m68knommu: add some missing sections into the linker script
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_mount.c
blobda3988453b712b0c64d3afc00f6fc159271c34cf
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC int xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int xfs_uuid_mount(xfs_mount_t *);
50 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
54 #ifdef HAVE_PERCPU_SB
55 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
57 int);
58 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
59 int);
60 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
61 int64_t, int);
62 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
64 #else
66 #define xfs_icsb_destroy_counters(mp) do { } while (0)
67 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
68 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
69 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
71 #endif
73 static const struct {
74 short offset;
75 short type; /* 0 = integer
76 * 1 = binary / string (no translation)
78 } xfs_sb_info[] = {
79 { offsetof(xfs_sb_t, sb_magicnum), 0 },
80 { offsetof(xfs_sb_t, sb_blocksize), 0 },
81 { offsetof(xfs_sb_t, sb_dblocks), 0 },
82 { offsetof(xfs_sb_t, sb_rblocks), 0 },
83 { offsetof(xfs_sb_t, sb_rextents), 0 },
84 { offsetof(xfs_sb_t, sb_uuid), 1 },
85 { offsetof(xfs_sb_t, sb_logstart), 0 },
86 { offsetof(xfs_sb_t, sb_rootino), 0 },
87 { offsetof(xfs_sb_t, sb_rbmino), 0 },
88 { offsetof(xfs_sb_t, sb_rsumino), 0 },
89 { offsetof(xfs_sb_t, sb_rextsize), 0 },
90 { offsetof(xfs_sb_t, sb_agblocks), 0 },
91 { offsetof(xfs_sb_t, sb_agcount), 0 },
92 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
93 { offsetof(xfs_sb_t, sb_logblocks), 0 },
94 { offsetof(xfs_sb_t, sb_versionnum), 0 },
95 { offsetof(xfs_sb_t, sb_sectsize), 0 },
96 { offsetof(xfs_sb_t, sb_inodesize), 0 },
97 { offsetof(xfs_sb_t, sb_inopblock), 0 },
98 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
99 { offsetof(xfs_sb_t, sb_blocklog), 0 },
100 { offsetof(xfs_sb_t, sb_sectlog), 0 },
101 { offsetof(xfs_sb_t, sb_inodelog), 0 },
102 { offsetof(xfs_sb_t, sb_inopblog), 0 },
103 { offsetof(xfs_sb_t, sb_agblklog), 0 },
104 { offsetof(xfs_sb_t, sb_rextslog), 0 },
105 { offsetof(xfs_sb_t, sb_inprogress), 0 },
106 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
107 { offsetof(xfs_sb_t, sb_icount), 0 },
108 { offsetof(xfs_sb_t, sb_ifree), 0 },
109 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
110 { offsetof(xfs_sb_t, sb_frextents), 0 },
111 { offsetof(xfs_sb_t, sb_uquotino), 0 },
112 { offsetof(xfs_sb_t, sb_gquotino), 0 },
113 { offsetof(xfs_sb_t, sb_qflags), 0 },
114 { offsetof(xfs_sb_t, sb_flags), 0 },
115 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
116 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
117 { offsetof(xfs_sb_t, sb_unit), 0 },
118 { offsetof(xfs_sb_t, sb_width), 0 },
119 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
120 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
121 { offsetof(xfs_sb_t, sb_logsectsize),0 },
122 { offsetof(xfs_sb_t, sb_logsunit), 0 },
123 { offsetof(xfs_sb_t, sb_features2), 0 },
124 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
125 { sizeof(xfs_sb_t), 0 }
129 * Return a pointer to an initialized xfs_mount structure.
131 xfs_mount_t *
132 xfs_mount_init(void)
134 xfs_mount_t *mp;
136 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
138 if (xfs_icsb_init_counters(mp)) {
139 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
142 spin_lock_init(&mp->m_sb_lock);
143 mutex_init(&mp->m_ilock);
144 mutex_init(&mp->m_growlock);
145 atomic_set(&mp->m_active_trans, 0);
147 return mp;
151 * Free up the resources associated with a mount structure. Assume that
152 * the structure was initially zeroed, so we can tell which fields got
153 * initialized.
155 void
156 xfs_mount_free(
157 xfs_mount_t *mp)
159 if (mp->m_perag) {
160 int agno;
162 for (agno = 0; agno < mp->m_maxagi; agno++)
163 if (mp->m_perag[agno].pagb_list)
164 kmem_free(mp->m_perag[agno].pagb_list,
165 sizeof(xfs_perag_busy_t) *
166 XFS_PAGB_NUM_SLOTS);
167 kmem_free(mp->m_perag,
168 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
171 spinlock_destroy(&mp->m_ail_lock);
172 spinlock_destroy(&mp->m_sb_lock);
173 mutex_destroy(&mp->m_ilock);
174 mutex_destroy(&mp->m_growlock);
175 if (mp->m_quotainfo)
176 XFS_QM_DONE(mp);
178 if (mp->m_fsname != NULL)
179 kmem_free(mp->m_fsname, mp->m_fsname_len);
180 if (mp->m_rtname != NULL)
181 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
182 if (mp->m_logname != NULL)
183 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
185 xfs_icsb_destroy_counters(mp);
189 * Check size of device based on the (data/realtime) block count.
190 * Note: this check is used by the growfs code as well as mount.
193 xfs_sb_validate_fsb_count(
194 xfs_sb_t *sbp,
195 __uint64_t nblocks)
197 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
198 ASSERT(sbp->sb_blocklog >= BBSHIFT);
200 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
201 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
202 return E2BIG;
203 #else /* Limited by UINT_MAX of sectors */
204 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
205 return E2BIG;
206 #endif
207 return 0;
211 * Check the validity of the SB found.
213 STATIC int
214 xfs_mount_validate_sb(
215 xfs_mount_t *mp,
216 xfs_sb_t *sbp,
217 int flags)
220 * If the log device and data device have the
221 * same device number, the log is internal.
222 * Consequently, the sb_logstart should be non-zero. If
223 * we have a zero sb_logstart in this case, we may be trying to mount
224 * a volume filesystem in a non-volume manner.
226 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
227 xfs_fs_mount_cmn_err(flags, "bad magic number");
228 return XFS_ERROR(EWRONGFS);
231 if (!xfs_sb_good_version(sbp)) {
232 xfs_fs_mount_cmn_err(flags, "bad version");
233 return XFS_ERROR(EWRONGFS);
236 if (unlikely(
237 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
238 xfs_fs_mount_cmn_err(flags,
239 "filesystem is marked as having an external log; "
240 "specify logdev on the\nmount command line.");
241 return XFS_ERROR(EINVAL);
244 if (unlikely(
245 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
246 xfs_fs_mount_cmn_err(flags,
247 "filesystem is marked as having an internal log; "
248 "do not specify logdev on\nthe mount command line.");
249 return XFS_ERROR(EINVAL);
253 * More sanity checking. These were stolen directly from
254 * xfs_repair.
256 if (unlikely(
257 sbp->sb_agcount <= 0 ||
258 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
259 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
260 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
261 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
262 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
263 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
264 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
265 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
266 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
267 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
268 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
269 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
270 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
271 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
272 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
273 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
274 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
275 return XFS_ERROR(EFSCORRUPTED);
279 * Sanity check AG count, size fields against data size field
281 if (unlikely(
282 sbp->sb_dblocks == 0 ||
283 sbp->sb_dblocks >
284 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
285 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
286 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
287 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
288 return XFS_ERROR(EFSCORRUPTED);
291 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
292 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
293 xfs_fs_mount_cmn_err(flags,
294 "file system too large to be mounted on this system.");
295 return XFS_ERROR(E2BIG);
298 if (unlikely(sbp->sb_inprogress)) {
299 xfs_fs_mount_cmn_err(flags, "file system busy");
300 return XFS_ERROR(EFSCORRUPTED);
304 * Version 1 directory format has never worked on Linux.
306 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
307 xfs_fs_mount_cmn_err(flags,
308 "file system using version 1 directory format");
309 return XFS_ERROR(ENOSYS);
313 * Until this is fixed only page-sized or smaller data blocks work.
315 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
316 xfs_fs_mount_cmn_err(flags,
317 "file system with blocksize %d bytes",
318 sbp->sb_blocksize);
319 xfs_fs_mount_cmn_err(flags,
320 "only pagesize (%ld) or less will currently work.",
321 PAGE_SIZE);
322 return XFS_ERROR(ENOSYS);
325 return 0;
328 STATIC void
329 xfs_initialize_perag_icache(
330 xfs_perag_t *pag)
332 if (!pag->pag_ici_init) {
333 rwlock_init(&pag->pag_ici_lock);
334 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
335 pag->pag_ici_init = 1;
339 xfs_agnumber_t
340 xfs_initialize_perag(
341 xfs_mount_t *mp,
342 xfs_agnumber_t agcount)
344 xfs_agnumber_t index, max_metadata;
345 xfs_perag_t *pag;
346 xfs_agino_t agino;
347 xfs_ino_t ino;
348 xfs_sb_t *sbp = &mp->m_sb;
349 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
351 /* Check to see if the filesystem can overflow 32 bit inodes */
352 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
353 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
355 /* Clear the mount flag if no inode can overflow 32 bits
356 * on this filesystem, or if specifically requested..
358 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
359 mp->m_flags |= XFS_MOUNT_32BITINODES;
360 } else {
361 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
364 /* If we can overflow then setup the ag headers accordingly */
365 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
366 /* Calculate how much should be reserved for inodes to
367 * meet the max inode percentage.
369 if (mp->m_maxicount) {
370 __uint64_t icount;
372 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
373 do_div(icount, 100);
374 icount += sbp->sb_agblocks - 1;
375 do_div(icount, sbp->sb_agblocks);
376 max_metadata = icount;
377 } else {
378 max_metadata = agcount;
380 for (index = 0; index < agcount; index++) {
381 ino = XFS_AGINO_TO_INO(mp, index, agino);
382 if (ino > max_inum) {
383 index++;
384 break;
387 /* This ag is preferred for inodes */
388 pag = &mp->m_perag[index];
389 pag->pagi_inodeok = 1;
390 if (index < max_metadata)
391 pag->pagf_metadata = 1;
392 xfs_initialize_perag_icache(pag);
394 } else {
395 /* Setup default behavior for smaller filesystems */
396 for (index = 0; index < agcount; index++) {
397 pag = &mp->m_perag[index];
398 pag->pagi_inodeok = 1;
399 xfs_initialize_perag_icache(pag);
402 return index;
405 void
406 xfs_sb_from_disk(
407 xfs_sb_t *to,
408 xfs_dsb_t *from)
410 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
411 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
412 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
413 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
414 to->sb_rextents = be64_to_cpu(from->sb_rextents);
415 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
416 to->sb_logstart = be64_to_cpu(from->sb_logstart);
417 to->sb_rootino = be64_to_cpu(from->sb_rootino);
418 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
419 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
420 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
421 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
422 to->sb_agcount = be32_to_cpu(from->sb_agcount);
423 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
424 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
425 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
426 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
427 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
428 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
429 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
430 to->sb_blocklog = from->sb_blocklog;
431 to->sb_sectlog = from->sb_sectlog;
432 to->sb_inodelog = from->sb_inodelog;
433 to->sb_inopblog = from->sb_inopblog;
434 to->sb_agblklog = from->sb_agblklog;
435 to->sb_rextslog = from->sb_rextslog;
436 to->sb_inprogress = from->sb_inprogress;
437 to->sb_imax_pct = from->sb_imax_pct;
438 to->sb_icount = be64_to_cpu(from->sb_icount);
439 to->sb_ifree = be64_to_cpu(from->sb_ifree);
440 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
441 to->sb_frextents = be64_to_cpu(from->sb_frextents);
442 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
443 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
444 to->sb_qflags = be16_to_cpu(from->sb_qflags);
445 to->sb_flags = from->sb_flags;
446 to->sb_shared_vn = from->sb_shared_vn;
447 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
448 to->sb_unit = be32_to_cpu(from->sb_unit);
449 to->sb_width = be32_to_cpu(from->sb_width);
450 to->sb_dirblklog = from->sb_dirblklog;
451 to->sb_logsectlog = from->sb_logsectlog;
452 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
453 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
454 to->sb_features2 = be32_to_cpu(from->sb_features2);
455 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
459 * Copy in core superblock to ondisk one.
461 * The fields argument is mask of superblock fields to copy.
463 void
464 xfs_sb_to_disk(
465 xfs_dsb_t *to,
466 xfs_sb_t *from,
467 __int64_t fields)
469 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
470 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
471 xfs_sb_field_t f;
472 int first;
473 int size;
475 ASSERT(fields);
476 if (!fields)
477 return;
479 while (fields) {
480 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
481 first = xfs_sb_info[f].offset;
482 size = xfs_sb_info[f + 1].offset - first;
484 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
486 if (size == 1 || xfs_sb_info[f].type == 1) {
487 memcpy(to_ptr + first, from_ptr + first, size);
488 } else {
489 switch (size) {
490 case 2:
491 *(__be16 *)(to_ptr + first) =
492 cpu_to_be16(*(__u16 *)(from_ptr + first));
493 break;
494 case 4:
495 *(__be32 *)(to_ptr + first) =
496 cpu_to_be32(*(__u32 *)(from_ptr + first));
497 break;
498 case 8:
499 *(__be64 *)(to_ptr + first) =
500 cpu_to_be64(*(__u64 *)(from_ptr + first));
501 break;
502 default:
503 ASSERT(0);
507 fields &= ~(1LL << f);
512 * xfs_readsb
514 * Does the initial read of the superblock.
517 xfs_readsb(xfs_mount_t *mp, int flags)
519 unsigned int sector_size;
520 unsigned int extra_flags;
521 xfs_buf_t *bp;
522 int error;
524 ASSERT(mp->m_sb_bp == NULL);
525 ASSERT(mp->m_ddev_targp != NULL);
528 * Allocate a (locked) buffer to hold the superblock.
529 * This will be kept around at all times to optimize
530 * access to the superblock.
532 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
533 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
535 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
536 BTOBB(sector_size), extra_flags);
537 if (!bp || XFS_BUF_ISERROR(bp)) {
538 xfs_fs_mount_cmn_err(flags, "SB read failed");
539 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
540 goto fail;
542 ASSERT(XFS_BUF_ISBUSY(bp));
543 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
546 * Initialize the mount structure from the superblock.
547 * But first do some basic consistency checking.
549 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
551 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
552 if (error) {
553 xfs_fs_mount_cmn_err(flags, "SB validate failed");
554 goto fail;
558 * We must be able to do sector-sized and sector-aligned IO.
560 if (sector_size > mp->m_sb.sb_sectsize) {
561 xfs_fs_mount_cmn_err(flags,
562 "device supports only %u byte sectors (not %u)",
563 sector_size, mp->m_sb.sb_sectsize);
564 error = ENOSYS;
565 goto fail;
569 * If device sector size is smaller than the superblock size,
570 * re-read the superblock so the buffer is correctly sized.
572 if (sector_size < mp->m_sb.sb_sectsize) {
573 XFS_BUF_UNMANAGE(bp);
574 xfs_buf_relse(bp);
575 sector_size = mp->m_sb.sb_sectsize;
576 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
577 BTOBB(sector_size), extra_flags);
578 if (!bp || XFS_BUF_ISERROR(bp)) {
579 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
580 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
581 goto fail;
583 ASSERT(XFS_BUF_ISBUSY(bp));
584 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
587 /* Initialize per-cpu counters */
588 xfs_icsb_reinit_counters(mp);
590 mp->m_sb_bp = bp;
591 xfs_buf_relse(bp);
592 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
593 return 0;
595 fail:
596 if (bp) {
597 XFS_BUF_UNMANAGE(bp);
598 xfs_buf_relse(bp);
600 return error;
605 * xfs_mount_common
607 * Mount initialization code establishing various mount
608 * fields from the superblock associated with the given
609 * mount structure
611 STATIC void
612 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
614 int i;
616 mp->m_agfrotor = mp->m_agirotor = 0;
617 spin_lock_init(&mp->m_agirotor_lock);
618 mp->m_maxagi = mp->m_sb.sb_agcount;
619 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
620 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
621 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
622 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
623 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
624 mp->m_litino = sbp->sb_inodesize -
625 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
626 mp->m_blockmask = sbp->sb_blocksize - 1;
627 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
628 mp->m_blockwmask = mp->m_blockwsize - 1;
629 INIT_LIST_HEAD(&mp->m_del_inodes);
632 * Setup for attributes, in case they get created.
633 * This value is for inodes getting attributes for the first time,
634 * the per-inode value is for old attribute values.
636 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
637 switch (sbp->sb_inodesize) {
638 case 256:
639 mp->m_attroffset = XFS_LITINO(mp) -
640 XFS_BMDR_SPACE_CALC(MINABTPTRS);
641 break;
642 case 512:
643 case 1024:
644 case 2048:
645 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
646 break;
647 default:
648 ASSERT(0);
650 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
652 for (i = 0; i < 2; i++) {
653 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
654 xfs_alloc, i == 0);
655 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
656 xfs_alloc, i == 0);
658 for (i = 0; i < 2; i++) {
659 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
660 xfs_bmbt, i == 0);
661 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
662 xfs_bmbt, i == 0);
664 for (i = 0; i < 2; i++) {
665 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
666 xfs_inobt, i == 0);
667 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
668 xfs_inobt, i == 0);
671 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
672 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
673 sbp->sb_inopblock);
674 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
678 * xfs_initialize_perag_data
680 * Read in each per-ag structure so we can count up the number of
681 * allocated inodes, free inodes and used filesystem blocks as this
682 * information is no longer persistent in the superblock. Once we have
683 * this information, write it into the in-core superblock structure.
685 STATIC int
686 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
688 xfs_agnumber_t index;
689 xfs_perag_t *pag;
690 xfs_sb_t *sbp = &mp->m_sb;
691 uint64_t ifree = 0;
692 uint64_t ialloc = 0;
693 uint64_t bfree = 0;
694 uint64_t bfreelst = 0;
695 uint64_t btree = 0;
696 int error;
698 for (index = 0; index < agcount; index++) {
700 * read the agf, then the agi. This gets us
701 * all the inforamtion we need and populates the
702 * per-ag structures for us.
704 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
705 if (error)
706 return error;
708 error = xfs_ialloc_pagi_init(mp, NULL, index);
709 if (error)
710 return error;
711 pag = &mp->m_perag[index];
712 ifree += pag->pagi_freecount;
713 ialloc += pag->pagi_count;
714 bfree += pag->pagf_freeblks;
715 bfreelst += pag->pagf_flcount;
716 btree += pag->pagf_btreeblks;
719 * Overwrite incore superblock counters with just-read data
721 spin_lock(&mp->m_sb_lock);
722 sbp->sb_ifree = ifree;
723 sbp->sb_icount = ialloc;
724 sbp->sb_fdblocks = bfree + bfreelst + btree;
725 spin_unlock(&mp->m_sb_lock);
727 /* Fixup the per-cpu counters as well. */
728 xfs_icsb_reinit_counters(mp);
730 return 0;
734 * Update alignment values based on mount options and sb values
736 STATIC int
737 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
739 xfs_sb_t *sbp = &(mp->m_sb);
741 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
743 * If stripe unit and stripe width are not multiples
744 * of the fs blocksize turn off alignment.
746 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
747 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
748 if (mp->m_flags & XFS_MOUNT_RETERR) {
749 cmn_err(CE_WARN,
750 "XFS: alignment check 1 failed");
751 return XFS_ERROR(EINVAL);
753 mp->m_dalign = mp->m_swidth = 0;
754 } else {
756 * Convert the stripe unit and width to FSBs.
758 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
759 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
760 if (mp->m_flags & XFS_MOUNT_RETERR) {
761 return XFS_ERROR(EINVAL);
763 xfs_fs_cmn_err(CE_WARN, mp,
764 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
765 mp->m_dalign, mp->m_swidth,
766 sbp->sb_agblocks);
768 mp->m_dalign = 0;
769 mp->m_swidth = 0;
770 } else if (mp->m_dalign) {
771 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
772 } else {
773 if (mp->m_flags & XFS_MOUNT_RETERR) {
774 xfs_fs_cmn_err(CE_WARN, mp,
775 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
776 mp->m_dalign,
777 mp->m_blockmask +1);
778 return XFS_ERROR(EINVAL);
780 mp->m_swidth = 0;
785 * Update superblock with new values
786 * and log changes
788 if (xfs_sb_version_hasdalign(sbp)) {
789 if (sbp->sb_unit != mp->m_dalign) {
790 sbp->sb_unit = mp->m_dalign;
791 *update_flags |= XFS_SB_UNIT;
793 if (sbp->sb_width != mp->m_swidth) {
794 sbp->sb_width = mp->m_swidth;
795 *update_flags |= XFS_SB_WIDTH;
798 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
799 xfs_sb_version_hasdalign(&mp->m_sb)) {
800 mp->m_dalign = sbp->sb_unit;
801 mp->m_swidth = sbp->sb_width;
804 return 0;
808 * Set the maximum inode count for this filesystem
810 STATIC void
811 xfs_set_maxicount(xfs_mount_t *mp)
813 xfs_sb_t *sbp = &(mp->m_sb);
814 __uint64_t icount;
816 if (sbp->sb_imax_pct) {
818 * Make sure the maximum inode count is a multiple
819 * of the units we allocate inodes in.
821 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
822 do_div(icount, 100);
823 do_div(icount, mp->m_ialloc_blks);
824 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
825 sbp->sb_inopblog;
826 } else {
827 mp->m_maxicount = 0;
832 * Set the default minimum read and write sizes unless
833 * already specified in a mount option.
834 * We use smaller I/O sizes when the file system
835 * is being used for NFS service (wsync mount option).
837 STATIC void
838 xfs_set_rw_sizes(xfs_mount_t *mp)
840 xfs_sb_t *sbp = &(mp->m_sb);
841 int readio_log, writeio_log;
843 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
844 if (mp->m_flags & XFS_MOUNT_WSYNC) {
845 readio_log = XFS_WSYNC_READIO_LOG;
846 writeio_log = XFS_WSYNC_WRITEIO_LOG;
847 } else {
848 readio_log = XFS_READIO_LOG_LARGE;
849 writeio_log = XFS_WRITEIO_LOG_LARGE;
851 } else {
852 readio_log = mp->m_readio_log;
853 writeio_log = mp->m_writeio_log;
856 if (sbp->sb_blocklog > readio_log) {
857 mp->m_readio_log = sbp->sb_blocklog;
858 } else {
859 mp->m_readio_log = readio_log;
861 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
862 if (sbp->sb_blocklog > writeio_log) {
863 mp->m_writeio_log = sbp->sb_blocklog;
864 } else {
865 mp->m_writeio_log = writeio_log;
867 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
871 * Set whether we're using inode alignment.
873 STATIC void
874 xfs_set_inoalignment(xfs_mount_t *mp)
876 if (xfs_sb_version_hasalign(&mp->m_sb) &&
877 mp->m_sb.sb_inoalignmt >=
878 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
879 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
880 else
881 mp->m_inoalign_mask = 0;
883 * If we are using stripe alignment, check whether
884 * the stripe unit is a multiple of the inode alignment
886 if (mp->m_dalign && mp->m_inoalign_mask &&
887 !(mp->m_dalign & mp->m_inoalign_mask))
888 mp->m_sinoalign = mp->m_dalign;
889 else
890 mp->m_sinoalign = 0;
894 * Check that the data (and log if separate) are an ok size.
896 STATIC int
897 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
899 xfs_buf_t *bp;
900 xfs_daddr_t d;
901 int error;
903 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
904 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
905 cmn_err(CE_WARN, "XFS: size check 1 failed");
906 return XFS_ERROR(E2BIG);
908 error = xfs_read_buf(mp, mp->m_ddev_targp,
909 d - XFS_FSS_TO_BB(mp, 1),
910 XFS_FSS_TO_BB(mp, 1), 0, &bp);
911 if (!error) {
912 xfs_buf_relse(bp);
913 } else {
914 cmn_err(CE_WARN, "XFS: size check 2 failed");
915 if (error == ENOSPC)
916 error = XFS_ERROR(E2BIG);
917 return error;
920 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
921 mp->m_logdev_targp != mp->m_ddev_targp) {
922 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
923 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
924 cmn_err(CE_WARN, "XFS: size check 3 failed");
925 return XFS_ERROR(E2BIG);
927 error = xfs_read_buf(mp, mp->m_logdev_targp,
928 d - XFS_FSB_TO_BB(mp, 1),
929 XFS_FSB_TO_BB(mp, 1), 0, &bp);
930 if (!error) {
931 xfs_buf_relse(bp);
932 } else {
933 cmn_err(CE_WARN, "XFS: size check 3 failed");
934 if (error == ENOSPC)
935 error = XFS_ERROR(E2BIG);
936 return error;
939 return 0;
943 * xfs_mountfs
945 * This function does the following on an initial mount of a file system:
946 * - reads the superblock from disk and init the mount struct
947 * - if we're a 32-bit kernel, do a size check on the superblock
948 * so we don't mount terabyte filesystems
949 * - init mount struct realtime fields
950 * - allocate inode hash table for fs
951 * - init directory manager
952 * - perform recovery and init the log manager
955 xfs_mountfs(
956 xfs_mount_t *mp,
957 int mfsi_flags)
959 xfs_sb_t *sbp = &(mp->m_sb);
960 xfs_inode_t *rip;
961 __uint64_t resblks;
962 __int64_t update_flags = 0LL;
963 uint quotamount, quotaflags;
964 int agno;
965 int uuid_mounted = 0;
966 int error = 0;
968 xfs_mount_common(mp, sbp);
971 * Check for a mismatched features2 values. Older kernels
972 * read & wrote into the wrong sb offset for sb_features2
973 * on some platforms due to xfs_sb_t not being 64bit size aligned
974 * when sb_features2 was added, which made older superblock
975 * reading/writing routines swap it as a 64-bit value.
977 * For backwards compatibility, we make both slots equal.
979 * If we detect a mismatched field, we OR the set bits into the
980 * existing features2 field in case it has already been modified; we
981 * don't want to lose any features. We then update the bad location
982 * with the ORed value so that older kernels will see any features2
983 * flags, and mark the two fields as needing updates once the
984 * transaction subsystem is online.
986 if (xfs_sb_has_mismatched_features2(sbp)) {
987 cmn_err(CE_WARN,
988 "XFS: correcting sb_features alignment problem");
989 sbp->sb_features2 |= sbp->sb_bad_features2;
990 sbp->sb_bad_features2 = sbp->sb_features2;
991 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
994 * Re-check for ATTR2 in case it was found in bad_features2
995 * slot.
997 if (xfs_sb_version_hasattr2(&mp->m_sb))
998 mp->m_flags |= XFS_MOUNT_ATTR2;
1003 * Check if sb_agblocks is aligned at stripe boundary
1004 * If sb_agblocks is NOT aligned turn off m_dalign since
1005 * allocator alignment is within an ag, therefore ag has
1006 * to be aligned at stripe boundary.
1008 error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1009 if (error)
1010 goto error1;
1012 xfs_alloc_compute_maxlevels(mp);
1013 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1014 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1015 xfs_ialloc_compute_maxlevels(mp);
1017 xfs_set_maxicount(mp);
1019 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1022 * XFS uses the uuid from the superblock as the unique
1023 * identifier for fsid. We can not use the uuid from the volume
1024 * since a single partition filesystem is identical to a single
1025 * partition volume/filesystem.
1027 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1028 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1029 if (xfs_uuid_mount(mp)) {
1030 error = XFS_ERROR(EINVAL);
1031 goto error1;
1033 uuid_mounted=1;
1037 * Set the minimum read and write sizes
1039 xfs_set_rw_sizes(mp);
1042 * Set the inode cluster size.
1043 * This may still be overridden by the file system
1044 * block size if it is larger than the chosen cluster size.
1046 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1049 * Set inode alignment fields
1051 xfs_set_inoalignment(mp);
1054 * Check that the data (and log if separate) are an ok size.
1056 error = xfs_check_sizes(mp, mfsi_flags);
1057 if (error)
1058 goto error1;
1061 * Initialize realtime fields in the mount structure
1063 error = xfs_rtmount_init(mp);
1064 if (error) {
1065 cmn_err(CE_WARN, "XFS: RT mount failed");
1066 goto error1;
1070 * For client case we are done now
1072 if (mfsi_flags & XFS_MFSI_CLIENT) {
1073 return 0;
1077 * Copies the low order bits of the timestamp and the randomly
1078 * set "sequence" number out of a UUID.
1080 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1082 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1084 xfs_dir_mount(mp);
1087 * Initialize the attribute manager's entries.
1089 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1092 * Initialize the precomputed transaction reservations values.
1094 xfs_trans_init(mp);
1097 * Allocate and initialize the per-ag data.
1099 init_rwsem(&mp->m_peraglock);
1100 mp->m_perag =
1101 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1103 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1106 * log's mount-time initialization. Perform 1st part recovery if needed
1108 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1109 error = xfs_log_mount(mp, mp->m_logdev_targp,
1110 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1111 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1112 if (error) {
1113 cmn_err(CE_WARN, "XFS: log mount failed");
1114 goto error2;
1116 } else { /* No log has been defined */
1117 cmn_err(CE_WARN, "XFS: no log defined");
1118 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1119 error = XFS_ERROR(EFSCORRUPTED);
1120 goto error2;
1124 * Now the log is mounted, we know if it was an unclean shutdown or
1125 * not. If it was, with the first phase of recovery has completed, we
1126 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1127 * but they are recovered transactionally in the second recovery phase
1128 * later.
1130 * Hence we can safely re-initialise incore superblock counters from
1131 * the per-ag data. These may not be correct if the filesystem was not
1132 * cleanly unmounted, so we need to wait for recovery to finish before
1133 * doing this.
1135 * If the filesystem was cleanly unmounted, then we can trust the
1136 * values in the superblock to be correct and we don't need to do
1137 * anything here.
1139 * If we are currently making the filesystem, the initialisation will
1140 * fail as the perag data is in an undefined state.
1143 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1144 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1145 !mp->m_sb.sb_inprogress) {
1146 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1147 if (error) {
1148 goto error2;
1152 * Get and sanity-check the root inode.
1153 * Save the pointer to it in the mount structure.
1155 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1156 if (error) {
1157 cmn_err(CE_WARN, "XFS: failed to read root inode");
1158 goto error3;
1161 ASSERT(rip != NULL);
1163 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1164 cmn_err(CE_WARN, "XFS: corrupted root inode");
1165 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1166 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1167 (unsigned long long)rip->i_ino);
1168 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1169 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1170 mp);
1171 error = XFS_ERROR(EFSCORRUPTED);
1172 goto error4;
1174 mp->m_rootip = rip; /* save it */
1176 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1179 * Initialize realtime inode pointers in the mount structure
1181 error = xfs_rtmount_inodes(mp);
1182 if (error) {
1184 * Free up the root inode.
1186 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1187 goto error4;
1191 * If fs is not mounted readonly, then update the superblock changes.
1193 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1194 error = xfs_mount_log_sb(mp, update_flags);
1195 if (error) {
1196 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1197 goto error4;
1202 * Initialise the XFS quota management subsystem for this mount
1204 error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1205 if (error)
1206 goto error4;
1209 * Finish recovering the file system. This part needed to be
1210 * delayed until after the root and real-time bitmap inodes
1211 * were consistently read in.
1213 error = xfs_log_mount_finish(mp, mfsi_flags);
1214 if (error) {
1215 cmn_err(CE_WARN, "XFS: log mount finish failed");
1216 goto error4;
1220 * Complete the quota initialisation, post-log-replay component.
1222 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1223 if (error)
1224 goto error4;
1227 * Now we are mounted, reserve a small amount of unused space for
1228 * privileged transactions. This is needed so that transaction
1229 * space required for critical operations can dip into this pool
1230 * when at ENOSPC. This is needed for operations like create with
1231 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1232 * are not allowed to use this reserved space.
1234 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1235 * This may drive us straight to ENOSPC on mount, but that implies
1236 * we were already there on the last unmount. Warn if this occurs.
1238 resblks = mp->m_sb.sb_dblocks;
1239 do_div(resblks, 20);
1240 resblks = min_t(__uint64_t, resblks, 1024);
1241 error = xfs_reserve_blocks(mp, &resblks, NULL);
1242 if (error)
1243 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1244 "Continuing without a reserve pool.");
1246 return 0;
1248 error4:
1250 * Free up the root inode.
1252 IRELE(rip);
1253 error3:
1254 xfs_log_unmount_dealloc(mp);
1255 error2:
1256 for (agno = 0; agno < sbp->sb_agcount; agno++)
1257 if (mp->m_perag[agno].pagb_list)
1258 kmem_free(mp->m_perag[agno].pagb_list,
1259 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1260 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1261 mp->m_perag = NULL;
1262 /* FALLTHROUGH */
1263 error1:
1264 if (uuid_mounted)
1265 xfs_uuid_unmount(mp);
1266 xfs_freesb(mp);
1267 return error;
1271 * xfs_unmountfs
1273 * This flushes out the inodes,dquots and the superblock, unmounts the
1274 * log and makes sure that incore structures are freed.
1277 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1279 __uint64_t resblks;
1280 int error = 0;
1283 * We can potentially deadlock here if we have an inode cluster
1284 * that has been freed has it's buffer still pinned in memory because
1285 * the transaction is still sitting in a iclog. The stale inodes
1286 * on that buffer will have their flush locks held until the
1287 * transaction hits the disk and the callbacks run. the inode
1288 * flush takes the flush lock unconditionally and with nothing to
1289 * push out the iclog we will never get that unlocked. hence we
1290 * need to force the log first.
1292 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1293 xfs_iflush_all(mp);
1295 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1298 * Flush out the log synchronously so that we know for sure
1299 * that nothing is pinned. This is important because bflush()
1300 * will skip pinned buffers.
1302 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1304 xfs_binval(mp->m_ddev_targp);
1305 if (mp->m_rtdev_targp) {
1306 xfs_binval(mp->m_rtdev_targp);
1310 * Unreserve any blocks we have so that when we unmount we don't account
1311 * the reserved free space as used. This is really only necessary for
1312 * lazy superblock counting because it trusts the incore superblock
1313 * counters to be aboslutely correct on clean unmount.
1315 * We don't bother correcting this elsewhere for lazy superblock
1316 * counting because on mount of an unclean filesystem we reconstruct the
1317 * correct counter value and this is irrelevant.
1319 * For non-lazy counter filesystems, this doesn't matter at all because
1320 * we only every apply deltas to the superblock and hence the incore
1321 * value does not matter....
1323 resblks = 0;
1324 error = xfs_reserve_blocks(mp, &resblks, NULL);
1325 if (error)
1326 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1327 "Freespace may not be correct on next mount.");
1329 error = xfs_log_sbcount(mp, 1);
1330 if (error)
1331 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1332 "Freespace may not be correct on next mount.");
1333 xfs_unmountfs_writesb(mp);
1334 xfs_unmountfs_wait(mp); /* wait for async bufs */
1335 xfs_log_unmount(mp); /* Done! No more fs ops. */
1337 xfs_freesb(mp);
1340 * All inodes from this mount point should be freed.
1342 ASSERT(mp->m_inodes == NULL);
1344 xfs_unmountfs_close(mp, cr);
1345 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1346 xfs_uuid_unmount(mp);
1348 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1349 xfs_errortag_clearall(mp, 0);
1350 #endif
1351 xfs_mount_free(mp);
1352 return 0;
1355 void
1356 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1358 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1359 xfs_free_buftarg(mp->m_logdev_targp, 1);
1360 if (mp->m_rtdev_targp)
1361 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1362 xfs_free_buftarg(mp->m_ddev_targp, 0);
1365 STATIC void
1366 xfs_unmountfs_wait(xfs_mount_t *mp)
1368 if (mp->m_logdev_targp != mp->m_ddev_targp)
1369 xfs_wait_buftarg(mp->m_logdev_targp);
1370 if (mp->m_rtdev_targp)
1371 xfs_wait_buftarg(mp->m_rtdev_targp);
1372 xfs_wait_buftarg(mp->m_ddev_targp);
1376 xfs_fs_writable(xfs_mount_t *mp)
1378 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1379 (mp->m_flags & XFS_MOUNT_RDONLY));
1383 * xfs_log_sbcount
1385 * Called either periodically to keep the on disk superblock values
1386 * roughly up to date or from unmount to make sure the values are
1387 * correct on a clean unmount.
1389 * Note this code can be called during the process of freezing, so
1390 * we may need to use the transaction allocator which does not not
1391 * block when the transaction subsystem is in its frozen state.
1394 xfs_log_sbcount(
1395 xfs_mount_t *mp,
1396 uint sync)
1398 xfs_trans_t *tp;
1399 int error;
1401 if (!xfs_fs_writable(mp))
1402 return 0;
1404 xfs_icsb_sync_counters(mp, 0);
1407 * we don't need to do this if we are updating the superblock
1408 * counters on every modification.
1410 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1411 return 0;
1413 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1414 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1415 XFS_DEFAULT_LOG_COUNT);
1416 if (error) {
1417 xfs_trans_cancel(tp, 0);
1418 return error;
1421 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1422 if (sync)
1423 xfs_trans_set_sync(tp);
1424 error = xfs_trans_commit(tp, 0);
1425 return error;
1428 STATIC void
1429 xfs_mark_shared_ro(
1430 xfs_mount_t *mp,
1431 xfs_buf_t *bp)
1433 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1434 __uint16_t version;
1436 if (!(sb->sb_flags & XFS_SBF_READONLY))
1437 sb->sb_flags |= XFS_SBF_READONLY;
1439 version = be16_to_cpu(sb->sb_versionnum);
1440 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1441 !(version & XFS_SB_VERSION_SHAREDBIT))
1442 version |= XFS_SB_VERSION_SHAREDBIT;
1443 sb->sb_versionnum = cpu_to_be16(version);
1447 xfs_unmountfs_writesb(xfs_mount_t *mp)
1449 xfs_buf_t *sbp;
1450 int error = 0;
1453 * skip superblock write if fs is read-only, or
1454 * if we are doing a forced umount.
1456 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1457 XFS_FORCED_SHUTDOWN(mp))) {
1459 sbp = xfs_getsb(mp, 0);
1462 * mark shared-readonly if desired
1464 if (mp->m_mk_sharedro)
1465 xfs_mark_shared_ro(mp, sbp);
1467 XFS_BUF_UNDONE(sbp);
1468 XFS_BUF_UNREAD(sbp);
1469 XFS_BUF_UNDELAYWRITE(sbp);
1470 XFS_BUF_WRITE(sbp);
1471 XFS_BUF_UNASYNC(sbp);
1472 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1473 xfsbdstrat(mp, sbp);
1474 error = xfs_iowait(sbp);
1475 if (error)
1476 xfs_ioerror_alert("xfs_unmountfs_writesb",
1477 mp, sbp, XFS_BUF_ADDR(sbp));
1478 if (error && mp->m_mk_sharedro)
1479 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1480 xfs_buf_relse(sbp);
1482 return error;
1486 * xfs_mod_sb() can be used to copy arbitrary changes to the
1487 * in-core superblock into the superblock buffer to be logged.
1488 * It does not provide the higher level of locking that is
1489 * needed to protect the in-core superblock from concurrent
1490 * access.
1492 void
1493 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1495 xfs_buf_t *bp;
1496 int first;
1497 int last;
1498 xfs_mount_t *mp;
1499 xfs_sb_field_t f;
1501 ASSERT(fields);
1502 if (!fields)
1503 return;
1504 mp = tp->t_mountp;
1505 bp = xfs_trans_getsb(tp, mp, 0);
1506 first = sizeof(xfs_sb_t);
1507 last = 0;
1509 /* translate/copy */
1511 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1513 /* find modified range */
1515 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1516 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1517 first = xfs_sb_info[f].offset;
1519 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1520 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1521 last = xfs_sb_info[f + 1].offset - 1;
1523 xfs_trans_log_buf(tp, bp, first, last);
1528 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1529 * a delta to a specified field in the in-core superblock. Simply
1530 * switch on the field indicated and apply the delta to that field.
1531 * Fields are not allowed to dip below zero, so if the delta would
1532 * do this do not apply it and return EINVAL.
1534 * The m_sb_lock must be held when this routine is called.
1537 xfs_mod_incore_sb_unlocked(
1538 xfs_mount_t *mp,
1539 xfs_sb_field_t field,
1540 int64_t delta,
1541 int rsvd)
1543 int scounter; /* short counter for 32 bit fields */
1544 long long lcounter; /* long counter for 64 bit fields */
1545 long long res_used, rem;
1548 * With the in-core superblock spin lock held, switch
1549 * on the indicated field. Apply the delta to the
1550 * proper field. If the fields value would dip below
1551 * 0, then do not apply the delta and return EINVAL.
1553 switch (field) {
1554 case XFS_SBS_ICOUNT:
1555 lcounter = (long long)mp->m_sb.sb_icount;
1556 lcounter += delta;
1557 if (lcounter < 0) {
1558 ASSERT(0);
1559 return XFS_ERROR(EINVAL);
1561 mp->m_sb.sb_icount = lcounter;
1562 return 0;
1563 case XFS_SBS_IFREE:
1564 lcounter = (long long)mp->m_sb.sb_ifree;
1565 lcounter += delta;
1566 if (lcounter < 0) {
1567 ASSERT(0);
1568 return XFS_ERROR(EINVAL);
1570 mp->m_sb.sb_ifree = lcounter;
1571 return 0;
1572 case XFS_SBS_FDBLOCKS:
1573 lcounter = (long long)
1574 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1575 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1577 if (delta > 0) { /* Putting blocks back */
1578 if (res_used > delta) {
1579 mp->m_resblks_avail += delta;
1580 } else {
1581 rem = delta - res_used;
1582 mp->m_resblks_avail = mp->m_resblks;
1583 lcounter += rem;
1585 } else { /* Taking blocks away */
1587 lcounter += delta;
1590 * If were out of blocks, use any available reserved blocks if
1591 * were allowed to.
1594 if (lcounter < 0) {
1595 if (rsvd) {
1596 lcounter = (long long)mp->m_resblks_avail + delta;
1597 if (lcounter < 0) {
1598 return XFS_ERROR(ENOSPC);
1600 mp->m_resblks_avail = lcounter;
1601 return 0;
1602 } else { /* not reserved */
1603 return XFS_ERROR(ENOSPC);
1608 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1609 return 0;
1610 case XFS_SBS_FREXTENTS:
1611 lcounter = (long long)mp->m_sb.sb_frextents;
1612 lcounter += delta;
1613 if (lcounter < 0) {
1614 return XFS_ERROR(ENOSPC);
1616 mp->m_sb.sb_frextents = lcounter;
1617 return 0;
1618 case XFS_SBS_DBLOCKS:
1619 lcounter = (long long)mp->m_sb.sb_dblocks;
1620 lcounter += delta;
1621 if (lcounter < 0) {
1622 ASSERT(0);
1623 return XFS_ERROR(EINVAL);
1625 mp->m_sb.sb_dblocks = lcounter;
1626 return 0;
1627 case XFS_SBS_AGCOUNT:
1628 scounter = mp->m_sb.sb_agcount;
1629 scounter += delta;
1630 if (scounter < 0) {
1631 ASSERT(0);
1632 return XFS_ERROR(EINVAL);
1634 mp->m_sb.sb_agcount = scounter;
1635 return 0;
1636 case XFS_SBS_IMAX_PCT:
1637 scounter = mp->m_sb.sb_imax_pct;
1638 scounter += delta;
1639 if (scounter < 0) {
1640 ASSERT(0);
1641 return XFS_ERROR(EINVAL);
1643 mp->m_sb.sb_imax_pct = scounter;
1644 return 0;
1645 case XFS_SBS_REXTSIZE:
1646 scounter = mp->m_sb.sb_rextsize;
1647 scounter += delta;
1648 if (scounter < 0) {
1649 ASSERT(0);
1650 return XFS_ERROR(EINVAL);
1652 mp->m_sb.sb_rextsize = scounter;
1653 return 0;
1654 case XFS_SBS_RBMBLOCKS:
1655 scounter = mp->m_sb.sb_rbmblocks;
1656 scounter += delta;
1657 if (scounter < 0) {
1658 ASSERT(0);
1659 return XFS_ERROR(EINVAL);
1661 mp->m_sb.sb_rbmblocks = scounter;
1662 return 0;
1663 case XFS_SBS_RBLOCKS:
1664 lcounter = (long long)mp->m_sb.sb_rblocks;
1665 lcounter += delta;
1666 if (lcounter < 0) {
1667 ASSERT(0);
1668 return XFS_ERROR(EINVAL);
1670 mp->m_sb.sb_rblocks = lcounter;
1671 return 0;
1672 case XFS_SBS_REXTENTS:
1673 lcounter = (long long)mp->m_sb.sb_rextents;
1674 lcounter += delta;
1675 if (lcounter < 0) {
1676 ASSERT(0);
1677 return XFS_ERROR(EINVAL);
1679 mp->m_sb.sb_rextents = lcounter;
1680 return 0;
1681 case XFS_SBS_REXTSLOG:
1682 scounter = mp->m_sb.sb_rextslog;
1683 scounter += delta;
1684 if (scounter < 0) {
1685 ASSERT(0);
1686 return XFS_ERROR(EINVAL);
1688 mp->m_sb.sb_rextslog = scounter;
1689 return 0;
1690 default:
1691 ASSERT(0);
1692 return XFS_ERROR(EINVAL);
1697 * xfs_mod_incore_sb() is used to change a field in the in-core
1698 * superblock structure by the specified delta. This modification
1699 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1700 * routine to do the work.
1703 xfs_mod_incore_sb(
1704 xfs_mount_t *mp,
1705 xfs_sb_field_t field,
1706 int64_t delta,
1707 int rsvd)
1709 int status;
1711 /* check for per-cpu counters */
1712 switch (field) {
1713 #ifdef HAVE_PERCPU_SB
1714 case XFS_SBS_ICOUNT:
1715 case XFS_SBS_IFREE:
1716 case XFS_SBS_FDBLOCKS:
1717 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1718 status = xfs_icsb_modify_counters(mp, field,
1719 delta, rsvd);
1720 break;
1722 /* FALLTHROUGH */
1723 #endif
1724 default:
1725 spin_lock(&mp->m_sb_lock);
1726 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1727 spin_unlock(&mp->m_sb_lock);
1728 break;
1731 return status;
1735 * xfs_mod_incore_sb_batch() is used to change more than one field
1736 * in the in-core superblock structure at a time. This modification
1737 * is protected by a lock internal to this module. The fields and
1738 * changes to those fields are specified in the array of xfs_mod_sb
1739 * structures passed in.
1741 * Either all of the specified deltas will be applied or none of
1742 * them will. If any modified field dips below 0, then all modifications
1743 * will be backed out and EINVAL will be returned.
1746 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1748 int status=0;
1749 xfs_mod_sb_t *msbp;
1752 * Loop through the array of mod structures and apply each
1753 * individually. If any fail, then back out all those
1754 * which have already been applied. Do all of this within
1755 * the scope of the m_sb_lock so that all of the changes will
1756 * be atomic.
1758 spin_lock(&mp->m_sb_lock);
1759 msbp = &msb[0];
1760 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1762 * Apply the delta at index n. If it fails, break
1763 * from the loop so we'll fall into the undo loop
1764 * below.
1766 switch (msbp->msb_field) {
1767 #ifdef HAVE_PERCPU_SB
1768 case XFS_SBS_ICOUNT:
1769 case XFS_SBS_IFREE:
1770 case XFS_SBS_FDBLOCKS:
1771 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1772 spin_unlock(&mp->m_sb_lock);
1773 status = xfs_icsb_modify_counters(mp,
1774 msbp->msb_field,
1775 msbp->msb_delta, rsvd);
1776 spin_lock(&mp->m_sb_lock);
1777 break;
1779 /* FALLTHROUGH */
1780 #endif
1781 default:
1782 status = xfs_mod_incore_sb_unlocked(mp,
1783 msbp->msb_field,
1784 msbp->msb_delta, rsvd);
1785 break;
1788 if (status != 0) {
1789 break;
1794 * If we didn't complete the loop above, then back out
1795 * any changes made to the superblock. If you add code
1796 * between the loop above and here, make sure that you
1797 * preserve the value of status. Loop back until
1798 * we step below the beginning of the array. Make sure
1799 * we don't touch anything back there.
1801 if (status != 0) {
1802 msbp--;
1803 while (msbp >= msb) {
1804 switch (msbp->msb_field) {
1805 #ifdef HAVE_PERCPU_SB
1806 case XFS_SBS_ICOUNT:
1807 case XFS_SBS_IFREE:
1808 case XFS_SBS_FDBLOCKS:
1809 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1810 spin_unlock(&mp->m_sb_lock);
1811 status = xfs_icsb_modify_counters(mp,
1812 msbp->msb_field,
1813 -(msbp->msb_delta),
1814 rsvd);
1815 spin_lock(&mp->m_sb_lock);
1816 break;
1818 /* FALLTHROUGH */
1819 #endif
1820 default:
1821 status = xfs_mod_incore_sb_unlocked(mp,
1822 msbp->msb_field,
1823 -(msbp->msb_delta),
1824 rsvd);
1825 break;
1827 ASSERT(status == 0);
1828 msbp--;
1831 spin_unlock(&mp->m_sb_lock);
1832 return status;
1836 * xfs_getsb() is called to obtain the buffer for the superblock.
1837 * The buffer is returned locked and read in from disk.
1838 * The buffer should be released with a call to xfs_brelse().
1840 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1841 * the superblock buffer if it can be locked without sleeping.
1842 * If it can't then we'll return NULL.
1844 xfs_buf_t *
1845 xfs_getsb(
1846 xfs_mount_t *mp,
1847 int flags)
1849 xfs_buf_t *bp;
1851 ASSERT(mp->m_sb_bp != NULL);
1852 bp = mp->m_sb_bp;
1853 if (flags & XFS_BUF_TRYLOCK) {
1854 if (!XFS_BUF_CPSEMA(bp)) {
1855 return NULL;
1857 } else {
1858 XFS_BUF_PSEMA(bp, PRIBIO);
1860 XFS_BUF_HOLD(bp);
1861 ASSERT(XFS_BUF_ISDONE(bp));
1862 return bp;
1866 * Used to free the superblock along various error paths.
1868 void
1869 xfs_freesb(
1870 xfs_mount_t *mp)
1872 xfs_buf_t *bp;
1875 * Use xfs_getsb() so that the buffer will be locked
1876 * when we call xfs_buf_relse().
1878 bp = xfs_getsb(mp, 0);
1879 XFS_BUF_UNMANAGE(bp);
1880 xfs_buf_relse(bp);
1881 mp->m_sb_bp = NULL;
1885 * See if the UUID is unique among mounted XFS filesystems.
1886 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1888 STATIC int
1889 xfs_uuid_mount(
1890 xfs_mount_t *mp)
1892 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1893 cmn_err(CE_WARN,
1894 "XFS: Filesystem %s has nil UUID - can't mount",
1895 mp->m_fsname);
1896 return -1;
1898 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1899 cmn_err(CE_WARN,
1900 "XFS: Filesystem %s has duplicate UUID - can't mount",
1901 mp->m_fsname);
1902 return -1;
1904 return 0;
1908 * Remove filesystem from the UUID table.
1910 STATIC void
1911 xfs_uuid_unmount(
1912 xfs_mount_t *mp)
1914 uuid_table_remove(&mp->m_sb.sb_uuid);
1918 * Used to log changes to the superblock unit and width fields which could
1919 * be altered by the mount options, as well as any potential sb_features2
1920 * fixup. Only the first superblock is updated.
1922 STATIC int
1923 xfs_mount_log_sb(
1924 xfs_mount_t *mp,
1925 __int64_t fields)
1927 xfs_trans_t *tp;
1928 int error;
1930 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1931 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2));
1933 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1934 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1935 XFS_DEFAULT_LOG_COUNT);
1936 if (error) {
1937 xfs_trans_cancel(tp, 0);
1938 return error;
1940 xfs_mod_sb(tp, fields);
1941 error = xfs_trans_commit(tp, 0);
1942 return error;
1946 #ifdef HAVE_PERCPU_SB
1948 * Per-cpu incore superblock counters
1950 * Simple concept, difficult implementation
1952 * Basically, replace the incore superblock counters with a distributed per cpu
1953 * counter for contended fields (e.g. free block count).
1955 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1956 * hence needs to be accurately read when we are running low on space. Hence
1957 * there is a method to enable and disable the per-cpu counters based on how
1958 * much "stuff" is available in them.
1960 * Basically, a counter is enabled if there is enough free resource to justify
1961 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1962 * ENOSPC), then we disable the counters to synchronise all callers and
1963 * re-distribute the available resources.
1965 * If, once we redistributed the available resources, we still get a failure,
1966 * we disable the per-cpu counter and go through the slow path.
1968 * The slow path is the current xfs_mod_incore_sb() function. This means that
1969 * when we disable a per-cpu counter, we need to drain it's resources back to
1970 * the global superblock. We do this after disabling the counter to prevent
1971 * more threads from queueing up on the counter.
1973 * Essentially, this means that we still need a lock in the fast path to enable
1974 * synchronisation between the global counters and the per-cpu counters. This
1975 * is not a problem because the lock will be local to a CPU almost all the time
1976 * and have little contention except when we get to ENOSPC conditions.
1978 * Basically, this lock becomes a barrier that enables us to lock out the fast
1979 * path while we do things like enabling and disabling counters and
1980 * synchronising the counters.
1982 * Locking rules:
1984 * 1. m_sb_lock before picking up per-cpu locks
1985 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1986 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1987 * 4. modifying per-cpu counters requires holding per-cpu lock
1988 * 5. modifying global counters requires holding m_sb_lock
1989 * 6. enabling or disabling a counter requires holding the m_sb_lock
1990 * and _none_ of the per-cpu locks.
1992 * Disabled counters are only ever re-enabled by a balance operation
1993 * that results in more free resources per CPU than a given threshold.
1994 * To ensure counters don't remain disabled, they are rebalanced when
1995 * the global resource goes above a higher threshold (i.e. some hysteresis
1996 * is present to prevent thrashing).
1999 #ifdef CONFIG_HOTPLUG_CPU
2001 * hot-plug CPU notifier support.
2003 * We need a notifier per filesystem as we need to be able to identify
2004 * the filesystem to balance the counters out. This is achieved by
2005 * having a notifier block embedded in the xfs_mount_t and doing pointer
2006 * magic to get the mount pointer from the notifier block address.
2008 STATIC int
2009 xfs_icsb_cpu_notify(
2010 struct notifier_block *nfb,
2011 unsigned long action,
2012 void *hcpu)
2014 xfs_icsb_cnts_t *cntp;
2015 xfs_mount_t *mp;
2017 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2018 cntp = (xfs_icsb_cnts_t *)
2019 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2020 switch (action) {
2021 case CPU_UP_PREPARE:
2022 case CPU_UP_PREPARE_FROZEN:
2023 /* Easy Case - initialize the area and locks, and
2024 * then rebalance when online does everything else for us. */
2025 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2026 break;
2027 case CPU_ONLINE:
2028 case CPU_ONLINE_FROZEN:
2029 xfs_icsb_lock(mp);
2030 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2031 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2032 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2033 xfs_icsb_unlock(mp);
2034 break;
2035 case CPU_DEAD:
2036 case CPU_DEAD_FROZEN:
2037 /* Disable all the counters, then fold the dead cpu's
2038 * count into the total on the global superblock and
2039 * re-enable the counters. */
2040 xfs_icsb_lock(mp);
2041 spin_lock(&mp->m_sb_lock);
2042 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2043 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2044 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2046 mp->m_sb.sb_icount += cntp->icsb_icount;
2047 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2048 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2050 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2052 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2053 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2054 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2055 spin_unlock(&mp->m_sb_lock);
2056 xfs_icsb_unlock(mp);
2057 break;
2060 return NOTIFY_OK;
2062 #endif /* CONFIG_HOTPLUG_CPU */
2065 xfs_icsb_init_counters(
2066 xfs_mount_t *mp)
2068 xfs_icsb_cnts_t *cntp;
2069 int i;
2071 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2072 if (mp->m_sb_cnts == NULL)
2073 return -ENOMEM;
2075 #ifdef CONFIG_HOTPLUG_CPU
2076 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2077 mp->m_icsb_notifier.priority = 0;
2078 register_hotcpu_notifier(&mp->m_icsb_notifier);
2079 #endif /* CONFIG_HOTPLUG_CPU */
2081 for_each_online_cpu(i) {
2082 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2083 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2086 mutex_init(&mp->m_icsb_mutex);
2089 * start with all counters disabled so that the
2090 * initial balance kicks us off correctly
2092 mp->m_icsb_counters = -1;
2093 return 0;
2096 void
2097 xfs_icsb_reinit_counters(
2098 xfs_mount_t *mp)
2100 xfs_icsb_lock(mp);
2102 * start with all counters disabled so that the
2103 * initial balance kicks us off correctly
2105 mp->m_icsb_counters = -1;
2106 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2107 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2108 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2109 xfs_icsb_unlock(mp);
2112 STATIC void
2113 xfs_icsb_destroy_counters(
2114 xfs_mount_t *mp)
2116 if (mp->m_sb_cnts) {
2117 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2118 free_percpu(mp->m_sb_cnts);
2120 mutex_destroy(&mp->m_icsb_mutex);
2123 STATIC_INLINE void
2124 xfs_icsb_lock_cntr(
2125 xfs_icsb_cnts_t *icsbp)
2127 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2128 ndelay(1000);
2132 STATIC_INLINE void
2133 xfs_icsb_unlock_cntr(
2134 xfs_icsb_cnts_t *icsbp)
2136 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2140 STATIC_INLINE void
2141 xfs_icsb_lock_all_counters(
2142 xfs_mount_t *mp)
2144 xfs_icsb_cnts_t *cntp;
2145 int i;
2147 for_each_online_cpu(i) {
2148 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2149 xfs_icsb_lock_cntr(cntp);
2153 STATIC_INLINE void
2154 xfs_icsb_unlock_all_counters(
2155 xfs_mount_t *mp)
2157 xfs_icsb_cnts_t *cntp;
2158 int i;
2160 for_each_online_cpu(i) {
2161 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2162 xfs_icsb_unlock_cntr(cntp);
2166 STATIC void
2167 xfs_icsb_count(
2168 xfs_mount_t *mp,
2169 xfs_icsb_cnts_t *cnt,
2170 int flags)
2172 xfs_icsb_cnts_t *cntp;
2173 int i;
2175 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2177 if (!(flags & XFS_ICSB_LAZY_COUNT))
2178 xfs_icsb_lock_all_counters(mp);
2180 for_each_online_cpu(i) {
2181 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2182 cnt->icsb_icount += cntp->icsb_icount;
2183 cnt->icsb_ifree += cntp->icsb_ifree;
2184 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2187 if (!(flags & XFS_ICSB_LAZY_COUNT))
2188 xfs_icsb_unlock_all_counters(mp);
2191 STATIC int
2192 xfs_icsb_counter_disabled(
2193 xfs_mount_t *mp,
2194 xfs_sb_field_t field)
2196 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2197 return test_bit(field, &mp->m_icsb_counters);
2200 STATIC void
2201 xfs_icsb_disable_counter(
2202 xfs_mount_t *mp,
2203 xfs_sb_field_t field)
2205 xfs_icsb_cnts_t cnt;
2207 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2210 * If we are already disabled, then there is nothing to do
2211 * here. We check before locking all the counters to avoid
2212 * the expensive lock operation when being called in the
2213 * slow path and the counter is already disabled. This is
2214 * safe because the only time we set or clear this state is under
2215 * the m_icsb_mutex.
2217 if (xfs_icsb_counter_disabled(mp, field))
2218 return;
2220 xfs_icsb_lock_all_counters(mp);
2221 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2222 /* drain back to superblock */
2224 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2225 switch(field) {
2226 case XFS_SBS_ICOUNT:
2227 mp->m_sb.sb_icount = cnt.icsb_icount;
2228 break;
2229 case XFS_SBS_IFREE:
2230 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2231 break;
2232 case XFS_SBS_FDBLOCKS:
2233 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2234 break;
2235 default:
2236 BUG();
2240 xfs_icsb_unlock_all_counters(mp);
2243 STATIC void
2244 xfs_icsb_enable_counter(
2245 xfs_mount_t *mp,
2246 xfs_sb_field_t field,
2247 uint64_t count,
2248 uint64_t resid)
2250 xfs_icsb_cnts_t *cntp;
2251 int i;
2253 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2255 xfs_icsb_lock_all_counters(mp);
2256 for_each_online_cpu(i) {
2257 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2258 switch (field) {
2259 case XFS_SBS_ICOUNT:
2260 cntp->icsb_icount = count + resid;
2261 break;
2262 case XFS_SBS_IFREE:
2263 cntp->icsb_ifree = count + resid;
2264 break;
2265 case XFS_SBS_FDBLOCKS:
2266 cntp->icsb_fdblocks = count + resid;
2267 break;
2268 default:
2269 BUG();
2270 break;
2272 resid = 0;
2274 clear_bit(field, &mp->m_icsb_counters);
2275 xfs_icsb_unlock_all_counters(mp);
2278 void
2279 xfs_icsb_sync_counters_locked(
2280 xfs_mount_t *mp,
2281 int flags)
2283 xfs_icsb_cnts_t cnt;
2285 xfs_icsb_count(mp, &cnt, flags);
2287 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2288 mp->m_sb.sb_icount = cnt.icsb_icount;
2289 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2290 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2291 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2292 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2296 * Accurate update of per-cpu counters to incore superblock
2298 void
2299 xfs_icsb_sync_counters(
2300 xfs_mount_t *mp,
2301 int flags)
2303 spin_lock(&mp->m_sb_lock);
2304 xfs_icsb_sync_counters_locked(mp, flags);
2305 spin_unlock(&mp->m_sb_lock);
2309 * Balance and enable/disable counters as necessary.
2311 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2312 * chosen to be the same number as single on disk allocation chunk per CPU, and
2313 * free blocks is something far enough zero that we aren't going thrash when we
2314 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2315 * prevent looping endlessly when xfs_alloc_space asks for more than will
2316 * be distributed to a single CPU but each CPU has enough blocks to be
2317 * reenabled.
2319 * Note that we can be called when counters are already disabled.
2320 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2321 * prevent locking every per-cpu counter needlessly.
2324 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2325 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2326 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2327 STATIC void
2328 xfs_icsb_balance_counter_locked(
2329 xfs_mount_t *mp,
2330 xfs_sb_field_t field,
2331 int min_per_cpu)
2333 uint64_t count, resid;
2334 int weight = num_online_cpus();
2335 uint64_t min = (uint64_t)min_per_cpu;
2337 /* disable counter and sync counter */
2338 xfs_icsb_disable_counter(mp, field);
2340 /* update counters - first CPU gets residual*/
2341 switch (field) {
2342 case XFS_SBS_ICOUNT:
2343 count = mp->m_sb.sb_icount;
2344 resid = do_div(count, weight);
2345 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2346 return;
2347 break;
2348 case XFS_SBS_IFREE:
2349 count = mp->m_sb.sb_ifree;
2350 resid = do_div(count, weight);
2351 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2352 return;
2353 break;
2354 case XFS_SBS_FDBLOCKS:
2355 count = mp->m_sb.sb_fdblocks;
2356 resid = do_div(count, weight);
2357 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2358 return;
2359 break;
2360 default:
2361 BUG();
2362 count = resid = 0; /* quiet, gcc */
2363 break;
2366 xfs_icsb_enable_counter(mp, field, count, resid);
2369 STATIC void
2370 xfs_icsb_balance_counter(
2371 xfs_mount_t *mp,
2372 xfs_sb_field_t fields,
2373 int min_per_cpu)
2375 spin_lock(&mp->m_sb_lock);
2376 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2377 spin_unlock(&mp->m_sb_lock);
2380 STATIC int
2381 xfs_icsb_modify_counters(
2382 xfs_mount_t *mp,
2383 xfs_sb_field_t field,
2384 int64_t delta,
2385 int rsvd)
2387 xfs_icsb_cnts_t *icsbp;
2388 long long lcounter; /* long counter for 64 bit fields */
2389 int cpu, ret = 0;
2391 might_sleep();
2392 again:
2393 cpu = get_cpu();
2394 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2397 * if the counter is disabled, go to slow path
2399 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2400 goto slow_path;
2401 xfs_icsb_lock_cntr(icsbp);
2402 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2403 xfs_icsb_unlock_cntr(icsbp);
2404 goto slow_path;
2407 switch (field) {
2408 case XFS_SBS_ICOUNT:
2409 lcounter = icsbp->icsb_icount;
2410 lcounter += delta;
2411 if (unlikely(lcounter < 0))
2412 goto balance_counter;
2413 icsbp->icsb_icount = lcounter;
2414 break;
2416 case XFS_SBS_IFREE:
2417 lcounter = icsbp->icsb_ifree;
2418 lcounter += delta;
2419 if (unlikely(lcounter < 0))
2420 goto balance_counter;
2421 icsbp->icsb_ifree = lcounter;
2422 break;
2424 case XFS_SBS_FDBLOCKS:
2425 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2427 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2428 lcounter += delta;
2429 if (unlikely(lcounter < 0))
2430 goto balance_counter;
2431 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2432 break;
2433 default:
2434 BUG();
2435 break;
2437 xfs_icsb_unlock_cntr(icsbp);
2438 put_cpu();
2439 return 0;
2441 slow_path:
2442 put_cpu();
2445 * serialise with a mutex so we don't burn lots of cpu on
2446 * the superblock lock. We still need to hold the superblock
2447 * lock, however, when we modify the global structures.
2449 xfs_icsb_lock(mp);
2452 * Now running atomically.
2454 * If the counter is enabled, someone has beaten us to rebalancing.
2455 * Drop the lock and try again in the fast path....
2457 if (!(xfs_icsb_counter_disabled(mp, field))) {
2458 xfs_icsb_unlock(mp);
2459 goto again;
2463 * The counter is currently disabled. Because we are
2464 * running atomically here, we know a rebalance cannot
2465 * be in progress. Hence we can go straight to operating
2466 * on the global superblock. We do not call xfs_mod_incore_sb()
2467 * here even though we need to get the m_sb_lock. Doing so
2468 * will cause us to re-enter this function and deadlock.
2469 * Hence we get the m_sb_lock ourselves and then call
2470 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2471 * directly on the global counters.
2473 spin_lock(&mp->m_sb_lock);
2474 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2475 spin_unlock(&mp->m_sb_lock);
2478 * Now that we've modified the global superblock, we
2479 * may be able to re-enable the distributed counters
2480 * (e.g. lots of space just got freed). After that
2481 * we are done.
2483 if (ret != ENOSPC)
2484 xfs_icsb_balance_counter(mp, field, 0);
2485 xfs_icsb_unlock(mp);
2486 return ret;
2488 balance_counter:
2489 xfs_icsb_unlock_cntr(icsbp);
2490 put_cpu();
2493 * We may have multiple threads here if multiple per-cpu
2494 * counters run dry at the same time. This will mean we can
2495 * do more balances than strictly necessary but it is not
2496 * the common slowpath case.
2498 xfs_icsb_lock(mp);
2501 * running atomically.
2503 * This will leave the counter in the correct state for future
2504 * accesses. After the rebalance, we simply try again and our retry
2505 * will either succeed through the fast path or slow path without
2506 * another balance operation being required.
2508 xfs_icsb_balance_counter(mp, field, delta);
2509 xfs_icsb_unlock(mp);
2510 goto again;
2513 #endif