mm: migration: allow migration to operate asynchronously and avoid synchronous compac...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / migrate.c
blobdc47f6c403539cc4d05faa5085093497ab124ed4
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
40 #include "internal.h"
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
57 lru_add_drain_all();
59 return 0;
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
65 lru_add_drain();
67 return 0;
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head *l)
76 struct page *page;
77 struct page *page2;
79 list_for_each_entry_safe(page, page2, l, lru) {
80 list_del(&page->lru);
81 dec_zone_page_state(page, NR_ISOLATED_ANON +
82 page_is_file_cache(page));
83 putback_lru_page(page);
88 * Restore a potential migration pte to a working pte entry
90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
115 pmd = pmd_offset(pud, addr);
116 if (!pmd_present(*pmd))
117 goto out;
119 ptep = pte_offset_map(pmd, addr);
121 if (!is_swap_pte(*ptep)) {
122 pte_unmap(ptep);
123 goto out;
126 ptl = pte_lockptr(mm, pmd);
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
134 entry = pte_to_swp_entry(pte);
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147 #endif
148 flush_cache_page(vma, addr, pte_pfn(pte));
149 set_pte_at(mm, addr, ptep, pte);
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163 unlock:
164 pte_unmap_unlock(ptep, ptl);
165 out:
166 return SWAP_AGAIN;
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page *old, struct page *new)
175 rmap_walk(new, remove_migration_pte, old);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 * This function is called from do_swap_page().
185 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
186 unsigned long address)
188 pte_t *ptep, pte;
189 spinlock_t *ptl;
190 swp_entry_t entry;
191 struct page *page;
193 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
194 pte = *ptep;
195 if (!is_swap_pte(pte))
196 goto out;
198 entry = pte_to_swp_entry(pte);
199 if (!is_migration_entry(entry))
200 goto out;
202 page = migration_entry_to_page(entry);
205 * Once radix-tree replacement of page migration started, page_count
206 * *must* be zero. And, we don't want to call wait_on_page_locked()
207 * against a page without get_page().
208 * So, we use get_page_unless_zero(), here. Even failed, page fault
209 * will occur again.
211 if (!get_page_unless_zero(page))
212 goto out;
213 pte_unmap_unlock(ptep, ptl);
214 wait_on_page_locked(page);
215 put_page(page);
216 return;
217 out:
218 pte_unmap_unlock(ptep, ptl);
222 * Replace the page in the mapping.
224 * The number of remaining references must be:
225 * 1 for anonymous pages without a mapping
226 * 2 for pages with a mapping
227 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
229 static int migrate_page_move_mapping(struct address_space *mapping,
230 struct page *newpage, struct page *page)
232 int expected_count;
233 void **pslot;
235 if (!mapping) {
236 /* Anonymous page without mapping */
237 if (page_count(page) != 1)
238 return -EAGAIN;
239 return 0;
242 spin_lock_irq(&mapping->tree_lock);
244 pslot = radix_tree_lookup_slot(&mapping->page_tree,
245 page_index(page));
247 expected_count = 2 + page_has_private(page);
248 if (page_count(page) != expected_count ||
249 (struct page *)radix_tree_deref_slot(pslot) != page) {
250 spin_unlock_irq(&mapping->tree_lock);
251 return -EAGAIN;
254 if (!page_freeze_refs(page, expected_count)) {
255 spin_unlock_irq(&mapping->tree_lock);
256 return -EAGAIN;
260 * Now we know that no one else is looking at the page.
262 get_page(newpage); /* add cache reference */
263 if (PageSwapCache(page)) {
264 SetPageSwapCache(newpage);
265 set_page_private(newpage, page_private(page));
268 radix_tree_replace_slot(pslot, newpage);
270 page_unfreeze_refs(page, expected_count);
272 * Drop cache reference from old page.
273 * We know this isn't the last reference.
275 __put_page(page);
278 * If moved to a different zone then also account
279 * the page for that zone. Other VM counters will be
280 * taken care of when we establish references to the
281 * new page and drop references to the old page.
283 * Note that anonymous pages are accounted for
284 * via NR_FILE_PAGES and NR_ANON_PAGES if they
285 * are mapped to swap space.
287 __dec_zone_page_state(page, NR_FILE_PAGES);
288 __inc_zone_page_state(newpage, NR_FILE_PAGES);
289 if (PageSwapBacked(page)) {
290 __dec_zone_page_state(page, NR_SHMEM);
291 __inc_zone_page_state(newpage, NR_SHMEM);
293 spin_unlock_irq(&mapping->tree_lock);
295 return 0;
299 * The expected number of remaining references is the same as that
300 * of migrate_page_move_mapping().
302 int migrate_huge_page_move_mapping(struct address_space *mapping,
303 struct page *newpage, struct page *page)
305 int expected_count;
306 void **pslot;
308 if (!mapping) {
309 if (page_count(page) != 1)
310 return -EAGAIN;
311 return 0;
314 spin_lock_irq(&mapping->tree_lock);
316 pslot = radix_tree_lookup_slot(&mapping->page_tree,
317 page_index(page));
319 expected_count = 2 + page_has_private(page);
320 if (page_count(page) != expected_count ||
321 (struct page *)radix_tree_deref_slot(pslot) != page) {
322 spin_unlock_irq(&mapping->tree_lock);
323 return -EAGAIN;
326 if (!page_freeze_refs(page, expected_count)) {
327 spin_unlock_irq(&mapping->tree_lock);
328 return -EAGAIN;
331 get_page(newpage);
333 radix_tree_replace_slot(pslot, newpage);
335 page_unfreeze_refs(page, expected_count);
337 __put_page(page);
339 spin_unlock_irq(&mapping->tree_lock);
340 return 0;
344 * Copy the page to its new location
346 void migrate_page_copy(struct page *newpage, struct page *page)
348 if (PageHuge(page))
349 copy_huge_page(newpage, page);
350 else
351 copy_highpage(newpage, page);
353 if (PageError(page))
354 SetPageError(newpage);
355 if (PageReferenced(page))
356 SetPageReferenced(newpage);
357 if (PageUptodate(page))
358 SetPageUptodate(newpage);
359 if (TestClearPageActive(page)) {
360 VM_BUG_ON(PageUnevictable(page));
361 SetPageActive(newpage);
362 } else if (TestClearPageUnevictable(page))
363 SetPageUnevictable(newpage);
364 if (PageChecked(page))
365 SetPageChecked(newpage);
366 if (PageMappedToDisk(page))
367 SetPageMappedToDisk(newpage);
369 if (PageDirty(page)) {
370 clear_page_dirty_for_io(page);
372 * Want to mark the page and the radix tree as dirty, and
373 * redo the accounting that clear_page_dirty_for_io undid,
374 * but we can't use set_page_dirty because that function
375 * is actually a signal that all of the page has become dirty.
376 * Wheras only part of our page may be dirty.
378 __set_page_dirty_nobuffers(newpage);
381 mlock_migrate_page(newpage, page);
382 ksm_migrate_page(newpage, page);
384 ClearPageSwapCache(page);
385 ClearPagePrivate(page);
386 set_page_private(page, 0);
387 page->mapping = NULL;
390 * If any waiters have accumulated on the new page then
391 * wake them up.
393 if (PageWriteback(newpage))
394 end_page_writeback(newpage);
397 /************************************************************
398 * Migration functions
399 ***********************************************************/
401 /* Always fail migration. Used for mappings that are not movable */
402 int fail_migrate_page(struct address_space *mapping,
403 struct page *newpage, struct page *page)
405 return -EIO;
407 EXPORT_SYMBOL(fail_migrate_page);
410 * Common logic to directly migrate a single page suitable for
411 * pages that do not use PagePrivate/PagePrivate2.
413 * Pages are locked upon entry and exit.
415 int migrate_page(struct address_space *mapping,
416 struct page *newpage, struct page *page)
418 int rc;
420 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
422 rc = migrate_page_move_mapping(mapping, newpage, page);
424 if (rc)
425 return rc;
427 migrate_page_copy(newpage, page);
428 return 0;
430 EXPORT_SYMBOL(migrate_page);
432 #ifdef CONFIG_BLOCK
434 * Migration function for pages with buffers. This function can only be used
435 * if the underlying filesystem guarantees that no other references to "page"
436 * exist.
438 int buffer_migrate_page(struct address_space *mapping,
439 struct page *newpage, struct page *page)
441 struct buffer_head *bh, *head;
442 int rc;
444 if (!page_has_buffers(page))
445 return migrate_page(mapping, newpage, page);
447 head = page_buffers(page);
449 rc = migrate_page_move_mapping(mapping, newpage, page);
451 if (rc)
452 return rc;
454 bh = head;
455 do {
456 get_bh(bh);
457 lock_buffer(bh);
458 bh = bh->b_this_page;
460 } while (bh != head);
462 ClearPagePrivate(page);
463 set_page_private(newpage, page_private(page));
464 set_page_private(page, 0);
465 put_page(page);
466 get_page(newpage);
468 bh = head;
469 do {
470 set_bh_page(bh, newpage, bh_offset(bh));
471 bh = bh->b_this_page;
473 } while (bh != head);
475 SetPagePrivate(newpage);
477 migrate_page_copy(newpage, page);
479 bh = head;
480 do {
481 unlock_buffer(bh);
482 put_bh(bh);
483 bh = bh->b_this_page;
485 } while (bh != head);
487 return 0;
489 EXPORT_SYMBOL(buffer_migrate_page);
490 #endif
493 * Writeback a page to clean the dirty state
495 static int writeout(struct address_space *mapping, struct page *page)
497 struct writeback_control wbc = {
498 .sync_mode = WB_SYNC_NONE,
499 .nr_to_write = 1,
500 .range_start = 0,
501 .range_end = LLONG_MAX,
502 .for_reclaim = 1
504 int rc;
506 if (!mapping->a_ops->writepage)
507 /* No write method for the address space */
508 return -EINVAL;
510 if (!clear_page_dirty_for_io(page))
511 /* Someone else already triggered a write */
512 return -EAGAIN;
515 * A dirty page may imply that the underlying filesystem has
516 * the page on some queue. So the page must be clean for
517 * migration. Writeout may mean we loose the lock and the
518 * page state is no longer what we checked for earlier.
519 * At this point we know that the migration attempt cannot
520 * be successful.
522 remove_migration_ptes(page, page);
524 rc = mapping->a_ops->writepage(page, &wbc);
526 if (rc != AOP_WRITEPAGE_ACTIVATE)
527 /* unlocked. Relock */
528 lock_page(page);
530 return (rc < 0) ? -EIO : -EAGAIN;
534 * Default handling if a filesystem does not provide a migration function.
536 static int fallback_migrate_page(struct address_space *mapping,
537 struct page *newpage, struct page *page)
539 if (PageDirty(page))
540 return writeout(mapping, page);
543 * Buffers may be managed in a filesystem specific way.
544 * We must have no buffers or drop them.
546 if (page_has_private(page) &&
547 !try_to_release_page(page, GFP_KERNEL))
548 return -EAGAIN;
550 return migrate_page(mapping, newpage, page);
554 * Move a page to a newly allocated page
555 * The page is locked and all ptes have been successfully removed.
557 * The new page will have replaced the old page if this function
558 * is successful.
560 * Return value:
561 * < 0 - error code
562 * == 0 - success
564 static int move_to_new_page(struct page *newpage, struct page *page,
565 int remap_swapcache)
567 struct address_space *mapping;
568 int rc;
571 * Block others from accessing the page when we get around to
572 * establishing additional references. We are the only one
573 * holding a reference to the new page at this point.
575 if (!trylock_page(newpage))
576 BUG();
578 /* Prepare mapping for the new page.*/
579 newpage->index = page->index;
580 newpage->mapping = page->mapping;
581 if (PageSwapBacked(page))
582 SetPageSwapBacked(newpage);
584 mapping = page_mapping(page);
585 if (!mapping)
586 rc = migrate_page(mapping, newpage, page);
587 else if (mapping->a_ops->migratepage)
589 * Most pages have a mapping and most filesystems
590 * should provide a migration function. Anonymous
591 * pages are part of swap space which also has its
592 * own migration function. This is the most common
593 * path for page migration.
595 rc = mapping->a_ops->migratepage(mapping,
596 newpage, page);
597 else
598 rc = fallback_migrate_page(mapping, newpage, page);
600 if (rc) {
601 newpage->mapping = NULL;
602 } else {
603 if (remap_swapcache)
604 remove_migration_ptes(page, newpage);
607 unlock_page(newpage);
609 return rc;
613 * Obtain the lock on page, remove all ptes and migrate the page
614 * to the newly allocated page in newpage.
616 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
617 struct page *page, int force, int offlining, bool sync)
619 int rc = 0;
620 int *result = NULL;
621 struct page *newpage = get_new_page(page, private, &result);
622 int remap_swapcache = 1;
623 int rcu_locked = 0;
624 int charge = 0;
625 struct mem_cgroup *mem = NULL;
626 struct anon_vma *anon_vma = NULL;
628 if (!newpage)
629 return -ENOMEM;
631 if (page_count(page) == 1) {
632 /* page was freed from under us. So we are done. */
633 goto move_newpage;
636 /* prepare cgroup just returns 0 or -ENOMEM */
637 rc = -EAGAIN;
639 if (!trylock_page(page)) {
640 if (!force)
641 goto move_newpage;
644 * It's not safe for direct compaction to call lock_page.
645 * For example, during page readahead pages are added locked
646 * to the LRU. Later, when the IO completes the pages are
647 * marked uptodate and unlocked. However, the queueing
648 * could be merging multiple pages for one bio (e.g.
649 * mpage_readpages). If an allocation happens for the
650 * second or third page, the process can end up locking
651 * the same page twice and deadlocking. Rather than
652 * trying to be clever about what pages can be locked,
653 * avoid the use of lock_page for direct compaction
654 * altogether.
656 if (current->flags & PF_MEMALLOC)
657 goto move_newpage;
659 lock_page(page);
663 * Only memory hotplug's offline_pages() caller has locked out KSM,
664 * and can safely migrate a KSM page. The other cases have skipped
665 * PageKsm along with PageReserved - but it is only now when we have
666 * the page lock that we can be certain it will not go KSM beneath us
667 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
668 * its pagecount raised, but only here do we take the page lock which
669 * serializes that).
671 if (PageKsm(page) && !offlining) {
672 rc = -EBUSY;
673 goto unlock;
676 /* charge against new page */
677 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
678 if (charge == -ENOMEM) {
679 rc = -ENOMEM;
680 goto unlock;
682 BUG_ON(charge);
684 if (PageWriteback(page)) {
685 if (!force || !sync)
686 goto uncharge;
687 wait_on_page_writeback(page);
690 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
691 * we cannot notice that anon_vma is freed while we migrates a page.
692 * This rcu_read_lock() delays freeing anon_vma pointer until the end
693 * of migration. File cache pages are no problem because of page_lock()
694 * File Caches may use write_page() or lock_page() in migration, then,
695 * just care Anon page here.
697 if (PageAnon(page)) {
698 rcu_read_lock();
699 rcu_locked = 1;
701 /* Determine how to safely use anon_vma */
702 if (!page_mapped(page)) {
703 if (!PageSwapCache(page))
704 goto rcu_unlock;
707 * We cannot be sure that the anon_vma of an unmapped
708 * swapcache page is safe to use because we don't
709 * know in advance if the VMA that this page belonged
710 * to still exists. If the VMA and others sharing the
711 * data have been freed, then the anon_vma could
712 * already be invalid.
714 * To avoid this possibility, swapcache pages get
715 * migrated but are not remapped when migration
716 * completes
718 remap_swapcache = 0;
719 } else {
721 * Take a reference count on the anon_vma if the
722 * page is mapped so that it is guaranteed to
723 * exist when the page is remapped later
725 anon_vma = page_anon_vma(page);
726 get_anon_vma(anon_vma);
731 * Corner case handling:
732 * 1. When a new swap-cache page is read into, it is added to the LRU
733 * and treated as swapcache but it has no rmap yet.
734 * Calling try_to_unmap() against a page->mapping==NULL page will
735 * trigger a BUG. So handle it here.
736 * 2. An orphaned page (see truncate_complete_page) might have
737 * fs-private metadata. The page can be picked up due to memory
738 * offlining. Everywhere else except page reclaim, the page is
739 * invisible to the vm, so the page can not be migrated. So try to
740 * free the metadata, so the page can be freed.
742 if (!page->mapping) {
743 if (!PageAnon(page) && page_has_private(page)) {
745 * Go direct to try_to_free_buffers() here because
746 * a) that's what try_to_release_page() would do anyway
747 * b) we may be under rcu_read_lock() here, so we can't
748 * use GFP_KERNEL which is what try_to_release_page()
749 * needs to be effective.
751 try_to_free_buffers(page);
752 goto rcu_unlock;
754 goto skip_unmap;
757 /* Establish migration ptes or remove ptes */
758 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
760 skip_unmap:
761 if (!page_mapped(page))
762 rc = move_to_new_page(newpage, page, remap_swapcache);
764 if (rc && remap_swapcache)
765 remove_migration_ptes(page, page);
766 rcu_unlock:
768 /* Drop an anon_vma reference if we took one */
769 if (anon_vma)
770 drop_anon_vma(anon_vma);
772 if (rcu_locked)
773 rcu_read_unlock();
774 uncharge:
775 if (!charge)
776 mem_cgroup_end_migration(mem, page, newpage);
777 unlock:
778 unlock_page(page);
780 if (rc != -EAGAIN) {
782 * A page that has been migrated has all references
783 * removed and will be freed. A page that has not been
784 * migrated will have kepts its references and be
785 * restored.
787 list_del(&page->lru);
788 dec_zone_page_state(page, NR_ISOLATED_ANON +
789 page_is_file_cache(page));
790 putback_lru_page(page);
793 move_newpage:
796 * Move the new page to the LRU. If migration was not successful
797 * then this will free the page.
799 putback_lru_page(newpage);
801 if (result) {
802 if (rc)
803 *result = rc;
804 else
805 *result = page_to_nid(newpage);
807 return rc;
811 * Counterpart of unmap_and_move_page() for hugepage migration.
813 * This function doesn't wait the completion of hugepage I/O
814 * because there is no race between I/O and migration for hugepage.
815 * Note that currently hugepage I/O occurs only in direct I/O
816 * where no lock is held and PG_writeback is irrelevant,
817 * and writeback status of all subpages are counted in the reference
818 * count of the head page (i.e. if all subpages of a 2MB hugepage are
819 * under direct I/O, the reference of the head page is 512 and a bit more.)
820 * This means that when we try to migrate hugepage whose subpages are
821 * doing direct I/O, some references remain after try_to_unmap() and
822 * hugepage migration fails without data corruption.
824 * There is also no race when direct I/O is issued on the page under migration,
825 * because then pte is replaced with migration swap entry and direct I/O code
826 * will wait in the page fault for migration to complete.
828 static int unmap_and_move_huge_page(new_page_t get_new_page,
829 unsigned long private, struct page *hpage,
830 int force, int offlining, bool sync)
832 int rc = 0;
833 int *result = NULL;
834 struct page *new_hpage = get_new_page(hpage, private, &result);
835 int rcu_locked = 0;
836 struct anon_vma *anon_vma = NULL;
838 if (!new_hpage)
839 return -ENOMEM;
841 rc = -EAGAIN;
843 if (!trylock_page(hpage)) {
844 if (!force || !sync)
845 goto out;
846 lock_page(hpage);
849 if (PageAnon(hpage)) {
850 rcu_read_lock();
851 rcu_locked = 1;
853 if (page_mapped(hpage)) {
854 anon_vma = page_anon_vma(hpage);
855 atomic_inc(&anon_vma->external_refcount);
859 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
861 if (!page_mapped(hpage))
862 rc = move_to_new_page(new_hpage, hpage, 1);
864 if (rc)
865 remove_migration_ptes(hpage, hpage);
867 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
868 &anon_vma->lock)) {
869 int empty = list_empty(&anon_vma->head);
870 spin_unlock(&anon_vma->lock);
871 if (empty)
872 anon_vma_free(anon_vma);
875 if (rcu_locked)
876 rcu_read_unlock();
877 out:
878 unlock_page(hpage);
880 if (rc != -EAGAIN) {
881 list_del(&hpage->lru);
882 put_page(hpage);
885 put_page(new_hpage);
887 if (result) {
888 if (rc)
889 *result = rc;
890 else
891 *result = page_to_nid(new_hpage);
893 return rc;
897 * migrate_pages
899 * The function takes one list of pages to migrate and a function
900 * that determines from the page to be migrated and the private data
901 * the target of the move and allocates the page.
903 * The function returns after 10 attempts or if no pages
904 * are movable anymore because to has become empty
905 * or no retryable pages exist anymore.
906 * Caller should call putback_lru_pages to return pages to the LRU
907 * or free list.
909 * Return: Number of pages not migrated or error code.
911 int migrate_pages(struct list_head *from,
912 new_page_t get_new_page, unsigned long private, int offlining,
913 bool sync)
915 int retry = 1;
916 int nr_failed = 0;
917 int pass = 0;
918 struct page *page;
919 struct page *page2;
920 int swapwrite = current->flags & PF_SWAPWRITE;
921 int rc;
923 if (!swapwrite)
924 current->flags |= PF_SWAPWRITE;
926 for(pass = 0; pass < 10 && retry; pass++) {
927 retry = 0;
929 list_for_each_entry_safe(page, page2, from, lru) {
930 cond_resched();
932 rc = unmap_and_move(get_new_page, private,
933 page, pass > 2, offlining,
934 sync);
936 switch(rc) {
937 case -ENOMEM:
938 goto out;
939 case -EAGAIN:
940 retry++;
941 break;
942 case 0:
943 break;
944 default:
945 /* Permanent failure */
946 nr_failed++;
947 break;
951 rc = 0;
952 out:
953 if (!swapwrite)
954 current->flags &= ~PF_SWAPWRITE;
956 if (rc)
957 return rc;
959 return nr_failed + retry;
962 int migrate_huge_pages(struct list_head *from,
963 new_page_t get_new_page, unsigned long private, int offlining,
964 bool sync)
966 int retry = 1;
967 int nr_failed = 0;
968 int pass = 0;
969 struct page *page;
970 struct page *page2;
971 int rc;
973 for (pass = 0; pass < 10 && retry; pass++) {
974 retry = 0;
976 list_for_each_entry_safe(page, page2, from, lru) {
977 cond_resched();
979 rc = unmap_and_move_huge_page(get_new_page,
980 private, page, pass > 2, offlining,
981 sync);
983 switch(rc) {
984 case -ENOMEM:
985 goto out;
986 case -EAGAIN:
987 retry++;
988 break;
989 case 0:
990 break;
991 default:
992 /* Permanent failure */
993 nr_failed++;
994 break;
998 rc = 0;
999 out:
1001 list_for_each_entry_safe(page, page2, from, lru)
1002 put_page(page);
1004 if (rc)
1005 return rc;
1007 return nr_failed + retry;
1010 #ifdef CONFIG_NUMA
1012 * Move a list of individual pages
1014 struct page_to_node {
1015 unsigned long addr;
1016 struct page *page;
1017 int node;
1018 int status;
1021 static struct page *new_page_node(struct page *p, unsigned long private,
1022 int **result)
1024 struct page_to_node *pm = (struct page_to_node *)private;
1026 while (pm->node != MAX_NUMNODES && pm->page != p)
1027 pm++;
1029 if (pm->node == MAX_NUMNODES)
1030 return NULL;
1032 *result = &pm->status;
1034 return alloc_pages_exact_node(pm->node,
1035 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1039 * Move a set of pages as indicated in the pm array. The addr
1040 * field must be set to the virtual address of the page to be moved
1041 * and the node number must contain a valid target node.
1042 * The pm array ends with node = MAX_NUMNODES.
1044 static int do_move_page_to_node_array(struct mm_struct *mm,
1045 struct page_to_node *pm,
1046 int migrate_all)
1048 int err;
1049 struct page_to_node *pp;
1050 LIST_HEAD(pagelist);
1052 down_read(&mm->mmap_sem);
1055 * Build a list of pages to migrate
1057 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1058 struct vm_area_struct *vma;
1059 struct page *page;
1061 err = -EFAULT;
1062 vma = find_vma(mm, pp->addr);
1063 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1064 goto set_status;
1066 page = follow_page(vma, pp->addr, FOLL_GET);
1068 err = PTR_ERR(page);
1069 if (IS_ERR(page))
1070 goto set_status;
1072 err = -ENOENT;
1073 if (!page)
1074 goto set_status;
1076 /* Use PageReserved to check for zero page */
1077 if (PageReserved(page) || PageKsm(page))
1078 goto put_and_set;
1080 pp->page = page;
1081 err = page_to_nid(page);
1083 if (err == pp->node)
1085 * Node already in the right place
1087 goto put_and_set;
1089 err = -EACCES;
1090 if (page_mapcount(page) > 1 &&
1091 !migrate_all)
1092 goto put_and_set;
1094 err = isolate_lru_page(page);
1095 if (!err) {
1096 list_add_tail(&page->lru, &pagelist);
1097 inc_zone_page_state(page, NR_ISOLATED_ANON +
1098 page_is_file_cache(page));
1100 put_and_set:
1102 * Either remove the duplicate refcount from
1103 * isolate_lru_page() or drop the page ref if it was
1104 * not isolated.
1106 put_page(page);
1107 set_status:
1108 pp->status = err;
1111 err = 0;
1112 if (!list_empty(&pagelist)) {
1113 err = migrate_pages(&pagelist, new_page_node,
1114 (unsigned long)pm, 0, true);
1115 if (err)
1116 putback_lru_pages(&pagelist);
1119 up_read(&mm->mmap_sem);
1120 return err;
1124 * Migrate an array of page address onto an array of nodes and fill
1125 * the corresponding array of status.
1127 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1128 unsigned long nr_pages,
1129 const void __user * __user *pages,
1130 const int __user *nodes,
1131 int __user *status, int flags)
1133 struct page_to_node *pm;
1134 nodemask_t task_nodes;
1135 unsigned long chunk_nr_pages;
1136 unsigned long chunk_start;
1137 int err;
1139 task_nodes = cpuset_mems_allowed(task);
1141 err = -ENOMEM;
1142 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1143 if (!pm)
1144 goto out;
1146 migrate_prep();
1149 * Store a chunk of page_to_node array in a page,
1150 * but keep the last one as a marker
1152 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1154 for (chunk_start = 0;
1155 chunk_start < nr_pages;
1156 chunk_start += chunk_nr_pages) {
1157 int j;
1159 if (chunk_start + chunk_nr_pages > nr_pages)
1160 chunk_nr_pages = nr_pages - chunk_start;
1162 /* fill the chunk pm with addrs and nodes from user-space */
1163 for (j = 0; j < chunk_nr_pages; j++) {
1164 const void __user *p;
1165 int node;
1167 err = -EFAULT;
1168 if (get_user(p, pages + j + chunk_start))
1169 goto out_pm;
1170 pm[j].addr = (unsigned long) p;
1172 if (get_user(node, nodes + j + chunk_start))
1173 goto out_pm;
1175 err = -ENODEV;
1176 if (node < 0 || node >= MAX_NUMNODES)
1177 goto out_pm;
1179 if (!node_state(node, N_HIGH_MEMORY))
1180 goto out_pm;
1182 err = -EACCES;
1183 if (!node_isset(node, task_nodes))
1184 goto out_pm;
1186 pm[j].node = node;
1189 /* End marker for this chunk */
1190 pm[chunk_nr_pages].node = MAX_NUMNODES;
1192 /* Migrate this chunk */
1193 err = do_move_page_to_node_array(mm, pm,
1194 flags & MPOL_MF_MOVE_ALL);
1195 if (err < 0)
1196 goto out_pm;
1198 /* Return status information */
1199 for (j = 0; j < chunk_nr_pages; j++)
1200 if (put_user(pm[j].status, status + j + chunk_start)) {
1201 err = -EFAULT;
1202 goto out_pm;
1205 err = 0;
1207 out_pm:
1208 free_page((unsigned long)pm);
1209 out:
1210 return err;
1214 * Determine the nodes of an array of pages and store it in an array of status.
1216 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1217 const void __user **pages, int *status)
1219 unsigned long i;
1221 down_read(&mm->mmap_sem);
1223 for (i = 0; i < nr_pages; i++) {
1224 unsigned long addr = (unsigned long)(*pages);
1225 struct vm_area_struct *vma;
1226 struct page *page;
1227 int err = -EFAULT;
1229 vma = find_vma(mm, addr);
1230 if (!vma || addr < vma->vm_start)
1231 goto set_status;
1233 page = follow_page(vma, addr, 0);
1235 err = PTR_ERR(page);
1236 if (IS_ERR(page))
1237 goto set_status;
1239 err = -ENOENT;
1240 /* Use PageReserved to check for zero page */
1241 if (!page || PageReserved(page) || PageKsm(page))
1242 goto set_status;
1244 err = page_to_nid(page);
1245 set_status:
1246 *status = err;
1248 pages++;
1249 status++;
1252 up_read(&mm->mmap_sem);
1256 * Determine the nodes of a user array of pages and store it in
1257 * a user array of status.
1259 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1260 const void __user * __user *pages,
1261 int __user *status)
1263 #define DO_PAGES_STAT_CHUNK_NR 16
1264 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1265 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1267 while (nr_pages) {
1268 unsigned long chunk_nr;
1270 chunk_nr = nr_pages;
1271 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1272 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1274 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1275 break;
1277 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1279 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1280 break;
1282 pages += chunk_nr;
1283 status += chunk_nr;
1284 nr_pages -= chunk_nr;
1286 return nr_pages ? -EFAULT : 0;
1290 * Move a list of pages in the address space of the currently executing
1291 * process.
1293 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1294 const void __user * __user *, pages,
1295 const int __user *, nodes,
1296 int __user *, status, int, flags)
1298 const struct cred *cred = current_cred(), *tcred;
1299 struct task_struct *task;
1300 struct mm_struct *mm;
1301 int err;
1303 /* Check flags */
1304 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1305 return -EINVAL;
1307 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1308 return -EPERM;
1310 /* Find the mm_struct */
1311 read_lock(&tasklist_lock);
1312 task = pid ? find_task_by_vpid(pid) : current;
1313 if (!task) {
1314 read_unlock(&tasklist_lock);
1315 return -ESRCH;
1317 mm = get_task_mm(task);
1318 read_unlock(&tasklist_lock);
1320 if (!mm)
1321 return -EINVAL;
1324 * Check if this process has the right to modify the specified
1325 * process. The right exists if the process has administrative
1326 * capabilities, superuser privileges or the same
1327 * userid as the target process.
1329 rcu_read_lock();
1330 tcred = __task_cred(task);
1331 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1333 !capable(CAP_SYS_NICE)) {
1334 rcu_read_unlock();
1335 err = -EPERM;
1336 goto out;
1338 rcu_read_unlock();
1340 err = security_task_movememory(task);
1341 if (err)
1342 goto out;
1344 if (nodes) {
1345 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1346 flags);
1347 } else {
1348 err = do_pages_stat(mm, nr_pages, pages, status);
1351 out:
1352 mmput(mm);
1353 return err;
1357 * Call migration functions in the vma_ops that may prepare
1358 * memory in a vm for migration. migration functions may perform
1359 * the migration for vmas that do not have an underlying page struct.
1361 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1362 const nodemask_t *from, unsigned long flags)
1364 struct vm_area_struct *vma;
1365 int err = 0;
1367 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1368 if (vma->vm_ops && vma->vm_ops->migrate) {
1369 err = vma->vm_ops->migrate(vma, to, from, flags);
1370 if (err)
1371 break;
1374 return err;
1376 #endif