usb: r8a66597-hcd: Add support for SH7723 USB host
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jffs2 / nodemgmt.c
bloba9bf9603c1ba0cca4fac8d56ea2dae4bbfe33b91
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/compiler.h>
16 #include <linux/sched.h> /* For cond_resched() */
17 #include "nodelist.h"
18 #include "debug.h"
20 /**
21 * jffs2_reserve_space - request physical space to write nodes to flash
22 * @c: superblock info
23 * @minsize: Minimum acceptable size of allocation
24 * @len: Returned value of allocation length
25 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
27 * Requests a block of physical space on the flash. Returns zero for success
28 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
29 * error if appropriate. Doesn't return len since that's
31 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32 * allocation semaphore, to prevent more than one allocation from being
33 * active at any time. The semaphore is later released by jffs2_commit_allocation()
35 * jffs2_reserve_space() may trigger garbage collection in order to make room
36 * for the requested allocation.
39 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
40 uint32_t *len, uint32_t sumsize);
42 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 uint32_t *len, int prio, uint32_t sumsize)
45 int ret = -EAGAIN;
46 int blocksneeded = c->resv_blocks_write;
47 /* align it */
48 minsize = PAD(minsize);
50 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 mutex_lock(&c->alloc_sem);
53 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
55 spin_lock(&c->erase_completion_lock);
57 /* this needs a little more thought (true <tglx> :)) */
58 while(ret == -EAGAIN) {
59 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 uint32_t dirty, avail;
62 /* calculate real dirty size
63 * dirty_size contains blocks on erase_pending_list
64 * those blocks are counted in c->nr_erasing_blocks.
65 * If one block is actually erased, it is not longer counted as dirty_space
66 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
67 * with c->nr_erasing_blocks * c->sector_size again.
68 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
69 * This helps us to force gc and pick eventually a clean block to spread the load.
70 * We add unchecked_size here, as we hopefully will find some space to use.
71 * This will affect the sum only once, as gc first finishes checking
72 * of nodes.
74 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
75 if (dirty < c->nospc_dirty_size) {
76 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
77 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
78 break;
80 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
81 dirty, c->unchecked_size, c->sector_size));
83 spin_unlock(&c->erase_completion_lock);
84 mutex_unlock(&c->alloc_sem);
85 return -ENOSPC;
88 /* Calc possibly available space. Possibly available means that we
89 * don't know, if unchecked size contains obsoleted nodes, which could give us some
90 * more usable space. This will affect the sum only once, as gc first finishes checking
91 * of nodes.
92 + Return -ENOSPC, if the maximum possibly available space is less or equal than
93 * blocksneeded * sector_size.
94 * This blocks endless gc looping on a filesystem, which is nearly full, even if
95 * the check above passes.
97 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
98 if ( (avail / c->sector_size) <= blocksneeded) {
99 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
100 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
101 break;
104 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
105 avail, blocksneeded * c->sector_size));
106 spin_unlock(&c->erase_completion_lock);
107 mutex_unlock(&c->alloc_sem);
108 return -ENOSPC;
111 mutex_unlock(&c->alloc_sem);
113 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
114 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
115 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
116 spin_unlock(&c->erase_completion_lock);
118 ret = jffs2_garbage_collect_pass(c);
120 if (ret == -EAGAIN)
121 jffs2_erase_pending_blocks(c, 1);
122 else if (ret)
123 return ret;
125 cond_resched();
127 if (signal_pending(current))
128 return -EINTR;
130 mutex_lock(&c->alloc_sem);
131 spin_lock(&c->erase_completion_lock);
134 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 if (ret) {
136 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
139 spin_unlock(&c->erase_completion_lock);
140 if (!ret)
141 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 if (ret)
143 mutex_unlock(&c->alloc_sem);
144 return ret;
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 uint32_t *len, uint32_t sumsize)
150 int ret = -EAGAIN;
151 minsize = PAD(minsize);
153 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
155 spin_lock(&c->erase_completion_lock);
156 while(ret == -EAGAIN) {
157 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 if (ret) {
159 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
162 spin_unlock(&c->erase_completion_lock);
163 if (!ret)
164 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
166 return ret;
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
175 if (c->nextblock == NULL) {
176 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
177 jeb->offset));
178 return;
180 /* Check, if we have a dirty block now, or if it was dirty already */
181 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
182 c->dirty_size += jeb->wasted_size;
183 c->wasted_size -= jeb->wasted_size;
184 jeb->dirty_size += jeb->wasted_size;
185 jeb->wasted_size = 0;
186 if (VERYDIRTY(c, jeb->dirty_size)) {
187 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 list_add_tail(&jeb->list, &c->very_dirty_list);
190 } else {
191 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 list_add_tail(&jeb->list, &c->dirty_list);
195 } else {
196 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
197 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
198 list_add_tail(&jeb->list, &c->clean_list);
200 c->nextblock = NULL;
204 /* Select a new jeb for nextblock */
206 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
208 struct list_head *next;
210 /* Take the next block off the 'free' list */
212 if (list_empty(&c->free_list)) {
214 if (!c->nr_erasing_blocks &&
215 !list_empty(&c->erasable_list)) {
216 struct jffs2_eraseblock *ejeb;
218 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
219 list_move_tail(&ejeb->list, &c->erase_pending_list);
220 c->nr_erasing_blocks++;
221 jffs2_erase_pending_trigger(c);
222 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
223 ejeb->offset));
226 if (!c->nr_erasing_blocks &&
227 !list_empty(&c->erasable_pending_wbuf_list)) {
228 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
229 /* c->nextblock is NULL, no update to c->nextblock allowed */
230 spin_unlock(&c->erase_completion_lock);
231 jffs2_flush_wbuf_pad(c);
232 spin_lock(&c->erase_completion_lock);
233 /* Have another go. It'll be on the erasable_list now */
234 return -EAGAIN;
237 if (!c->nr_erasing_blocks) {
238 /* Ouch. We're in GC, or we wouldn't have got here.
239 And there's no space left. At all. */
240 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
241 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
242 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
243 return -ENOSPC;
246 spin_unlock(&c->erase_completion_lock);
247 /* Don't wait for it; just erase one right now */
248 jffs2_erase_pending_blocks(c, 1);
249 spin_lock(&c->erase_completion_lock);
251 /* An erase may have failed, decreasing the
252 amount of free space available. So we must
253 restart from the beginning */
254 return -EAGAIN;
257 next = c->free_list.next;
258 list_del(next);
259 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
260 c->nr_free_blocks--;
262 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
264 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
266 return 0;
269 /* Called with alloc sem _and_ erase_completion_lock */
270 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
271 uint32_t *len, uint32_t sumsize)
273 struct jffs2_eraseblock *jeb = c->nextblock;
274 uint32_t reserved_size; /* for summary information at the end of the jeb */
275 int ret;
277 restart:
278 reserved_size = 0;
280 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
281 /* NOSUM_SIZE means not to generate summary */
283 if (jeb) {
284 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
285 dbg_summary("minsize=%d , jeb->free=%d ,"
286 "summary->size=%d , sumsize=%d\n",
287 minsize, jeb->free_size,
288 c->summary->sum_size, sumsize);
291 /* Is there enough space for writing out the current node, or we have to
292 write out summary information now, close this jeb and select new nextblock? */
293 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
294 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
296 /* Has summary been disabled for this jeb? */
297 if (jffs2_sum_is_disabled(c->summary)) {
298 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
299 goto restart;
302 /* Writing out the collected summary information */
303 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
304 ret = jffs2_sum_write_sumnode(c);
306 if (ret)
307 return ret;
309 if (jffs2_sum_is_disabled(c->summary)) {
310 /* jffs2_write_sumnode() couldn't write out the summary information
311 diabling summary for this jeb and free the collected information
313 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
314 goto restart;
317 jffs2_close_nextblock(c, jeb);
318 jeb = NULL;
319 /* keep always valid value in reserved_size */
320 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
322 } else {
323 if (jeb && minsize > jeb->free_size) {
324 uint32_t waste;
326 /* Skip the end of this block and file it as having some dirty space */
327 /* If there's a pending write to it, flush now */
329 if (jffs2_wbuf_dirty(c)) {
330 spin_unlock(&c->erase_completion_lock);
331 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
332 jffs2_flush_wbuf_pad(c);
333 spin_lock(&c->erase_completion_lock);
334 jeb = c->nextblock;
335 goto restart;
338 spin_unlock(&c->erase_completion_lock);
340 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
341 if (ret)
342 return ret;
343 /* Just lock it again and continue. Nothing much can change because
344 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
345 we hold c->erase_completion_lock in the majority of this function...
346 but that's a question for another (more caffeine-rich) day. */
347 spin_lock(&c->erase_completion_lock);
349 waste = jeb->free_size;
350 jffs2_link_node_ref(c, jeb,
351 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
352 waste, NULL);
353 /* FIXME: that made it count as dirty. Convert to wasted */
354 jeb->dirty_size -= waste;
355 c->dirty_size -= waste;
356 jeb->wasted_size += waste;
357 c->wasted_size += waste;
359 jffs2_close_nextblock(c, jeb);
360 jeb = NULL;
364 if (!jeb) {
366 ret = jffs2_find_nextblock(c);
367 if (ret)
368 return ret;
370 jeb = c->nextblock;
372 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
373 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
374 goto restart;
377 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
378 enough space */
379 *len = jeb->free_size - reserved_size;
381 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
382 !jeb->first_node->next_in_ino) {
383 /* Only node in it beforehand was a CLEANMARKER node (we think).
384 So mark it obsolete now that there's going to be another node
385 in the block. This will reduce used_size to zero but We've
386 already set c->nextblock so that jffs2_mark_node_obsolete()
387 won't try to refile it to the dirty_list.
389 spin_unlock(&c->erase_completion_lock);
390 jffs2_mark_node_obsolete(c, jeb->first_node);
391 spin_lock(&c->erase_completion_lock);
394 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
395 *len, jeb->offset + (c->sector_size - jeb->free_size)));
396 return 0;
400 * jffs2_add_physical_node_ref - add a physical node reference to the list
401 * @c: superblock info
402 * @new: new node reference to add
403 * @len: length of this physical node
405 * Should only be used to report nodes for which space has been allocated
406 * by jffs2_reserve_space.
408 * Must be called with the alloc_sem held.
411 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
412 uint32_t ofs, uint32_t len,
413 struct jffs2_inode_cache *ic)
415 struct jffs2_eraseblock *jeb;
416 struct jffs2_raw_node_ref *new;
418 jeb = &c->blocks[ofs / c->sector_size];
420 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
421 ofs & ~3, ofs & 3, len));
422 #if 1
423 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
424 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
425 even after refiling c->nextblock */
426 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
427 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
428 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
429 if (c->nextblock)
430 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
431 else
432 printk(KERN_WARNING "No nextblock");
433 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
434 return ERR_PTR(-EINVAL);
436 #endif
437 spin_lock(&c->erase_completion_lock);
439 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
441 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
442 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
443 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
444 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
445 if (jffs2_wbuf_dirty(c)) {
446 /* Flush the last write in the block if it's outstanding */
447 spin_unlock(&c->erase_completion_lock);
448 jffs2_flush_wbuf_pad(c);
449 spin_lock(&c->erase_completion_lock);
452 list_add_tail(&jeb->list, &c->clean_list);
453 c->nextblock = NULL;
455 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
456 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
458 spin_unlock(&c->erase_completion_lock);
460 return new;
464 void jffs2_complete_reservation(struct jffs2_sb_info *c)
466 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
467 jffs2_garbage_collect_trigger(c);
468 mutex_unlock(&c->alloc_sem);
471 static inline int on_list(struct list_head *obj, struct list_head *head)
473 struct list_head *this;
475 list_for_each(this, head) {
476 if (this == obj) {
477 D1(printk("%p is on list at %p\n", obj, head));
478 return 1;
482 return 0;
485 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
487 struct jffs2_eraseblock *jeb;
488 int blocknr;
489 struct jffs2_unknown_node n;
490 int ret, addedsize;
491 size_t retlen;
492 uint32_t freed_len;
494 if(unlikely(!ref)) {
495 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
496 return;
498 if (ref_obsolete(ref)) {
499 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
500 return;
502 blocknr = ref->flash_offset / c->sector_size;
503 if (blocknr >= c->nr_blocks) {
504 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
505 BUG();
507 jeb = &c->blocks[blocknr];
509 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
510 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
511 /* Hm. This may confuse static lock analysis. If any of the above
512 three conditions is false, we're going to return from this
513 function without actually obliterating any nodes or freeing
514 any jffs2_raw_node_refs. So we don't need to stop erases from
515 happening, or protect against people holding an obsolete
516 jffs2_raw_node_ref without the erase_completion_lock. */
517 mutex_lock(&c->erase_free_sem);
520 spin_lock(&c->erase_completion_lock);
522 freed_len = ref_totlen(c, jeb, ref);
524 if (ref_flags(ref) == REF_UNCHECKED) {
525 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
526 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
527 freed_len, blocknr, ref->flash_offset, jeb->used_size);
528 BUG();
530 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
531 jeb->unchecked_size -= freed_len;
532 c->unchecked_size -= freed_len;
533 } else {
534 D1(if (unlikely(jeb->used_size < freed_len)) {
535 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
536 freed_len, blocknr, ref->flash_offset, jeb->used_size);
537 BUG();
539 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
540 jeb->used_size -= freed_len;
541 c->used_size -= freed_len;
544 // Take care, that wasted size is taken into concern
545 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
546 D1(printk("Dirtying\n"));
547 addedsize = freed_len;
548 jeb->dirty_size += freed_len;
549 c->dirty_size += freed_len;
551 /* Convert wasted space to dirty, if not a bad block */
552 if (jeb->wasted_size) {
553 if (on_list(&jeb->list, &c->bad_used_list)) {
554 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
555 jeb->offset));
556 addedsize = 0; /* To fool the refiling code later */
557 } else {
558 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
559 jeb->wasted_size, jeb->offset));
560 addedsize += jeb->wasted_size;
561 jeb->dirty_size += jeb->wasted_size;
562 c->dirty_size += jeb->wasted_size;
563 c->wasted_size -= jeb->wasted_size;
564 jeb->wasted_size = 0;
567 } else {
568 D1(printk("Wasting\n"));
569 addedsize = 0;
570 jeb->wasted_size += freed_len;
571 c->wasted_size += freed_len;
573 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
575 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
576 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
578 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
579 /* Flash scanning is in progress. Don't muck about with the block
580 lists because they're not ready yet, and don't actually
581 obliterate nodes that look obsolete. If they weren't
582 marked obsolete on the flash at the time they _became_
583 obsolete, there was probably a reason for that. */
584 spin_unlock(&c->erase_completion_lock);
585 /* We didn't lock the erase_free_sem */
586 return;
589 if (jeb == c->nextblock) {
590 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
591 } else if (!jeb->used_size && !jeb->unchecked_size) {
592 if (jeb == c->gcblock) {
593 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
594 c->gcblock = NULL;
595 } else {
596 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
597 list_del(&jeb->list);
599 if (jffs2_wbuf_dirty(c)) {
600 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
601 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
602 } else {
603 if (jiffies & 127) {
604 /* Most of the time, we just erase it immediately. Otherwise we
605 spend ages scanning it on mount, etc. */
606 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
607 list_add_tail(&jeb->list, &c->erase_pending_list);
608 c->nr_erasing_blocks++;
609 jffs2_erase_pending_trigger(c);
610 } else {
611 /* Sometimes, however, we leave it elsewhere so it doesn't get
612 immediately reused, and we spread the load a bit. */
613 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
614 list_add_tail(&jeb->list, &c->erasable_list);
617 D1(printk(KERN_DEBUG "Done OK\n"));
618 } else if (jeb == c->gcblock) {
619 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
620 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
621 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
622 list_del(&jeb->list);
623 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
624 list_add_tail(&jeb->list, &c->dirty_list);
625 } else if (VERYDIRTY(c, jeb->dirty_size) &&
626 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
627 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
628 list_del(&jeb->list);
629 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
630 list_add_tail(&jeb->list, &c->very_dirty_list);
631 } else {
632 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
633 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
636 spin_unlock(&c->erase_completion_lock);
638 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
639 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
640 /* We didn't lock the erase_free_sem */
641 return;
644 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
645 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
646 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
647 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
649 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
650 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
651 if (ret) {
652 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
653 goto out_erase_sem;
655 if (retlen != sizeof(n)) {
656 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
657 goto out_erase_sem;
659 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
660 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
661 goto out_erase_sem;
663 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
664 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
665 goto out_erase_sem;
667 /* XXX FIXME: This is ugly now */
668 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
669 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
670 if (ret) {
671 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
672 goto out_erase_sem;
674 if (retlen != sizeof(n)) {
675 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
676 goto out_erase_sem;
679 /* Nodes which have been marked obsolete no longer need to be
680 associated with any inode. Remove them from the per-inode list.
682 Note we can't do this for NAND at the moment because we need
683 obsolete dirent nodes to stay on the lists, because of the
684 horridness in jffs2_garbage_collect_deletion_dirent(). Also
685 because we delete the inocache, and on NAND we need that to
686 stay around until all the nodes are actually erased, in order
687 to stop us from giving the same inode number to another newly
688 created inode. */
689 if (ref->next_in_ino) {
690 struct jffs2_inode_cache *ic;
691 struct jffs2_raw_node_ref **p;
693 spin_lock(&c->erase_completion_lock);
695 ic = jffs2_raw_ref_to_ic(ref);
696 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
699 *p = ref->next_in_ino;
700 ref->next_in_ino = NULL;
702 switch (ic->class) {
703 #ifdef CONFIG_JFFS2_FS_XATTR
704 case RAWNODE_CLASS_XATTR_DATUM:
705 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
706 break;
707 case RAWNODE_CLASS_XATTR_REF:
708 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
709 break;
710 #endif
711 default:
712 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
713 jffs2_del_ino_cache(c, ic);
714 break;
716 spin_unlock(&c->erase_completion_lock);
719 out_erase_sem:
720 mutex_unlock(&c->erase_free_sem);
723 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
725 int ret = 0;
726 uint32_t dirty;
727 int nr_very_dirty = 0;
728 struct jffs2_eraseblock *jeb;
730 if (c->unchecked_size) {
731 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
732 c->unchecked_size, c->checked_ino));
733 return 1;
736 /* dirty_size contains blocks on erase_pending_list
737 * those blocks are counted in c->nr_erasing_blocks.
738 * If one block is actually erased, it is not longer counted as dirty_space
739 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
740 * with c->nr_erasing_blocks * c->sector_size again.
741 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
742 * This helps us to force gc and pick eventually a clean block to spread the load.
744 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
746 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
747 (dirty > c->nospc_dirty_size))
748 ret = 1;
750 list_for_each_entry(jeb, &c->very_dirty_list, list) {
751 nr_very_dirty++;
752 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
753 ret = 1;
754 /* In debug mode, actually go through and count them all */
755 D1(continue);
756 break;
760 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
761 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
763 return ret;