ? true :
3613 false;
3616 return false;
3617 case ATH9K_CAP_TXPOW:
3618 switch (capability) {
3619 case 0:
3620 return 0;
3621 case 1:
3622 *result = ah->regulatory.power_limit;
3623 return 0;
3624 case 2:
3625 *result = ah->regulatory.max_power_level;
3626 return 0;
3627 case 3:
3628 *result = ah->regulatory.tp_scale;
3629 return 0;
3631 return false;
3632 case ATH9K_CAP_DS:
3633 return (AR_SREV_9280_20_OR_LATER(ah) &&
3634 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3635 ? false : true;
3636 default:
3637 return false;
3641 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3642 u32 capability, u32 setting, int *status)
3644 u32 v;
3646 switch (type) {
3647 case ATH9K_CAP_TKIP_MIC:
3648 if (setting)
3649 ah->sta_id1_defaults |=
3650 AR_STA_ID1_CRPT_MIC_ENABLE;
3651 else
3652 ah->sta_id1_defaults &=
3653 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3654 return true;
3655 case ATH9K_CAP_DIVERSITY:
3656 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3657 if (setting)
3658 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3659 else
3660 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3661 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3662 return true;
3663 case ATH9K_CAP_MCAST_KEYSRCH:
3664 if (setting)
3665 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3666 else
3667 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3668 return true;
3669 default:
3670 return false;
3674 /****************************/
3675 /* GPIO / RFKILL / Antennae */
3676 /****************************/
3678 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3679 u32 gpio, u32 type)
3681 int addr;
3682 u32 gpio_shift, tmp;
3684 if (gpio > 11)
3685 addr = AR_GPIO_OUTPUT_MUX3;
3686 else if (gpio > 5)
3687 addr = AR_GPIO_OUTPUT_MUX2;
3688 else
3689 addr = AR_GPIO_OUTPUT_MUX1;
3691 gpio_shift = (gpio % 6) * 5;
3693 if (AR_SREV_9280_20_OR_LATER(ah)
3694 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3695 REG_RMW(ah, addr, (type << gpio_shift),
3696 (0x1f << gpio_shift));
3697 } else {
3698 tmp = REG_READ(ah, addr);
3699 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3700 tmp &= ~(0x1f << gpio_shift);
3701 tmp |= (type << gpio_shift);
3702 REG_WRITE(ah, addr, tmp);
3706 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3708 u32 gpio_shift;
3710 ASSERT(gpio < ah->caps.num_gpio_pins);
3712 gpio_shift = gpio << 1;
3714 REG_RMW(ah,
3715 AR_GPIO_OE_OUT,
3716 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3717 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3720 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3722 #define MS_REG_READ(x, y) \
3723 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3725 if (gpio >= ah->caps.num_gpio_pins)
3726 return 0xffffffff;
3728 if (AR_SREV_9287_10_OR_LATER(ah))
3729 return MS_REG_READ(AR9287, gpio) != 0;
3730 else if (AR_SREV_9285_10_OR_LATER(ah))
3731 return MS_REG_READ(AR9285, gpio) != 0;
3732 else if (AR_SREV_9280_10_OR_LATER(ah))
3733 return MS_REG_READ(AR928X, gpio) != 0;
3734 else
3735 return MS_REG_READ(AR, gpio) != 0;
3738 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3739 u32 ah_signal_type)
3741 u32 gpio_shift;
3743 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3745 gpio_shift = 2 * gpio;
3747 REG_RMW(ah,
3748 AR_GPIO_OE_OUT,
3749 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3750 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3753 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3755 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3756 AR_GPIO_BIT(gpio));
3759 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3761 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3764 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3766 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3769 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3770 enum ath9k_ant_setting settings,
3771 struct ath9k_channel *chan,
3772 u8 *tx_chainmask,
3773 u8 *rx_chainmask,
3774 u8 *antenna_cfgd)
3776 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3778 if (AR_SREV_9280(ah)) {
3779 if (!tx_chainmask_cfg) {
3781 tx_chainmask_cfg = *tx_chainmask;
3782 rx_chainmask_cfg = *rx_chainmask;
3785 switch (settings) {
3786 case ATH9K_ANT_FIXED_A:
3787 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3788 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3789 *antenna_cfgd = true;
3790 break;
3791 case ATH9K_ANT_FIXED_B:
3792 if (ah->caps.tx_chainmask >
3793 ATH9K_ANTENNA1_CHAINMASK) {
3794 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3796 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3797 *antenna_cfgd = true;
3798 break;
3799 case ATH9K_ANT_VARIABLE:
3800 *tx_chainmask = tx_chainmask_cfg;
3801 *rx_chainmask = rx_chainmask_cfg;
3802 *antenna_cfgd = true;
3803 break;
3804 default:
3805 break;
3807 } else {
3808 ah->diversity_control = settings;
3811 return true;
3814 /*********************/
3815 /* General Operation */
3816 /*********************/
3818 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3820 u32 bits = REG_READ(ah, AR_RX_FILTER);
3821 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3823 if (phybits & AR_PHY_ERR_RADAR)
3824 bits |= ATH9K_RX_FILTER_PHYRADAR;
3825 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3826 bits |= ATH9K_RX_FILTER_PHYERR;
3828 return bits;
3831 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3833 u32 phybits;
3835 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3836 phybits = 0;
3837 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3838 phybits |= AR_PHY_ERR_RADAR;
3839 if (bits & ATH9K_RX_FILTER_PHYERR)
3840 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3841 REG_WRITE(ah, AR_PHY_ERR, phybits);
3843 if (phybits)
3844 REG_WRITE(ah, AR_RXCFG,
3845 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3846 else
3847 REG_WRITE(ah, AR_RXCFG,
3848 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3851 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3853 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3856 bool ath9k_hw_disable(struct ath_hw *ah)
3858 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3859 return false;
3861 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3864 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3866 struct ath9k_channel *chan = ah->curchan;
3867 struct ieee80211_channel *channel = chan->chan;
3869 ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3871 ah->eep_ops->set_txpower(ah, chan,
3872 ath9k_regd_get_ctl(&ah->regulatory, chan),
3873 channel->max_antenna_gain * 2,
3874 channel->max_power * 2,
3875 min((u32) MAX_RATE_POWER,
3876 (u32) ah->regulatory.power_limit));
3879 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3881 memcpy(ah->macaddr, mac, ETH_ALEN);
3884 void ath9k_hw_setopmode(struct ath_hw *ah)
3886 ath9k_hw_set_operating_mode(ah, ah->opmode);
3889 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3891 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3892 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3895 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3897 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3898 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3901 void ath9k_hw_write_associd(struct ath_softc *sc)
3903 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3904 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3905 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3908 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3910 u64 tsf;
3912 tsf = REG_READ(ah, AR_TSF_U32);
3913 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3915 return tsf;
3918 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3920 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3921 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3924 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3926 ath9k_ps_wakeup(ah->ah_sc);
3927 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3928 AH_TSF_WRITE_TIMEOUT))
3929 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3930 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3932 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3933 ath9k_ps_restore(ah->ah_sc);
3936 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3938 if (setting)
3939 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3940 else
3941 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3943 return true;
3946 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3948 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3949 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3950 ah->slottime = (u32) -1;
3951 return false;
3952 } else {
3953 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3954 ah->slottime = us;
3955 return true;
3959 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3961 u32 macmode;
3963 if (mode == ATH9K_HT_MACMODE_2040 &&
3964 !ah->config.cwm_ignore_extcca)
3965 macmode = AR_2040_JOINED_RX_CLEAR;
3966 else
3967 macmode = 0;
3969 REG_WRITE(ah, AR_2040_MODE, macmode);
3972 /***************************/
3973 /* Bluetooth Coexistence */
3974 /***************************/
3976 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3978 /* connect bt_active to baseband */
3979 REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3980 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3981 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3983 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3984 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3986 /* Set input mux for bt_active to gpio pin */
3987 REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3988 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3989 ah->btactive_gpio);
3991 /* Configure the desired gpio port for input */
3992 ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3994 /* Configure the desired GPIO port for TX_FRAME output */
3995 ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3996 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);