arm: ep93xx: Add basic interrupt info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / amba-pl022.c
blob5c2b092a915e2498a4c100daa1d1e8aa3bea0fe6
1 /*
2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
28 * TODO:
29 * - add timeout on polled transfers
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/ioport.h>
36 #include <linux/errno.h>
37 #include <linux/interrupt.h>
38 #include <linux/spi/spi.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/clk.h>
42 #include <linux/err.h>
43 #include <linux/amba/bus.h>
44 #include <linux/amba/pl022.h>
45 #include <linux/io.h>
46 #include <linux/slab.h>
47 #include <linux/dmaengine.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/scatterlist.h>
52 * This macro is used to define some register default values.
53 * reg is masked with mask, the OR:ed with an (again masked)
54 * val shifted sb steps to the left.
56 #define SSP_WRITE_BITS(reg, val, mask, sb) \
57 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
60 * This macro is also used to define some default values.
61 * It will just shift val by sb steps to the left and mask
62 * the result with mask.
64 #define GEN_MASK_BITS(val, mask, sb) \
65 (((val)<<(sb)) & (mask))
67 #define DRIVE_TX 0
68 #define DO_NOT_DRIVE_TX 1
70 #define DO_NOT_QUEUE_DMA 0
71 #define QUEUE_DMA 1
73 #define RX_TRANSFER 1
74 #define TX_TRANSFER 2
77 * Macros to access SSP Registers with their offsets
79 #define SSP_CR0(r) (r + 0x000)
80 #define SSP_CR1(r) (r + 0x004)
81 #define SSP_DR(r) (r + 0x008)
82 #define SSP_SR(r) (r + 0x00C)
83 #define SSP_CPSR(r) (r + 0x010)
84 #define SSP_IMSC(r) (r + 0x014)
85 #define SSP_RIS(r) (r + 0x018)
86 #define SSP_MIS(r) (r + 0x01C)
87 #define SSP_ICR(r) (r + 0x020)
88 #define SSP_DMACR(r) (r + 0x024)
89 #define SSP_ITCR(r) (r + 0x080)
90 #define SSP_ITIP(r) (r + 0x084)
91 #define SSP_ITOP(r) (r + 0x088)
92 #define SSP_TDR(r) (r + 0x08C)
94 #define SSP_PID0(r) (r + 0xFE0)
95 #define SSP_PID1(r) (r + 0xFE4)
96 #define SSP_PID2(r) (r + 0xFE8)
97 #define SSP_PID3(r) (r + 0xFEC)
99 #define SSP_CID0(r) (r + 0xFF0)
100 #define SSP_CID1(r) (r + 0xFF4)
101 #define SSP_CID2(r) (r + 0xFF8)
102 #define SSP_CID3(r) (r + 0xFFC)
105 * SSP Control Register 0 - SSP_CR0
107 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
108 #define SSP_CR0_MASK_FRF (0x3UL << 4)
109 #define SSP_CR0_MASK_SPO (0x1UL << 6)
110 #define SSP_CR0_MASK_SPH (0x1UL << 7)
111 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
114 * The ST version of this block moves som bits
115 * in SSP_CR0 and extends it to 32 bits
117 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
118 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
119 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
120 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
124 * SSP Control Register 0 - SSP_CR1
126 #define SSP_CR1_MASK_LBM (0x1UL << 0)
127 #define SSP_CR1_MASK_SSE (0x1UL << 1)
128 #define SSP_CR1_MASK_MS (0x1UL << 2)
129 #define SSP_CR1_MASK_SOD (0x1UL << 3)
132 * The ST version of this block adds some bits
133 * in SSP_CR1
135 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
136 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
137 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
138 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
139 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
140 /* This one is only in the PL023 variant */
141 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
144 * SSP Status Register - SSP_SR
146 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
147 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
148 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
149 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
150 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
153 * SSP Clock Prescale Register - SSP_CPSR
155 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
158 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
160 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
161 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
162 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
163 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
166 * SSP Raw Interrupt Status Register - SSP_RIS
168 /* Receive Overrun Raw Interrupt status */
169 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
170 /* Receive Timeout Raw Interrupt status */
171 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
172 /* Receive FIFO Raw Interrupt status */
173 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
174 /* Transmit FIFO Raw Interrupt status */
175 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
178 * SSP Masked Interrupt Status Register - SSP_MIS
180 /* Receive Overrun Masked Interrupt status */
181 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
182 /* Receive Timeout Masked Interrupt status */
183 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
184 /* Receive FIFO Masked Interrupt status */
185 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
186 /* Transmit FIFO Masked Interrupt status */
187 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
190 * SSP Interrupt Clear Register - SSP_ICR
192 /* Receive Overrun Raw Clear Interrupt bit */
193 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
194 /* Receive Timeout Clear Interrupt bit */
195 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
198 * SSP DMA Control Register - SSP_DMACR
200 /* Receive DMA Enable bit */
201 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
202 /* Transmit DMA Enable bit */
203 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
206 * SSP Integration Test control Register - SSP_ITCR
208 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
209 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
212 * SSP Integration Test Input Register - SSP_ITIP
214 #define ITIP_MASK_SSPRXD (0x1UL << 0)
215 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
216 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
217 #define ITIP_MASK_RXDMAC (0x1UL << 3)
218 #define ITIP_MASK_TXDMAC (0x1UL << 4)
219 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
222 * SSP Integration Test output Register - SSP_ITOP
224 #define ITOP_MASK_SSPTXD (0x1UL << 0)
225 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
226 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
227 #define ITOP_MASK_SSPOEn (0x1UL << 3)
228 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
229 #define ITOP_MASK_RORINTR (0x1UL << 5)
230 #define ITOP_MASK_RTINTR (0x1UL << 6)
231 #define ITOP_MASK_RXINTR (0x1UL << 7)
232 #define ITOP_MASK_TXINTR (0x1UL << 8)
233 #define ITOP_MASK_INTR (0x1UL << 9)
234 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
235 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
236 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
237 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
240 * SSP Test Data Register - SSP_TDR
242 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
245 * Message State
246 * we use the spi_message.state (void *) pointer to
247 * hold a single state value, that's why all this
248 * (void *) casting is done here.
250 #define STATE_START ((void *) 0)
251 #define STATE_RUNNING ((void *) 1)
252 #define STATE_DONE ((void *) 2)
253 #define STATE_ERROR ((void *) -1)
256 * SSP State - Whether Enabled or Disabled
258 #define SSP_DISABLED (0)
259 #define SSP_ENABLED (1)
262 * SSP DMA State - Whether DMA Enabled or Disabled
264 #define SSP_DMA_DISABLED (0)
265 #define SSP_DMA_ENABLED (1)
268 * SSP Clock Defaults
270 #define SSP_DEFAULT_CLKRATE 0x2
271 #define SSP_DEFAULT_PRESCALE 0x40
274 * SSP Clock Parameter ranges
276 #define CPSDVR_MIN 0x02
277 #define CPSDVR_MAX 0xFE
278 #define SCR_MIN 0x00
279 #define SCR_MAX 0xFF
282 * SSP Interrupt related Macros
284 #define DEFAULT_SSP_REG_IMSC 0x0UL
285 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
286 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
288 #define CLEAR_ALL_INTERRUPTS 0x3
292 * The type of reading going on on this chip
294 enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
302 * The type of writing going on on this chip
304 enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
321 struct vendor_data {
322 int fifodepth;
323 int max_bpw;
324 bool unidir;
325 bool extended_cr;
326 bool pl023;
330 * struct pl022 - This is the private SSP driver data structure
331 * @adev: AMBA device model hookup
332 * @vendor: vendor data for the IP block
333 * @phybase: the physical memory where the SSP device resides
334 * @virtbase: the virtual memory where the SSP is mapped
335 * @clk: outgoing clock "SPICLK" for the SPI bus
336 * @master: SPI framework hookup
337 * @master_info: controller-specific data from machine setup
338 * @workqueue: a workqueue on which any spi_message request is queued
339 * @pump_messages: work struct for scheduling work to the workqueue
340 * @queue_lock: spinlock to syncronise access to message queue
341 * @queue: message queue
342 * @busy: workqueue is busy
343 * @running: workqueue is running
344 * @pump_transfers: Tasklet used in Interrupt Transfer mode
345 * @cur_msg: Pointer to current spi_message being processed
346 * @cur_transfer: Pointer to current spi_transfer
347 * @cur_chip: pointer to current clients chip(assigned from controller_state)
348 * @tx: current position in TX buffer to be read
349 * @tx_end: end position in TX buffer to be read
350 * @rx: current position in RX buffer to be written
351 * @rx_end: end position in RX buffer to be written
352 * @read: the type of read currently going on
353 * @write: the type of write currently going on
354 * @exp_fifo_level: expected FIFO level
355 * @dma_rx_channel: optional channel for RX DMA
356 * @dma_tx_channel: optional channel for TX DMA
357 * @sgt_rx: scattertable for the RX transfer
358 * @sgt_tx: scattertable for the TX transfer
359 * @dummypage: a dummy page used for driving data on the bus with DMA
361 struct pl022 {
362 struct amba_device *adev;
363 struct vendor_data *vendor;
364 resource_size_t phybase;
365 void __iomem *virtbase;
366 struct clk *clk;
367 struct spi_master *master;
368 struct pl022_ssp_controller *master_info;
369 /* Driver message queue */
370 struct workqueue_struct *workqueue;
371 struct work_struct pump_messages;
372 spinlock_t queue_lock;
373 struct list_head queue;
374 bool busy;
375 bool running;
376 /* Message transfer pump */
377 struct tasklet_struct pump_transfers;
378 struct spi_message *cur_msg;
379 struct spi_transfer *cur_transfer;
380 struct chip_data *cur_chip;
381 void *tx;
382 void *tx_end;
383 void *rx;
384 void *rx_end;
385 enum ssp_reading read;
386 enum ssp_writing write;
387 u32 exp_fifo_level;
388 /* DMA settings */
389 #ifdef CONFIG_DMA_ENGINE
390 struct dma_chan *dma_rx_channel;
391 struct dma_chan *dma_tx_channel;
392 struct sg_table sgt_rx;
393 struct sg_table sgt_tx;
394 char *dummypage;
395 #endif
399 * struct chip_data - To maintain runtime state of SSP for each client chip
400 * @cr0: Value of control register CR0 of SSP - on later ST variants this
401 * register is 32 bits wide rather than just 16
402 * @cr1: Value of control register CR1 of SSP
403 * @dmacr: Value of DMA control Register of SSP
404 * @cpsr: Value of Clock prescale register
405 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
406 * @enable_dma: Whether to enable DMA or not
407 * @read: function ptr to be used to read when doing xfer for this chip
408 * @write: function ptr to be used to write when doing xfer for this chip
409 * @cs_control: chip select callback provided by chip
410 * @xfer_type: polling/interrupt/DMA
412 * Runtime state of the SSP controller, maintained per chip,
413 * This would be set according to the current message that would be served
415 struct chip_data {
416 u32 cr0;
417 u16 cr1;
418 u16 dmacr;
419 u16 cpsr;
420 u8 n_bytes;
421 bool enable_dma;
422 enum ssp_reading read;
423 enum ssp_writing write;
424 void (*cs_control) (u32 command);
425 int xfer_type;
429 * null_cs_control - Dummy chip select function
430 * @command: select/delect the chip
432 * If no chip select function is provided by client this is used as dummy
433 * chip select
435 static void null_cs_control(u32 command)
437 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
441 * giveback - current spi_message is over, schedule next message and call
442 * callback of this message. Assumes that caller already
443 * set message->status; dma and pio irqs are blocked
444 * @pl022: SSP driver private data structure
446 static void giveback(struct pl022 *pl022)
448 struct spi_transfer *last_transfer;
449 unsigned long flags;
450 struct spi_message *msg;
451 void (*curr_cs_control) (u32 command);
454 * This local reference to the chip select function
455 * is needed because we set curr_chip to NULL
456 * as a step toward termininating the message.
458 curr_cs_control = pl022->cur_chip->cs_control;
459 spin_lock_irqsave(&pl022->queue_lock, flags);
460 msg = pl022->cur_msg;
461 pl022->cur_msg = NULL;
462 pl022->cur_transfer = NULL;
463 pl022->cur_chip = NULL;
464 queue_work(pl022->workqueue, &pl022->pump_messages);
465 spin_unlock_irqrestore(&pl022->queue_lock, flags);
467 last_transfer = list_entry(msg->transfers.prev,
468 struct spi_transfer,
469 transfer_list);
471 /* Delay if requested before any change in chip select */
472 if (last_transfer->delay_usecs)
474 * FIXME: This runs in interrupt context.
475 * Is this really smart?
477 udelay(last_transfer->delay_usecs);
480 * Drop chip select UNLESS cs_change is true or we are returning
481 * a message with an error, or next message is for another chip
483 if (!last_transfer->cs_change)
484 curr_cs_control(SSP_CHIP_DESELECT);
485 else {
486 struct spi_message *next_msg;
488 /* Holding of cs was hinted, but we need to make sure
489 * the next message is for the same chip. Don't waste
490 * time with the following tests unless this was hinted.
492 * We cannot postpone this until pump_messages, because
493 * after calling msg->complete (below) the driver that
494 * sent the current message could be unloaded, which
495 * could invalidate the cs_control() callback...
498 /* get a pointer to the next message, if any */
499 spin_lock_irqsave(&pl022->queue_lock, flags);
500 if (list_empty(&pl022->queue))
501 next_msg = NULL;
502 else
503 next_msg = list_entry(pl022->queue.next,
504 struct spi_message, queue);
505 spin_unlock_irqrestore(&pl022->queue_lock, flags);
507 /* see if the next and current messages point
508 * to the same chip
510 if (next_msg && next_msg->spi != msg->spi)
511 next_msg = NULL;
512 if (!next_msg || msg->state == STATE_ERROR)
513 curr_cs_control(SSP_CHIP_DESELECT);
515 msg->state = NULL;
516 if (msg->complete)
517 msg->complete(msg->context);
518 /* This message is completed, so let's turn off the clocks & power */
519 clk_disable(pl022->clk);
520 amba_pclk_disable(pl022->adev);
521 amba_vcore_disable(pl022->adev);
525 * flush - flush the FIFO to reach a clean state
526 * @pl022: SSP driver private data structure
528 static int flush(struct pl022 *pl022)
530 unsigned long limit = loops_per_jiffy << 1;
532 dev_dbg(&pl022->adev->dev, "flush\n");
533 do {
534 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
535 readw(SSP_DR(pl022->virtbase));
536 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
538 pl022->exp_fifo_level = 0;
540 return limit;
544 * restore_state - Load configuration of current chip
545 * @pl022: SSP driver private data structure
547 static void restore_state(struct pl022 *pl022)
549 struct chip_data *chip = pl022->cur_chip;
551 if (pl022->vendor->extended_cr)
552 writel(chip->cr0, SSP_CR0(pl022->virtbase));
553 else
554 writew(chip->cr0, SSP_CR0(pl022->virtbase));
555 writew(chip->cr1, SSP_CR1(pl022->virtbase));
556 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
557 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
558 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
559 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
563 * Default SSP Register Values
565 #define DEFAULT_SSP_REG_CR0 ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
567 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
573 /* ST versions have slightly different bit layout */
574 #define DEFAULT_SSP_REG_CR0_ST ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
584 /* The PL023 version is slightly different again */
585 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592 #define DEFAULT_SSP_REG_CR1 ( \
593 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
596 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
599 /* ST versions extend this register to use all 16 bits */
600 #define DEFAULT_SSP_REG_CR1_ST ( \
601 DEFAULT_SSP_REG_CR1 | \
602 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
610 * The PL023 variant has further differences: no loopback mode, no microwire
611 * support, and a new clock feedback delay setting.
613 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
624 #define DEFAULT_SSP_REG_CPSR ( \
625 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
628 #define DEFAULT_SSP_REG_DMACR (\
629 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
634 * load_ssp_default_config - Load default configuration for SSP
635 * @pl022: SSP driver private data structure
637 static void load_ssp_default_config(struct pl022 *pl022)
639 if (pl022->vendor->pl023) {
640 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
642 } else if (pl022->vendor->extended_cr) {
643 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
645 } else {
646 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
647 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
649 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
650 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
651 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
652 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
656 * This will write to TX and read from RX according to the parameters
657 * set in pl022.
659 static void readwriter(struct pl022 *pl022)
663 * The FIFO depth is different inbetween primecell variants.
664 * I believe filling in too much in the FIFO might cause
665 * errons in 8bit wide transfers on ARM variants (just 8 words
666 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
668 * To prevent this issue, the TX FIFO is only filled to the
669 * unused RX FIFO fill length, regardless of what the TX
670 * FIFO status flag indicates.
672 dev_dbg(&pl022->adev->dev,
673 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
676 /* Read as much as you can */
677 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
678 && (pl022->rx < pl022->rx_end)) {
679 switch (pl022->read) {
680 case READING_NULL:
681 readw(SSP_DR(pl022->virtbase));
682 break;
683 case READING_U8:
684 *(u8 *) (pl022->rx) =
685 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
686 break;
687 case READING_U16:
688 *(u16 *) (pl022->rx) =
689 (u16) readw(SSP_DR(pl022->virtbase));
690 break;
691 case READING_U32:
692 *(u32 *) (pl022->rx) =
693 readl(SSP_DR(pl022->virtbase));
694 break;
696 pl022->rx += (pl022->cur_chip->n_bytes);
697 pl022->exp_fifo_level--;
700 * Write as much as possible up to the RX FIFO size
702 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
703 && (pl022->tx < pl022->tx_end)) {
704 switch (pl022->write) {
705 case WRITING_NULL:
706 writew(0x0, SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U8:
709 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
711 case WRITING_U16:
712 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
713 break;
714 case WRITING_U32:
715 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
716 break;
718 pl022->tx += (pl022->cur_chip->n_bytes);
719 pl022->exp_fifo_level++;
721 * This inner reader takes care of things appearing in the RX
722 * FIFO as we're transmitting. This will happen a lot since the
723 * clock starts running when you put things into the TX FIFO,
724 * and then things are continously clocked into the RX FIFO.
726 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
727 && (pl022->rx < pl022->rx_end)) {
728 switch (pl022->read) {
729 case READING_NULL:
730 readw(SSP_DR(pl022->virtbase));
731 break;
732 case READING_U8:
733 *(u8 *) (pl022->rx) =
734 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
735 break;
736 case READING_U16:
737 *(u16 *) (pl022->rx) =
738 (u16) readw(SSP_DR(pl022->virtbase));
739 break;
740 case READING_U32:
741 *(u32 *) (pl022->rx) =
742 readl(SSP_DR(pl022->virtbase));
743 break;
745 pl022->rx += (pl022->cur_chip->n_bytes);
746 pl022->exp_fifo_level--;
750 * When we exit here the TX FIFO should be full and the RX FIFO
751 * should be empty
757 * next_transfer - Move to the Next transfer in the current spi message
758 * @pl022: SSP driver private data structure
760 * This function moves though the linked list of spi transfers in the
761 * current spi message and returns with the state of current spi
762 * message i.e whether its last transfer is done(STATE_DONE) or
763 * Next transfer is ready(STATE_RUNNING)
765 static void *next_transfer(struct pl022 *pl022)
767 struct spi_message *msg = pl022->cur_msg;
768 struct spi_transfer *trans = pl022->cur_transfer;
770 /* Move to next transfer */
771 if (trans->transfer_list.next != &msg->transfers) {
772 pl022->cur_transfer =
773 list_entry(trans->transfer_list.next,
774 struct spi_transfer, transfer_list);
775 return STATE_RUNNING;
777 return STATE_DONE;
781 * This DMA functionality is only compiled in if we have
782 * access to the generic DMA devices/DMA engine.
784 #ifdef CONFIG_DMA_ENGINE
785 static void unmap_free_dma_scatter(struct pl022 *pl022)
787 /* Unmap and free the SG tables */
788 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
789 pl022->sgt_tx.nents, DMA_TO_DEVICE);
790 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
791 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
792 sg_free_table(&pl022->sgt_rx);
793 sg_free_table(&pl022->sgt_tx);
796 static void dma_callback(void *data)
798 struct pl022 *pl022 = data;
799 struct spi_message *msg = pl022->cur_msg;
801 BUG_ON(!pl022->sgt_rx.sgl);
803 #ifdef VERBOSE_DEBUG
805 * Optionally dump out buffers to inspect contents, this is
806 * good if you want to convince yourself that the loopback
807 * read/write contents are the same, when adopting to a new
808 * DMA engine.
811 struct scatterlist *sg;
812 unsigned int i;
814 dma_sync_sg_for_cpu(&pl022->adev->dev,
815 pl022->sgt_rx.sgl,
816 pl022->sgt_rx.nents,
817 DMA_FROM_DEVICE);
819 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
820 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
821 print_hex_dump(KERN_ERR, "SPI RX: ",
822 DUMP_PREFIX_OFFSET,
825 sg_virt(sg),
826 sg_dma_len(sg),
829 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
830 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
831 print_hex_dump(KERN_ERR, "SPI TX: ",
832 DUMP_PREFIX_OFFSET,
835 sg_virt(sg),
836 sg_dma_len(sg),
840 #endif
842 unmap_free_dma_scatter(pl022);
844 /* Update total bytes transfered */
845 msg->actual_length += pl022->cur_transfer->len;
846 if (pl022->cur_transfer->cs_change)
847 pl022->cur_chip->
848 cs_control(SSP_CHIP_DESELECT);
850 /* Move to next transfer */
851 msg->state = next_transfer(pl022);
852 tasklet_schedule(&pl022->pump_transfers);
855 static void setup_dma_scatter(struct pl022 *pl022,
856 void *buffer,
857 unsigned int length,
858 struct sg_table *sgtab)
860 struct scatterlist *sg;
861 int bytesleft = length;
862 void *bufp = buffer;
863 int mapbytes;
864 int i;
866 if (buffer) {
867 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
869 * If there are less bytes left than what fits
870 * in the current page (plus page alignment offset)
871 * we just feed in this, else we stuff in as much
872 * as we can.
874 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
875 mapbytes = bytesleft;
876 else
877 mapbytes = PAGE_SIZE - offset_in_page(bufp);
878 sg_set_page(sg, virt_to_page(bufp),
879 mapbytes, offset_in_page(bufp));
880 bufp += mapbytes;
881 bytesleft -= mapbytes;
882 dev_dbg(&pl022->adev->dev,
883 "set RX/TX target page @ %p, %d bytes, %d left\n",
884 bufp, mapbytes, bytesleft);
886 } else {
887 /* Map the dummy buffer on every page */
888 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
889 if (bytesleft < PAGE_SIZE)
890 mapbytes = bytesleft;
891 else
892 mapbytes = PAGE_SIZE;
893 sg_set_page(sg, virt_to_page(pl022->dummypage),
894 mapbytes, 0);
895 bytesleft -= mapbytes;
896 dev_dbg(&pl022->adev->dev,
897 "set RX/TX to dummy page %d bytes, %d left\n",
898 mapbytes, bytesleft);
902 BUG_ON(bytesleft);
906 * configure_dma - configures the channels for the next transfer
907 * @pl022: SSP driver's private data structure
909 static int configure_dma(struct pl022 *pl022)
911 struct dma_slave_config rx_conf = {
912 .src_addr = SSP_DR(pl022->phybase),
913 .direction = DMA_FROM_DEVICE,
914 .src_maxburst = pl022->vendor->fifodepth >> 1,
916 struct dma_slave_config tx_conf = {
917 .dst_addr = SSP_DR(pl022->phybase),
918 .direction = DMA_TO_DEVICE,
919 .dst_maxburst = pl022->vendor->fifodepth >> 1,
921 unsigned int pages;
922 int ret;
923 int rx_sglen, tx_sglen;
924 struct dma_chan *rxchan = pl022->dma_rx_channel;
925 struct dma_chan *txchan = pl022->dma_tx_channel;
926 struct dma_async_tx_descriptor *rxdesc;
927 struct dma_async_tx_descriptor *txdesc;
929 /* Check that the channels are available */
930 if (!rxchan || !txchan)
931 return -ENODEV;
933 switch (pl022->read) {
934 case READING_NULL:
935 /* Use the same as for writing */
936 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
937 break;
938 case READING_U8:
939 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
940 break;
941 case READING_U16:
942 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
943 break;
944 case READING_U32:
945 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
946 break;
949 switch (pl022->write) {
950 case WRITING_NULL:
951 /* Use the same as for reading */
952 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
953 break;
954 case WRITING_U8:
955 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
956 break;
957 case WRITING_U16:
958 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
959 break;
960 case WRITING_U32:
961 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
962 break;
965 /* SPI pecularity: we need to read and write the same width */
966 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
967 rx_conf.src_addr_width = tx_conf.dst_addr_width;
968 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
969 tx_conf.dst_addr_width = rx_conf.src_addr_width;
970 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
972 dmaengine_slave_config(rxchan, &rx_conf);
973 dmaengine_slave_config(txchan, &tx_conf);
975 /* Create sglists for the transfers */
976 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
977 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
979 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
980 if (ret)
981 goto err_alloc_rx_sg;
983 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
984 if (ret)
985 goto err_alloc_tx_sg;
987 /* Fill in the scatterlists for the RX+TX buffers */
988 setup_dma_scatter(pl022, pl022->rx,
989 pl022->cur_transfer->len, &pl022->sgt_rx);
990 setup_dma_scatter(pl022, pl022->tx,
991 pl022->cur_transfer->len, &pl022->sgt_tx);
993 /* Map DMA buffers */
994 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
995 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
996 if (!rx_sglen)
997 goto err_rx_sgmap;
999 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1000 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1001 if (!tx_sglen)
1002 goto err_tx_sgmap;
1004 /* Send both scatterlists */
1005 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1006 pl022->sgt_rx.sgl,
1007 rx_sglen,
1008 DMA_FROM_DEVICE,
1009 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1010 if (!rxdesc)
1011 goto err_rxdesc;
1013 txdesc = txchan->device->device_prep_slave_sg(txchan,
1014 pl022->sgt_tx.sgl,
1015 tx_sglen,
1016 DMA_TO_DEVICE,
1017 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018 if (!txdesc)
1019 goto err_txdesc;
1021 /* Put the callback on the RX transfer only, that should finish last */
1022 rxdesc->callback = dma_callback;
1023 rxdesc->callback_param = pl022;
1025 /* Submit and fire RX and TX with TX last so we're ready to read! */
1026 dmaengine_submit(rxdesc);
1027 dmaengine_submit(txdesc);
1028 dma_async_issue_pending(rxchan);
1029 dma_async_issue_pending(txchan);
1031 return 0;
1033 err_txdesc:
1034 dmaengine_terminate_all(txchan);
1035 err_rxdesc:
1036 dmaengine_terminate_all(rxchan);
1037 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1038 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1039 err_tx_sgmap:
1040 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1041 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1042 err_rx_sgmap:
1043 sg_free_table(&pl022->sgt_tx);
1044 err_alloc_tx_sg:
1045 sg_free_table(&pl022->sgt_rx);
1046 err_alloc_rx_sg:
1047 return -ENOMEM;
1050 static int __init pl022_dma_probe(struct pl022 *pl022)
1052 dma_cap_mask_t mask;
1054 /* Try to acquire a generic DMA engine slave channel */
1055 dma_cap_zero(mask);
1056 dma_cap_set(DMA_SLAVE, mask);
1058 * We need both RX and TX channels to do DMA, else do none
1059 * of them.
1061 pl022->dma_rx_channel = dma_request_channel(mask,
1062 pl022->master_info->dma_filter,
1063 pl022->master_info->dma_rx_param);
1064 if (!pl022->dma_rx_channel) {
1065 dev_err(&pl022->adev->dev, "no RX DMA channel!\n");
1066 goto err_no_rxchan;
1069 pl022->dma_tx_channel = dma_request_channel(mask,
1070 pl022->master_info->dma_filter,
1071 pl022->master_info->dma_tx_param);
1072 if (!pl022->dma_tx_channel) {
1073 dev_err(&pl022->adev->dev, "no TX DMA channel!\n");
1074 goto err_no_txchan;
1077 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1078 if (!pl022->dummypage) {
1079 dev_err(&pl022->adev->dev, "no DMA dummypage!\n");
1080 goto err_no_dummypage;
1083 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1084 dma_chan_name(pl022->dma_rx_channel),
1085 dma_chan_name(pl022->dma_tx_channel));
1087 return 0;
1089 err_no_dummypage:
1090 dma_release_channel(pl022->dma_tx_channel);
1091 err_no_txchan:
1092 dma_release_channel(pl022->dma_rx_channel);
1093 pl022->dma_rx_channel = NULL;
1094 err_no_rxchan:
1095 return -ENODEV;
1098 static void terminate_dma(struct pl022 *pl022)
1100 struct dma_chan *rxchan = pl022->dma_rx_channel;
1101 struct dma_chan *txchan = pl022->dma_tx_channel;
1103 dmaengine_terminate_all(rxchan);
1104 dmaengine_terminate_all(txchan);
1105 unmap_free_dma_scatter(pl022);
1108 static void pl022_dma_remove(struct pl022 *pl022)
1110 if (pl022->busy)
1111 terminate_dma(pl022);
1112 if (pl022->dma_tx_channel)
1113 dma_release_channel(pl022->dma_tx_channel);
1114 if (pl022->dma_rx_channel)
1115 dma_release_channel(pl022->dma_rx_channel);
1116 kfree(pl022->dummypage);
1119 #else
1120 static inline int configure_dma(struct pl022 *pl022)
1122 return -ENODEV;
1125 static inline int pl022_dma_probe(struct pl022 *pl022)
1127 return 0;
1130 static inline void pl022_dma_remove(struct pl022 *pl022)
1133 #endif
1136 * pl022_interrupt_handler - Interrupt handler for SSP controller
1138 * This function handles interrupts generated for an interrupt based transfer.
1139 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1140 * current message's state as STATE_ERROR and schedule the tasklet
1141 * pump_transfers which will do the postprocessing of the current message by
1142 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1143 * more data, and writes data in TX FIFO till it is not full. If we complete
1144 * the transfer we move to the next transfer and schedule the tasklet.
1146 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1148 struct pl022 *pl022 = dev_id;
1149 struct spi_message *msg = pl022->cur_msg;
1150 u16 irq_status = 0;
1151 u16 flag = 0;
1153 if (unlikely(!msg)) {
1154 dev_err(&pl022->adev->dev,
1155 "bad message state in interrupt handler");
1156 /* Never fail */
1157 return IRQ_HANDLED;
1160 /* Read the Interrupt Status Register */
1161 irq_status = readw(SSP_MIS(pl022->virtbase));
1163 if (unlikely(!irq_status))
1164 return IRQ_NONE;
1167 * This handles the FIFO interrupts, the timeout
1168 * interrupts are flatly ignored, they cannot be
1169 * trusted.
1171 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1173 * Overrun interrupt - bail out since our Data has been
1174 * corrupted
1176 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1177 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1178 dev_err(&pl022->adev->dev,
1179 "RXFIFO is full\n");
1180 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1181 dev_err(&pl022->adev->dev,
1182 "TXFIFO is full\n");
1185 * Disable and clear interrupts, disable SSP,
1186 * mark message with bad status so it can be
1187 * retried.
1189 writew(DISABLE_ALL_INTERRUPTS,
1190 SSP_IMSC(pl022->virtbase));
1191 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1192 writew((readw(SSP_CR1(pl022->virtbase)) &
1193 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1194 msg->state = STATE_ERROR;
1196 /* Schedule message queue handler */
1197 tasklet_schedule(&pl022->pump_transfers);
1198 return IRQ_HANDLED;
1201 readwriter(pl022);
1203 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1204 flag = 1;
1205 /* Disable Transmit interrupt */
1206 writew(readw(SSP_IMSC(pl022->virtbase)) &
1207 (~SSP_IMSC_MASK_TXIM),
1208 SSP_IMSC(pl022->virtbase));
1212 * Since all transactions must write as much as shall be read,
1213 * we can conclude the entire transaction once RX is complete.
1214 * At this point, all TX will always be finished.
1216 if (pl022->rx >= pl022->rx_end) {
1217 writew(DISABLE_ALL_INTERRUPTS,
1218 SSP_IMSC(pl022->virtbase));
1219 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1220 if (unlikely(pl022->rx > pl022->rx_end)) {
1221 dev_warn(&pl022->adev->dev, "read %u surplus "
1222 "bytes (did you request an odd "
1223 "number of bytes on a 16bit bus?)\n",
1224 (u32) (pl022->rx - pl022->rx_end));
1226 /* Update total bytes transfered */
1227 msg->actual_length += pl022->cur_transfer->len;
1228 if (pl022->cur_transfer->cs_change)
1229 pl022->cur_chip->
1230 cs_control(SSP_CHIP_DESELECT);
1231 /* Move to next transfer */
1232 msg->state = next_transfer(pl022);
1233 tasklet_schedule(&pl022->pump_transfers);
1234 return IRQ_HANDLED;
1237 return IRQ_HANDLED;
1241 * This sets up the pointers to memory for the next message to
1242 * send out on the SPI bus.
1244 static int set_up_next_transfer(struct pl022 *pl022,
1245 struct spi_transfer *transfer)
1247 int residue;
1249 /* Sanity check the message for this bus width */
1250 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1251 if (unlikely(residue != 0)) {
1252 dev_err(&pl022->adev->dev,
1253 "message of %u bytes to transmit but the current "
1254 "chip bus has a data width of %u bytes!\n",
1255 pl022->cur_transfer->len,
1256 pl022->cur_chip->n_bytes);
1257 dev_err(&pl022->adev->dev, "skipping this message\n");
1258 return -EIO;
1260 pl022->tx = (void *)transfer->tx_buf;
1261 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1262 pl022->rx = (void *)transfer->rx_buf;
1263 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1264 pl022->write =
1265 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1266 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1267 return 0;
1271 * pump_transfers - Tasklet function which schedules next transfer
1272 * when running in interrupt or DMA transfer mode.
1273 * @data: SSP driver private data structure
1276 static void pump_transfers(unsigned long data)
1278 struct pl022 *pl022 = (struct pl022 *) data;
1279 struct spi_message *message = NULL;
1280 struct spi_transfer *transfer = NULL;
1281 struct spi_transfer *previous = NULL;
1283 /* Get current state information */
1284 message = pl022->cur_msg;
1285 transfer = pl022->cur_transfer;
1287 /* Handle for abort */
1288 if (message->state == STATE_ERROR) {
1289 message->status = -EIO;
1290 giveback(pl022);
1291 return;
1294 /* Handle end of message */
1295 if (message->state == STATE_DONE) {
1296 message->status = 0;
1297 giveback(pl022);
1298 return;
1301 /* Delay if requested at end of transfer before CS change */
1302 if (message->state == STATE_RUNNING) {
1303 previous = list_entry(transfer->transfer_list.prev,
1304 struct spi_transfer,
1305 transfer_list);
1306 if (previous->delay_usecs)
1308 * FIXME: This runs in interrupt context.
1309 * Is this really smart?
1311 udelay(previous->delay_usecs);
1313 /* Drop chip select only if cs_change is requested */
1314 if (previous->cs_change)
1315 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1316 } else {
1317 /* STATE_START */
1318 message->state = STATE_RUNNING;
1321 if (set_up_next_transfer(pl022, transfer)) {
1322 message->state = STATE_ERROR;
1323 message->status = -EIO;
1324 giveback(pl022);
1325 return;
1327 /* Flush the FIFOs and let's go! */
1328 flush(pl022);
1330 if (pl022->cur_chip->enable_dma) {
1331 if (configure_dma(pl022)) {
1332 dev_dbg(&pl022->adev->dev,
1333 "configuration of DMA failed, fall back to interrupt mode\n");
1334 goto err_config_dma;
1336 return;
1339 err_config_dma:
1340 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1343 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1345 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1347 /* Enable target chip */
1348 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1349 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1350 /* Error path */
1351 pl022->cur_msg->state = STATE_ERROR;
1352 pl022->cur_msg->status = -EIO;
1353 giveback(pl022);
1354 return;
1356 /* If we're using DMA, set up DMA here */
1357 if (pl022->cur_chip->enable_dma) {
1358 /* Configure DMA transfer */
1359 if (configure_dma(pl022)) {
1360 dev_dbg(&pl022->adev->dev,
1361 "configuration of DMA failed, fall back to interrupt mode\n");
1362 goto err_config_dma;
1364 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1365 irqflags = DISABLE_ALL_INTERRUPTS;
1367 err_config_dma:
1368 /* Enable SSP, turn on interrupts */
1369 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1370 SSP_CR1(pl022->virtbase));
1371 writew(irqflags, SSP_IMSC(pl022->virtbase));
1374 static void do_polling_transfer(struct pl022 *pl022)
1376 struct spi_message *message = NULL;
1377 struct spi_transfer *transfer = NULL;
1378 struct spi_transfer *previous = NULL;
1379 struct chip_data *chip;
1381 chip = pl022->cur_chip;
1382 message = pl022->cur_msg;
1384 while (message->state != STATE_DONE) {
1385 /* Handle for abort */
1386 if (message->state == STATE_ERROR)
1387 break;
1388 transfer = pl022->cur_transfer;
1390 /* Delay if requested at end of transfer */
1391 if (message->state == STATE_RUNNING) {
1392 previous =
1393 list_entry(transfer->transfer_list.prev,
1394 struct spi_transfer, transfer_list);
1395 if (previous->delay_usecs)
1396 udelay(previous->delay_usecs);
1397 if (previous->cs_change)
1398 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1399 } else {
1400 /* STATE_START */
1401 message->state = STATE_RUNNING;
1402 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1405 /* Configuration Changing Per Transfer */
1406 if (set_up_next_transfer(pl022, transfer)) {
1407 /* Error path */
1408 message->state = STATE_ERROR;
1409 break;
1411 /* Flush FIFOs and enable SSP */
1412 flush(pl022);
1413 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1414 SSP_CR1(pl022->virtbase));
1416 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1417 /* FIXME: insert a timeout so we don't hang here indefinately */
1418 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
1419 readwriter(pl022);
1421 /* Update total byte transfered */
1422 message->actual_length += pl022->cur_transfer->len;
1423 if (pl022->cur_transfer->cs_change)
1424 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1425 /* Move to next transfer */
1426 message->state = next_transfer(pl022);
1429 /* Handle end of message */
1430 if (message->state == STATE_DONE)
1431 message->status = 0;
1432 else
1433 message->status = -EIO;
1435 giveback(pl022);
1436 return;
1440 * pump_messages - Workqueue function which processes spi message queue
1441 * @data: pointer to private data of SSP driver
1443 * This function checks if there is any spi message in the queue that
1444 * needs processing and delegate control to appropriate function
1445 * do_polling_transfer()/do_interrupt_dma_transfer()
1446 * based on the kind of the transfer
1449 static void pump_messages(struct work_struct *work)
1451 struct pl022 *pl022 =
1452 container_of(work, struct pl022, pump_messages);
1453 unsigned long flags;
1455 /* Lock queue and check for queue work */
1456 spin_lock_irqsave(&pl022->queue_lock, flags);
1457 if (list_empty(&pl022->queue) || !pl022->running) {
1458 pl022->busy = false;
1459 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1460 return;
1462 /* Make sure we are not already running a message */
1463 if (pl022->cur_msg) {
1464 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1465 return;
1467 /* Extract head of queue */
1468 pl022->cur_msg =
1469 list_entry(pl022->queue.next, struct spi_message, queue);
1471 list_del_init(&pl022->cur_msg->queue);
1472 pl022->busy = true;
1473 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1475 /* Initial message state */
1476 pl022->cur_msg->state = STATE_START;
1477 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1478 struct spi_transfer,
1479 transfer_list);
1481 /* Setup the SPI using the per chip configuration */
1482 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1484 * We enable the core voltage and clocks here, then the clocks
1485 * and core will be disabled when giveback() is called in each method
1486 * (poll/interrupt/DMA)
1488 amba_vcore_enable(pl022->adev);
1489 amba_pclk_enable(pl022->adev);
1490 clk_enable(pl022->clk);
1491 restore_state(pl022);
1492 flush(pl022);
1494 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1495 do_polling_transfer(pl022);
1496 else
1497 do_interrupt_dma_transfer(pl022);
1501 static int __init init_queue(struct pl022 *pl022)
1503 INIT_LIST_HEAD(&pl022->queue);
1504 spin_lock_init(&pl022->queue_lock);
1506 pl022->running = false;
1507 pl022->busy = false;
1509 tasklet_init(&pl022->pump_transfers,
1510 pump_transfers, (unsigned long)pl022);
1512 INIT_WORK(&pl022->pump_messages, pump_messages);
1513 pl022->workqueue = create_singlethread_workqueue(
1514 dev_name(pl022->master->dev.parent));
1515 if (pl022->workqueue == NULL)
1516 return -EBUSY;
1518 return 0;
1522 static int start_queue(struct pl022 *pl022)
1524 unsigned long flags;
1526 spin_lock_irqsave(&pl022->queue_lock, flags);
1528 if (pl022->running || pl022->busy) {
1529 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1530 return -EBUSY;
1533 pl022->running = true;
1534 pl022->cur_msg = NULL;
1535 pl022->cur_transfer = NULL;
1536 pl022->cur_chip = NULL;
1537 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1539 queue_work(pl022->workqueue, &pl022->pump_messages);
1541 return 0;
1545 static int stop_queue(struct pl022 *pl022)
1547 unsigned long flags;
1548 unsigned limit = 500;
1549 int status = 0;
1551 spin_lock_irqsave(&pl022->queue_lock, flags);
1553 /* This is a bit lame, but is optimized for the common execution path.
1554 * A wait_queue on the pl022->busy could be used, but then the common
1555 * execution path (pump_messages) would be required to call wake_up or
1556 * friends on every SPI message. Do this instead */
1557 while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
1558 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1559 msleep(10);
1560 spin_lock_irqsave(&pl022->queue_lock, flags);
1563 if (!list_empty(&pl022->queue) || pl022->busy)
1564 status = -EBUSY;
1565 else
1566 pl022->running = false;
1568 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1570 return status;
1573 static int destroy_queue(struct pl022 *pl022)
1575 int status;
1577 status = stop_queue(pl022);
1578 /* we are unloading the module or failing to load (only two calls
1579 * to this routine), and neither call can handle a return value.
1580 * However, destroy_workqueue calls flush_workqueue, and that will
1581 * block until all work is done. If the reason that stop_queue
1582 * timed out is that the work will never finish, then it does no
1583 * good to call destroy_workqueue, so return anyway. */
1584 if (status != 0)
1585 return status;
1587 destroy_workqueue(pl022->workqueue);
1589 return 0;
1592 static int verify_controller_parameters(struct pl022 *pl022,
1593 struct pl022_config_chip const *chip_info)
1595 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1596 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1597 dev_err(&pl022->adev->dev,
1598 "interface is configured incorrectly\n");
1599 return -EINVAL;
1601 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1602 (!pl022->vendor->unidir)) {
1603 dev_err(&pl022->adev->dev,
1604 "unidirectional mode not supported in this "
1605 "hardware version\n");
1606 return -EINVAL;
1608 if ((chip_info->hierarchy != SSP_MASTER)
1609 && (chip_info->hierarchy != SSP_SLAVE)) {
1610 dev_err(&pl022->adev->dev,
1611 "hierarchy is configured incorrectly\n");
1612 return -EINVAL;
1614 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1615 && (chip_info->com_mode != DMA_TRANSFER)
1616 && (chip_info->com_mode != POLLING_TRANSFER)) {
1617 dev_err(&pl022->adev->dev,
1618 "Communication mode is configured incorrectly\n");
1619 return -EINVAL;
1621 if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1622 || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
1623 dev_err(&pl022->adev->dev,
1624 "RX FIFO Trigger Level is configured incorrectly\n");
1625 return -EINVAL;
1627 if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1628 || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
1629 dev_err(&pl022->adev->dev,
1630 "TX FIFO Trigger Level is configured incorrectly\n");
1631 return -EINVAL;
1633 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1634 if ((chip_info->ctrl_len < SSP_BITS_4)
1635 || (chip_info->ctrl_len > SSP_BITS_32)) {
1636 dev_err(&pl022->adev->dev,
1637 "CTRL LEN is configured incorrectly\n");
1638 return -EINVAL;
1640 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1641 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1642 dev_err(&pl022->adev->dev,
1643 "Wait State is configured incorrectly\n");
1644 return -EINVAL;
1646 /* Half duplex is only available in the ST Micro version */
1647 if (pl022->vendor->extended_cr) {
1648 if ((chip_info->duplex !=
1649 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1650 && (chip_info->duplex !=
1651 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1652 dev_err(&pl022->adev->dev,
1653 "Microwire duplex mode is configured incorrectly\n");
1654 return -EINVAL;
1656 } else {
1657 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1658 dev_err(&pl022->adev->dev,
1659 "Microwire half duplex mode requested,"
1660 " but this is only available in the"
1661 " ST version of PL022\n");
1662 return -EINVAL;
1665 return 0;
1669 * pl022_transfer - transfer function registered to SPI master framework
1670 * @spi: spi device which is requesting transfer
1671 * @msg: spi message which is to handled is queued to driver queue
1673 * This function is registered to the SPI framework for this SPI master
1674 * controller. It will queue the spi_message in the queue of driver if
1675 * the queue is not stopped and return.
1677 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1679 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1680 unsigned long flags;
1682 spin_lock_irqsave(&pl022->queue_lock, flags);
1684 if (!pl022->running) {
1685 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1686 return -ESHUTDOWN;
1688 msg->actual_length = 0;
1689 msg->status = -EINPROGRESS;
1690 msg->state = STATE_START;
1692 list_add_tail(&msg->queue, &pl022->queue);
1693 if (pl022->running && !pl022->busy)
1694 queue_work(pl022->workqueue, &pl022->pump_messages);
1696 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1697 return 0;
1700 static int calculate_effective_freq(struct pl022 *pl022,
1701 int freq,
1702 struct ssp_clock_params *clk_freq)
1704 /* Lets calculate the frequency parameters */
1705 u16 cpsdvsr = 2;
1706 u16 scr = 0;
1707 bool freq_found = false;
1708 u32 rate;
1709 u32 max_tclk;
1710 u32 min_tclk;
1712 rate = clk_get_rate(pl022->clk);
1713 /* cpsdvscr = 2 & scr 0 */
1714 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1715 /* cpsdvsr = 254 & scr = 255 */
1716 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1718 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1719 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1720 while (scr <= SCR_MAX && !freq_found) {
1721 if ((rate /
1722 (cpsdvsr * (1 + scr))) > freq)
1723 scr += 1;
1724 else {
1726 * This bool is made true when
1727 * effective frequency >=
1728 * target frequency is found
1730 freq_found = true;
1731 if ((rate /
1732 (cpsdvsr * (1 + scr))) != freq) {
1733 if (scr == SCR_MIN) {
1734 cpsdvsr -= 2;
1735 scr = SCR_MAX;
1736 } else
1737 scr -= 1;
1741 if (!freq_found) {
1742 cpsdvsr += 2;
1743 scr = SCR_MIN;
1746 if (cpsdvsr != 0) {
1747 dev_dbg(&pl022->adev->dev,
1748 "SSP Effective Frequency is %u\n",
1749 (rate / (cpsdvsr * (1 + scr))));
1750 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1751 clk_freq->scr = (u8) (scr & 0xFF);
1752 dev_dbg(&pl022->adev->dev,
1753 "SSP cpsdvsr = %d, scr = %d\n",
1754 clk_freq->cpsdvsr, clk_freq->scr);
1756 } else {
1757 dev_err(&pl022->adev->dev,
1758 "controller data is incorrect: out of range frequency");
1759 return -EINVAL;
1761 return 0;
1766 * A piece of default chip info unless the platform
1767 * supplies it.
1769 static const struct pl022_config_chip pl022_default_chip_info = {
1770 .com_mode = POLLING_TRANSFER,
1771 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1772 .hierarchy = SSP_SLAVE,
1773 .slave_tx_disable = DO_NOT_DRIVE_TX,
1774 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1775 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1776 .ctrl_len = SSP_BITS_8,
1777 .wait_state = SSP_MWIRE_WAIT_ZERO,
1778 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1779 .cs_control = null_cs_control,
1784 * pl022_setup - setup function registered to SPI master framework
1785 * @spi: spi device which is requesting setup
1787 * This function is registered to the SPI framework for this SPI master
1788 * controller. If it is the first time when setup is called by this device,
1789 * this function will initialize the runtime state for this chip and save
1790 * the same in the device structure. Else it will update the runtime info
1791 * with the updated chip info. Nothing is really being written to the
1792 * controller hardware here, that is not done until the actual transfer
1793 * commence.
1795 static int pl022_setup(struct spi_device *spi)
1797 struct pl022_config_chip const *chip_info;
1798 struct chip_data *chip;
1799 struct ssp_clock_params clk_freq = {0, };
1800 int status = 0;
1801 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1802 unsigned int bits = spi->bits_per_word;
1803 u32 tmp;
1805 if (!spi->max_speed_hz)
1806 return -EINVAL;
1808 /* Get controller_state if one is supplied */
1809 chip = spi_get_ctldata(spi);
1811 if (chip == NULL) {
1812 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1813 if (!chip) {
1814 dev_err(&spi->dev,
1815 "cannot allocate controller state\n");
1816 return -ENOMEM;
1818 dev_dbg(&spi->dev,
1819 "allocated memory for controller's runtime state\n");
1822 /* Get controller data if one is supplied */
1823 chip_info = spi->controller_data;
1825 if (chip_info == NULL) {
1826 chip_info = &pl022_default_chip_info;
1827 /* spi_board_info.controller_data not is supplied */
1828 dev_dbg(&spi->dev,
1829 "using default controller_data settings\n");
1830 } else
1831 dev_dbg(&spi->dev,
1832 "using user supplied controller_data settings\n");
1835 * We can override with custom divisors, else we use the board
1836 * frequency setting
1838 if ((0 == chip_info->clk_freq.cpsdvsr)
1839 && (0 == chip_info->clk_freq.scr)) {
1840 status = calculate_effective_freq(pl022,
1841 spi->max_speed_hz,
1842 &clk_freq);
1843 if (status < 0)
1844 goto err_config_params;
1845 } else {
1846 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1847 if ((clk_freq.cpsdvsr % 2) != 0)
1848 clk_freq.cpsdvsr =
1849 clk_freq.cpsdvsr - 1;
1851 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1852 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1853 dev_err(&spi->dev,
1854 "cpsdvsr is configured incorrectly\n");
1855 goto err_config_params;
1859 status = verify_controller_parameters(pl022, chip_info);
1860 if (status) {
1861 dev_err(&spi->dev, "controller data is incorrect");
1862 goto err_config_params;
1865 /* Now set controller state based on controller data */
1866 chip->xfer_type = chip_info->com_mode;
1867 if (!chip_info->cs_control) {
1868 chip->cs_control = null_cs_control;
1869 dev_warn(&spi->dev,
1870 "chip select function is NULL for this chip\n");
1871 } else
1872 chip->cs_control = chip_info->cs_control;
1874 if (bits <= 3) {
1875 /* PL022 doesn't support less than 4-bits */
1876 status = -ENOTSUPP;
1877 goto err_config_params;
1878 } else if (bits <= 8) {
1879 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1880 chip->n_bytes = 1;
1881 chip->read = READING_U8;
1882 chip->write = WRITING_U8;
1883 } else if (bits <= 16) {
1884 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1885 chip->n_bytes = 2;
1886 chip->read = READING_U16;
1887 chip->write = WRITING_U16;
1888 } else {
1889 if (pl022->vendor->max_bpw >= 32) {
1890 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1891 chip->n_bytes = 4;
1892 chip->read = READING_U32;
1893 chip->write = WRITING_U32;
1894 } else {
1895 dev_err(&spi->dev,
1896 "illegal data size for this controller!\n");
1897 dev_err(&spi->dev,
1898 "a standard pl022 can only handle "
1899 "1 <= n <= 16 bit words\n");
1900 status = -ENOTSUPP;
1901 goto err_config_params;
1905 /* Now Initialize all register settings required for this chip */
1906 chip->cr0 = 0;
1907 chip->cr1 = 0;
1908 chip->dmacr = 0;
1909 chip->cpsr = 0;
1910 if ((chip_info->com_mode == DMA_TRANSFER)
1911 && ((pl022->master_info)->enable_dma)) {
1912 chip->enable_dma = true;
1913 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1914 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1915 SSP_DMACR_MASK_RXDMAE, 0);
1916 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1917 SSP_DMACR_MASK_TXDMAE, 1);
1918 } else {
1919 chip->enable_dma = false;
1920 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1921 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1922 SSP_DMACR_MASK_RXDMAE, 0);
1923 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1924 SSP_DMACR_MASK_TXDMAE, 1);
1927 chip->cpsr = clk_freq.cpsdvsr;
1929 /* Special setup for the ST micro extended control registers */
1930 if (pl022->vendor->extended_cr) {
1931 u32 etx;
1933 if (pl022->vendor->pl023) {
1934 /* These bits are only in the PL023 */
1935 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1936 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1937 } else {
1938 /* These bits are in the PL022 but not PL023 */
1939 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1940 SSP_CR0_MASK_HALFDUP_ST, 5);
1941 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1942 SSP_CR0_MASK_CSS_ST, 16);
1943 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1944 SSP_CR0_MASK_FRF_ST, 21);
1945 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1946 SSP_CR1_MASK_MWAIT_ST, 6);
1948 SSP_WRITE_BITS(chip->cr0, bits - 1,
1949 SSP_CR0_MASK_DSS_ST, 0);
1951 if (spi->mode & SPI_LSB_FIRST) {
1952 tmp = SSP_RX_LSB;
1953 etx = SSP_TX_LSB;
1954 } else {
1955 tmp = SSP_RX_MSB;
1956 etx = SSP_TX_MSB;
1958 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1959 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1960 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1961 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1962 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1963 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1964 } else {
1965 SSP_WRITE_BITS(chip->cr0, bits - 1,
1966 SSP_CR0_MASK_DSS, 0);
1967 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1968 SSP_CR0_MASK_FRF, 4);
1971 /* Stuff that is common for all versions */
1972 if (spi->mode & SPI_CPOL)
1973 tmp = SSP_CLK_POL_IDLE_HIGH;
1974 else
1975 tmp = SSP_CLK_POL_IDLE_LOW;
1976 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1978 if (spi->mode & SPI_CPHA)
1979 tmp = SSP_CLK_SECOND_EDGE;
1980 else
1981 tmp = SSP_CLK_FIRST_EDGE;
1982 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1984 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1985 /* Loopback is available on all versions except PL023 */
1986 if (!pl022->vendor->pl023) {
1987 if (spi->mode & SPI_LOOP)
1988 tmp = LOOPBACK_ENABLED;
1989 else
1990 tmp = LOOPBACK_DISABLED;
1991 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1993 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1994 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1995 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
1997 /* Save controller_state */
1998 spi_set_ctldata(spi, chip);
1999 return status;
2000 err_config_params:
2001 spi_set_ctldata(spi, NULL);
2002 kfree(chip);
2003 return status;
2007 * pl022_cleanup - cleanup function registered to SPI master framework
2008 * @spi: spi device which is requesting cleanup
2010 * This function is registered to the SPI framework for this SPI master
2011 * controller. It will free the runtime state of chip.
2013 static void pl022_cleanup(struct spi_device *spi)
2015 struct chip_data *chip = spi_get_ctldata(spi);
2017 spi_set_ctldata(spi, NULL);
2018 kfree(chip);
2022 static int __devinit
2023 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2025 struct device *dev = &adev->dev;
2026 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2027 struct spi_master *master;
2028 struct pl022 *pl022 = NULL; /*Data for this driver */
2029 int status = 0;
2031 dev_info(&adev->dev,
2032 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2033 if (platform_info == NULL) {
2034 dev_err(&adev->dev, "probe - no platform data supplied\n");
2035 status = -ENODEV;
2036 goto err_no_pdata;
2039 /* Allocate master with space for data */
2040 master = spi_alloc_master(dev, sizeof(struct pl022));
2041 if (master == NULL) {
2042 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2043 status = -ENOMEM;
2044 goto err_no_master;
2047 pl022 = spi_master_get_devdata(master);
2048 pl022->master = master;
2049 pl022->master_info = platform_info;
2050 pl022->adev = adev;
2051 pl022->vendor = id->data;
2054 * Bus Number Which has been Assigned to this SSP controller
2055 * on this board
2057 master->bus_num = platform_info->bus_id;
2058 master->num_chipselect = platform_info->num_chipselect;
2059 master->cleanup = pl022_cleanup;
2060 master->setup = pl022_setup;
2061 master->transfer = pl022_transfer;
2064 * Supports mode 0-3, loopback, and active low CS. Transfers are
2065 * always MS bit first on the original pl022.
2067 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2068 if (pl022->vendor->extended_cr)
2069 master->mode_bits |= SPI_LSB_FIRST;
2071 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2073 status = amba_request_regions(adev, NULL);
2074 if (status)
2075 goto err_no_ioregion;
2077 pl022->phybase = adev->res.start;
2078 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2079 if (pl022->virtbase == NULL) {
2080 status = -ENOMEM;
2081 goto err_no_ioremap;
2083 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2084 adev->res.start, pl022->virtbase);
2086 pl022->clk = clk_get(&adev->dev, NULL);
2087 if (IS_ERR(pl022->clk)) {
2088 status = PTR_ERR(pl022->clk);
2089 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2090 goto err_no_clk;
2093 /* Disable SSP */
2094 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2095 SSP_CR1(pl022->virtbase));
2096 load_ssp_default_config(pl022);
2098 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2099 pl022);
2100 if (status < 0) {
2101 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2102 goto err_no_irq;
2105 /* Get DMA channels */
2106 if (platform_info->enable_dma) {
2107 status = pl022_dma_probe(pl022);
2108 if (status != 0)
2109 goto err_no_dma;
2112 /* Initialize and start queue */
2113 status = init_queue(pl022);
2114 if (status != 0) {
2115 dev_err(&adev->dev, "probe - problem initializing queue\n");
2116 goto err_init_queue;
2118 status = start_queue(pl022);
2119 if (status != 0) {
2120 dev_err(&adev->dev, "probe - problem starting queue\n");
2121 goto err_start_queue;
2123 /* Register with the SPI framework */
2124 amba_set_drvdata(adev, pl022);
2125 status = spi_register_master(master);
2126 if (status != 0) {
2127 dev_err(&adev->dev,
2128 "probe - problem registering spi master\n");
2129 goto err_spi_register;
2131 dev_dbg(dev, "probe succeded\n");
2133 * Disable the silicon block pclk and any voltage domain and just
2134 * power it up and clock it when it's needed
2136 amba_pclk_disable(adev);
2137 amba_vcore_disable(adev);
2138 return 0;
2140 err_spi_register:
2141 err_start_queue:
2142 err_init_queue:
2143 destroy_queue(pl022);
2144 pl022_dma_remove(pl022);
2145 err_no_dma:
2146 free_irq(adev->irq[0], pl022);
2147 err_no_irq:
2148 clk_put(pl022->clk);
2149 err_no_clk:
2150 iounmap(pl022->virtbase);
2151 err_no_ioremap:
2152 amba_release_regions(adev);
2153 err_no_ioregion:
2154 spi_master_put(master);
2155 err_no_master:
2156 err_no_pdata:
2157 return status;
2160 static int __devexit
2161 pl022_remove(struct amba_device *adev)
2163 struct pl022 *pl022 = amba_get_drvdata(adev);
2164 int status = 0;
2165 if (!pl022)
2166 return 0;
2168 /* Remove the queue */
2169 status = destroy_queue(pl022);
2170 if (status != 0) {
2171 dev_err(&adev->dev,
2172 "queue remove failed (%d)\n", status);
2173 return status;
2175 load_ssp_default_config(pl022);
2176 pl022_dma_remove(pl022);
2177 free_irq(adev->irq[0], pl022);
2178 clk_disable(pl022->clk);
2179 clk_put(pl022->clk);
2180 iounmap(pl022->virtbase);
2181 amba_release_regions(adev);
2182 tasklet_disable(&pl022->pump_transfers);
2183 spi_unregister_master(pl022->master);
2184 spi_master_put(pl022->master);
2185 amba_set_drvdata(adev, NULL);
2186 dev_dbg(&adev->dev, "remove succeded\n");
2187 return 0;
2190 #ifdef CONFIG_PM
2191 static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2193 struct pl022 *pl022 = amba_get_drvdata(adev);
2194 int status = 0;
2196 status = stop_queue(pl022);
2197 if (status) {
2198 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2199 return status;
2202 amba_vcore_enable(adev);
2203 amba_pclk_enable(adev);
2204 load_ssp_default_config(pl022);
2205 amba_pclk_disable(adev);
2206 amba_vcore_disable(adev);
2207 dev_dbg(&adev->dev, "suspended\n");
2208 return 0;
2211 static int pl022_resume(struct amba_device *adev)
2213 struct pl022 *pl022 = amba_get_drvdata(adev);
2214 int status = 0;
2216 /* Start the queue running */
2217 status = start_queue(pl022);
2218 if (status)
2219 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2220 else
2221 dev_dbg(&adev->dev, "resumed\n");
2223 return status;
2225 #else
2226 #define pl022_suspend NULL
2227 #define pl022_resume NULL
2228 #endif /* CONFIG_PM */
2230 static struct vendor_data vendor_arm = {
2231 .fifodepth = 8,
2232 .max_bpw = 16,
2233 .unidir = false,
2234 .extended_cr = false,
2235 .pl023 = false,
2239 static struct vendor_data vendor_st = {
2240 .fifodepth = 32,
2241 .max_bpw = 32,
2242 .unidir = false,
2243 .extended_cr = true,
2244 .pl023 = false,
2247 static struct vendor_data vendor_st_pl023 = {
2248 .fifodepth = 32,
2249 .max_bpw = 32,
2250 .unidir = false,
2251 .extended_cr = true,
2252 .pl023 = true,
2255 static struct amba_id pl022_ids[] = {
2258 * ARM PL022 variant, this has a 16bit wide
2259 * and 8 locations deep TX/RX FIFO
2261 .id = 0x00041022,
2262 .mask = 0x000fffff,
2263 .data = &vendor_arm,
2267 * ST Micro derivative, this has 32bit wide
2268 * and 32 locations deep TX/RX FIFO
2270 .id = 0x01080022,
2271 .mask = 0xffffffff,
2272 .data = &vendor_st,
2276 * ST-Ericsson derivative "PL023" (this is not
2277 * an official ARM number), this is a PL022 SSP block
2278 * stripped to SPI mode only, it has 32bit wide
2279 * and 32 locations deep TX/RX FIFO but no extended
2280 * CR0/CR1 register
2282 .id = 0x00080023,
2283 .mask = 0xffffffff,
2284 .data = &vendor_st_pl023,
2286 { 0, 0 },
2289 static struct amba_driver pl022_driver = {
2290 .drv = {
2291 .name = "ssp-pl022",
2293 .id_table = pl022_ids,
2294 .probe = pl022_probe,
2295 .remove = __devexit_p(pl022_remove),
2296 .suspend = pl022_suspend,
2297 .resume = pl022_resume,
2301 static int __init pl022_init(void)
2303 return amba_driver_register(&pl022_driver);
2306 subsys_initcall(pl022_init);
2308 static void __exit pl022_exit(void)
2310 amba_driver_unregister(&pl022_driver);
2313 module_exit(pl022_exit);
2315 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2316 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2317 MODULE_LICENSE("GPL");