mm: migration: allow migration to operate asynchronously and avoid synchronous compac...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob0fd486467b4b953f318510744dc2b87d71f7d021
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
132 static void __free_pages_ok(struct page *page, unsigned int order);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
154 #endif
158 EXPORT_SYMBOL(totalram_pages);
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
174 int min_free_kbytes = 1024;
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
221 int page_group_by_mobility_disabled __read_mostly;
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
233 bool oom_killer_disabled __read_mostly;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
250 return ret;
253 static int page_is_consistent(struct zone *zone, struct page *page)
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
260 return 1;
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone *zone, struct page *page)
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
272 return 0;
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
277 return 0;
279 #endif
281 static void bad_page(struct page *page)
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
308 nr_shown = 0;
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
355 __SetPageTail(p);
356 p->first_page = page;
360 static int destroy_compound_page(struct page *page, unsigned long order)
362 int i;
363 int nr_pages = 1 << order;
364 int bad = 0;
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
368 bad_page(page);
369 bad++;
372 __ClearPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 bad_page(page);
379 bad++;
381 __ClearPageTail(p);
384 return bad;
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 int i;
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
400 static inline void set_page_order(struct page *page, int order)
402 set_page_private(page, order);
403 __SetPageBuddy(page);
406 static inline void rmv_page_order(struct page *page)
408 __ClearPageBuddy(page);
409 set_page_private(page, 0);
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 static inline struct page *
430 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
432 unsigned long buddy_idx = page_idx ^ (1 << order);
434 return page + (buddy_idx - page_idx);
437 static inline unsigned long
438 __find_combined_index(unsigned long page_idx, unsigned int order)
440 return (page_idx & ~(1 << order));
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
446 * (a) the buddy is not in a hole &&
447 * (b) the buddy is in the buddy system &&
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
454 * For recording page's order, we use page_private(page).
456 static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
459 if (!pfn_valid_within(page_to_pfn(buddy)))
460 return 0;
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
466 VM_BUG_ON(page_count(buddy) != 0);
467 return 1;
469 return 0;
473 * Freeing function for a buddy system allocator.
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
486 * order is recorded in page_private(page) field.
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
493 * -- wli
496 static inline void __free_one_page(struct page *page,
497 struct zone *zone, unsigned int order,
498 int migratetype)
500 unsigned long page_idx;
501 unsigned long combined_idx;
502 struct page *buddy;
504 if (unlikely(PageCompound(page)))
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
508 VM_BUG_ON(migratetype == -1);
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
512 VM_BUG_ON(page_idx & ((1 << order) - 1));
513 VM_BUG_ON(bad_range(zone, page));
515 while (order < MAX_ORDER-1) {
516 buddy = __page_find_buddy(page, page_idx, order);
517 if (!page_is_buddy(page, buddy, order))
518 break;
520 /* Our buddy is free, merge with it and move up one order. */
521 list_del(&buddy->lru);
522 zone->free_area[order].nr_free--;
523 rmv_page_order(buddy);
524 combined_idx = __find_combined_index(page_idx, order);
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
529 set_page_order(page, order);
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 zone->free_area[order].nr_free++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page *page)
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
567 static inline int free_pages_check(struct page *page)
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
573 bad_page(page);
574 return 1;
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
582 * Frees a number of pages from the PCP lists
583 * Assumes all pages on list are in same zone, and of same order.
584 * count is the number of pages to free.
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
592 static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
595 int migratetype = 0;
596 int batch_free = 0;
597 int to_free = count;
599 spin_lock(&zone->lock);
600 zone->all_unreclaimable = 0;
601 zone->pages_scanned = 0;
603 while (to_free) {
604 struct page *page;
605 struct list_head *list;
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
614 do {
615 batch_free++;
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 } while (--to_free && --batch_free && !list_empty(list));
630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 spin_unlock(&zone->lock);
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
641 __free_one_page(page, zone, order, migratetype);
642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 spin_unlock(&zone->lock);
646 static bool free_pages_prepare(struct page *page, unsigned int order)
648 int i;
649 int bad = 0;
651 trace_mm_page_free_direct(page, order);
652 kmemcheck_free_shadow(page, order);
654 for (i = 0; i < (1 << order); i++) {
655 struct page *pg = page + i;
657 if (PageAnon(pg))
658 pg->mapping = NULL;
659 bad += free_pages_check(pg);
661 if (bad)
662 return false;
664 if (!PageHighMem(page)) {
665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
669 arch_free_page(page, order);
670 kernel_map_pages(page, 1 << order, 0);
672 return true;
675 static void __free_pages_ok(struct page *page, unsigned int order)
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
680 if (!free_pages_prepare(page, order))
681 return;
683 local_irq_save(flags);
684 if (unlikely(wasMlocked))
685 free_page_mlock(page);
686 __count_vm_events(PGFREE, 1 << order);
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
689 local_irq_restore(flags);
693 * permit the bootmem allocator to evade page validation on high-order frees
695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
700 set_page_refcounted(page);
701 __free_page(page);
702 } else {
703 int loop;
705 prefetchw(page);
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
715 set_page_refcounted(page);
716 __free_pages(page, order);
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
733 * -- wli
735 static inline void expand(struct zone *zone, struct page *page,
736 int low, int high, struct free_area *area,
737 int migratetype)
739 unsigned long size = 1 << high;
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
745 VM_BUG_ON(bad_range(zone, &page[size]));
746 list_add(&page[size].lru, &area->free_list[migratetype]);
747 area->nr_free++;
748 set_page_order(&page[size], high);
753 * This page is about to be returned from the page allocator
755 static inline int check_new_page(struct page *page)
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
759 (atomic_read(&page->_count) != 0) |
760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
761 bad_page(page);
762 return 1;
764 return 0;
767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
769 int i;
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
777 set_page_private(page, 0);
778 set_page_refcounted(page);
780 arch_alloc_page(page, order);
781 kernel_map_pages(page, 1 << order, 1);
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
789 return 0;
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
796 static inline
797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
798 int migratetype)
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
819 return NULL;
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
839 static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
843 struct page *page;
844 unsigned long order;
845 int pages_moved = 0;
847 #ifndef CONFIG_HOLES_IN_ZONE
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856 #endif
858 for (page = start_page; page <= end_page;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
872 order = page_order(page);
873 list_del(&page->lru);
874 list_add(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
877 pages_moved += 1 << order;
880 return pages_moved;
883 static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
889 start_pfn = page_to_pfn(page);
890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
891 start_page = pfn_to_page(start_pfn);
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
901 return move_freepages(zone, start_page, end_page, migratetype);
904 static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page *
917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
943 * If breaking a large block of pages, move all free
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
955 /* Claim the whole block if over half of it is free */
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
958 set_pageblock_migratetype(page,
959 start_migratetype);
961 migratetype = start_migratetype;
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
971 start_migratetype);
973 expand(zone, page, order, current_order, area, migratetype);
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
978 return page;
982 return NULL;
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
989 static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
992 struct page *page;
994 retry_reserve:
995 page = __rmqueue_smallest(zone, order, migratetype);
997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
998 page = __rmqueue_fallback(zone, order, migratetype);
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1012 return page;
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1020 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1021 unsigned long count, struct list_head *list,
1022 int migratetype, int cold)
1024 int i;
1026 spin_lock(&zone->lock);
1027 for (i = 0; i < count; ++i) {
1028 struct page *page = __rmqueue(zone, order, migratetype);
1029 if (unlikely(page == NULL))
1030 break;
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
1045 set_page_private(page, migratetype);
1046 list = &page->lru;
1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1049 spin_unlock(&zone->lock);
1050 return i;
1053 #ifdef CONFIG_NUMA
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1064 unsigned long flags;
1065 int to_drain;
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
1072 free_pcppages_bulk(zone, to_drain, pcp);
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
1076 #endif
1079 * Drain pages of the indicated processor.
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1085 static void drain_pages(unsigned int cpu)
1087 unsigned long flags;
1088 struct zone *zone;
1090 for_each_populated_zone(zone) {
1091 struct per_cpu_pageset *pset;
1092 struct per_cpu_pages *pcp;
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
1097 pcp = &pset->pcp;
1098 free_pcppages_bulk(zone, pcp->count, pcp);
1099 pcp->count = 0;
1100 local_irq_restore(flags);
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1107 void drain_local_pages(void *arg)
1109 drain_pages(smp_processor_id());
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1115 void drain_all_pages(void)
1117 on_each_cpu(drain_local_pages, NULL, 1);
1120 #ifdef CONFIG_HIBERNATION
1122 void mark_free_pages(struct zone *zone)
1124 unsigned long pfn, max_zone_pfn;
1125 unsigned long flags;
1126 int order, t;
1127 struct list_head *curr;
1129 if (!zone->spanned_pages)
1130 return;
1132 spin_lock_irqsave(&zone->lock, flags);
1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 if (pfn_valid(pfn)) {
1137 struct page *page = pfn_to_page(pfn);
1139 if (!swsusp_page_is_forbidden(page))
1140 swsusp_unset_page_free(page);
1143 for_each_migratetype_order(order, t) {
1144 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1145 unsigned long i;
1147 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 for (i = 0; i < (1UL << order); i++)
1149 swsusp_set_page_free(pfn_to_page(pfn + i));
1152 spin_unlock_irqrestore(&zone->lock, flags);
1154 #endif /* CONFIG_PM */
1157 * Free a 0-order page
1158 * cold == 1 ? free a cold page : free a hot page
1160 void free_hot_cold_page(struct page *page, int cold)
1162 struct zone *zone = page_zone(page);
1163 struct per_cpu_pages *pcp;
1164 unsigned long flags;
1165 int migratetype;
1166 int wasMlocked = __TestClearPageMlocked(page);
1168 if (!free_pages_prepare(page, 0))
1169 return;
1171 migratetype = get_pageblock_migratetype(page);
1172 set_page_private(page, migratetype);
1173 local_irq_save(flags);
1174 if (unlikely(wasMlocked))
1175 free_page_mlock(page);
1176 __count_vm_event(PGFREE);
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1185 if (migratetype >= MIGRATE_PCPTYPES) {
1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 free_one_page(zone, page, 0, migratetype);
1188 goto out;
1190 migratetype = MIGRATE_MOVABLE;
1193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1194 if (cold)
1195 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1196 else
1197 list_add(&page->lru, &pcp->lists[migratetype]);
1198 pcp->count++;
1199 if (pcp->count >= pcp->high) {
1200 free_pcppages_bulk(zone, pcp->batch, pcp);
1201 pcp->count -= pcp->batch;
1204 out:
1205 local_irq_restore(flags);
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1216 void split_page(struct page *page, unsigned int order)
1218 int i;
1220 VM_BUG_ON(PageCompound(page));
1221 VM_BUG_ON(!page_count(page));
1223 #ifdef CONFIG_KMEMCHECK
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1228 if (kmemcheck_page_is_tracked(page))
1229 split_page(virt_to_page(page[0].shadow), order);
1230 #endif
1232 for (i = 1; i < (1 << order); i++)
1233 set_page_refcounted(page + i);
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241 * are enabled.
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1246 int split_free_page(struct page *page)
1248 unsigned int order;
1249 unsigned long watermark;
1250 struct zone *zone;
1252 BUG_ON(!PageBuddy(page));
1254 zone = page_zone(page);
1255 order = page_order(page);
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark = low_wmark_pages(zone) + (1 << order);
1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 return 0;
1262 /* Remove page from free list */
1263 list_del(&page->lru);
1264 zone->free_area[order].nr_free--;
1265 rmv_page_order(page);
1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1268 /* Split into individual pages */
1269 set_page_refcounted(page);
1270 split_page(page, order);
1272 if (order >= pageblock_order - 1) {
1273 struct page *endpage = page + (1 << order) - 1;
1274 for (; page < endpage; page += pageblock_nr_pages)
1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1278 return 1 << order;
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1284 * or two.
1286 static inline
1287 struct page *buffered_rmqueue(struct zone *preferred_zone,
1288 struct zone *zone, int order, gfp_t gfp_flags,
1289 int migratetype)
1291 unsigned long flags;
1292 struct page *page;
1293 int cold = !!(gfp_flags & __GFP_COLD);
1295 again:
1296 if (likely(order == 0)) {
1297 struct per_cpu_pages *pcp;
1298 struct list_head *list;
1300 local_irq_save(flags);
1301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 list = &pcp->lists[migratetype];
1303 if (list_empty(list)) {
1304 pcp->count += rmqueue_bulk(zone, 0,
1305 pcp->batch, list,
1306 migratetype, cold);
1307 if (unlikely(list_empty(list)))
1308 goto failed;
1311 if (cold)
1312 page = list_entry(list->prev, struct page, lru);
1313 else
1314 page = list_entry(list->next, struct page, lru);
1316 list_del(&page->lru);
1317 pcp->count--;
1318 } else {
1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1321 * __GFP_NOFAIL is not to be used in new code.
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1326 * We most definitely don't want callers attempting to
1327 * allocate greater than order-1 page units with
1328 * __GFP_NOFAIL.
1330 WARN_ON_ONCE(order > 1);
1332 spin_lock_irqsave(&zone->lock, flags);
1333 page = __rmqueue(zone, order, migratetype);
1334 spin_unlock(&zone->lock);
1335 if (!page)
1336 goto failed;
1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1341 zone_statistics(preferred_zone, zone);
1342 local_irq_restore(flags);
1344 VM_BUG_ON(bad_range(zone, page));
1345 if (prep_new_page(page, order, gfp_flags))
1346 goto again;
1347 return page;
1349 failed:
1350 local_irq_restore(flags);
1351 return NULL;
1354 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355 #define ALLOC_WMARK_MIN WMARK_MIN
1356 #define ALLOC_WMARK_LOW WMARK_LOW
1357 #define ALLOC_WMARK_HIGH WMARK_HIGH
1358 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1360 /* Mask to get the watermark bits */
1361 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1363 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1364 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1367 #ifdef CONFIG_FAIL_PAGE_ALLOC
1369 static struct fail_page_alloc_attr {
1370 struct fault_attr attr;
1372 u32 ignore_gfp_highmem;
1373 u32 ignore_gfp_wait;
1374 u32 min_order;
1376 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1378 struct dentry *ignore_gfp_highmem_file;
1379 struct dentry *ignore_gfp_wait_file;
1380 struct dentry *min_order_file;
1382 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1384 } fail_page_alloc = {
1385 .attr = FAULT_ATTR_INITIALIZER,
1386 .ignore_gfp_wait = 1,
1387 .ignore_gfp_highmem = 1,
1388 .min_order = 1,
1391 static int __init setup_fail_page_alloc(char *str)
1393 return setup_fault_attr(&fail_page_alloc.attr, str);
1395 __setup("fail_page_alloc=", setup_fail_page_alloc);
1397 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1399 if (order < fail_page_alloc.min_order)
1400 return 0;
1401 if (gfp_mask & __GFP_NOFAIL)
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 return 0;
1408 return should_fail(&fail_page_alloc.attr, 1 << order);
1411 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1413 static int __init fail_page_alloc_debugfs(void)
1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 struct dentry *dir;
1417 int err;
1419 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 "fail_page_alloc");
1421 if (err)
1422 return err;
1423 dir = fail_page_alloc.attr.dentries.dir;
1425 fail_page_alloc.ignore_gfp_wait_file =
1426 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 &fail_page_alloc.ignore_gfp_wait);
1429 fail_page_alloc.ignore_gfp_highmem_file =
1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 &fail_page_alloc.ignore_gfp_highmem);
1432 fail_page_alloc.min_order_file =
1433 debugfs_create_u32("min-order", mode, dir,
1434 &fail_page_alloc.min_order);
1436 if (!fail_page_alloc.ignore_gfp_wait_file ||
1437 !fail_page_alloc.ignore_gfp_highmem_file ||
1438 !fail_page_alloc.min_order_file) {
1439 err = -ENOMEM;
1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1442 debugfs_remove(fail_page_alloc.min_order_file);
1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1446 return err;
1449 late_initcall(fail_page_alloc_debugfs);
1451 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1453 #else /* CONFIG_FAIL_PAGE_ALLOC */
1455 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1457 return 0;
1460 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1463 * Return true if free pages are above 'mark'. This takes into account the order
1464 * of the allocation.
1466 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 int classzone_idx, int alloc_flags, long free_pages)
1469 /* free_pages my go negative - that's OK */
1470 long min = mark;
1471 int o;
1473 free_pages -= (1 << order) + 1;
1474 if (alloc_flags & ALLOC_HIGH)
1475 min -= min / 2;
1476 if (alloc_flags & ALLOC_HARDER)
1477 min -= min / 4;
1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1480 return false;
1481 for (o = 0; o < order; o++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages -= z->free_area[o].nr_free << o;
1485 /* Require fewer higher order pages to be free */
1486 min >>= 1;
1488 if (free_pages <= min)
1489 return false;
1491 return true;
1494 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1497 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1498 zone_page_state(z, NR_FREE_PAGES));
1501 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1502 int classzone_idx, int alloc_flags)
1504 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1506 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1507 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1510 free_pages);
1513 #ifdef CONFIG_NUMA
1515 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1516 * skip over zones that are not allowed by the cpuset, or that have
1517 * been recently (in last second) found to be nearly full. See further
1518 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1519 * that have to skip over a lot of full or unallowed zones.
1521 * If the zonelist cache is present in the passed in zonelist, then
1522 * returns a pointer to the allowed node mask (either the current
1523 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1525 * If the zonelist cache is not available for this zonelist, does
1526 * nothing and returns NULL.
1528 * If the fullzones BITMAP in the zonelist cache is stale (more than
1529 * a second since last zap'd) then we zap it out (clear its bits.)
1531 * We hold off even calling zlc_setup, until after we've checked the
1532 * first zone in the zonelist, on the theory that most allocations will
1533 * be satisfied from that first zone, so best to examine that zone as
1534 * quickly as we can.
1536 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1538 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1539 nodemask_t *allowednodes; /* zonelist_cache approximation */
1541 zlc = zonelist->zlcache_ptr;
1542 if (!zlc)
1543 return NULL;
1545 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1546 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1547 zlc->last_full_zap = jiffies;
1550 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1551 &cpuset_current_mems_allowed :
1552 &node_states[N_HIGH_MEMORY];
1553 return allowednodes;
1557 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1558 * if it is worth looking at further for free memory:
1559 * 1) Check that the zone isn't thought to be full (doesn't have its
1560 * bit set in the zonelist_cache fullzones BITMAP).
1561 * 2) Check that the zones node (obtained from the zonelist_cache
1562 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1563 * Return true (non-zero) if zone is worth looking at further, or
1564 * else return false (zero) if it is not.
1566 * This check -ignores- the distinction between various watermarks,
1567 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1568 * found to be full for any variation of these watermarks, it will
1569 * be considered full for up to one second by all requests, unless
1570 * we are so low on memory on all allowed nodes that we are forced
1571 * into the second scan of the zonelist.
1573 * In the second scan we ignore this zonelist cache and exactly
1574 * apply the watermarks to all zones, even it is slower to do so.
1575 * We are low on memory in the second scan, and should leave no stone
1576 * unturned looking for a free page.
1578 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1579 nodemask_t *allowednodes)
1581 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1582 int i; /* index of *z in zonelist zones */
1583 int n; /* node that zone *z is on */
1585 zlc = zonelist->zlcache_ptr;
1586 if (!zlc)
1587 return 1;
1589 i = z - zonelist->_zonerefs;
1590 n = zlc->z_to_n[i];
1592 /* This zone is worth trying if it is allowed but not full */
1593 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1597 * Given 'z' scanning a zonelist, set the corresponding bit in
1598 * zlc->fullzones, so that subsequent attempts to allocate a page
1599 * from that zone don't waste time re-examining it.
1601 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1603 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1604 int i; /* index of *z in zonelist zones */
1606 zlc = zonelist->zlcache_ptr;
1607 if (!zlc)
1608 return;
1610 i = z - zonelist->_zonerefs;
1612 set_bit(i, zlc->fullzones);
1615 #else /* CONFIG_NUMA */
1617 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619 return NULL;
1622 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1623 nodemask_t *allowednodes)
1625 return 1;
1628 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1631 #endif /* CONFIG_NUMA */
1634 * get_page_from_freelist goes through the zonelist trying to allocate
1635 * a page.
1637 static struct page *
1638 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1639 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1640 struct zone *preferred_zone, int migratetype)
1642 struct zoneref *z;
1643 struct page *page = NULL;
1644 int classzone_idx;
1645 struct zone *zone;
1646 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1647 int zlc_active = 0; /* set if using zonelist_cache */
1648 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1650 classzone_idx = zone_idx(preferred_zone);
1651 zonelist_scan:
1653 * Scan zonelist, looking for a zone with enough free.
1654 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1656 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1657 high_zoneidx, nodemask) {
1658 if (NUMA_BUILD && zlc_active &&
1659 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1660 continue;
1661 if ((alloc_flags & ALLOC_CPUSET) &&
1662 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1663 goto try_next_zone;
1665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1666 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1667 unsigned long mark;
1668 int ret;
1670 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1671 if (zone_watermark_ok(zone, order, mark,
1672 classzone_idx, alloc_flags))
1673 goto try_this_zone;
1675 if (zone_reclaim_mode == 0)
1676 goto this_zone_full;
1678 ret = zone_reclaim(zone, gfp_mask, order);
1679 switch (ret) {
1680 case ZONE_RECLAIM_NOSCAN:
1681 /* did not scan */
1682 goto try_next_zone;
1683 case ZONE_RECLAIM_FULL:
1684 /* scanned but unreclaimable */
1685 goto this_zone_full;
1686 default:
1687 /* did we reclaim enough */
1688 if (!zone_watermark_ok(zone, order, mark,
1689 classzone_idx, alloc_flags))
1690 goto this_zone_full;
1694 try_this_zone:
1695 page = buffered_rmqueue(preferred_zone, zone, order,
1696 gfp_mask, migratetype);
1697 if (page)
1698 break;
1699 this_zone_full:
1700 if (NUMA_BUILD)
1701 zlc_mark_zone_full(zonelist, z);
1702 try_next_zone:
1703 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1705 * we do zlc_setup after the first zone is tried but only
1706 * if there are multiple nodes make it worthwhile
1708 allowednodes = zlc_setup(zonelist, alloc_flags);
1709 zlc_active = 1;
1710 did_zlc_setup = 1;
1714 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1715 /* Disable zlc cache for second zonelist scan */
1716 zlc_active = 0;
1717 goto zonelist_scan;
1719 return page;
1722 static inline int
1723 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1724 unsigned long pages_reclaimed)
1726 /* Do not loop if specifically requested */
1727 if (gfp_mask & __GFP_NORETRY)
1728 return 0;
1731 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1732 * means __GFP_NOFAIL, but that may not be true in other
1733 * implementations.
1735 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1736 return 1;
1739 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1740 * specified, then we retry until we no longer reclaim any pages
1741 * (above), or we've reclaimed an order of pages at least as
1742 * large as the allocation's order. In both cases, if the
1743 * allocation still fails, we stop retrying.
1745 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1746 return 1;
1749 * Don't let big-order allocations loop unless the caller
1750 * explicitly requests that.
1752 if (gfp_mask & __GFP_NOFAIL)
1753 return 1;
1755 return 0;
1758 static inline struct page *
1759 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1760 struct zonelist *zonelist, enum zone_type high_zoneidx,
1761 nodemask_t *nodemask, struct zone *preferred_zone,
1762 int migratetype)
1764 struct page *page;
1766 /* Acquire the OOM killer lock for the zones in zonelist */
1767 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1768 schedule_timeout_uninterruptible(1);
1769 return NULL;
1773 * Go through the zonelist yet one more time, keep very high watermark
1774 * here, this is only to catch a parallel oom killing, we must fail if
1775 * we're still under heavy pressure.
1777 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1778 order, zonelist, high_zoneidx,
1779 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1780 preferred_zone, migratetype);
1781 if (page)
1782 goto out;
1784 if (!(gfp_mask & __GFP_NOFAIL)) {
1785 /* The OOM killer will not help higher order allocs */
1786 if (order > PAGE_ALLOC_COSTLY_ORDER)
1787 goto out;
1788 /* The OOM killer does not needlessly kill tasks for lowmem */
1789 if (high_zoneidx < ZONE_NORMAL)
1790 goto out;
1792 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1793 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1794 * The caller should handle page allocation failure by itself if
1795 * it specifies __GFP_THISNODE.
1796 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1798 if (gfp_mask & __GFP_THISNODE)
1799 goto out;
1801 /* Exhausted what can be done so it's blamo time */
1802 out_of_memory(zonelist, gfp_mask, order, nodemask);
1804 out:
1805 clear_zonelist_oom(zonelist, gfp_mask);
1806 return page;
1809 #ifdef CONFIG_COMPACTION
1810 /* Try memory compaction for high-order allocations before reclaim */
1811 static struct page *
1812 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1813 struct zonelist *zonelist, enum zone_type high_zoneidx,
1814 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1815 int migratetype, unsigned long *did_some_progress,
1816 bool sync_migration)
1818 struct page *page;
1819 struct task_struct *tsk = current;
1821 if (!order || compaction_deferred(preferred_zone))
1822 return NULL;
1824 tsk->flags |= PF_MEMALLOC;
1825 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1826 nodemask, sync_migration);
1827 tsk->flags &= ~PF_MEMALLOC;
1828 if (*did_some_progress != COMPACT_SKIPPED) {
1830 /* Page migration frees to the PCP lists but we want merging */
1831 drain_pages(get_cpu());
1832 put_cpu();
1834 page = get_page_from_freelist(gfp_mask, nodemask,
1835 order, zonelist, high_zoneidx,
1836 alloc_flags, preferred_zone,
1837 migratetype);
1838 if (page) {
1839 preferred_zone->compact_considered = 0;
1840 preferred_zone->compact_defer_shift = 0;
1841 count_vm_event(COMPACTSUCCESS);
1842 return page;
1846 * It's bad if compaction run occurs and fails.
1847 * The most likely reason is that pages exist,
1848 * but not enough to satisfy watermarks.
1850 count_vm_event(COMPACTFAIL);
1851 defer_compaction(preferred_zone);
1853 cond_resched();
1856 return NULL;
1858 #else
1859 static inline struct page *
1860 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1861 struct zonelist *zonelist, enum zone_type high_zoneidx,
1862 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1863 int migratetype, unsigned long *did_some_progress,
1864 bool sync_migration)
1866 return NULL;
1868 #endif /* CONFIG_COMPACTION */
1870 /* The really slow allocator path where we enter direct reclaim */
1871 static inline struct page *
1872 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1873 struct zonelist *zonelist, enum zone_type high_zoneidx,
1874 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1875 int migratetype, unsigned long *did_some_progress)
1877 struct page *page = NULL;
1878 struct reclaim_state reclaim_state;
1879 struct task_struct *p = current;
1880 bool drained = false;
1882 cond_resched();
1884 /* We now go into synchronous reclaim */
1885 cpuset_memory_pressure_bump();
1886 p->flags |= PF_MEMALLOC;
1887 lockdep_set_current_reclaim_state(gfp_mask);
1888 reclaim_state.reclaimed_slab = 0;
1889 p->reclaim_state = &reclaim_state;
1891 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1893 p->reclaim_state = NULL;
1894 lockdep_clear_current_reclaim_state();
1895 p->flags &= ~PF_MEMALLOC;
1897 cond_resched();
1899 if (unlikely(!(*did_some_progress)))
1900 return NULL;
1902 retry:
1903 page = get_page_from_freelist(gfp_mask, nodemask, order,
1904 zonelist, high_zoneidx,
1905 alloc_flags, preferred_zone,
1906 migratetype);
1909 * If an allocation failed after direct reclaim, it could be because
1910 * pages are pinned on the per-cpu lists. Drain them and try again
1912 if (!page && !drained) {
1913 drain_all_pages();
1914 drained = true;
1915 goto retry;
1918 return page;
1922 * This is called in the allocator slow-path if the allocation request is of
1923 * sufficient urgency to ignore watermarks and take other desperate measures
1925 static inline struct page *
1926 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1927 struct zonelist *zonelist, enum zone_type high_zoneidx,
1928 nodemask_t *nodemask, struct zone *preferred_zone,
1929 int migratetype)
1931 struct page *page;
1933 do {
1934 page = get_page_from_freelist(gfp_mask, nodemask, order,
1935 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1936 preferred_zone, migratetype);
1938 if (!page && gfp_mask & __GFP_NOFAIL)
1939 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1940 } while (!page && (gfp_mask & __GFP_NOFAIL));
1942 return page;
1945 static inline
1946 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1947 enum zone_type high_zoneidx)
1949 struct zoneref *z;
1950 struct zone *zone;
1952 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1953 wakeup_kswapd(zone, order);
1956 static inline int
1957 gfp_to_alloc_flags(gfp_t gfp_mask)
1959 struct task_struct *p = current;
1960 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1961 const gfp_t wait = gfp_mask & __GFP_WAIT;
1963 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1964 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1967 * The caller may dip into page reserves a bit more if the caller
1968 * cannot run direct reclaim, or if the caller has realtime scheduling
1969 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1970 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1972 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1974 if (!wait) {
1975 alloc_flags |= ALLOC_HARDER;
1977 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1978 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1980 alloc_flags &= ~ALLOC_CPUSET;
1981 } else if (unlikely(rt_task(p)) && !in_interrupt())
1982 alloc_flags |= ALLOC_HARDER;
1984 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1985 if (!in_interrupt() &&
1986 ((p->flags & PF_MEMALLOC) ||
1987 unlikely(test_thread_flag(TIF_MEMDIE))))
1988 alloc_flags |= ALLOC_NO_WATERMARKS;
1991 return alloc_flags;
1994 static inline struct page *
1995 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1996 struct zonelist *zonelist, enum zone_type high_zoneidx,
1997 nodemask_t *nodemask, struct zone *preferred_zone,
1998 int migratetype)
2000 const gfp_t wait = gfp_mask & __GFP_WAIT;
2001 struct page *page = NULL;
2002 int alloc_flags;
2003 unsigned long pages_reclaimed = 0;
2004 unsigned long did_some_progress;
2005 struct task_struct *p = current;
2006 bool sync_migration = false;
2009 * In the slowpath, we sanity check order to avoid ever trying to
2010 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2011 * be using allocators in order of preference for an area that is
2012 * too large.
2014 if (order >= MAX_ORDER) {
2015 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2016 return NULL;
2020 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2021 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2022 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2023 * using a larger set of nodes after it has established that the
2024 * allowed per node queues are empty and that nodes are
2025 * over allocated.
2027 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2028 goto nopage;
2030 restart:
2031 wake_all_kswapd(order, zonelist, high_zoneidx);
2034 * OK, we're below the kswapd watermark and have kicked background
2035 * reclaim. Now things get more complex, so set up alloc_flags according
2036 * to how we want to proceed.
2038 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2040 /* This is the last chance, in general, before the goto nopage. */
2041 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2042 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2043 preferred_zone, migratetype);
2044 if (page)
2045 goto got_pg;
2047 rebalance:
2048 /* Allocate without watermarks if the context allows */
2049 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2050 page = __alloc_pages_high_priority(gfp_mask, order,
2051 zonelist, high_zoneidx, nodemask,
2052 preferred_zone, migratetype);
2053 if (page)
2054 goto got_pg;
2057 /* Atomic allocations - we can't balance anything */
2058 if (!wait)
2059 goto nopage;
2061 /* Avoid recursion of direct reclaim */
2062 if (p->flags & PF_MEMALLOC)
2063 goto nopage;
2065 /* Avoid allocations with no watermarks from looping endlessly */
2066 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2067 goto nopage;
2070 * Try direct compaction. The first pass is asynchronous. Subsequent
2071 * attempts after direct reclaim are synchronous
2073 page = __alloc_pages_direct_compact(gfp_mask, order,
2074 zonelist, high_zoneidx,
2075 nodemask,
2076 alloc_flags, preferred_zone,
2077 migratetype, &did_some_progress,
2078 sync_migration);
2079 if (page)
2080 goto got_pg;
2081 sync_migration = true;
2083 /* Try direct reclaim and then allocating */
2084 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2085 zonelist, high_zoneidx,
2086 nodemask,
2087 alloc_flags, preferred_zone,
2088 migratetype, &did_some_progress);
2089 if (page)
2090 goto got_pg;
2093 * If we failed to make any progress reclaiming, then we are
2094 * running out of options and have to consider going OOM
2096 if (!did_some_progress) {
2097 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2098 if (oom_killer_disabled)
2099 goto nopage;
2100 page = __alloc_pages_may_oom(gfp_mask, order,
2101 zonelist, high_zoneidx,
2102 nodemask, preferred_zone,
2103 migratetype);
2104 if (page)
2105 goto got_pg;
2107 if (!(gfp_mask & __GFP_NOFAIL)) {
2109 * The oom killer is not called for high-order
2110 * allocations that may fail, so if no progress
2111 * is being made, there are no other options and
2112 * retrying is unlikely to help.
2114 if (order > PAGE_ALLOC_COSTLY_ORDER)
2115 goto nopage;
2117 * The oom killer is not called for lowmem
2118 * allocations to prevent needlessly killing
2119 * innocent tasks.
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto nopage;
2125 goto restart;
2129 /* Check if we should retry the allocation */
2130 pages_reclaimed += did_some_progress;
2131 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2132 /* Wait for some write requests to complete then retry */
2133 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2134 goto rebalance;
2135 } else {
2137 * High-order allocations do not necessarily loop after
2138 * direct reclaim and reclaim/compaction depends on compaction
2139 * being called after reclaim so call directly if necessary
2141 page = __alloc_pages_direct_compact(gfp_mask, order,
2142 zonelist, high_zoneidx,
2143 nodemask,
2144 alloc_flags, preferred_zone,
2145 migratetype, &did_some_progress,
2146 sync_migration);
2147 if (page)
2148 goto got_pg;
2151 nopage:
2152 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2153 printk(KERN_WARNING "%s: page allocation failure."
2154 " order:%d, mode:0x%x\n",
2155 p->comm, order, gfp_mask);
2156 dump_stack();
2157 show_mem();
2159 return page;
2160 got_pg:
2161 if (kmemcheck_enabled)
2162 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2163 return page;
2168 * This is the 'heart' of the zoned buddy allocator.
2170 struct page *
2171 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2172 struct zonelist *zonelist, nodemask_t *nodemask)
2174 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2175 struct zone *preferred_zone;
2176 struct page *page;
2177 int migratetype = allocflags_to_migratetype(gfp_mask);
2179 gfp_mask &= gfp_allowed_mask;
2181 lockdep_trace_alloc(gfp_mask);
2183 might_sleep_if(gfp_mask & __GFP_WAIT);
2185 if (should_fail_alloc_page(gfp_mask, order))
2186 return NULL;
2189 * Check the zones suitable for the gfp_mask contain at least one
2190 * valid zone. It's possible to have an empty zonelist as a result
2191 * of GFP_THISNODE and a memoryless node
2193 if (unlikely(!zonelist->_zonerefs->zone))
2194 return NULL;
2196 get_mems_allowed();
2197 /* The preferred zone is used for statistics later */
2198 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2199 if (!preferred_zone) {
2200 put_mems_allowed();
2201 return NULL;
2204 /* First allocation attempt */
2205 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2206 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2207 preferred_zone, migratetype);
2208 if (unlikely(!page))
2209 page = __alloc_pages_slowpath(gfp_mask, order,
2210 zonelist, high_zoneidx, nodemask,
2211 preferred_zone, migratetype);
2212 put_mems_allowed();
2214 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2215 return page;
2217 EXPORT_SYMBOL(__alloc_pages_nodemask);
2220 * Common helper functions.
2222 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2224 struct page *page;
2227 * __get_free_pages() returns a 32-bit address, which cannot represent
2228 * a highmem page
2230 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2232 page = alloc_pages(gfp_mask, order);
2233 if (!page)
2234 return 0;
2235 return (unsigned long) page_address(page);
2237 EXPORT_SYMBOL(__get_free_pages);
2239 unsigned long get_zeroed_page(gfp_t gfp_mask)
2241 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2243 EXPORT_SYMBOL(get_zeroed_page);
2245 void __pagevec_free(struct pagevec *pvec)
2247 int i = pagevec_count(pvec);
2249 while (--i >= 0) {
2250 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2251 free_hot_cold_page(pvec->pages[i], pvec->cold);
2255 void __free_pages(struct page *page, unsigned int order)
2257 if (put_page_testzero(page)) {
2258 if (order == 0)
2259 free_hot_cold_page(page, 0);
2260 else
2261 __free_pages_ok(page, order);
2265 EXPORT_SYMBOL(__free_pages);
2267 void free_pages(unsigned long addr, unsigned int order)
2269 if (addr != 0) {
2270 VM_BUG_ON(!virt_addr_valid((void *)addr));
2271 __free_pages(virt_to_page((void *)addr), order);
2275 EXPORT_SYMBOL(free_pages);
2278 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2279 * @size: the number of bytes to allocate
2280 * @gfp_mask: GFP flags for the allocation
2282 * This function is similar to alloc_pages(), except that it allocates the
2283 * minimum number of pages to satisfy the request. alloc_pages() can only
2284 * allocate memory in power-of-two pages.
2286 * This function is also limited by MAX_ORDER.
2288 * Memory allocated by this function must be released by free_pages_exact().
2290 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2292 unsigned int order = get_order(size);
2293 unsigned long addr;
2295 addr = __get_free_pages(gfp_mask, order);
2296 if (addr) {
2297 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2298 unsigned long used = addr + PAGE_ALIGN(size);
2300 split_page(virt_to_page((void *)addr), order);
2301 while (used < alloc_end) {
2302 free_page(used);
2303 used += PAGE_SIZE;
2307 return (void *)addr;
2309 EXPORT_SYMBOL(alloc_pages_exact);
2312 * free_pages_exact - release memory allocated via alloc_pages_exact()
2313 * @virt: the value returned by alloc_pages_exact.
2314 * @size: size of allocation, same value as passed to alloc_pages_exact().
2316 * Release the memory allocated by a previous call to alloc_pages_exact.
2318 void free_pages_exact(void *virt, size_t size)
2320 unsigned long addr = (unsigned long)virt;
2321 unsigned long end = addr + PAGE_ALIGN(size);
2323 while (addr < end) {
2324 free_page(addr);
2325 addr += PAGE_SIZE;
2328 EXPORT_SYMBOL(free_pages_exact);
2330 static unsigned int nr_free_zone_pages(int offset)
2332 struct zoneref *z;
2333 struct zone *zone;
2335 /* Just pick one node, since fallback list is circular */
2336 unsigned int sum = 0;
2338 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2340 for_each_zone_zonelist(zone, z, zonelist, offset) {
2341 unsigned long size = zone->present_pages;
2342 unsigned long high = high_wmark_pages(zone);
2343 if (size > high)
2344 sum += size - high;
2347 return sum;
2351 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2353 unsigned int nr_free_buffer_pages(void)
2355 return nr_free_zone_pages(gfp_zone(GFP_USER));
2357 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2360 * Amount of free RAM allocatable within all zones
2362 unsigned int nr_free_pagecache_pages(void)
2364 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2367 static inline void show_node(struct zone *zone)
2369 if (NUMA_BUILD)
2370 printk("Node %d ", zone_to_nid(zone));
2373 void si_meminfo(struct sysinfo *val)
2375 val->totalram = totalram_pages;
2376 val->sharedram = 0;
2377 val->freeram = global_page_state(NR_FREE_PAGES);
2378 val->bufferram = nr_blockdev_pages();
2379 val->totalhigh = totalhigh_pages;
2380 val->freehigh = nr_free_highpages();
2381 val->mem_unit = PAGE_SIZE;
2384 EXPORT_SYMBOL(si_meminfo);
2386 #ifdef CONFIG_NUMA
2387 void si_meminfo_node(struct sysinfo *val, int nid)
2389 pg_data_t *pgdat = NODE_DATA(nid);
2391 val->totalram = pgdat->node_present_pages;
2392 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2393 #ifdef CONFIG_HIGHMEM
2394 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2395 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2396 NR_FREE_PAGES);
2397 #else
2398 val->totalhigh = 0;
2399 val->freehigh = 0;
2400 #endif
2401 val->mem_unit = PAGE_SIZE;
2403 #endif
2405 #define K(x) ((x) << (PAGE_SHIFT-10))
2408 * Show free area list (used inside shift_scroll-lock stuff)
2409 * We also calculate the percentage fragmentation. We do this by counting the
2410 * memory on each free list with the exception of the first item on the list.
2412 void show_free_areas(void)
2414 int cpu;
2415 struct zone *zone;
2417 for_each_populated_zone(zone) {
2418 show_node(zone);
2419 printk("%s per-cpu:\n", zone->name);
2421 for_each_online_cpu(cpu) {
2422 struct per_cpu_pageset *pageset;
2424 pageset = per_cpu_ptr(zone->pageset, cpu);
2426 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2427 cpu, pageset->pcp.high,
2428 pageset->pcp.batch, pageset->pcp.count);
2432 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2433 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2434 " unevictable:%lu"
2435 " dirty:%lu writeback:%lu unstable:%lu\n"
2436 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2437 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2438 global_page_state(NR_ACTIVE_ANON),
2439 global_page_state(NR_INACTIVE_ANON),
2440 global_page_state(NR_ISOLATED_ANON),
2441 global_page_state(NR_ACTIVE_FILE),
2442 global_page_state(NR_INACTIVE_FILE),
2443 global_page_state(NR_ISOLATED_FILE),
2444 global_page_state(NR_UNEVICTABLE),
2445 global_page_state(NR_FILE_DIRTY),
2446 global_page_state(NR_WRITEBACK),
2447 global_page_state(NR_UNSTABLE_NFS),
2448 global_page_state(NR_FREE_PAGES),
2449 global_page_state(NR_SLAB_RECLAIMABLE),
2450 global_page_state(NR_SLAB_UNRECLAIMABLE),
2451 global_page_state(NR_FILE_MAPPED),
2452 global_page_state(NR_SHMEM),
2453 global_page_state(NR_PAGETABLE),
2454 global_page_state(NR_BOUNCE));
2456 for_each_populated_zone(zone) {
2457 int i;
2459 show_node(zone);
2460 printk("%s"
2461 " free:%lukB"
2462 " min:%lukB"
2463 " low:%lukB"
2464 " high:%lukB"
2465 " active_anon:%lukB"
2466 " inactive_anon:%lukB"
2467 " active_file:%lukB"
2468 " inactive_file:%lukB"
2469 " unevictable:%lukB"
2470 " isolated(anon):%lukB"
2471 " isolated(file):%lukB"
2472 " present:%lukB"
2473 " mlocked:%lukB"
2474 " dirty:%lukB"
2475 " writeback:%lukB"
2476 " mapped:%lukB"
2477 " shmem:%lukB"
2478 " slab_reclaimable:%lukB"
2479 " slab_unreclaimable:%lukB"
2480 " kernel_stack:%lukB"
2481 " pagetables:%lukB"
2482 " unstable:%lukB"
2483 " bounce:%lukB"
2484 " writeback_tmp:%lukB"
2485 " pages_scanned:%lu"
2486 " all_unreclaimable? %s"
2487 "\n",
2488 zone->name,
2489 K(zone_page_state(zone, NR_FREE_PAGES)),
2490 K(min_wmark_pages(zone)),
2491 K(low_wmark_pages(zone)),
2492 K(high_wmark_pages(zone)),
2493 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2494 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2495 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2496 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2497 K(zone_page_state(zone, NR_UNEVICTABLE)),
2498 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2499 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2500 K(zone->present_pages),
2501 K(zone_page_state(zone, NR_MLOCK)),
2502 K(zone_page_state(zone, NR_FILE_DIRTY)),
2503 K(zone_page_state(zone, NR_WRITEBACK)),
2504 K(zone_page_state(zone, NR_FILE_MAPPED)),
2505 K(zone_page_state(zone, NR_SHMEM)),
2506 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2507 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2508 zone_page_state(zone, NR_KERNEL_STACK) *
2509 THREAD_SIZE / 1024,
2510 K(zone_page_state(zone, NR_PAGETABLE)),
2511 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2512 K(zone_page_state(zone, NR_BOUNCE)),
2513 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2514 zone->pages_scanned,
2515 (zone->all_unreclaimable ? "yes" : "no")
2517 printk("lowmem_reserve[]:");
2518 for (i = 0; i < MAX_NR_ZONES; i++)
2519 printk(" %lu", zone->lowmem_reserve[i]);
2520 printk("\n");
2523 for_each_populated_zone(zone) {
2524 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2526 show_node(zone);
2527 printk("%s: ", zone->name);
2529 spin_lock_irqsave(&zone->lock, flags);
2530 for (order = 0; order < MAX_ORDER; order++) {
2531 nr[order] = zone->free_area[order].nr_free;
2532 total += nr[order] << order;
2534 spin_unlock_irqrestore(&zone->lock, flags);
2535 for (order = 0; order < MAX_ORDER; order++)
2536 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2537 printk("= %lukB\n", K(total));
2540 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2542 show_swap_cache_info();
2545 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2547 zoneref->zone = zone;
2548 zoneref->zone_idx = zone_idx(zone);
2552 * Builds allocation fallback zone lists.
2554 * Add all populated zones of a node to the zonelist.
2556 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2557 int nr_zones, enum zone_type zone_type)
2559 struct zone *zone;
2561 BUG_ON(zone_type >= MAX_NR_ZONES);
2562 zone_type++;
2564 do {
2565 zone_type--;
2566 zone = pgdat->node_zones + zone_type;
2567 if (populated_zone(zone)) {
2568 zoneref_set_zone(zone,
2569 &zonelist->_zonerefs[nr_zones++]);
2570 check_highest_zone(zone_type);
2573 } while (zone_type);
2574 return nr_zones;
2579 * zonelist_order:
2580 * 0 = automatic detection of better ordering.
2581 * 1 = order by ([node] distance, -zonetype)
2582 * 2 = order by (-zonetype, [node] distance)
2584 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2585 * the same zonelist. So only NUMA can configure this param.
2587 #define ZONELIST_ORDER_DEFAULT 0
2588 #define ZONELIST_ORDER_NODE 1
2589 #define ZONELIST_ORDER_ZONE 2
2591 /* zonelist order in the kernel.
2592 * set_zonelist_order() will set this to NODE or ZONE.
2594 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2595 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2598 #ifdef CONFIG_NUMA
2599 /* The value user specified ....changed by config */
2600 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2601 /* string for sysctl */
2602 #define NUMA_ZONELIST_ORDER_LEN 16
2603 char numa_zonelist_order[16] = "default";
2606 * interface for configure zonelist ordering.
2607 * command line option "numa_zonelist_order"
2608 * = "[dD]efault - default, automatic configuration.
2609 * = "[nN]ode - order by node locality, then by zone within node
2610 * = "[zZ]one - order by zone, then by locality within zone
2613 static int __parse_numa_zonelist_order(char *s)
2615 if (*s == 'd' || *s == 'D') {
2616 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2617 } else if (*s == 'n' || *s == 'N') {
2618 user_zonelist_order = ZONELIST_ORDER_NODE;
2619 } else if (*s == 'z' || *s == 'Z') {
2620 user_zonelist_order = ZONELIST_ORDER_ZONE;
2621 } else {
2622 printk(KERN_WARNING
2623 "Ignoring invalid numa_zonelist_order value: "
2624 "%s\n", s);
2625 return -EINVAL;
2627 return 0;
2630 static __init int setup_numa_zonelist_order(char *s)
2632 if (s)
2633 return __parse_numa_zonelist_order(s);
2634 return 0;
2636 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2639 * sysctl handler for numa_zonelist_order
2641 int numa_zonelist_order_handler(ctl_table *table, int write,
2642 void __user *buffer, size_t *length,
2643 loff_t *ppos)
2645 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2646 int ret;
2647 static DEFINE_MUTEX(zl_order_mutex);
2649 mutex_lock(&zl_order_mutex);
2650 if (write)
2651 strcpy(saved_string, (char*)table->data);
2652 ret = proc_dostring(table, write, buffer, length, ppos);
2653 if (ret)
2654 goto out;
2655 if (write) {
2656 int oldval = user_zonelist_order;
2657 if (__parse_numa_zonelist_order((char*)table->data)) {
2659 * bogus value. restore saved string
2661 strncpy((char*)table->data, saved_string,
2662 NUMA_ZONELIST_ORDER_LEN);
2663 user_zonelist_order = oldval;
2664 } else if (oldval != user_zonelist_order) {
2665 mutex_lock(&zonelists_mutex);
2666 build_all_zonelists(NULL);
2667 mutex_unlock(&zonelists_mutex);
2670 out:
2671 mutex_unlock(&zl_order_mutex);
2672 return ret;
2676 #define MAX_NODE_LOAD (nr_online_nodes)
2677 static int node_load[MAX_NUMNODES];
2680 * find_next_best_node - find the next node that should appear in a given node's fallback list
2681 * @node: node whose fallback list we're appending
2682 * @used_node_mask: nodemask_t of already used nodes
2684 * We use a number of factors to determine which is the next node that should
2685 * appear on a given node's fallback list. The node should not have appeared
2686 * already in @node's fallback list, and it should be the next closest node
2687 * according to the distance array (which contains arbitrary distance values
2688 * from each node to each node in the system), and should also prefer nodes
2689 * with no CPUs, since presumably they'll have very little allocation pressure
2690 * on them otherwise.
2691 * It returns -1 if no node is found.
2693 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2695 int n, val;
2696 int min_val = INT_MAX;
2697 int best_node = -1;
2698 const struct cpumask *tmp = cpumask_of_node(0);
2700 /* Use the local node if we haven't already */
2701 if (!node_isset(node, *used_node_mask)) {
2702 node_set(node, *used_node_mask);
2703 return node;
2706 for_each_node_state(n, N_HIGH_MEMORY) {
2708 /* Don't want a node to appear more than once */
2709 if (node_isset(n, *used_node_mask))
2710 continue;
2712 /* Use the distance array to find the distance */
2713 val = node_distance(node, n);
2715 /* Penalize nodes under us ("prefer the next node") */
2716 val += (n < node);
2718 /* Give preference to headless and unused nodes */
2719 tmp = cpumask_of_node(n);
2720 if (!cpumask_empty(tmp))
2721 val += PENALTY_FOR_NODE_WITH_CPUS;
2723 /* Slight preference for less loaded node */
2724 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2725 val += node_load[n];
2727 if (val < min_val) {
2728 min_val = val;
2729 best_node = n;
2733 if (best_node >= 0)
2734 node_set(best_node, *used_node_mask);
2736 return best_node;
2741 * Build zonelists ordered by node and zones within node.
2742 * This results in maximum locality--normal zone overflows into local
2743 * DMA zone, if any--but risks exhausting DMA zone.
2745 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2747 int j;
2748 struct zonelist *zonelist;
2750 zonelist = &pgdat->node_zonelists[0];
2751 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2753 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2754 MAX_NR_ZONES - 1);
2755 zonelist->_zonerefs[j].zone = NULL;
2756 zonelist->_zonerefs[j].zone_idx = 0;
2760 * Build gfp_thisnode zonelists
2762 static void build_thisnode_zonelists(pg_data_t *pgdat)
2764 int j;
2765 struct zonelist *zonelist;
2767 zonelist = &pgdat->node_zonelists[1];
2768 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2769 zonelist->_zonerefs[j].zone = NULL;
2770 zonelist->_zonerefs[j].zone_idx = 0;
2774 * Build zonelists ordered by zone and nodes within zones.
2775 * This results in conserving DMA zone[s] until all Normal memory is
2776 * exhausted, but results in overflowing to remote node while memory
2777 * may still exist in local DMA zone.
2779 static int node_order[MAX_NUMNODES];
2781 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2783 int pos, j, node;
2784 int zone_type; /* needs to be signed */
2785 struct zone *z;
2786 struct zonelist *zonelist;
2788 zonelist = &pgdat->node_zonelists[0];
2789 pos = 0;
2790 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2791 for (j = 0; j < nr_nodes; j++) {
2792 node = node_order[j];
2793 z = &NODE_DATA(node)->node_zones[zone_type];
2794 if (populated_zone(z)) {
2795 zoneref_set_zone(z,
2796 &zonelist->_zonerefs[pos++]);
2797 check_highest_zone(zone_type);
2801 zonelist->_zonerefs[pos].zone = NULL;
2802 zonelist->_zonerefs[pos].zone_idx = 0;
2805 static int default_zonelist_order(void)
2807 int nid, zone_type;
2808 unsigned long low_kmem_size,total_size;
2809 struct zone *z;
2810 int average_size;
2812 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2813 * If they are really small and used heavily, the system can fall
2814 * into OOM very easily.
2815 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2817 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2818 low_kmem_size = 0;
2819 total_size = 0;
2820 for_each_online_node(nid) {
2821 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2822 z = &NODE_DATA(nid)->node_zones[zone_type];
2823 if (populated_zone(z)) {
2824 if (zone_type < ZONE_NORMAL)
2825 low_kmem_size += z->present_pages;
2826 total_size += z->present_pages;
2827 } else if (zone_type == ZONE_NORMAL) {
2829 * If any node has only lowmem, then node order
2830 * is preferred to allow kernel allocations
2831 * locally; otherwise, they can easily infringe
2832 * on other nodes when there is an abundance of
2833 * lowmem available to allocate from.
2835 return ZONELIST_ORDER_NODE;
2839 if (!low_kmem_size || /* there are no DMA area. */
2840 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2841 return ZONELIST_ORDER_NODE;
2843 * look into each node's config.
2844 * If there is a node whose DMA/DMA32 memory is very big area on
2845 * local memory, NODE_ORDER may be suitable.
2847 average_size = total_size /
2848 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2849 for_each_online_node(nid) {
2850 low_kmem_size = 0;
2851 total_size = 0;
2852 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2853 z = &NODE_DATA(nid)->node_zones[zone_type];
2854 if (populated_zone(z)) {
2855 if (zone_type < ZONE_NORMAL)
2856 low_kmem_size += z->present_pages;
2857 total_size += z->present_pages;
2860 if (low_kmem_size &&
2861 total_size > average_size && /* ignore small node */
2862 low_kmem_size > total_size * 70/100)
2863 return ZONELIST_ORDER_NODE;
2865 return ZONELIST_ORDER_ZONE;
2868 static void set_zonelist_order(void)
2870 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2871 current_zonelist_order = default_zonelist_order();
2872 else
2873 current_zonelist_order = user_zonelist_order;
2876 static void build_zonelists(pg_data_t *pgdat)
2878 int j, node, load;
2879 enum zone_type i;
2880 nodemask_t used_mask;
2881 int local_node, prev_node;
2882 struct zonelist *zonelist;
2883 int order = current_zonelist_order;
2885 /* initialize zonelists */
2886 for (i = 0; i < MAX_ZONELISTS; i++) {
2887 zonelist = pgdat->node_zonelists + i;
2888 zonelist->_zonerefs[0].zone = NULL;
2889 zonelist->_zonerefs[0].zone_idx = 0;
2892 /* NUMA-aware ordering of nodes */
2893 local_node = pgdat->node_id;
2894 load = nr_online_nodes;
2895 prev_node = local_node;
2896 nodes_clear(used_mask);
2898 memset(node_order, 0, sizeof(node_order));
2899 j = 0;
2901 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2902 int distance = node_distance(local_node, node);
2905 * If another node is sufficiently far away then it is better
2906 * to reclaim pages in a zone before going off node.
2908 if (distance > RECLAIM_DISTANCE)
2909 zone_reclaim_mode = 1;
2912 * We don't want to pressure a particular node.
2913 * So adding penalty to the first node in same
2914 * distance group to make it round-robin.
2916 if (distance != node_distance(local_node, prev_node))
2917 node_load[node] = load;
2919 prev_node = node;
2920 load--;
2921 if (order == ZONELIST_ORDER_NODE)
2922 build_zonelists_in_node_order(pgdat, node);
2923 else
2924 node_order[j++] = node; /* remember order */
2927 if (order == ZONELIST_ORDER_ZONE) {
2928 /* calculate node order -- i.e., DMA last! */
2929 build_zonelists_in_zone_order(pgdat, j);
2932 build_thisnode_zonelists(pgdat);
2935 /* Construct the zonelist performance cache - see further mmzone.h */
2936 static void build_zonelist_cache(pg_data_t *pgdat)
2938 struct zonelist *zonelist;
2939 struct zonelist_cache *zlc;
2940 struct zoneref *z;
2942 zonelist = &pgdat->node_zonelists[0];
2943 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2944 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2945 for (z = zonelist->_zonerefs; z->zone; z++)
2946 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2949 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2951 * Return node id of node used for "local" allocations.
2952 * I.e., first node id of first zone in arg node's generic zonelist.
2953 * Used for initializing percpu 'numa_mem', which is used primarily
2954 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2956 int local_memory_node(int node)
2958 struct zone *zone;
2960 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2961 gfp_zone(GFP_KERNEL),
2962 NULL,
2963 &zone);
2964 return zone->node;
2966 #endif
2968 #else /* CONFIG_NUMA */
2970 static void set_zonelist_order(void)
2972 current_zonelist_order = ZONELIST_ORDER_ZONE;
2975 static void build_zonelists(pg_data_t *pgdat)
2977 int node, local_node;
2978 enum zone_type j;
2979 struct zonelist *zonelist;
2981 local_node = pgdat->node_id;
2983 zonelist = &pgdat->node_zonelists[0];
2984 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2987 * Now we build the zonelist so that it contains the zones
2988 * of all the other nodes.
2989 * We don't want to pressure a particular node, so when
2990 * building the zones for node N, we make sure that the
2991 * zones coming right after the local ones are those from
2992 * node N+1 (modulo N)
2994 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2995 if (!node_online(node))
2996 continue;
2997 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2998 MAX_NR_ZONES - 1);
3000 for (node = 0; node < local_node; node++) {
3001 if (!node_online(node))
3002 continue;
3003 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3004 MAX_NR_ZONES - 1);
3007 zonelist->_zonerefs[j].zone = NULL;
3008 zonelist->_zonerefs[j].zone_idx = 0;
3011 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3012 static void build_zonelist_cache(pg_data_t *pgdat)
3014 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3017 #endif /* CONFIG_NUMA */
3020 * Boot pageset table. One per cpu which is going to be used for all
3021 * zones and all nodes. The parameters will be set in such a way
3022 * that an item put on a list will immediately be handed over to
3023 * the buddy list. This is safe since pageset manipulation is done
3024 * with interrupts disabled.
3026 * The boot_pagesets must be kept even after bootup is complete for
3027 * unused processors and/or zones. They do play a role for bootstrapping
3028 * hotplugged processors.
3030 * zoneinfo_show() and maybe other functions do
3031 * not check if the processor is online before following the pageset pointer.
3032 * Other parts of the kernel may not check if the zone is available.
3034 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3035 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3036 static void setup_zone_pageset(struct zone *zone);
3039 * Global mutex to protect against size modification of zonelists
3040 * as well as to serialize pageset setup for the new populated zone.
3042 DEFINE_MUTEX(zonelists_mutex);
3044 /* return values int ....just for stop_machine() */
3045 static __init_refok int __build_all_zonelists(void *data)
3047 int nid;
3048 int cpu;
3050 #ifdef CONFIG_NUMA
3051 memset(node_load, 0, sizeof(node_load));
3052 #endif
3053 for_each_online_node(nid) {
3054 pg_data_t *pgdat = NODE_DATA(nid);
3056 build_zonelists(pgdat);
3057 build_zonelist_cache(pgdat);
3061 * Initialize the boot_pagesets that are going to be used
3062 * for bootstrapping processors. The real pagesets for
3063 * each zone will be allocated later when the per cpu
3064 * allocator is available.
3066 * boot_pagesets are used also for bootstrapping offline
3067 * cpus if the system is already booted because the pagesets
3068 * are needed to initialize allocators on a specific cpu too.
3069 * F.e. the percpu allocator needs the page allocator which
3070 * needs the percpu allocator in order to allocate its pagesets
3071 * (a chicken-egg dilemma).
3073 for_each_possible_cpu(cpu) {
3074 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3076 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3078 * We now know the "local memory node" for each node--
3079 * i.e., the node of the first zone in the generic zonelist.
3080 * Set up numa_mem percpu variable for on-line cpus. During
3081 * boot, only the boot cpu should be on-line; we'll init the
3082 * secondary cpus' numa_mem as they come on-line. During
3083 * node/memory hotplug, we'll fixup all on-line cpus.
3085 if (cpu_online(cpu))
3086 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3087 #endif
3090 return 0;
3094 * Called with zonelists_mutex held always
3095 * unless system_state == SYSTEM_BOOTING.
3097 void build_all_zonelists(void *data)
3099 set_zonelist_order();
3101 if (system_state == SYSTEM_BOOTING) {
3102 __build_all_zonelists(NULL);
3103 mminit_verify_zonelist();
3104 cpuset_init_current_mems_allowed();
3105 } else {
3106 /* we have to stop all cpus to guarantee there is no user
3107 of zonelist */
3108 #ifdef CONFIG_MEMORY_HOTPLUG
3109 if (data)
3110 setup_zone_pageset((struct zone *)data);
3111 #endif
3112 stop_machine(__build_all_zonelists, NULL, NULL);
3113 /* cpuset refresh routine should be here */
3115 vm_total_pages = nr_free_pagecache_pages();
3117 * Disable grouping by mobility if the number of pages in the
3118 * system is too low to allow the mechanism to work. It would be
3119 * more accurate, but expensive to check per-zone. This check is
3120 * made on memory-hotadd so a system can start with mobility
3121 * disabled and enable it later
3123 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3124 page_group_by_mobility_disabled = 1;
3125 else
3126 page_group_by_mobility_disabled = 0;
3128 printk("Built %i zonelists in %s order, mobility grouping %s. "
3129 "Total pages: %ld\n",
3130 nr_online_nodes,
3131 zonelist_order_name[current_zonelist_order],
3132 page_group_by_mobility_disabled ? "off" : "on",
3133 vm_total_pages);
3134 #ifdef CONFIG_NUMA
3135 printk("Policy zone: %s\n", zone_names[policy_zone]);
3136 #endif
3140 * Helper functions to size the waitqueue hash table.
3141 * Essentially these want to choose hash table sizes sufficiently
3142 * large so that collisions trying to wait on pages are rare.
3143 * But in fact, the number of active page waitqueues on typical
3144 * systems is ridiculously low, less than 200. So this is even
3145 * conservative, even though it seems large.
3147 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3148 * waitqueues, i.e. the size of the waitq table given the number of pages.
3150 #define PAGES_PER_WAITQUEUE 256
3152 #ifndef CONFIG_MEMORY_HOTPLUG
3153 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3155 unsigned long size = 1;
3157 pages /= PAGES_PER_WAITQUEUE;
3159 while (size < pages)
3160 size <<= 1;
3163 * Once we have dozens or even hundreds of threads sleeping
3164 * on IO we've got bigger problems than wait queue collision.
3165 * Limit the size of the wait table to a reasonable size.
3167 size = min(size, 4096UL);
3169 return max(size, 4UL);
3171 #else
3173 * A zone's size might be changed by hot-add, so it is not possible to determine
3174 * a suitable size for its wait_table. So we use the maximum size now.
3176 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3178 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3179 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3180 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3182 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3183 * or more by the traditional way. (See above). It equals:
3185 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3186 * ia64(16K page size) : = ( 8G + 4M)byte.
3187 * powerpc (64K page size) : = (32G +16M)byte.
3189 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3191 return 4096UL;
3193 #endif
3196 * This is an integer logarithm so that shifts can be used later
3197 * to extract the more random high bits from the multiplicative
3198 * hash function before the remainder is taken.
3200 static inline unsigned long wait_table_bits(unsigned long size)
3202 return ffz(~size);
3205 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3208 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3209 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3210 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3211 * higher will lead to a bigger reserve which will get freed as contiguous
3212 * blocks as reclaim kicks in
3214 static void setup_zone_migrate_reserve(struct zone *zone)
3216 unsigned long start_pfn, pfn, end_pfn;
3217 struct page *page;
3218 unsigned long block_migratetype;
3219 int reserve;
3221 /* Get the start pfn, end pfn and the number of blocks to reserve */
3222 start_pfn = zone->zone_start_pfn;
3223 end_pfn = start_pfn + zone->spanned_pages;
3224 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3225 pageblock_order;
3228 * Reserve blocks are generally in place to help high-order atomic
3229 * allocations that are short-lived. A min_free_kbytes value that
3230 * would result in more than 2 reserve blocks for atomic allocations
3231 * is assumed to be in place to help anti-fragmentation for the
3232 * future allocation of hugepages at runtime.
3234 reserve = min(2, reserve);
3236 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3237 if (!pfn_valid(pfn))
3238 continue;
3239 page = pfn_to_page(pfn);
3241 /* Watch out for overlapping nodes */
3242 if (page_to_nid(page) != zone_to_nid(zone))
3243 continue;
3245 /* Blocks with reserved pages will never free, skip them. */
3246 if (PageReserved(page))
3247 continue;
3249 block_migratetype = get_pageblock_migratetype(page);
3251 /* If this block is reserved, account for it */
3252 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3253 reserve--;
3254 continue;
3257 /* Suitable for reserving if this block is movable */
3258 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3259 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3260 move_freepages_block(zone, page, MIGRATE_RESERVE);
3261 reserve--;
3262 continue;
3266 * If the reserve is met and this is a previous reserved block,
3267 * take it back
3269 if (block_migratetype == MIGRATE_RESERVE) {
3270 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3271 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3277 * Initially all pages are reserved - free ones are freed
3278 * up by free_all_bootmem() once the early boot process is
3279 * done. Non-atomic initialization, single-pass.
3281 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3282 unsigned long start_pfn, enum memmap_context context)
3284 struct page *page;
3285 unsigned long end_pfn = start_pfn + size;
3286 unsigned long pfn;
3287 struct zone *z;
3289 if (highest_memmap_pfn < end_pfn - 1)
3290 highest_memmap_pfn = end_pfn - 1;
3292 z = &NODE_DATA(nid)->node_zones[zone];
3293 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3295 * There can be holes in boot-time mem_map[]s
3296 * handed to this function. They do not
3297 * exist on hotplugged memory.
3299 if (context == MEMMAP_EARLY) {
3300 if (!early_pfn_valid(pfn))
3301 continue;
3302 if (!early_pfn_in_nid(pfn, nid))
3303 continue;
3305 page = pfn_to_page(pfn);
3306 set_page_links(page, zone, nid, pfn);
3307 mminit_verify_page_links(page, zone, nid, pfn);
3308 init_page_count(page);
3309 reset_page_mapcount(page);
3310 SetPageReserved(page);
3312 * Mark the block movable so that blocks are reserved for
3313 * movable at startup. This will force kernel allocations
3314 * to reserve their blocks rather than leaking throughout
3315 * the address space during boot when many long-lived
3316 * kernel allocations are made. Later some blocks near
3317 * the start are marked MIGRATE_RESERVE by
3318 * setup_zone_migrate_reserve()
3320 * bitmap is created for zone's valid pfn range. but memmap
3321 * can be created for invalid pages (for alignment)
3322 * check here not to call set_pageblock_migratetype() against
3323 * pfn out of zone.
3325 if ((z->zone_start_pfn <= pfn)
3326 && (pfn < z->zone_start_pfn + z->spanned_pages)
3327 && !(pfn & (pageblock_nr_pages - 1)))
3328 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3330 INIT_LIST_HEAD(&page->lru);
3331 #ifdef WANT_PAGE_VIRTUAL
3332 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3333 if (!is_highmem_idx(zone))
3334 set_page_address(page, __va(pfn << PAGE_SHIFT));
3335 #endif
3339 static void __meminit zone_init_free_lists(struct zone *zone)
3341 int order, t;
3342 for_each_migratetype_order(order, t) {
3343 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3344 zone->free_area[order].nr_free = 0;
3348 #ifndef __HAVE_ARCH_MEMMAP_INIT
3349 #define memmap_init(size, nid, zone, start_pfn) \
3350 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3351 #endif
3353 static int zone_batchsize(struct zone *zone)
3355 #ifdef CONFIG_MMU
3356 int batch;
3359 * The per-cpu-pages pools are set to around 1000th of the
3360 * size of the zone. But no more than 1/2 of a meg.
3362 * OK, so we don't know how big the cache is. So guess.
3364 batch = zone->present_pages / 1024;
3365 if (batch * PAGE_SIZE > 512 * 1024)
3366 batch = (512 * 1024) / PAGE_SIZE;
3367 batch /= 4; /* We effectively *= 4 below */
3368 if (batch < 1)
3369 batch = 1;
3372 * Clamp the batch to a 2^n - 1 value. Having a power
3373 * of 2 value was found to be more likely to have
3374 * suboptimal cache aliasing properties in some cases.
3376 * For example if 2 tasks are alternately allocating
3377 * batches of pages, one task can end up with a lot
3378 * of pages of one half of the possible page colors
3379 * and the other with pages of the other colors.
3381 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3383 return batch;
3385 #else
3386 /* The deferral and batching of frees should be suppressed under NOMMU
3387 * conditions.
3389 * The problem is that NOMMU needs to be able to allocate large chunks
3390 * of contiguous memory as there's no hardware page translation to
3391 * assemble apparent contiguous memory from discontiguous pages.
3393 * Queueing large contiguous runs of pages for batching, however,
3394 * causes the pages to actually be freed in smaller chunks. As there
3395 * can be a significant delay between the individual batches being
3396 * recycled, this leads to the once large chunks of space being
3397 * fragmented and becoming unavailable for high-order allocations.
3399 return 0;
3400 #endif
3403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3405 struct per_cpu_pages *pcp;
3406 int migratetype;
3408 memset(p, 0, sizeof(*p));
3410 pcp = &p->pcp;
3411 pcp->count = 0;
3412 pcp->high = 6 * batch;
3413 pcp->batch = max(1UL, 1 * batch);
3414 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3415 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3419 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3420 * to the value high for the pageset p.
3423 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3424 unsigned long high)
3426 struct per_cpu_pages *pcp;
3428 pcp = &p->pcp;
3429 pcp->high = high;
3430 pcp->batch = max(1UL, high/4);
3431 if ((high/4) > (PAGE_SHIFT * 8))
3432 pcp->batch = PAGE_SHIFT * 8;
3435 static __meminit void setup_zone_pageset(struct zone *zone)
3437 int cpu;
3439 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3441 for_each_possible_cpu(cpu) {
3442 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3444 setup_pageset(pcp, zone_batchsize(zone));
3446 if (percpu_pagelist_fraction)
3447 setup_pagelist_highmark(pcp,
3448 (zone->present_pages /
3449 percpu_pagelist_fraction));
3454 * Allocate per cpu pagesets and initialize them.
3455 * Before this call only boot pagesets were available.
3457 void __init setup_per_cpu_pageset(void)
3459 struct zone *zone;
3461 for_each_populated_zone(zone)
3462 setup_zone_pageset(zone);
3465 static noinline __init_refok
3466 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3468 int i;
3469 struct pglist_data *pgdat = zone->zone_pgdat;
3470 size_t alloc_size;
3473 * The per-page waitqueue mechanism uses hashed waitqueues
3474 * per zone.
3476 zone->wait_table_hash_nr_entries =
3477 wait_table_hash_nr_entries(zone_size_pages);
3478 zone->wait_table_bits =
3479 wait_table_bits(zone->wait_table_hash_nr_entries);
3480 alloc_size = zone->wait_table_hash_nr_entries
3481 * sizeof(wait_queue_head_t);
3483 if (!slab_is_available()) {
3484 zone->wait_table = (wait_queue_head_t *)
3485 alloc_bootmem_node(pgdat, alloc_size);
3486 } else {
3488 * This case means that a zone whose size was 0 gets new memory
3489 * via memory hot-add.
3490 * But it may be the case that a new node was hot-added. In
3491 * this case vmalloc() will not be able to use this new node's
3492 * memory - this wait_table must be initialized to use this new
3493 * node itself as well.
3494 * To use this new node's memory, further consideration will be
3495 * necessary.
3497 zone->wait_table = vmalloc(alloc_size);
3499 if (!zone->wait_table)
3500 return -ENOMEM;
3502 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3503 init_waitqueue_head(zone->wait_table + i);
3505 return 0;
3508 static int __zone_pcp_update(void *data)
3510 struct zone *zone = data;
3511 int cpu;
3512 unsigned long batch = zone_batchsize(zone), flags;
3514 for_each_possible_cpu(cpu) {
3515 struct per_cpu_pageset *pset;
3516 struct per_cpu_pages *pcp;
3518 pset = per_cpu_ptr(zone->pageset, cpu);
3519 pcp = &pset->pcp;
3521 local_irq_save(flags);
3522 free_pcppages_bulk(zone, pcp->count, pcp);
3523 setup_pageset(pset, batch);
3524 local_irq_restore(flags);
3526 return 0;
3529 void zone_pcp_update(struct zone *zone)
3531 stop_machine(__zone_pcp_update, zone, NULL);
3534 static __meminit void zone_pcp_init(struct zone *zone)
3537 * per cpu subsystem is not up at this point. The following code
3538 * relies on the ability of the linker to provide the
3539 * offset of a (static) per cpu variable into the per cpu area.
3541 zone->pageset = &boot_pageset;
3543 if (zone->present_pages)
3544 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3545 zone->name, zone->present_pages,
3546 zone_batchsize(zone));
3549 __meminit int init_currently_empty_zone(struct zone *zone,
3550 unsigned long zone_start_pfn,
3551 unsigned long size,
3552 enum memmap_context context)
3554 struct pglist_data *pgdat = zone->zone_pgdat;
3555 int ret;
3556 ret = zone_wait_table_init(zone, size);
3557 if (ret)
3558 return ret;
3559 pgdat->nr_zones = zone_idx(zone) + 1;
3561 zone->zone_start_pfn = zone_start_pfn;
3563 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3564 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3565 pgdat->node_id,
3566 (unsigned long)zone_idx(zone),
3567 zone_start_pfn, (zone_start_pfn + size));
3569 zone_init_free_lists(zone);
3571 return 0;
3574 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3576 * Basic iterator support. Return the first range of PFNs for a node
3577 * Note: nid == MAX_NUMNODES returns first region regardless of node
3579 static int __meminit first_active_region_index_in_nid(int nid)
3581 int i;
3583 for (i = 0; i < nr_nodemap_entries; i++)
3584 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3585 return i;
3587 return -1;
3591 * Basic iterator support. Return the next active range of PFNs for a node
3592 * Note: nid == MAX_NUMNODES returns next region regardless of node
3594 static int __meminit next_active_region_index_in_nid(int index, int nid)
3596 for (index = index + 1; index < nr_nodemap_entries; index++)
3597 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3598 return index;
3600 return -1;
3603 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3605 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3606 * Architectures may implement their own version but if add_active_range()
3607 * was used and there are no special requirements, this is a convenient
3608 * alternative
3610 int __meminit __early_pfn_to_nid(unsigned long pfn)
3612 int i;
3614 for (i = 0; i < nr_nodemap_entries; i++) {
3615 unsigned long start_pfn = early_node_map[i].start_pfn;
3616 unsigned long end_pfn = early_node_map[i].end_pfn;
3618 if (start_pfn <= pfn && pfn < end_pfn)
3619 return early_node_map[i].nid;
3621 /* This is a memory hole */
3622 return -1;
3624 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3626 int __meminit early_pfn_to_nid(unsigned long pfn)
3628 int nid;
3630 nid = __early_pfn_to_nid(pfn);
3631 if (nid >= 0)
3632 return nid;
3633 /* just returns 0 */
3634 return 0;
3637 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3638 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3640 int nid;
3642 nid = __early_pfn_to_nid(pfn);
3643 if (nid >= 0 && nid != node)
3644 return false;
3645 return true;
3647 #endif
3649 /* Basic iterator support to walk early_node_map[] */
3650 #define for_each_active_range_index_in_nid(i, nid) \
3651 for (i = first_active_region_index_in_nid(nid); i != -1; \
3652 i = next_active_region_index_in_nid(i, nid))
3655 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3656 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3657 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3659 * If an architecture guarantees that all ranges registered with
3660 * add_active_ranges() contain no holes and may be freed, this
3661 * this function may be used instead of calling free_bootmem() manually.
3663 void __init free_bootmem_with_active_regions(int nid,
3664 unsigned long max_low_pfn)
3666 int i;
3668 for_each_active_range_index_in_nid(i, nid) {
3669 unsigned long size_pages = 0;
3670 unsigned long end_pfn = early_node_map[i].end_pfn;
3672 if (early_node_map[i].start_pfn >= max_low_pfn)
3673 continue;
3675 if (end_pfn > max_low_pfn)
3676 end_pfn = max_low_pfn;
3678 size_pages = end_pfn - early_node_map[i].start_pfn;
3679 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3680 PFN_PHYS(early_node_map[i].start_pfn),
3681 size_pages << PAGE_SHIFT);
3685 #ifdef CONFIG_HAVE_MEMBLOCK
3686 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3687 u64 goal, u64 limit)
3689 int i;
3691 /* Need to go over early_node_map to find out good range for node */
3692 for_each_active_range_index_in_nid(i, nid) {
3693 u64 addr;
3694 u64 ei_start, ei_last;
3695 u64 final_start, final_end;
3697 ei_last = early_node_map[i].end_pfn;
3698 ei_last <<= PAGE_SHIFT;
3699 ei_start = early_node_map[i].start_pfn;
3700 ei_start <<= PAGE_SHIFT;
3702 final_start = max(ei_start, goal);
3703 final_end = min(ei_last, limit);
3705 if (final_start >= final_end)
3706 continue;
3708 addr = memblock_find_in_range(final_start, final_end, size, align);
3710 if (addr == MEMBLOCK_ERROR)
3711 continue;
3713 return addr;
3716 return MEMBLOCK_ERROR;
3718 #endif
3720 int __init add_from_early_node_map(struct range *range, int az,
3721 int nr_range, int nid)
3723 int i;
3724 u64 start, end;
3726 /* need to go over early_node_map to find out good range for node */
3727 for_each_active_range_index_in_nid(i, nid) {
3728 start = early_node_map[i].start_pfn;
3729 end = early_node_map[i].end_pfn;
3730 nr_range = add_range(range, az, nr_range, start, end);
3732 return nr_range;
3735 #ifdef CONFIG_NO_BOOTMEM
3736 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3737 u64 goal, u64 limit)
3739 void *ptr;
3740 u64 addr;
3742 if (limit > memblock.current_limit)
3743 limit = memblock.current_limit;
3745 addr = find_memory_core_early(nid, size, align, goal, limit);
3747 if (addr == MEMBLOCK_ERROR)
3748 return NULL;
3750 ptr = phys_to_virt(addr);
3751 memset(ptr, 0, size);
3752 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3754 * The min_count is set to 0 so that bootmem allocated blocks
3755 * are never reported as leaks.
3757 kmemleak_alloc(ptr, size, 0, 0);
3758 return ptr;
3760 #endif
3763 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3765 int i;
3766 int ret;
3768 for_each_active_range_index_in_nid(i, nid) {
3769 ret = work_fn(early_node_map[i].start_pfn,
3770 early_node_map[i].end_pfn, data);
3771 if (ret)
3772 break;
3776 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3777 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3779 * If an architecture guarantees that all ranges registered with
3780 * add_active_ranges() contain no holes and may be freed, this
3781 * function may be used instead of calling memory_present() manually.
3783 void __init sparse_memory_present_with_active_regions(int nid)
3785 int i;
3787 for_each_active_range_index_in_nid(i, nid)
3788 memory_present(early_node_map[i].nid,
3789 early_node_map[i].start_pfn,
3790 early_node_map[i].end_pfn);
3794 * get_pfn_range_for_nid - Return the start and end page frames for a node
3795 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3796 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3797 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3799 * It returns the start and end page frame of a node based on information
3800 * provided by an arch calling add_active_range(). If called for a node
3801 * with no available memory, a warning is printed and the start and end
3802 * PFNs will be 0.
3804 void __meminit get_pfn_range_for_nid(unsigned int nid,
3805 unsigned long *start_pfn, unsigned long *end_pfn)
3807 int i;
3808 *start_pfn = -1UL;
3809 *end_pfn = 0;
3811 for_each_active_range_index_in_nid(i, nid) {
3812 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3813 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3816 if (*start_pfn == -1UL)
3817 *start_pfn = 0;
3821 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3822 * assumption is made that zones within a node are ordered in monotonic
3823 * increasing memory addresses so that the "highest" populated zone is used
3825 static void __init find_usable_zone_for_movable(void)
3827 int zone_index;
3828 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3829 if (zone_index == ZONE_MOVABLE)
3830 continue;
3832 if (arch_zone_highest_possible_pfn[zone_index] >
3833 arch_zone_lowest_possible_pfn[zone_index])
3834 break;
3837 VM_BUG_ON(zone_index == -1);
3838 movable_zone = zone_index;
3842 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3843 * because it is sized independant of architecture. Unlike the other zones,
3844 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3845 * in each node depending on the size of each node and how evenly kernelcore
3846 * is distributed. This helper function adjusts the zone ranges
3847 * provided by the architecture for a given node by using the end of the
3848 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3849 * zones within a node are in order of monotonic increases memory addresses
3851 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3852 unsigned long zone_type,
3853 unsigned long node_start_pfn,
3854 unsigned long node_end_pfn,
3855 unsigned long *zone_start_pfn,
3856 unsigned long *zone_end_pfn)
3858 /* Only adjust if ZONE_MOVABLE is on this node */
3859 if (zone_movable_pfn[nid]) {
3860 /* Size ZONE_MOVABLE */
3861 if (zone_type == ZONE_MOVABLE) {
3862 *zone_start_pfn = zone_movable_pfn[nid];
3863 *zone_end_pfn = min(node_end_pfn,
3864 arch_zone_highest_possible_pfn[movable_zone]);
3866 /* Adjust for ZONE_MOVABLE starting within this range */
3867 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3868 *zone_end_pfn > zone_movable_pfn[nid]) {
3869 *zone_end_pfn = zone_movable_pfn[nid];
3871 /* Check if this whole range is within ZONE_MOVABLE */
3872 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3873 *zone_start_pfn = *zone_end_pfn;
3878 * Return the number of pages a zone spans in a node, including holes
3879 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3881 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3882 unsigned long zone_type,
3883 unsigned long *ignored)
3885 unsigned long node_start_pfn, node_end_pfn;
3886 unsigned long zone_start_pfn, zone_end_pfn;
3888 /* Get the start and end of the node and zone */
3889 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3890 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3891 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3892 adjust_zone_range_for_zone_movable(nid, zone_type,
3893 node_start_pfn, node_end_pfn,
3894 &zone_start_pfn, &zone_end_pfn);
3896 /* Check that this node has pages within the zone's required range */
3897 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3898 return 0;
3900 /* Move the zone boundaries inside the node if necessary */
3901 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3902 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3904 /* Return the spanned pages */
3905 return zone_end_pfn - zone_start_pfn;
3909 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3910 * then all holes in the requested range will be accounted for.
3912 unsigned long __meminit __absent_pages_in_range(int nid,
3913 unsigned long range_start_pfn,
3914 unsigned long range_end_pfn)
3916 int i = 0;
3917 unsigned long prev_end_pfn = 0, hole_pages = 0;
3918 unsigned long start_pfn;
3920 /* Find the end_pfn of the first active range of pfns in the node */
3921 i = first_active_region_index_in_nid(nid);
3922 if (i == -1)
3923 return 0;
3925 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3927 /* Account for ranges before physical memory on this node */
3928 if (early_node_map[i].start_pfn > range_start_pfn)
3929 hole_pages = prev_end_pfn - range_start_pfn;
3931 /* Find all holes for the zone within the node */
3932 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3934 /* No need to continue if prev_end_pfn is outside the zone */
3935 if (prev_end_pfn >= range_end_pfn)
3936 break;
3938 /* Make sure the end of the zone is not within the hole */
3939 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3940 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3942 /* Update the hole size cound and move on */
3943 if (start_pfn > range_start_pfn) {
3944 BUG_ON(prev_end_pfn > start_pfn);
3945 hole_pages += start_pfn - prev_end_pfn;
3947 prev_end_pfn = early_node_map[i].end_pfn;
3950 /* Account for ranges past physical memory on this node */
3951 if (range_end_pfn > prev_end_pfn)
3952 hole_pages += range_end_pfn -
3953 max(range_start_pfn, prev_end_pfn);
3955 return hole_pages;
3959 * absent_pages_in_range - Return number of page frames in holes within a range
3960 * @start_pfn: The start PFN to start searching for holes
3961 * @end_pfn: The end PFN to stop searching for holes
3963 * It returns the number of pages frames in memory holes within a range.
3965 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3966 unsigned long end_pfn)
3968 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3971 /* Return the number of page frames in holes in a zone on a node */
3972 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3973 unsigned long zone_type,
3974 unsigned long *ignored)
3976 unsigned long node_start_pfn, node_end_pfn;
3977 unsigned long zone_start_pfn, zone_end_pfn;
3979 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3980 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3981 node_start_pfn);
3982 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3983 node_end_pfn);
3985 adjust_zone_range_for_zone_movable(nid, zone_type,
3986 node_start_pfn, node_end_pfn,
3987 &zone_start_pfn, &zone_end_pfn);
3988 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3991 #else
3992 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3993 unsigned long zone_type,
3994 unsigned long *zones_size)
3996 return zones_size[zone_type];
3999 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4000 unsigned long zone_type,
4001 unsigned long *zholes_size)
4003 if (!zholes_size)
4004 return 0;
4006 return zholes_size[zone_type];
4009 #endif
4011 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4012 unsigned long *zones_size, unsigned long *zholes_size)
4014 unsigned long realtotalpages, totalpages = 0;
4015 enum zone_type i;
4017 for (i = 0; i < MAX_NR_ZONES; i++)
4018 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4019 zones_size);
4020 pgdat->node_spanned_pages = totalpages;
4022 realtotalpages = totalpages;
4023 for (i = 0; i < MAX_NR_ZONES; i++)
4024 realtotalpages -=
4025 zone_absent_pages_in_node(pgdat->node_id, i,
4026 zholes_size);
4027 pgdat->node_present_pages = realtotalpages;
4028 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4029 realtotalpages);
4032 #ifndef CONFIG_SPARSEMEM
4034 * Calculate the size of the zone->blockflags rounded to an unsigned long
4035 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4036 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4037 * round what is now in bits to nearest long in bits, then return it in
4038 * bytes.
4040 static unsigned long __init usemap_size(unsigned long zonesize)
4042 unsigned long usemapsize;
4044 usemapsize = roundup(zonesize, pageblock_nr_pages);
4045 usemapsize = usemapsize >> pageblock_order;
4046 usemapsize *= NR_PAGEBLOCK_BITS;
4047 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4049 return usemapsize / 8;
4052 static void __init setup_usemap(struct pglist_data *pgdat,
4053 struct zone *zone, unsigned long zonesize)
4055 unsigned long usemapsize = usemap_size(zonesize);
4056 zone->pageblock_flags = NULL;
4057 if (usemapsize)
4058 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4060 #else
4061 static inline void setup_usemap(struct pglist_data *pgdat,
4062 struct zone *zone, unsigned long zonesize) {}
4063 #endif /* CONFIG_SPARSEMEM */
4065 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4067 /* Return a sensible default order for the pageblock size. */
4068 static inline int pageblock_default_order(void)
4070 if (HPAGE_SHIFT > PAGE_SHIFT)
4071 return HUGETLB_PAGE_ORDER;
4073 return MAX_ORDER-1;
4076 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4077 static inline void __init set_pageblock_order(unsigned int order)
4079 /* Check that pageblock_nr_pages has not already been setup */
4080 if (pageblock_order)
4081 return;
4084 * Assume the largest contiguous order of interest is a huge page.
4085 * This value may be variable depending on boot parameters on IA64
4087 pageblock_order = order;
4089 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4092 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4093 * and pageblock_default_order() are unused as pageblock_order is set
4094 * at compile-time. See include/linux/pageblock-flags.h for the values of
4095 * pageblock_order based on the kernel config
4097 static inline int pageblock_default_order(unsigned int order)
4099 return MAX_ORDER-1;
4101 #define set_pageblock_order(x) do {} while (0)
4103 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4106 * Set up the zone data structures:
4107 * - mark all pages reserved
4108 * - mark all memory queues empty
4109 * - clear the memory bitmaps
4111 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4112 unsigned long *zones_size, unsigned long *zholes_size)
4114 enum zone_type j;
4115 int nid = pgdat->node_id;
4116 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4117 int ret;
4119 pgdat_resize_init(pgdat);
4120 pgdat->nr_zones = 0;
4121 init_waitqueue_head(&pgdat->kswapd_wait);
4122 pgdat->kswapd_max_order = 0;
4123 pgdat_page_cgroup_init(pgdat);
4125 for (j = 0; j < MAX_NR_ZONES; j++) {
4126 struct zone *zone = pgdat->node_zones + j;
4127 unsigned long size, realsize, memmap_pages;
4128 enum lru_list l;
4130 size = zone_spanned_pages_in_node(nid, j, zones_size);
4131 realsize = size - zone_absent_pages_in_node(nid, j,
4132 zholes_size);
4135 * Adjust realsize so that it accounts for how much memory
4136 * is used by this zone for memmap. This affects the watermark
4137 * and per-cpu initialisations
4139 memmap_pages =
4140 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4141 if (realsize >= memmap_pages) {
4142 realsize -= memmap_pages;
4143 if (memmap_pages)
4144 printk(KERN_DEBUG
4145 " %s zone: %lu pages used for memmap\n",
4146 zone_names[j], memmap_pages);
4147 } else
4148 printk(KERN_WARNING
4149 " %s zone: %lu pages exceeds realsize %lu\n",
4150 zone_names[j], memmap_pages, realsize);
4152 /* Account for reserved pages */
4153 if (j == 0 && realsize > dma_reserve) {
4154 realsize -= dma_reserve;
4155 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4156 zone_names[0], dma_reserve);
4159 if (!is_highmem_idx(j))
4160 nr_kernel_pages += realsize;
4161 nr_all_pages += realsize;
4163 zone->spanned_pages = size;
4164 zone->present_pages = realsize;
4165 #ifdef CONFIG_NUMA
4166 zone->node = nid;
4167 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4168 / 100;
4169 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4170 #endif
4171 zone->name = zone_names[j];
4172 spin_lock_init(&zone->lock);
4173 spin_lock_init(&zone->lru_lock);
4174 zone_seqlock_init(zone);
4175 zone->zone_pgdat = pgdat;
4177 zone_pcp_init(zone);
4178 for_each_lru(l) {
4179 INIT_LIST_HEAD(&zone->lru[l].list);
4180 zone->reclaim_stat.nr_saved_scan[l] = 0;
4182 zone->reclaim_stat.recent_rotated[0] = 0;
4183 zone->reclaim_stat.recent_rotated[1] = 0;
4184 zone->reclaim_stat.recent_scanned[0] = 0;
4185 zone->reclaim_stat.recent_scanned[1] = 0;
4186 zap_zone_vm_stats(zone);
4187 zone->flags = 0;
4188 if (!size)
4189 continue;
4191 set_pageblock_order(pageblock_default_order());
4192 setup_usemap(pgdat, zone, size);
4193 ret = init_currently_empty_zone(zone, zone_start_pfn,
4194 size, MEMMAP_EARLY);
4195 BUG_ON(ret);
4196 memmap_init(size, nid, j, zone_start_pfn);
4197 zone_start_pfn += size;
4201 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4203 /* Skip empty nodes */
4204 if (!pgdat->node_spanned_pages)
4205 return;
4207 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4208 /* ia64 gets its own node_mem_map, before this, without bootmem */
4209 if (!pgdat->node_mem_map) {
4210 unsigned long size, start, end;
4211 struct page *map;
4214 * The zone's endpoints aren't required to be MAX_ORDER
4215 * aligned but the node_mem_map endpoints must be in order
4216 * for the buddy allocator to function correctly.
4218 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4219 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4220 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4221 size = (end - start) * sizeof(struct page);
4222 map = alloc_remap(pgdat->node_id, size);
4223 if (!map)
4224 map = alloc_bootmem_node(pgdat, size);
4225 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4227 #ifndef CONFIG_NEED_MULTIPLE_NODES
4229 * With no DISCONTIG, the global mem_map is just set as node 0's
4231 if (pgdat == NODE_DATA(0)) {
4232 mem_map = NODE_DATA(0)->node_mem_map;
4233 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4234 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4235 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4236 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4238 #endif
4239 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4242 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4243 unsigned long node_start_pfn, unsigned long *zholes_size)
4245 pg_data_t *pgdat = NODE_DATA(nid);
4247 pgdat->node_id = nid;
4248 pgdat->node_start_pfn = node_start_pfn;
4249 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4251 alloc_node_mem_map(pgdat);
4252 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4253 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4254 nid, (unsigned long)pgdat,
4255 (unsigned long)pgdat->node_mem_map);
4256 #endif
4258 free_area_init_core(pgdat, zones_size, zholes_size);
4261 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4263 #if MAX_NUMNODES > 1
4265 * Figure out the number of possible node ids.
4267 static void __init setup_nr_node_ids(void)
4269 unsigned int node;
4270 unsigned int highest = 0;
4272 for_each_node_mask(node, node_possible_map)
4273 highest = node;
4274 nr_node_ids = highest + 1;
4276 #else
4277 static inline void setup_nr_node_ids(void)
4280 #endif
4283 * add_active_range - Register a range of PFNs backed by physical memory
4284 * @nid: The node ID the range resides on
4285 * @start_pfn: The start PFN of the available physical memory
4286 * @end_pfn: The end PFN of the available physical memory
4288 * These ranges are stored in an early_node_map[] and later used by
4289 * free_area_init_nodes() to calculate zone sizes and holes. If the
4290 * range spans a memory hole, it is up to the architecture to ensure
4291 * the memory is not freed by the bootmem allocator. If possible
4292 * the range being registered will be merged with existing ranges.
4294 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4295 unsigned long end_pfn)
4297 int i;
4299 mminit_dprintk(MMINIT_TRACE, "memory_register",
4300 "Entering add_active_range(%d, %#lx, %#lx) "
4301 "%d entries of %d used\n",
4302 nid, start_pfn, end_pfn,
4303 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4305 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4307 /* Merge with existing active regions if possible */
4308 for (i = 0; i < nr_nodemap_entries; i++) {
4309 if (early_node_map[i].nid != nid)
4310 continue;
4312 /* Skip if an existing region covers this new one */
4313 if (start_pfn >= early_node_map[i].start_pfn &&
4314 end_pfn <= early_node_map[i].end_pfn)
4315 return;
4317 /* Merge forward if suitable */
4318 if (start_pfn <= early_node_map[i].end_pfn &&
4319 end_pfn > early_node_map[i].end_pfn) {
4320 early_node_map[i].end_pfn = end_pfn;
4321 return;
4324 /* Merge backward if suitable */
4325 if (start_pfn < early_node_map[i].start_pfn &&
4326 end_pfn >= early_node_map[i].start_pfn) {
4327 early_node_map[i].start_pfn = start_pfn;
4328 return;
4332 /* Check that early_node_map is large enough */
4333 if (i >= MAX_ACTIVE_REGIONS) {
4334 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4335 MAX_ACTIVE_REGIONS);
4336 return;
4339 early_node_map[i].nid = nid;
4340 early_node_map[i].start_pfn = start_pfn;
4341 early_node_map[i].end_pfn = end_pfn;
4342 nr_nodemap_entries = i + 1;
4346 * remove_active_range - Shrink an existing registered range of PFNs
4347 * @nid: The node id the range is on that should be shrunk
4348 * @start_pfn: The new PFN of the range
4349 * @end_pfn: The new PFN of the range
4351 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4352 * The map is kept near the end physical page range that has already been
4353 * registered. This function allows an arch to shrink an existing registered
4354 * range.
4356 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4357 unsigned long end_pfn)
4359 int i, j;
4360 int removed = 0;
4362 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4363 nid, start_pfn, end_pfn);
4365 /* Find the old active region end and shrink */
4366 for_each_active_range_index_in_nid(i, nid) {
4367 if (early_node_map[i].start_pfn >= start_pfn &&
4368 early_node_map[i].end_pfn <= end_pfn) {
4369 /* clear it */
4370 early_node_map[i].start_pfn = 0;
4371 early_node_map[i].end_pfn = 0;
4372 removed = 1;
4373 continue;
4375 if (early_node_map[i].start_pfn < start_pfn &&
4376 early_node_map[i].end_pfn > start_pfn) {
4377 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4378 early_node_map[i].end_pfn = start_pfn;
4379 if (temp_end_pfn > end_pfn)
4380 add_active_range(nid, end_pfn, temp_end_pfn);
4381 continue;
4383 if (early_node_map[i].start_pfn >= start_pfn &&
4384 early_node_map[i].end_pfn > end_pfn &&
4385 early_node_map[i].start_pfn < end_pfn) {
4386 early_node_map[i].start_pfn = end_pfn;
4387 continue;
4391 if (!removed)
4392 return;
4394 /* remove the blank ones */
4395 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4396 if (early_node_map[i].nid != nid)
4397 continue;
4398 if (early_node_map[i].end_pfn)
4399 continue;
4400 /* we found it, get rid of it */
4401 for (j = i; j < nr_nodemap_entries - 1; j++)
4402 memcpy(&early_node_map[j], &early_node_map[j+1],
4403 sizeof(early_node_map[j]));
4404 j = nr_nodemap_entries - 1;
4405 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4406 nr_nodemap_entries--;
4411 * remove_all_active_ranges - Remove all currently registered regions
4413 * During discovery, it may be found that a table like SRAT is invalid
4414 * and an alternative discovery method must be used. This function removes
4415 * all currently registered regions.
4417 void __init remove_all_active_ranges(void)
4419 memset(early_node_map, 0, sizeof(early_node_map));
4420 nr_nodemap_entries = 0;
4423 /* Compare two active node_active_regions */
4424 static int __init cmp_node_active_region(const void *a, const void *b)
4426 struct node_active_region *arange = (struct node_active_region *)a;
4427 struct node_active_region *brange = (struct node_active_region *)b;
4429 /* Done this way to avoid overflows */
4430 if (arange->start_pfn > brange->start_pfn)
4431 return 1;
4432 if (arange->start_pfn < brange->start_pfn)
4433 return -1;
4435 return 0;
4438 /* sort the node_map by start_pfn */
4439 void __init sort_node_map(void)
4441 sort(early_node_map, (size_t)nr_nodemap_entries,
4442 sizeof(struct node_active_region),
4443 cmp_node_active_region, NULL);
4446 /* Find the lowest pfn for a node */
4447 static unsigned long __init find_min_pfn_for_node(int nid)
4449 int i;
4450 unsigned long min_pfn = ULONG_MAX;
4452 /* Assuming a sorted map, the first range found has the starting pfn */
4453 for_each_active_range_index_in_nid(i, nid)
4454 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4456 if (min_pfn == ULONG_MAX) {
4457 printk(KERN_WARNING
4458 "Could not find start_pfn for node %d\n", nid);
4459 return 0;
4462 return min_pfn;
4466 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4468 * It returns the minimum PFN based on information provided via
4469 * add_active_range().
4471 unsigned long __init find_min_pfn_with_active_regions(void)
4473 return find_min_pfn_for_node(MAX_NUMNODES);
4477 * early_calculate_totalpages()
4478 * Sum pages in active regions for movable zone.
4479 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4481 static unsigned long __init early_calculate_totalpages(void)
4483 int i;
4484 unsigned long totalpages = 0;
4486 for (i = 0; i < nr_nodemap_entries; i++) {
4487 unsigned long pages = early_node_map[i].end_pfn -
4488 early_node_map[i].start_pfn;
4489 totalpages += pages;
4490 if (pages)
4491 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4493 return totalpages;
4497 * Find the PFN the Movable zone begins in each node. Kernel memory
4498 * is spread evenly between nodes as long as the nodes have enough
4499 * memory. When they don't, some nodes will have more kernelcore than
4500 * others
4502 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4504 int i, nid;
4505 unsigned long usable_startpfn;
4506 unsigned long kernelcore_node, kernelcore_remaining;
4507 /* save the state before borrow the nodemask */
4508 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4509 unsigned long totalpages = early_calculate_totalpages();
4510 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4513 * If movablecore was specified, calculate what size of
4514 * kernelcore that corresponds so that memory usable for
4515 * any allocation type is evenly spread. If both kernelcore
4516 * and movablecore are specified, then the value of kernelcore
4517 * will be used for required_kernelcore if it's greater than
4518 * what movablecore would have allowed.
4520 if (required_movablecore) {
4521 unsigned long corepages;
4524 * Round-up so that ZONE_MOVABLE is at least as large as what
4525 * was requested by the user
4527 required_movablecore =
4528 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4529 corepages = totalpages - required_movablecore;
4531 required_kernelcore = max(required_kernelcore, corepages);
4534 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4535 if (!required_kernelcore)
4536 goto out;
4538 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4539 find_usable_zone_for_movable();
4540 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4542 restart:
4543 /* Spread kernelcore memory as evenly as possible throughout nodes */
4544 kernelcore_node = required_kernelcore / usable_nodes;
4545 for_each_node_state(nid, N_HIGH_MEMORY) {
4547 * Recalculate kernelcore_node if the division per node
4548 * now exceeds what is necessary to satisfy the requested
4549 * amount of memory for the kernel
4551 if (required_kernelcore < kernelcore_node)
4552 kernelcore_node = required_kernelcore / usable_nodes;
4555 * As the map is walked, we track how much memory is usable
4556 * by the kernel using kernelcore_remaining. When it is
4557 * 0, the rest of the node is usable by ZONE_MOVABLE
4559 kernelcore_remaining = kernelcore_node;
4561 /* Go through each range of PFNs within this node */
4562 for_each_active_range_index_in_nid(i, nid) {
4563 unsigned long start_pfn, end_pfn;
4564 unsigned long size_pages;
4566 start_pfn = max(early_node_map[i].start_pfn,
4567 zone_movable_pfn[nid]);
4568 end_pfn = early_node_map[i].end_pfn;
4569 if (start_pfn >= end_pfn)
4570 continue;
4572 /* Account for what is only usable for kernelcore */
4573 if (start_pfn < usable_startpfn) {
4574 unsigned long kernel_pages;
4575 kernel_pages = min(end_pfn, usable_startpfn)
4576 - start_pfn;
4578 kernelcore_remaining -= min(kernel_pages,
4579 kernelcore_remaining);
4580 required_kernelcore -= min(kernel_pages,
4581 required_kernelcore);
4583 /* Continue if range is now fully accounted */
4584 if (end_pfn <= usable_startpfn) {
4587 * Push zone_movable_pfn to the end so
4588 * that if we have to rebalance
4589 * kernelcore across nodes, we will
4590 * not double account here
4592 zone_movable_pfn[nid] = end_pfn;
4593 continue;
4595 start_pfn = usable_startpfn;
4599 * The usable PFN range for ZONE_MOVABLE is from
4600 * start_pfn->end_pfn. Calculate size_pages as the
4601 * number of pages used as kernelcore
4603 size_pages = end_pfn - start_pfn;
4604 if (size_pages > kernelcore_remaining)
4605 size_pages = kernelcore_remaining;
4606 zone_movable_pfn[nid] = start_pfn + size_pages;
4609 * Some kernelcore has been met, update counts and
4610 * break if the kernelcore for this node has been
4611 * satisified
4613 required_kernelcore -= min(required_kernelcore,
4614 size_pages);
4615 kernelcore_remaining -= size_pages;
4616 if (!kernelcore_remaining)
4617 break;
4622 * If there is still required_kernelcore, we do another pass with one
4623 * less node in the count. This will push zone_movable_pfn[nid] further
4624 * along on the nodes that still have memory until kernelcore is
4625 * satisified
4627 usable_nodes--;
4628 if (usable_nodes && required_kernelcore > usable_nodes)
4629 goto restart;
4631 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4632 for (nid = 0; nid < MAX_NUMNODES; nid++)
4633 zone_movable_pfn[nid] =
4634 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4636 out:
4637 /* restore the node_state */
4638 node_states[N_HIGH_MEMORY] = saved_node_state;
4641 /* Any regular memory on that node ? */
4642 static void check_for_regular_memory(pg_data_t *pgdat)
4644 #ifdef CONFIG_HIGHMEM
4645 enum zone_type zone_type;
4647 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4648 struct zone *zone = &pgdat->node_zones[zone_type];
4649 if (zone->present_pages)
4650 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4652 #endif
4656 * free_area_init_nodes - Initialise all pg_data_t and zone data
4657 * @max_zone_pfn: an array of max PFNs for each zone
4659 * This will call free_area_init_node() for each active node in the system.
4660 * Using the page ranges provided by add_active_range(), the size of each
4661 * zone in each node and their holes is calculated. If the maximum PFN
4662 * between two adjacent zones match, it is assumed that the zone is empty.
4663 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4664 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4665 * starts where the previous one ended. For example, ZONE_DMA32 starts
4666 * at arch_max_dma_pfn.
4668 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4670 unsigned long nid;
4671 int i;
4673 /* Sort early_node_map as initialisation assumes it is sorted */
4674 sort_node_map();
4676 /* Record where the zone boundaries are */
4677 memset(arch_zone_lowest_possible_pfn, 0,
4678 sizeof(arch_zone_lowest_possible_pfn));
4679 memset(arch_zone_highest_possible_pfn, 0,
4680 sizeof(arch_zone_highest_possible_pfn));
4681 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4682 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4683 for (i = 1; i < MAX_NR_ZONES; i++) {
4684 if (i == ZONE_MOVABLE)
4685 continue;
4686 arch_zone_lowest_possible_pfn[i] =
4687 arch_zone_highest_possible_pfn[i-1];
4688 arch_zone_highest_possible_pfn[i] =
4689 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4691 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4692 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4694 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4695 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4696 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4698 /* Print out the zone ranges */
4699 printk("Zone PFN ranges:\n");
4700 for (i = 0; i < MAX_NR_ZONES; i++) {
4701 if (i == ZONE_MOVABLE)
4702 continue;
4703 printk(" %-8s ", zone_names[i]);
4704 if (arch_zone_lowest_possible_pfn[i] ==
4705 arch_zone_highest_possible_pfn[i])
4706 printk("empty\n");
4707 else
4708 printk("%0#10lx -> %0#10lx\n",
4709 arch_zone_lowest_possible_pfn[i],
4710 arch_zone_highest_possible_pfn[i]);
4713 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4714 printk("Movable zone start PFN for each node\n");
4715 for (i = 0; i < MAX_NUMNODES; i++) {
4716 if (zone_movable_pfn[i])
4717 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4720 /* Print out the early_node_map[] */
4721 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4722 for (i = 0; i < nr_nodemap_entries; i++)
4723 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4724 early_node_map[i].start_pfn,
4725 early_node_map[i].end_pfn);
4727 /* Initialise every node */
4728 mminit_verify_pageflags_layout();
4729 setup_nr_node_ids();
4730 for_each_online_node(nid) {
4731 pg_data_t *pgdat = NODE_DATA(nid);
4732 free_area_init_node(nid, NULL,
4733 find_min_pfn_for_node(nid), NULL);
4735 /* Any memory on that node */
4736 if (pgdat->node_present_pages)
4737 node_set_state(nid, N_HIGH_MEMORY);
4738 check_for_regular_memory(pgdat);
4742 static int __init cmdline_parse_core(char *p, unsigned long *core)
4744 unsigned long long coremem;
4745 if (!p)
4746 return -EINVAL;
4748 coremem = memparse(p, &p);
4749 *core = coremem >> PAGE_SHIFT;
4751 /* Paranoid check that UL is enough for the coremem value */
4752 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4754 return 0;
4758 * kernelcore=size sets the amount of memory for use for allocations that
4759 * cannot be reclaimed or migrated.
4761 static int __init cmdline_parse_kernelcore(char *p)
4763 return cmdline_parse_core(p, &required_kernelcore);
4767 * movablecore=size sets the amount of memory for use for allocations that
4768 * can be reclaimed or migrated.
4770 static int __init cmdline_parse_movablecore(char *p)
4772 return cmdline_parse_core(p, &required_movablecore);
4775 early_param("kernelcore", cmdline_parse_kernelcore);
4776 early_param("movablecore", cmdline_parse_movablecore);
4778 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4781 * set_dma_reserve - set the specified number of pages reserved in the first zone
4782 * @new_dma_reserve: The number of pages to mark reserved
4784 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4785 * In the DMA zone, a significant percentage may be consumed by kernel image
4786 * and other unfreeable allocations which can skew the watermarks badly. This
4787 * function may optionally be used to account for unfreeable pages in the
4788 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4789 * smaller per-cpu batchsize.
4791 void __init set_dma_reserve(unsigned long new_dma_reserve)
4793 dma_reserve = new_dma_reserve;
4796 #ifndef CONFIG_NEED_MULTIPLE_NODES
4797 struct pglist_data __refdata contig_page_data = {
4798 #ifndef CONFIG_NO_BOOTMEM
4799 .bdata = &bootmem_node_data[0]
4800 #endif
4802 EXPORT_SYMBOL(contig_page_data);
4803 #endif
4805 void __init free_area_init(unsigned long *zones_size)
4807 free_area_init_node(0, zones_size,
4808 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4811 static int page_alloc_cpu_notify(struct notifier_block *self,
4812 unsigned long action, void *hcpu)
4814 int cpu = (unsigned long)hcpu;
4816 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4817 drain_pages(cpu);
4820 * Spill the event counters of the dead processor
4821 * into the current processors event counters.
4822 * This artificially elevates the count of the current
4823 * processor.
4825 vm_events_fold_cpu(cpu);
4828 * Zero the differential counters of the dead processor
4829 * so that the vm statistics are consistent.
4831 * This is only okay since the processor is dead and cannot
4832 * race with what we are doing.
4834 refresh_cpu_vm_stats(cpu);
4836 return NOTIFY_OK;
4839 void __init page_alloc_init(void)
4841 hotcpu_notifier(page_alloc_cpu_notify, 0);
4845 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4846 * or min_free_kbytes changes.
4848 static void calculate_totalreserve_pages(void)
4850 struct pglist_data *pgdat;
4851 unsigned long reserve_pages = 0;
4852 enum zone_type i, j;
4854 for_each_online_pgdat(pgdat) {
4855 for (i = 0; i < MAX_NR_ZONES; i++) {
4856 struct zone *zone = pgdat->node_zones + i;
4857 unsigned long max = 0;
4859 /* Find valid and maximum lowmem_reserve in the zone */
4860 for (j = i; j < MAX_NR_ZONES; j++) {
4861 if (zone->lowmem_reserve[j] > max)
4862 max = zone->lowmem_reserve[j];
4865 /* we treat the high watermark as reserved pages. */
4866 max += high_wmark_pages(zone);
4868 if (max > zone->present_pages)
4869 max = zone->present_pages;
4870 reserve_pages += max;
4873 totalreserve_pages = reserve_pages;
4877 * setup_per_zone_lowmem_reserve - called whenever
4878 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4879 * has a correct pages reserved value, so an adequate number of
4880 * pages are left in the zone after a successful __alloc_pages().
4882 static void setup_per_zone_lowmem_reserve(void)
4884 struct pglist_data *pgdat;
4885 enum zone_type j, idx;
4887 for_each_online_pgdat(pgdat) {
4888 for (j = 0; j < MAX_NR_ZONES; j++) {
4889 struct zone *zone = pgdat->node_zones + j;
4890 unsigned long present_pages = zone->present_pages;
4892 zone->lowmem_reserve[j] = 0;
4894 idx = j;
4895 while (idx) {
4896 struct zone *lower_zone;
4898 idx--;
4900 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4901 sysctl_lowmem_reserve_ratio[idx] = 1;
4903 lower_zone = pgdat->node_zones + idx;
4904 lower_zone->lowmem_reserve[j] = present_pages /
4905 sysctl_lowmem_reserve_ratio[idx];
4906 present_pages += lower_zone->present_pages;
4911 /* update totalreserve_pages */
4912 calculate_totalreserve_pages();
4916 * setup_per_zone_wmarks - called when min_free_kbytes changes
4917 * or when memory is hot-{added|removed}
4919 * Ensures that the watermark[min,low,high] values for each zone are set
4920 * correctly with respect to min_free_kbytes.
4922 void setup_per_zone_wmarks(void)
4924 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4925 unsigned long lowmem_pages = 0;
4926 struct zone *zone;
4927 unsigned long flags;
4929 /* Calculate total number of !ZONE_HIGHMEM pages */
4930 for_each_zone(zone) {
4931 if (!is_highmem(zone))
4932 lowmem_pages += zone->present_pages;
4935 for_each_zone(zone) {
4936 u64 tmp;
4938 spin_lock_irqsave(&zone->lock, flags);
4939 tmp = (u64)pages_min * zone->present_pages;
4940 do_div(tmp, lowmem_pages);
4941 if (is_highmem(zone)) {
4943 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4944 * need highmem pages, so cap pages_min to a small
4945 * value here.
4947 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4948 * deltas controls asynch page reclaim, and so should
4949 * not be capped for highmem.
4951 int min_pages;
4953 min_pages = zone->present_pages / 1024;
4954 if (min_pages < SWAP_CLUSTER_MAX)
4955 min_pages = SWAP_CLUSTER_MAX;
4956 if (min_pages > 128)
4957 min_pages = 128;
4958 zone->watermark[WMARK_MIN] = min_pages;
4959 } else {
4961 * If it's a lowmem zone, reserve a number of pages
4962 * proportionate to the zone's size.
4964 zone->watermark[WMARK_MIN] = tmp;
4967 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4968 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4969 setup_zone_migrate_reserve(zone);
4970 spin_unlock_irqrestore(&zone->lock, flags);
4973 /* update totalreserve_pages */
4974 calculate_totalreserve_pages();
4978 * The inactive anon list should be small enough that the VM never has to
4979 * do too much work, but large enough that each inactive page has a chance
4980 * to be referenced again before it is swapped out.
4982 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4983 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4984 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4985 * the anonymous pages are kept on the inactive list.
4987 * total target max
4988 * memory ratio inactive anon
4989 * -------------------------------------
4990 * 10MB 1 5MB
4991 * 100MB 1 50MB
4992 * 1GB 3 250MB
4993 * 10GB 10 0.9GB
4994 * 100GB 31 3GB
4995 * 1TB 101 10GB
4996 * 10TB 320 32GB
4998 void calculate_zone_inactive_ratio(struct zone *zone)
5000 unsigned int gb, ratio;
5002 /* Zone size in gigabytes */
5003 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5004 if (gb)
5005 ratio = int_sqrt(10 * gb);
5006 else
5007 ratio = 1;
5009 zone->inactive_ratio = ratio;
5012 static void __init setup_per_zone_inactive_ratio(void)
5014 struct zone *zone;
5016 for_each_zone(zone)
5017 calculate_zone_inactive_ratio(zone);
5021 * Initialise min_free_kbytes.
5023 * For small machines we want it small (128k min). For large machines
5024 * we want it large (64MB max). But it is not linear, because network
5025 * bandwidth does not increase linearly with machine size. We use
5027 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5028 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5030 * which yields
5032 * 16MB: 512k
5033 * 32MB: 724k
5034 * 64MB: 1024k
5035 * 128MB: 1448k
5036 * 256MB: 2048k
5037 * 512MB: 2896k
5038 * 1024MB: 4096k
5039 * 2048MB: 5792k
5040 * 4096MB: 8192k
5041 * 8192MB: 11584k
5042 * 16384MB: 16384k
5044 static int __init init_per_zone_wmark_min(void)
5046 unsigned long lowmem_kbytes;
5048 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5050 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5051 if (min_free_kbytes < 128)
5052 min_free_kbytes = 128;
5053 if (min_free_kbytes > 65536)
5054 min_free_kbytes = 65536;
5055 setup_per_zone_wmarks();
5056 setup_per_zone_lowmem_reserve();
5057 setup_per_zone_inactive_ratio();
5058 return 0;
5060 module_init(init_per_zone_wmark_min)
5063 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5064 * that we can call two helper functions whenever min_free_kbytes
5065 * changes.
5067 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5068 void __user *buffer, size_t *length, loff_t *ppos)
5070 proc_dointvec(table, write, buffer, length, ppos);
5071 if (write)
5072 setup_per_zone_wmarks();
5073 return 0;
5076 #ifdef CONFIG_NUMA
5077 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5078 void __user *buffer, size_t *length, loff_t *ppos)
5080 struct zone *zone;
5081 int rc;
5083 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5084 if (rc)
5085 return rc;
5087 for_each_zone(zone)
5088 zone->min_unmapped_pages = (zone->present_pages *
5089 sysctl_min_unmapped_ratio) / 100;
5090 return 0;
5093 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5094 void __user *buffer, size_t *length, loff_t *ppos)
5096 struct zone *zone;
5097 int rc;
5099 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5100 if (rc)
5101 return rc;
5103 for_each_zone(zone)
5104 zone->min_slab_pages = (zone->present_pages *
5105 sysctl_min_slab_ratio) / 100;
5106 return 0;
5108 #endif
5111 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5112 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5113 * whenever sysctl_lowmem_reserve_ratio changes.
5115 * The reserve ratio obviously has absolutely no relation with the
5116 * minimum watermarks. The lowmem reserve ratio can only make sense
5117 * if in function of the boot time zone sizes.
5119 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5120 void __user *buffer, size_t *length, loff_t *ppos)
5122 proc_dointvec_minmax(table, write, buffer, length, ppos);
5123 setup_per_zone_lowmem_reserve();
5124 return 0;
5128 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5129 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5130 * can have before it gets flushed back to buddy allocator.
5133 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5134 void __user *buffer, size_t *length, loff_t *ppos)
5136 struct zone *zone;
5137 unsigned int cpu;
5138 int ret;
5140 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5141 if (!write || (ret == -EINVAL))
5142 return ret;
5143 for_each_populated_zone(zone) {
5144 for_each_possible_cpu(cpu) {
5145 unsigned long high;
5146 high = zone->present_pages / percpu_pagelist_fraction;
5147 setup_pagelist_highmark(
5148 per_cpu_ptr(zone->pageset, cpu), high);
5151 return 0;
5154 int hashdist = HASHDIST_DEFAULT;
5156 #ifdef CONFIG_NUMA
5157 static int __init set_hashdist(char *str)
5159 if (!str)
5160 return 0;
5161 hashdist = simple_strtoul(str, &str, 0);
5162 return 1;
5164 __setup("hashdist=", set_hashdist);
5165 #endif
5168 * allocate a large system hash table from bootmem
5169 * - it is assumed that the hash table must contain an exact power-of-2
5170 * quantity of entries
5171 * - limit is the number of hash buckets, not the total allocation size
5173 void *__init alloc_large_system_hash(const char *tablename,
5174 unsigned long bucketsize,
5175 unsigned long numentries,
5176 int scale,
5177 int flags,
5178 unsigned int *_hash_shift,
5179 unsigned int *_hash_mask,
5180 unsigned long limit)
5182 unsigned long long max = limit;
5183 unsigned long log2qty, size;
5184 void *table = NULL;
5186 /* allow the kernel cmdline to have a say */
5187 if (!numentries) {
5188 /* round applicable memory size up to nearest megabyte */
5189 numentries = nr_kernel_pages;
5190 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5191 numentries >>= 20 - PAGE_SHIFT;
5192 numentries <<= 20 - PAGE_SHIFT;
5194 /* limit to 1 bucket per 2^scale bytes of low memory */
5195 if (scale > PAGE_SHIFT)
5196 numentries >>= (scale - PAGE_SHIFT);
5197 else
5198 numentries <<= (PAGE_SHIFT - scale);
5200 /* Make sure we've got at least a 0-order allocation.. */
5201 if (unlikely(flags & HASH_SMALL)) {
5202 /* Makes no sense without HASH_EARLY */
5203 WARN_ON(!(flags & HASH_EARLY));
5204 if (!(numentries >> *_hash_shift)) {
5205 numentries = 1UL << *_hash_shift;
5206 BUG_ON(!numentries);
5208 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5209 numentries = PAGE_SIZE / bucketsize;
5211 numentries = roundup_pow_of_two(numentries);
5213 /* limit allocation size to 1/16 total memory by default */
5214 if (max == 0) {
5215 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5216 do_div(max, bucketsize);
5219 if (numentries > max)
5220 numentries = max;
5222 log2qty = ilog2(numentries);
5224 do {
5225 size = bucketsize << log2qty;
5226 if (flags & HASH_EARLY)
5227 table = alloc_bootmem_nopanic(size);
5228 else if (hashdist)
5229 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5230 else {
5232 * If bucketsize is not a power-of-two, we may free
5233 * some pages at the end of hash table which
5234 * alloc_pages_exact() automatically does
5236 if (get_order(size) < MAX_ORDER) {
5237 table = alloc_pages_exact(size, GFP_ATOMIC);
5238 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5241 } while (!table && size > PAGE_SIZE && --log2qty);
5243 if (!table)
5244 panic("Failed to allocate %s hash table\n", tablename);
5246 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5247 tablename,
5248 (1UL << log2qty),
5249 ilog2(size) - PAGE_SHIFT,
5250 size);
5252 if (_hash_shift)
5253 *_hash_shift = log2qty;
5254 if (_hash_mask)
5255 *_hash_mask = (1 << log2qty) - 1;
5257 return table;
5260 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5261 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5262 unsigned long pfn)
5264 #ifdef CONFIG_SPARSEMEM
5265 return __pfn_to_section(pfn)->pageblock_flags;
5266 #else
5267 return zone->pageblock_flags;
5268 #endif /* CONFIG_SPARSEMEM */
5271 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5273 #ifdef CONFIG_SPARSEMEM
5274 pfn &= (PAGES_PER_SECTION-1);
5275 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5276 #else
5277 pfn = pfn - zone->zone_start_pfn;
5278 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5279 #endif /* CONFIG_SPARSEMEM */
5283 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5284 * @page: The page within the block of interest
5285 * @start_bitidx: The first bit of interest to retrieve
5286 * @end_bitidx: The last bit of interest
5287 * returns pageblock_bits flags
5289 unsigned long get_pageblock_flags_group(struct page *page,
5290 int start_bitidx, int end_bitidx)
5292 struct zone *zone;
5293 unsigned long *bitmap;
5294 unsigned long pfn, bitidx;
5295 unsigned long flags = 0;
5296 unsigned long value = 1;
5298 zone = page_zone(page);
5299 pfn = page_to_pfn(page);
5300 bitmap = get_pageblock_bitmap(zone, pfn);
5301 bitidx = pfn_to_bitidx(zone, pfn);
5303 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5304 if (test_bit(bitidx + start_bitidx, bitmap))
5305 flags |= value;
5307 return flags;
5311 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5312 * @page: The page within the block of interest
5313 * @start_bitidx: The first bit of interest
5314 * @end_bitidx: The last bit of interest
5315 * @flags: The flags to set
5317 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5318 int start_bitidx, int end_bitidx)
5320 struct zone *zone;
5321 unsigned long *bitmap;
5322 unsigned long pfn, bitidx;
5323 unsigned long value = 1;
5325 zone = page_zone(page);
5326 pfn = page_to_pfn(page);
5327 bitmap = get_pageblock_bitmap(zone, pfn);
5328 bitidx = pfn_to_bitidx(zone, pfn);
5329 VM_BUG_ON(pfn < zone->zone_start_pfn);
5330 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5332 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5333 if (flags & value)
5334 __set_bit(bitidx + start_bitidx, bitmap);
5335 else
5336 __clear_bit(bitidx + start_bitidx, bitmap);
5340 * This is designed as sub function...plz see page_isolation.c also.
5341 * set/clear page block's type to be ISOLATE.
5342 * page allocater never alloc memory from ISOLATE block.
5345 static int
5346 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5348 unsigned long pfn, iter, found;
5350 * For avoiding noise data, lru_add_drain_all() should be called
5351 * If ZONE_MOVABLE, the zone never contains immobile pages
5353 if (zone_idx(zone) == ZONE_MOVABLE)
5354 return true;
5356 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5357 return true;
5359 pfn = page_to_pfn(page);
5360 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5361 unsigned long check = pfn + iter;
5363 if (!pfn_valid_within(check)) {
5364 iter++;
5365 continue;
5367 page = pfn_to_page(check);
5368 if (!page_count(page)) {
5369 if (PageBuddy(page))
5370 iter += (1 << page_order(page)) - 1;
5371 continue;
5373 if (!PageLRU(page))
5374 found++;
5376 * If there are RECLAIMABLE pages, we need to check it.
5377 * But now, memory offline itself doesn't call shrink_slab()
5378 * and it still to be fixed.
5381 * If the page is not RAM, page_count()should be 0.
5382 * we don't need more check. This is an _used_ not-movable page.
5384 * The problematic thing here is PG_reserved pages. PG_reserved
5385 * is set to both of a memory hole page and a _used_ kernel
5386 * page at boot.
5388 if (found > count)
5389 return false;
5391 return true;
5394 bool is_pageblock_removable_nolock(struct page *page)
5396 struct zone *zone = page_zone(page);
5397 return __count_immobile_pages(zone, page, 0);
5400 int set_migratetype_isolate(struct page *page)
5402 struct zone *zone;
5403 unsigned long flags, pfn;
5404 struct memory_isolate_notify arg;
5405 int notifier_ret;
5406 int ret = -EBUSY;
5407 int zone_idx;
5409 zone = page_zone(page);
5410 zone_idx = zone_idx(zone);
5412 spin_lock_irqsave(&zone->lock, flags);
5414 pfn = page_to_pfn(page);
5415 arg.start_pfn = pfn;
5416 arg.nr_pages = pageblock_nr_pages;
5417 arg.pages_found = 0;
5420 * It may be possible to isolate a pageblock even if the
5421 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5422 * notifier chain is used by balloon drivers to return the
5423 * number of pages in a range that are held by the balloon
5424 * driver to shrink memory. If all the pages are accounted for
5425 * by balloons, are free, or on the LRU, isolation can continue.
5426 * Later, for example, when memory hotplug notifier runs, these
5427 * pages reported as "can be isolated" should be isolated(freed)
5428 * by the balloon driver through the memory notifier chain.
5430 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5431 notifier_ret = notifier_to_errno(notifier_ret);
5432 if (notifier_ret)
5433 goto out;
5435 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5436 * We just check MOVABLE pages.
5438 if (__count_immobile_pages(zone, page, arg.pages_found))
5439 ret = 0;
5442 * immobile means "not-on-lru" paes. If immobile is larger than
5443 * removable-by-driver pages reported by notifier, we'll fail.
5446 out:
5447 if (!ret) {
5448 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5449 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5452 spin_unlock_irqrestore(&zone->lock, flags);
5453 if (!ret)
5454 drain_all_pages();
5455 return ret;
5458 void unset_migratetype_isolate(struct page *page)
5460 struct zone *zone;
5461 unsigned long flags;
5462 zone = page_zone(page);
5463 spin_lock_irqsave(&zone->lock, flags);
5464 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5465 goto out;
5466 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5467 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5468 out:
5469 spin_unlock_irqrestore(&zone->lock, flags);
5472 #ifdef CONFIG_MEMORY_HOTREMOVE
5474 * All pages in the range must be isolated before calling this.
5476 void
5477 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5479 struct page *page;
5480 struct zone *zone;
5481 int order, i;
5482 unsigned long pfn;
5483 unsigned long flags;
5484 /* find the first valid pfn */
5485 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5486 if (pfn_valid(pfn))
5487 break;
5488 if (pfn == end_pfn)
5489 return;
5490 zone = page_zone(pfn_to_page(pfn));
5491 spin_lock_irqsave(&zone->lock, flags);
5492 pfn = start_pfn;
5493 while (pfn < end_pfn) {
5494 if (!pfn_valid(pfn)) {
5495 pfn++;
5496 continue;
5498 page = pfn_to_page(pfn);
5499 BUG_ON(page_count(page));
5500 BUG_ON(!PageBuddy(page));
5501 order = page_order(page);
5502 #ifdef CONFIG_DEBUG_VM
5503 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5504 pfn, 1 << order, end_pfn);
5505 #endif
5506 list_del(&page->lru);
5507 rmv_page_order(page);
5508 zone->free_area[order].nr_free--;
5509 __mod_zone_page_state(zone, NR_FREE_PAGES,
5510 - (1UL << order));
5511 for (i = 0; i < (1 << order); i++)
5512 SetPageReserved((page+i));
5513 pfn += (1 << order);
5515 spin_unlock_irqrestore(&zone->lock, flags);
5517 #endif
5519 #ifdef CONFIG_MEMORY_FAILURE
5520 bool is_free_buddy_page(struct page *page)
5522 struct zone *zone = page_zone(page);
5523 unsigned long pfn = page_to_pfn(page);
5524 unsigned long flags;
5525 int order;
5527 spin_lock_irqsave(&zone->lock, flags);
5528 for (order = 0; order < MAX_ORDER; order++) {
5529 struct page *page_head = page - (pfn & ((1 << order) - 1));
5531 if (PageBuddy(page_head) && page_order(page_head) >= order)
5532 break;
5534 spin_unlock_irqrestore(&zone->lock, flags);
5536 return order < MAX_ORDER;
5538 #endif
5540 static struct trace_print_flags pageflag_names[] = {
5541 {1UL << PG_locked, "locked" },
5542 {1UL << PG_error, "error" },
5543 {1UL << PG_referenced, "referenced" },
5544 {1UL << PG_uptodate, "uptodate" },
5545 {1UL << PG_dirty, "dirty" },
5546 {1UL << PG_lru, "lru" },
5547 {1UL << PG_active, "active" },
5548 {1UL << PG_slab, "slab" },
5549 {1UL << PG_owner_priv_1, "owner_priv_1" },
5550 {1UL << PG_arch_1, "arch_1" },
5551 {1UL << PG_reserved, "reserved" },
5552 {1UL << PG_private, "private" },
5553 {1UL << PG_private_2, "private_2" },
5554 {1UL << PG_writeback, "writeback" },
5555 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5556 {1UL << PG_head, "head" },
5557 {1UL << PG_tail, "tail" },
5558 #else
5559 {1UL << PG_compound, "compound" },
5560 #endif
5561 {1UL << PG_swapcache, "swapcache" },
5562 {1UL << PG_mappedtodisk, "mappedtodisk" },
5563 {1UL << PG_reclaim, "reclaim" },
5564 {1UL << PG_buddy, "buddy" },
5565 {1UL << PG_swapbacked, "swapbacked" },
5566 {1UL << PG_unevictable, "unevictable" },
5567 #ifdef CONFIG_MMU
5568 {1UL << PG_mlocked, "mlocked" },
5569 #endif
5570 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5571 {1UL << PG_uncached, "uncached" },
5572 #endif
5573 #ifdef CONFIG_MEMORY_FAILURE
5574 {1UL << PG_hwpoison, "hwpoison" },
5575 #endif
5576 {-1UL, NULL },
5579 static void dump_page_flags(unsigned long flags)
5581 const char *delim = "";
5582 unsigned long mask;
5583 int i;
5585 printk(KERN_ALERT "page flags: %#lx(", flags);
5587 /* remove zone id */
5588 flags &= (1UL << NR_PAGEFLAGS) - 1;
5590 for (i = 0; pageflag_names[i].name && flags; i++) {
5592 mask = pageflag_names[i].mask;
5593 if ((flags & mask) != mask)
5594 continue;
5596 flags &= ~mask;
5597 printk("%s%s", delim, pageflag_names[i].name);
5598 delim = "|";
5601 /* check for left over flags */
5602 if (flags)
5603 printk("%s%#lx", delim, flags);
5605 printk(")\n");
5608 void dump_page(struct page *page)
5610 printk(KERN_ALERT
5611 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5612 page, page_count(page), page_mapcount(page),
5613 page->mapping, page->index);
5614 dump_page_flags(page->flags);