2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
27 #define RPCDBG_FACILITY RPCDBG_SCHED
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
37 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
38 static mempool_t
*rpc_task_mempool __read_mostly
;
39 static mempool_t
*rpc_buffer_mempool __read_mostly
;
41 static void rpc_async_schedule(struct work_struct
*);
42 static void rpc_release_task(struct rpc_task
*task
);
43 static void __rpc_queue_timer_fn(unsigned long ptr
);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static struct rpc_wait_queue delay_queue
;
51 * rpciod-related stuff
53 struct workqueue_struct
*rpciod_workqueue
;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
61 __rpc_disable_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
63 if (task
->tk_timeout
== 0)
65 dprintk("RPC: %5u disabling timer\n", task
->tk_pid
);
67 list_del(&task
->u
.tk_wait
.timer_list
);
68 if (list_empty(&queue
->timer_list
.list
))
69 del_timer(&queue
->timer_list
.timer
);
73 rpc_set_queue_timer(struct rpc_wait_queue
*queue
, unsigned long expires
)
75 queue
->timer_list
.expires
= expires
;
76 mod_timer(&queue
->timer_list
.timer
, expires
);
80 * Set up a timer for the current task.
83 __rpc_add_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
85 if (!task
->tk_timeout
)
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
91 task
->u
.tk_wait
.expires
= jiffies
+ task
->tk_timeout
;
92 if (list_empty(&queue
->timer_list
.list
) || time_before(task
->u
.tk_wait
.expires
, queue
->timer_list
.expires
))
93 rpc_set_queue_timer(queue
, task
->u
.tk_wait
.expires
);
94 list_add(&task
->u
.tk_wait
.timer_list
, &queue
->timer_list
.list
);
98 * Add new request to a priority queue.
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
,
101 struct rpc_task
*task
,
102 unsigned char queue_priority
)
107 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
108 q
= &queue
->tasks
[queue_priority
];
109 if (unlikely(queue_priority
> queue
->maxpriority
))
110 q
= &queue
->tasks
[queue
->maxpriority
];
111 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
112 if (t
->tk_owner
== task
->tk_owner
) {
113 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
117 list_add_tail(&task
->u
.tk_wait
.list
, q
);
121 * Add new request to wait queue.
123 * Swapper tasks always get inserted at the head of the queue.
124 * This should avoid many nasty memory deadlocks and hopefully
125 * improve overall performance.
126 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
128 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
,
129 struct rpc_task
*task
,
130 unsigned char queue_priority
)
132 BUG_ON (RPC_IS_QUEUED(task
));
134 if (RPC_IS_PRIORITY(queue
))
135 __rpc_add_wait_queue_priority(queue
, task
, queue_priority
);
136 else if (RPC_IS_SWAPPER(task
))
137 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
139 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
140 task
->tk_waitqueue
= queue
;
142 rpc_set_queued(task
);
144 dprintk("RPC: %5u added to queue %p \"%s\"\n",
145 task
->tk_pid
, queue
, rpc_qname(queue
));
149 * Remove request from a priority queue.
151 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
155 if (!list_empty(&task
->u
.tk_wait
.links
)) {
156 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
157 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
158 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
163 * Remove request from queue.
164 * Note: must be called with spin lock held.
166 static void __rpc_remove_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
168 __rpc_disable_timer(queue
, task
);
169 if (RPC_IS_PRIORITY(queue
))
170 __rpc_remove_wait_queue_priority(task
);
171 list_del(&task
->u
.tk_wait
.list
);
173 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
174 task
->tk_pid
, queue
, rpc_qname(queue
));
177 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
179 queue
->priority
= priority
;
180 queue
->count
= 1 << (priority
* 2);
183 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue
*queue
, pid_t pid
)
186 queue
->nr
= RPC_BATCH_COUNT
;
189 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
191 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
192 rpc_set_waitqueue_owner(queue
, 0);
195 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, unsigned char nr_queues
)
199 spin_lock_init(&queue
->lock
);
200 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
201 INIT_LIST_HEAD(&queue
->tasks
[i
]);
202 queue
->maxpriority
= nr_queues
- 1;
203 rpc_reset_waitqueue_priority(queue
);
205 setup_timer(&queue
->timer_list
.timer
, __rpc_queue_timer_fn
, (unsigned long)queue
);
206 INIT_LIST_HEAD(&queue
->timer_list
.list
);
212 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
214 __rpc_init_priority_wait_queue(queue
, qname
, RPC_NR_PRIORITY
);
216 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue
);
218 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
220 __rpc_init_priority_wait_queue(queue
, qname
, 1);
222 EXPORT_SYMBOL_GPL(rpc_init_wait_queue
);
224 void rpc_destroy_wait_queue(struct rpc_wait_queue
*queue
)
226 del_timer_sync(&queue
->timer_list
.timer
);
228 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue
);
230 static int rpc_wait_bit_killable(void *word
)
232 if (fatal_signal_pending(current
))
239 static void rpc_task_set_debuginfo(struct rpc_task
*task
)
241 static atomic_t rpc_pid
;
243 task
->tk_pid
= atomic_inc_return(&rpc_pid
);
246 static inline void rpc_task_set_debuginfo(struct rpc_task
*task
)
251 static void rpc_set_active(struct rpc_task
*task
)
253 rpc_task_set_debuginfo(task
);
254 set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
258 * Mark an RPC call as having completed by clearing the 'active' bit
259 * and then waking up all tasks that were sleeping.
261 static int rpc_complete_task(struct rpc_task
*task
)
263 void *m
= &task
->tk_runstate
;
264 wait_queue_head_t
*wq
= bit_waitqueue(m
, RPC_TASK_ACTIVE
);
265 struct wait_bit_key k
= __WAIT_BIT_KEY_INITIALIZER(m
, RPC_TASK_ACTIVE
);
269 spin_lock_irqsave(&wq
->lock
, flags
);
270 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
271 ret
= atomic_dec_and_test(&task
->tk_count
);
272 if (waitqueue_active(wq
))
273 __wake_up_locked_key(wq
, TASK_NORMAL
, &k
);
274 spin_unlock_irqrestore(&wq
->lock
, flags
);
279 * Allow callers to wait for completion of an RPC call
281 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
282 * to enforce taking of the wq->lock and hence avoid races with
283 * rpc_complete_task().
285 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
288 action
= rpc_wait_bit_killable
;
289 return out_of_line_wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
290 action
, TASK_KILLABLE
);
292 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task
);
295 * Make an RPC task runnable.
297 * Note: If the task is ASYNC, this must be called with
298 * the spinlock held to protect the wait queue operation.
300 static void rpc_make_runnable(struct rpc_task
*task
)
302 rpc_clear_queued(task
);
303 if (rpc_test_and_set_running(task
))
305 if (RPC_IS_ASYNC(task
)) {
306 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
307 queue_work(rpciod_workqueue
, &task
->u
.tk_work
);
309 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
313 * Prepare for sleeping on a wait queue.
314 * By always appending tasks to the list we ensure FIFO behavior.
315 * NB: An RPC task will only receive interrupt-driven events as long
316 * as it's on a wait queue.
318 static void __rpc_sleep_on_priority(struct rpc_wait_queue
*q
,
319 struct rpc_task
*task
,
321 unsigned char queue_priority
)
323 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
324 task
->tk_pid
, rpc_qname(q
), jiffies
);
326 __rpc_add_wait_queue(q
, task
, queue_priority
);
328 BUG_ON(task
->tk_callback
!= NULL
);
329 task
->tk_callback
= action
;
330 __rpc_add_timer(q
, task
);
333 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
336 /* We shouldn't ever put an inactive task to sleep */
337 BUG_ON(!RPC_IS_ACTIVATED(task
));
340 * Protect the queue operations.
342 spin_lock_bh(&q
->lock
);
343 __rpc_sleep_on_priority(q
, task
, action
, task
->tk_priority
);
344 spin_unlock_bh(&q
->lock
);
346 EXPORT_SYMBOL_GPL(rpc_sleep_on
);
348 void rpc_sleep_on_priority(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
349 rpc_action action
, int priority
)
351 /* We shouldn't ever put an inactive task to sleep */
352 BUG_ON(!RPC_IS_ACTIVATED(task
));
355 * Protect the queue operations.
357 spin_lock_bh(&q
->lock
);
358 __rpc_sleep_on_priority(q
, task
, action
, priority
- RPC_PRIORITY_LOW
);
359 spin_unlock_bh(&q
->lock
);
363 * __rpc_do_wake_up_task - wake up a single rpc_task
365 * @task: task to be woken up
367 * Caller must hold queue->lock, and have cleared the task queued flag.
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
371 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372 task
->tk_pid
, jiffies
);
374 /* Has the task been executed yet? If not, we cannot wake it up! */
375 if (!RPC_IS_ACTIVATED(task
)) {
376 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
380 __rpc_remove_wait_queue(queue
, task
);
382 rpc_make_runnable(task
);
384 dprintk("RPC: __rpc_wake_up_task done\n");
388 * Wake up a queued task while the queue lock is being held
390 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
392 if (RPC_IS_QUEUED(task
) && task
->tk_waitqueue
== queue
)
393 __rpc_do_wake_up_task(queue
, task
);
397 * Tests whether rpc queue is empty
399 int rpc_queue_empty(struct rpc_wait_queue
*queue
)
403 spin_lock_bh(&queue
->lock
);
405 spin_unlock_bh(&queue
->lock
);
408 EXPORT_SYMBOL_GPL(rpc_queue_empty
);
411 * Wake up a task on a specific queue
413 void rpc_wake_up_queued_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
415 spin_lock_bh(&queue
->lock
);
416 rpc_wake_up_task_queue_locked(queue
, task
);
417 spin_unlock_bh(&queue
->lock
);
419 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task
);
422 * Wake up the next task on a priority queue.
424 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
427 struct rpc_task
*task
;
430 * Service a batch of tasks from a single owner.
432 q
= &queue
->tasks
[queue
->priority
];
433 if (!list_empty(q
)) {
434 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
435 if (queue
->owner
== task
->tk_owner
) {
438 list_move_tail(&task
->u
.tk_wait
.list
, q
);
441 * Check if we need to switch queues.
448 * Service the next queue.
451 if (q
== &queue
->tasks
[0])
452 q
= &queue
->tasks
[queue
->maxpriority
];
455 if (!list_empty(q
)) {
456 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
459 } while (q
!= &queue
->tasks
[queue
->priority
]);
461 rpc_reset_waitqueue_priority(queue
);
465 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
467 rpc_set_waitqueue_owner(queue
, task
->tk_owner
);
469 rpc_wake_up_task_queue_locked(queue
, task
);
474 * Wake up the next task on the wait queue.
476 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
478 struct rpc_task
*task
= NULL
;
480 dprintk("RPC: wake_up_next(%p \"%s\")\n",
481 queue
, rpc_qname(queue
));
482 spin_lock_bh(&queue
->lock
);
483 if (RPC_IS_PRIORITY(queue
))
484 task
= __rpc_wake_up_next_priority(queue
);
486 task_for_first(task
, &queue
->tasks
[0])
487 rpc_wake_up_task_queue_locked(queue
, task
);
489 spin_unlock_bh(&queue
->lock
);
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next
);
496 * rpc_wake_up - wake up all rpc_tasks
497 * @queue: rpc_wait_queue on which the tasks are sleeping
501 void rpc_wake_up(struct rpc_wait_queue
*queue
)
503 struct rpc_task
*task
, *next
;
504 struct list_head
*head
;
506 spin_lock_bh(&queue
->lock
);
507 head
= &queue
->tasks
[queue
->maxpriority
];
509 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
)
510 rpc_wake_up_task_queue_locked(queue
, task
);
511 if (head
== &queue
->tasks
[0])
515 spin_unlock_bh(&queue
->lock
);
517 EXPORT_SYMBOL_GPL(rpc_wake_up
);
520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521 * @queue: rpc_wait_queue on which the tasks are sleeping
522 * @status: status value to set
526 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
528 struct rpc_task
*task
, *next
;
529 struct list_head
*head
;
531 spin_lock_bh(&queue
->lock
);
532 head
= &queue
->tasks
[queue
->maxpriority
];
534 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
) {
535 task
->tk_status
= status
;
536 rpc_wake_up_task_queue_locked(queue
, task
);
538 if (head
== &queue
->tasks
[0])
542 spin_unlock_bh(&queue
->lock
);
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status
);
546 static void __rpc_queue_timer_fn(unsigned long ptr
)
548 struct rpc_wait_queue
*queue
= (struct rpc_wait_queue
*)ptr
;
549 struct rpc_task
*task
, *n
;
550 unsigned long expires
, now
, timeo
;
552 spin_lock(&queue
->lock
);
553 expires
= now
= jiffies
;
554 list_for_each_entry_safe(task
, n
, &queue
->timer_list
.list
, u
.tk_wait
.timer_list
) {
555 timeo
= task
->u
.tk_wait
.expires
;
556 if (time_after_eq(now
, timeo
)) {
557 dprintk("RPC: %5u timeout\n", task
->tk_pid
);
558 task
->tk_status
= -ETIMEDOUT
;
559 rpc_wake_up_task_queue_locked(queue
, task
);
562 if (expires
== now
|| time_after(expires
, timeo
))
565 if (!list_empty(&queue
->timer_list
.list
))
566 rpc_set_queue_timer(queue
, expires
);
567 spin_unlock(&queue
->lock
);
570 static void __rpc_atrun(struct rpc_task
*task
)
576 * Run a task at a later time
578 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
580 task
->tk_timeout
= delay
;
581 rpc_sleep_on(&delay_queue
, task
, __rpc_atrun
);
583 EXPORT_SYMBOL_GPL(rpc_delay
);
586 * Helper to call task->tk_ops->rpc_call_prepare
588 void rpc_prepare_task(struct rpc_task
*task
)
590 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
594 rpc_init_task_statistics(struct rpc_task
*task
)
596 /* Initialize retry counters */
597 task
->tk_garb_retry
= 2;
598 task
->tk_cred_retry
= 2;
599 task
->tk_rebind_retry
= 2;
601 /* starting timestamp */
602 task
->tk_start
= ktime_get();
606 rpc_reset_task_statistics(struct rpc_task
*task
)
608 task
->tk_timeouts
= 0;
609 task
->tk_flags
&= ~(RPC_CALL_MAJORSEEN
|RPC_TASK_KILLED
|RPC_TASK_SENT
);
611 rpc_init_task_statistics(task
);
615 * Helper that calls task->tk_ops->rpc_call_done if it exists
617 void rpc_exit_task(struct rpc_task
*task
)
619 task
->tk_action
= NULL
;
620 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
621 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
622 if (task
->tk_action
!= NULL
) {
623 WARN_ON(RPC_ASSASSINATED(task
));
624 /* Always release the RPC slot and buffer memory */
626 rpc_reset_task_statistics(task
);
631 void rpc_exit(struct rpc_task
*task
, int status
)
633 task
->tk_status
= status
;
634 task
->tk_action
= rpc_exit_task
;
635 if (RPC_IS_QUEUED(task
))
636 rpc_wake_up_queued_task(task
->tk_waitqueue
, task
);
638 EXPORT_SYMBOL_GPL(rpc_exit
);
640 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
642 if (ops
->rpc_release
!= NULL
)
643 ops
->rpc_release(calldata
);
647 * This is the RPC `scheduler' (or rather, the finite state machine).
649 static void __rpc_execute(struct rpc_task
*task
)
651 struct rpc_wait_queue
*queue
;
652 int task_is_async
= RPC_IS_ASYNC(task
);
655 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
656 task
->tk_pid
, task
->tk_flags
);
658 BUG_ON(RPC_IS_QUEUED(task
));
661 void (*do_action
)(struct rpc_task
*);
664 * Execute any pending callback first.
666 do_action
= task
->tk_callback
;
667 task
->tk_callback
= NULL
;
668 if (do_action
== NULL
) {
670 * Perform the next FSM step.
671 * tk_action may be NULL if the task has been killed.
672 * In particular, note that rpc_killall_tasks may
673 * do this at any time, so beware when dereferencing.
675 do_action
= task
->tk_action
;
676 if (do_action
== NULL
)
682 * Lockless check for whether task is sleeping or not.
684 if (!RPC_IS_QUEUED(task
))
687 * The queue->lock protects against races with
688 * rpc_make_runnable().
690 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
691 * rpc_task, rpc_make_runnable() can assign it to a
692 * different workqueue. We therefore cannot assume that the
693 * rpc_task pointer may still be dereferenced.
695 queue
= task
->tk_waitqueue
;
696 spin_lock_bh(&queue
->lock
);
697 if (!RPC_IS_QUEUED(task
)) {
698 spin_unlock_bh(&queue
->lock
);
701 rpc_clear_running(task
);
702 spin_unlock_bh(&queue
->lock
);
706 /* sync task: sleep here */
707 dprintk("RPC: %5u sync task going to sleep\n", task
->tk_pid
);
708 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
709 RPC_TASK_QUEUED
, rpc_wait_bit_killable
,
711 if (status
== -ERESTARTSYS
) {
713 * When a sync task receives a signal, it exits with
714 * -ERESTARTSYS. In order to catch any callbacks that
715 * clean up after sleeping on some queue, we don't
716 * break the loop here, but go around once more.
718 dprintk("RPC: %5u got signal\n", task
->tk_pid
);
719 task
->tk_flags
|= RPC_TASK_KILLED
;
720 rpc_exit(task
, -ERESTARTSYS
);
722 rpc_set_running(task
);
723 dprintk("RPC: %5u sync task resuming\n", task
->tk_pid
);
726 dprintk("RPC: %5u return %d, status %d\n", task
->tk_pid
, status
,
728 /* Release all resources associated with the task */
729 rpc_release_task(task
);
733 * User-visible entry point to the scheduler.
735 * This may be called recursively if e.g. an async NFS task updates
736 * the attributes and finds that dirty pages must be flushed.
737 * NOTE: Upon exit of this function the task is guaranteed to be
738 * released. In particular note that tk_release() will have
739 * been called, so your task memory may have been freed.
741 void rpc_execute(struct rpc_task
*task
)
743 rpc_set_active(task
);
744 rpc_make_runnable(task
);
745 if (!RPC_IS_ASYNC(task
))
749 static void rpc_async_schedule(struct work_struct
*work
)
751 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
755 * rpc_malloc - allocate an RPC buffer
756 * @task: RPC task that will use this buffer
757 * @size: requested byte size
759 * To prevent rpciod from hanging, this allocator never sleeps,
760 * returning NULL if the request cannot be serviced immediately.
761 * The caller can arrange to sleep in a way that is safe for rpciod.
763 * Most requests are 'small' (under 2KiB) and can be serviced from a
764 * mempool, ensuring that NFS reads and writes can always proceed,
765 * and that there is good locality of reference for these buffers.
767 * In order to avoid memory starvation triggering more writebacks of
768 * NFS requests, we avoid using GFP_KERNEL.
770 void *rpc_malloc(struct rpc_task
*task
, size_t size
)
772 struct rpc_buffer
*buf
;
773 gfp_t gfp
= RPC_IS_SWAPPER(task
) ? GFP_ATOMIC
: GFP_NOWAIT
;
775 size
+= sizeof(struct rpc_buffer
);
776 if (size
<= RPC_BUFFER_MAXSIZE
)
777 buf
= mempool_alloc(rpc_buffer_mempool
, gfp
);
779 buf
= kmalloc(size
, gfp
);
785 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
786 task
->tk_pid
, size
, buf
);
789 EXPORT_SYMBOL_GPL(rpc_malloc
);
792 * rpc_free - free buffer allocated via rpc_malloc
793 * @buffer: buffer to free
796 void rpc_free(void *buffer
)
799 struct rpc_buffer
*buf
;
804 buf
= container_of(buffer
, struct rpc_buffer
, data
);
807 dprintk("RPC: freeing buffer of size %zu at %p\n",
810 if (size
<= RPC_BUFFER_MAXSIZE
)
811 mempool_free(buf
, rpc_buffer_mempool
);
815 EXPORT_SYMBOL_GPL(rpc_free
);
818 * Creation and deletion of RPC task structures
820 static void rpc_init_task(struct rpc_task
*task
, const struct rpc_task_setup
*task_setup_data
)
822 memset(task
, 0, sizeof(*task
));
823 atomic_set(&task
->tk_count
, 1);
824 task
->tk_flags
= task_setup_data
->flags
;
825 task
->tk_ops
= task_setup_data
->callback_ops
;
826 task
->tk_calldata
= task_setup_data
->callback_data
;
827 INIT_LIST_HEAD(&task
->tk_task
);
829 task
->tk_priority
= task_setup_data
->priority
- RPC_PRIORITY_LOW
;
830 task
->tk_owner
= current
->tgid
;
832 /* Initialize workqueue for async tasks */
833 task
->tk_workqueue
= task_setup_data
->workqueue
;
835 if (task
->tk_ops
->rpc_call_prepare
!= NULL
)
836 task
->tk_action
= rpc_prepare_task
;
838 rpc_init_task_statistics(task
);
840 dprintk("RPC: new task initialized, procpid %u\n",
841 task_pid_nr(current
));
844 static struct rpc_task
*
847 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
851 * Create a new task for the specified client.
853 struct rpc_task
*rpc_new_task(const struct rpc_task_setup
*setup_data
)
855 struct rpc_task
*task
= setup_data
->task
;
856 unsigned short flags
= 0;
859 task
= rpc_alloc_task();
861 rpc_release_calldata(setup_data
->callback_ops
,
862 setup_data
->callback_data
);
863 return ERR_PTR(-ENOMEM
);
865 flags
= RPC_TASK_DYNAMIC
;
868 rpc_init_task(task
, setup_data
);
869 task
->tk_flags
|= flags
;
870 dprintk("RPC: allocated task %p\n", task
);
874 static void rpc_free_task(struct rpc_task
*task
)
876 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
877 void *calldata
= task
->tk_calldata
;
879 if (task
->tk_flags
& RPC_TASK_DYNAMIC
) {
880 dprintk("RPC: %5u freeing task\n", task
->tk_pid
);
881 mempool_free(task
, rpc_task_mempool
);
883 rpc_release_calldata(tk_ops
, calldata
);
886 static void rpc_async_release(struct work_struct
*work
)
888 rpc_free_task(container_of(work
, struct rpc_task
, u
.tk_work
));
891 static void rpc_release_resources_task(struct rpc_task
*task
)
895 if (task
->tk_msg
.rpc_cred
) {
896 put_rpccred(task
->tk_msg
.rpc_cred
);
897 task
->tk_msg
.rpc_cred
= NULL
;
899 rpc_task_release_client(task
);
902 static void rpc_final_put_task(struct rpc_task
*task
,
903 struct workqueue_struct
*q
)
906 INIT_WORK(&task
->u
.tk_work
, rpc_async_release
);
907 queue_work(q
, &task
->u
.tk_work
);
912 static void rpc_do_put_task(struct rpc_task
*task
, struct workqueue_struct
*q
)
914 if (atomic_dec_and_test(&task
->tk_count
)) {
915 rpc_release_resources_task(task
);
916 rpc_final_put_task(task
, q
);
920 void rpc_put_task(struct rpc_task
*task
)
922 rpc_do_put_task(task
, NULL
);
924 EXPORT_SYMBOL_GPL(rpc_put_task
);
926 void rpc_put_task_async(struct rpc_task
*task
)
928 rpc_do_put_task(task
, task
->tk_workqueue
);
930 EXPORT_SYMBOL_GPL(rpc_put_task_async
);
932 static void rpc_release_task(struct rpc_task
*task
)
934 dprintk("RPC: %5u release task\n", task
->tk_pid
);
936 BUG_ON (RPC_IS_QUEUED(task
));
938 rpc_release_resources_task(task
);
941 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
942 * so it should be safe to use task->tk_count as a test for whether
943 * or not any other processes still hold references to our rpc_task.
945 if (atomic_read(&task
->tk_count
) != 1 + !RPC_IS_ASYNC(task
)) {
946 /* Wake up anyone who may be waiting for task completion */
947 if (!rpc_complete_task(task
))
950 if (!atomic_dec_and_test(&task
->tk_count
))
953 rpc_final_put_task(task
, task
->tk_workqueue
);
958 return try_module_get(THIS_MODULE
) ? 0 : -EINVAL
;
961 void rpciod_down(void)
963 module_put(THIS_MODULE
);
967 * Start up the rpciod workqueue.
969 static int rpciod_start(void)
971 struct workqueue_struct
*wq
;
974 * Create the rpciod thread and wait for it to start.
976 dprintk("RPC: creating workqueue rpciod\n");
977 wq
= alloc_workqueue("rpciod", WQ_MEM_RECLAIM
, 0);
978 rpciod_workqueue
= wq
;
979 return rpciod_workqueue
!= NULL
;
982 static void rpciod_stop(void)
984 struct workqueue_struct
*wq
= NULL
;
986 if (rpciod_workqueue
== NULL
)
988 dprintk("RPC: destroying workqueue rpciod\n");
990 wq
= rpciod_workqueue
;
991 rpciod_workqueue
= NULL
;
992 destroy_workqueue(wq
);
996 rpc_destroy_mempool(void)
999 if (rpc_buffer_mempool
)
1000 mempool_destroy(rpc_buffer_mempool
);
1001 if (rpc_task_mempool
)
1002 mempool_destroy(rpc_task_mempool
);
1004 kmem_cache_destroy(rpc_task_slabp
);
1005 if (rpc_buffer_slabp
)
1006 kmem_cache_destroy(rpc_buffer_slabp
);
1007 rpc_destroy_wait_queue(&delay_queue
);
1011 rpc_init_mempool(void)
1014 * The following is not strictly a mempool initialisation,
1015 * but there is no harm in doing it here
1017 rpc_init_wait_queue(&delay_queue
, "delayq");
1018 if (!rpciod_start())
1021 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1022 sizeof(struct rpc_task
),
1023 0, SLAB_HWCACHE_ALIGN
,
1025 if (!rpc_task_slabp
)
1027 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1029 0, SLAB_HWCACHE_ALIGN
,
1031 if (!rpc_buffer_slabp
)
1033 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1035 if (!rpc_task_mempool
)
1037 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1039 if (!rpc_buffer_mempool
)
1043 rpc_destroy_mempool();