CIFS: cleanup min_t() cast in cifs_read()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sundance.c
blob4793df843c247794a285b2bd574653a9e46d6098
1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2 /*
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
25 #define DRV_NAME "sundance"
26 #define DRV_VERSION "1.2"
27 #define DRV_RELDATE "11-Sep-2006"
30 /* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35 static const int multicast_filter_limit = 32;
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41 static int rx_copybreak;
42 static int flowctrl=1;
44 /* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
56 #define MAX_UNITS 8
57 static char *media[MAX_UNITS];
60 /* Operational parameters that are set at compile time. */
62 /* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68 #define TX_RING_SIZE 32
69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70 #define RX_RING_SIZE 64
71 #define RX_BUDGET 32
72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
75 /* Operational parameters that usually are not changed. */
76 /* Time in jiffies before concluding the transmitter is hung. */
77 #define TX_TIMEOUT (4*HZ)
78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
80 /* Include files, designed to support most kernel versions 2.0.0 and later. */
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/string.h>
84 #include <linux/timer.h>
85 #include <linux/errno.h>
86 #include <linux/ioport.h>
87 #include <linux/interrupt.h>
88 #include <linux/pci.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/skbuff.h>
92 #include <linux/init.h>
93 #include <linux/bitops.h>
94 #include <asm/uaccess.h>
95 #include <asm/processor.h> /* Processor type for cache alignment. */
96 #include <asm/io.h>
97 #include <linux/delay.h>
98 #include <linux/spinlock.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/crc32.h>
101 #include <linux/ethtool.h>
102 #include <linux/mii.h>
104 /* These identify the driver base version and may not be removed. */
105 static const char version[] __devinitconst =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
109 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111 MODULE_LICENSE("GPL");
113 module_param(debug, int, 0);
114 module_param(rx_copybreak, int, 0);
115 module_param_array(media, charp, NULL, 0);
116 module_param(flowctrl, int, 0);
117 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
122 Theory of Operation
124 I. Board Compatibility
126 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
128 II. Board-specific settings
130 III. Driver operation
132 IIIa. Ring buffers
134 This driver uses two statically allocated fixed-size descriptor lists
135 formed into rings by a branch from the final descriptor to the beginning of
136 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137 Some chips explicitly use only 2^N sized rings, while others use a
138 'next descriptor' pointer that the driver forms into rings.
140 IIIb/c. Transmit/Receive Structure
142 This driver uses a zero-copy receive and transmit scheme.
143 The driver allocates full frame size skbuffs for the Rx ring buffers at
144 open() time and passes the skb->data field to the chip as receive data
145 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146 a fresh skbuff is allocated and the frame is copied to the new skbuff.
147 When the incoming frame is larger, the skbuff is passed directly up the
148 protocol stack. Buffers consumed this way are replaced by newly allocated
149 skbuffs in a later phase of receives.
151 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152 using a full-sized skbuff for small frames vs. the copying costs of larger
153 frames. New boards are typically used in generously configured machines
154 and the underfilled buffers have negligible impact compared to the benefit of
155 a single allocation size, so the default value of zero results in never
156 copying packets. When copying is done, the cost is usually mitigated by using
157 a combined copy/checksum routine. Copying also preloads the cache, which is
158 most useful with small frames.
160 A subtle aspect of the operation is that the IP header at offset 14 in an
161 ethernet frame isn't longword aligned for further processing.
162 Unaligned buffers are permitted by the Sundance hardware, so
163 frames are received into the skbuff at an offset of "+2", 16-byte aligning
164 the IP header.
166 IIId. Synchronization
168 The driver runs as two independent, single-threaded flows of control. One
169 is the send-packet routine, which enforces single-threaded use by the
170 dev->tbusy flag. The other thread is the interrupt handler, which is single
171 threaded by the hardware and interrupt handling software.
173 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176 the 'lp->tx_full' flag.
178 The interrupt handler has exclusive control over the Rx ring and records stats
179 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181 clears both the tx_full and tbusy flags.
183 IV. Notes
185 IVb. References
187 The Sundance ST201 datasheet, preliminary version.
188 The Kendin KS8723 datasheet, preliminary version.
189 The ICplus IP100 datasheet, preliminary version.
190 http://www.scyld.com/expert/100mbps.html
191 http://www.scyld.com/expert/NWay.html
193 IVc. Errata
197 /* Work-around for Kendin chip bugs. */
198 #ifndef CONFIG_SUNDANCE_MMIO
199 #define USE_IO_OPS 1
200 #endif
202 static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
212 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
214 enum {
215 netdev_io_size = 128
218 struct pci_id_info {
219 const char *name;
221 static const struct pci_id_info pci_id_tbl[] __devinitdata = {
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
229 { } /* terminate list. */
232 /* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
235 /* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
243 enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 TxStatus = 0x46,
263 TxFrameId = 0x47,
264 DownCounter = 0x18,
265 IntrClear = 0x4a,
266 IntrEnable = 0x4c,
267 IntrStatus = 0x4e,
268 MACCtrl0 = 0x50,
269 MACCtrl1 = 0x52,
270 StationAddr = 0x54,
271 MaxFrameSize = 0x5A,
272 RxMode = 0x5c,
273 MIICtrl = 0x5e,
274 MulticastFilter0 = 0x60,
275 MulticastFilter1 = 0x64,
276 RxOctetsLow = 0x68,
277 RxOctetsHigh = 0x6a,
278 TxOctetsLow = 0x6c,
279 TxOctetsHigh = 0x6e,
280 TxFramesOK = 0x70,
281 RxFramesOK = 0x72,
282 StatsCarrierError = 0x74,
283 StatsLateColl = 0x75,
284 StatsMultiColl = 0x76,
285 StatsOneColl = 0x77,
286 StatsTxDefer = 0x78,
287 RxMissed = 0x79,
288 StatsTxXSDefer = 0x7a,
289 StatsTxAbort = 0x7b,
290 StatsBcastTx = 0x7c,
291 StatsBcastRx = 0x7d,
292 StatsMcastTx = 0x7e,
293 StatsMcastRx = 0x7f,
294 /* Aliased and bogus values! */
295 RxStatus = 0x0c,
298 #define ASIC_HI_WORD(x) ((x) + 2)
300 enum ASICCtrl_HiWord_bit {
301 GlobalReset = 0x0001,
302 RxReset = 0x0002,
303 TxReset = 0x0004,
304 DMAReset = 0x0008,
305 FIFOReset = 0x0010,
306 NetworkReset = 0x0020,
307 HostReset = 0x0040,
308 ResetBusy = 0x0400,
311 /* Bits in the interrupt status/mask registers. */
312 enum intr_status_bits {
313 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
314 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
315 IntrDrvRqst=0x0040,
316 StatsMax=0x0080, LinkChange=0x0100,
317 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
320 /* Bits in the RxMode register. */
321 enum rx_mode_bits {
322 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
323 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
325 /* Bits in MACCtrl. */
326 enum mac_ctrl0_bits {
327 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
328 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
330 enum mac_ctrl1_bits {
331 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
332 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
333 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
336 /* The Rx and Tx buffer descriptors. */
337 /* Note that using only 32 bit fields simplifies conversion to big-endian
338 architectures. */
339 struct netdev_desc {
340 __le32 next_desc;
341 __le32 status;
342 struct desc_frag { __le32 addr, length; } frag[1];
345 /* Bits in netdev_desc.status */
346 enum desc_status_bits {
347 DescOwn=0x8000,
348 DescEndPacket=0x4000,
349 DescEndRing=0x2000,
350 LastFrag=0x80000000,
351 DescIntrOnTx=0x8000,
352 DescIntrOnDMADone=0x80000000,
353 DisableAlign = 0x00000001,
356 #define PRIV_ALIGN 15 /* Required alignment mask */
357 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
358 within the structure. */
359 #define MII_CNT 4
360 struct netdev_private {
361 /* Descriptor rings first for alignment. */
362 struct netdev_desc *rx_ring;
363 struct netdev_desc *tx_ring;
364 struct sk_buff* rx_skbuff[RX_RING_SIZE];
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
366 dma_addr_t tx_ring_dma;
367 dma_addr_t rx_ring_dma;
368 struct timer_list timer; /* Media monitoring timer. */
369 /* ethtool extra stats */
370 struct {
371 u64 tx_multiple_collisions;
372 u64 tx_single_collisions;
373 u64 tx_late_collisions;
374 u64 tx_deferred;
375 u64 tx_deferred_excessive;
376 u64 tx_aborted;
377 u64 tx_bcasts;
378 u64 rx_bcasts;
379 u64 tx_mcasts;
380 u64 rx_mcasts;
381 } xstats;
382 /* Frequently used values: keep some adjacent for cache effect. */
383 spinlock_t lock;
384 int msg_enable;
385 int chip_id;
386 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
387 unsigned int rx_buf_sz; /* Based on MTU+slack. */
388 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
389 unsigned int cur_tx, dirty_tx;
390 /* These values are keep track of the transceiver/media in use. */
391 unsigned int flowctrl:1;
392 unsigned int default_port:4; /* Last dev->if_port value. */
393 unsigned int an_enable:1;
394 unsigned int speed;
395 struct tasklet_struct rx_tasklet;
396 struct tasklet_struct tx_tasklet;
397 int budget;
398 int cur_task;
399 /* Multicast and receive mode. */
400 spinlock_t mcastlock; /* SMP lock multicast updates. */
401 u16 mcast_filter[4];
402 /* MII transceiver section. */
403 struct mii_if_info mii_if;
404 int mii_preamble_required;
405 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
406 struct pci_dev *pci_dev;
407 void __iomem *base;
408 spinlock_t statlock;
411 /* The station address location in the EEPROM. */
412 #define EEPROM_SA_OFFSET 0x10
413 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
414 IntrDrvRqst | IntrTxDone | StatsMax | \
415 LinkChange)
417 static int change_mtu(struct net_device *dev, int new_mtu);
418 static int eeprom_read(void __iomem *ioaddr, int location);
419 static int mdio_read(struct net_device *dev, int phy_id, int location);
420 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
421 static int mdio_wait_link(struct net_device *dev, int wait);
422 static int netdev_open(struct net_device *dev);
423 static void check_duplex(struct net_device *dev);
424 static void netdev_timer(unsigned long data);
425 static void tx_timeout(struct net_device *dev);
426 static void init_ring(struct net_device *dev);
427 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
428 static int reset_tx (struct net_device *dev);
429 static irqreturn_t intr_handler(int irq, void *dev_instance);
430 static void rx_poll(unsigned long data);
431 static void tx_poll(unsigned long data);
432 static void refill_rx (struct net_device *dev);
433 static void netdev_error(struct net_device *dev, int intr_status);
434 static void netdev_error(struct net_device *dev, int intr_status);
435 static void set_rx_mode(struct net_device *dev);
436 static int __set_mac_addr(struct net_device *dev);
437 static int sundance_set_mac_addr(struct net_device *dev, void *data);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static int netdev_close(struct net_device *dev);
441 static const struct ethtool_ops ethtool_ops;
443 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
445 struct netdev_private *np = netdev_priv(dev);
446 void __iomem *ioaddr = np->base + ASICCtrl;
447 int countdown;
449 /* ST201 documentation states ASICCtrl is a 32bit register */
450 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
451 /* ST201 documentation states reset can take up to 1 ms */
452 countdown = 10 + 1;
453 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
454 if (--countdown == 0) {
455 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
456 break;
458 udelay(100);
462 static const struct net_device_ops netdev_ops = {
463 .ndo_open = netdev_open,
464 .ndo_stop = netdev_close,
465 .ndo_start_xmit = start_tx,
466 .ndo_get_stats = get_stats,
467 .ndo_set_multicast_list = set_rx_mode,
468 .ndo_do_ioctl = netdev_ioctl,
469 .ndo_tx_timeout = tx_timeout,
470 .ndo_change_mtu = change_mtu,
471 .ndo_set_mac_address = sundance_set_mac_addr,
472 .ndo_validate_addr = eth_validate_addr,
475 static int __devinit sundance_probe1 (struct pci_dev *pdev,
476 const struct pci_device_id *ent)
478 struct net_device *dev;
479 struct netdev_private *np;
480 static int card_idx;
481 int chip_idx = ent->driver_data;
482 int irq;
483 int i;
484 void __iomem *ioaddr;
485 u16 mii_ctl;
486 void *ring_space;
487 dma_addr_t ring_dma;
488 #ifdef USE_IO_OPS
489 int bar = 0;
490 #else
491 int bar = 1;
492 #endif
493 int phy, phy_end, phy_idx = 0;
495 /* when built into the kernel, we only print version if device is found */
496 #ifndef MODULE
497 static int printed_version;
498 if (!printed_version++)
499 printk(version);
500 #endif
502 if (pci_enable_device(pdev))
503 return -EIO;
504 pci_set_master(pdev);
506 irq = pdev->irq;
508 dev = alloc_etherdev(sizeof(*np));
509 if (!dev)
510 return -ENOMEM;
511 SET_NETDEV_DEV(dev, &pdev->dev);
513 if (pci_request_regions(pdev, DRV_NAME))
514 goto err_out_netdev;
516 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
517 if (!ioaddr)
518 goto err_out_res;
520 for (i = 0; i < 3; i++)
521 ((__le16 *)dev->dev_addr)[i] =
522 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
523 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
525 dev->base_addr = (unsigned long)ioaddr;
526 dev->irq = irq;
528 np = netdev_priv(dev);
529 np->base = ioaddr;
530 np->pci_dev = pdev;
531 np->chip_id = chip_idx;
532 np->msg_enable = (1 << debug) - 1;
533 spin_lock_init(&np->lock);
534 spin_lock_init(&np->statlock);
535 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
536 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
538 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
539 &ring_dma, GFP_KERNEL);
540 if (!ring_space)
541 goto err_out_cleardev;
542 np->tx_ring = (struct netdev_desc *)ring_space;
543 np->tx_ring_dma = ring_dma;
545 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
546 &ring_dma, GFP_KERNEL);
547 if (!ring_space)
548 goto err_out_unmap_tx;
549 np->rx_ring = (struct netdev_desc *)ring_space;
550 np->rx_ring_dma = ring_dma;
552 np->mii_if.dev = dev;
553 np->mii_if.mdio_read = mdio_read;
554 np->mii_if.mdio_write = mdio_write;
555 np->mii_if.phy_id_mask = 0x1f;
556 np->mii_if.reg_num_mask = 0x1f;
558 /* The chip-specific entries in the device structure. */
559 dev->netdev_ops = &netdev_ops;
560 SET_ETHTOOL_OPS(dev, &ethtool_ops);
561 dev->watchdog_timeo = TX_TIMEOUT;
563 pci_set_drvdata(pdev, dev);
565 i = register_netdev(dev);
566 if (i)
567 goto err_out_unmap_rx;
569 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
570 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
571 dev->dev_addr, irq);
573 np->phys[0] = 1; /* Default setting */
574 np->mii_preamble_required++;
577 * It seems some phys doesn't deal well with address 0 being accessed
578 * first
580 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
581 phy = 0;
582 phy_end = 31;
583 } else {
584 phy = 1;
585 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
587 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
588 int phyx = phy & 0x1f;
589 int mii_status = mdio_read(dev, phyx, MII_BMSR);
590 if (mii_status != 0xffff && mii_status != 0x0000) {
591 np->phys[phy_idx++] = phyx;
592 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
593 if ((mii_status & 0x0040) == 0)
594 np->mii_preamble_required++;
595 printk(KERN_INFO "%s: MII PHY found at address %d, status "
596 "0x%4.4x advertising %4.4x.\n",
597 dev->name, phyx, mii_status, np->mii_if.advertising);
600 np->mii_preamble_required--;
602 if (phy_idx == 0) {
603 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
604 dev->name, ioread32(ioaddr + ASICCtrl));
605 goto err_out_unregister;
608 np->mii_if.phy_id = np->phys[0];
610 /* Parse override configuration */
611 np->an_enable = 1;
612 if (card_idx < MAX_UNITS) {
613 if (media[card_idx] != NULL) {
614 np->an_enable = 0;
615 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
616 strcmp (media[card_idx], "4") == 0) {
617 np->speed = 100;
618 np->mii_if.full_duplex = 1;
619 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
620 strcmp (media[card_idx], "3") == 0) {
621 np->speed = 100;
622 np->mii_if.full_duplex = 0;
623 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
624 strcmp (media[card_idx], "2") == 0) {
625 np->speed = 10;
626 np->mii_if.full_duplex = 1;
627 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
628 strcmp (media[card_idx], "1") == 0) {
629 np->speed = 10;
630 np->mii_if.full_duplex = 0;
631 } else {
632 np->an_enable = 1;
635 if (flowctrl == 1)
636 np->flowctrl = 1;
639 /* Fibre PHY? */
640 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
641 /* Default 100Mbps Full */
642 if (np->an_enable) {
643 np->speed = 100;
644 np->mii_if.full_duplex = 1;
645 np->an_enable = 0;
648 /* Reset PHY */
649 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
650 mdelay (300);
651 /* If flow control enabled, we need to advertise it.*/
652 if (np->flowctrl)
653 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
654 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
655 /* Force media type */
656 if (!np->an_enable) {
657 mii_ctl = 0;
658 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
659 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
660 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
661 printk (KERN_INFO "Override speed=%d, %s duplex\n",
662 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
666 /* Perhaps move the reset here? */
667 /* Reset the chip to erase previous misconfiguration. */
668 if (netif_msg_hw(np))
669 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
670 sundance_reset(dev, 0x00ff << 16);
671 if (netif_msg_hw(np))
672 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
674 card_idx++;
675 return 0;
677 err_out_unregister:
678 unregister_netdev(dev);
679 err_out_unmap_rx:
680 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
681 np->rx_ring, np->rx_ring_dma);
682 err_out_unmap_tx:
683 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
684 np->tx_ring, np->tx_ring_dma);
685 err_out_cleardev:
686 pci_set_drvdata(pdev, NULL);
687 pci_iounmap(pdev, ioaddr);
688 err_out_res:
689 pci_release_regions(pdev);
690 err_out_netdev:
691 free_netdev (dev);
692 return -ENODEV;
695 static int change_mtu(struct net_device *dev, int new_mtu)
697 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
698 return -EINVAL;
699 if (netif_running(dev))
700 return -EBUSY;
701 dev->mtu = new_mtu;
702 return 0;
705 #define eeprom_delay(ee_addr) ioread32(ee_addr)
706 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
707 static int __devinit eeprom_read(void __iomem *ioaddr, int location)
709 int boguscnt = 10000; /* Typical 1900 ticks. */
710 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
711 do {
712 eeprom_delay(ioaddr + EECtrl);
713 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
714 return ioread16(ioaddr + EEData);
716 } while (--boguscnt > 0);
717 return 0;
720 /* MII transceiver control section.
721 Read and write the MII registers using software-generated serial
722 MDIO protocol. See the MII specifications or DP83840A data sheet
723 for details.
725 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
726 met by back-to-back 33Mhz PCI cycles. */
727 #define mdio_delay() ioread8(mdio_addr)
729 enum mii_reg_bits {
730 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
732 #define MDIO_EnbIn (0)
733 #define MDIO_WRITE0 (MDIO_EnbOutput)
734 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
736 /* Generate the preamble required for initial synchronization and
737 a few older transceivers. */
738 static void mdio_sync(void __iomem *mdio_addr)
740 int bits = 32;
742 /* Establish sync by sending at least 32 logic ones. */
743 while (--bits >= 0) {
744 iowrite8(MDIO_WRITE1, mdio_addr);
745 mdio_delay();
746 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
747 mdio_delay();
751 static int mdio_read(struct net_device *dev, int phy_id, int location)
753 struct netdev_private *np = netdev_priv(dev);
754 void __iomem *mdio_addr = np->base + MIICtrl;
755 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
756 int i, retval = 0;
758 if (np->mii_preamble_required)
759 mdio_sync(mdio_addr);
761 /* Shift the read command bits out. */
762 for (i = 15; i >= 0; i--) {
763 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
765 iowrite8(dataval, mdio_addr);
766 mdio_delay();
767 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
768 mdio_delay();
770 /* Read the two transition, 16 data, and wire-idle bits. */
771 for (i = 19; i > 0; i--) {
772 iowrite8(MDIO_EnbIn, mdio_addr);
773 mdio_delay();
774 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
775 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
776 mdio_delay();
778 return (retval>>1) & 0xffff;
781 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
783 struct netdev_private *np = netdev_priv(dev);
784 void __iomem *mdio_addr = np->base + MIICtrl;
785 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
786 int i;
788 if (np->mii_preamble_required)
789 mdio_sync(mdio_addr);
791 /* Shift the command bits out. */
792 for (i = 31; i >= 0; i--) {
793 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
795 iowrite8(dataval, mdio_addr);
796 mdio_delay();
797 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
798 mdio_delay();
800 /* Clear out extra bits. */
801 for (i = 2; i > 0; i--) {
802 iowrite8(MDIO_EnbIn, mdio_addr);
803 mdio_delay();
804 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
805 mdio_delay();
809 static int mdio_wait_link(struct net_device *dev, int wait)
811 int bmsr;
812 int phy_id;
813 struct netdev_private *np;
815 np = netdev_priv(dev);
816 phy_id = np->phys[0];
818 do {
819 bmsr = mdio_read(dev, phy_id, MII_BMSR);
820 if (bmsr & 0x0004)
821 return 0;
822 mdelay(1);
823 } while (--wait > 0);
824 return -1;
827 static int netdev_open(struct net_device *dev)
829 struct netdev_private *np = netdev_priv(dev);
830 void __iomem *ioaddr = np->base;
831 unsigned long flags;
832 int i;
834 /* Do we need to reset the chip??? */
836 i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
837 if (i)
838 return i;
840 if (netif_msg_ifup(np))
841 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
842 dev->name, dev->irq);
843 init_ring(dev);
845 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
846 /* The Tx list pointer is written as packets are queued. */
848 /* Initialize other registers. */
849 __set_mac_addr(dev);
850 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
851 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
852 #else
853 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
854 #endif
855 if (dev->mtu > 2047)
856 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
858 /* Configure the PCI bus bursts and FIFO thresholds. */
860 if (dev->if_port == 0)
861 dev->if_port = np->default_port;
863 spin_lock_init(&np->mcastlock);
865 set_rx_mode(dev);
866 iowrite16(0, ioaddr + IntrEnable);
867 iowrite16(0, ioaddr + DownCounter);
868 /* Set the chip to poll every N*320nsec. */
869 iowrite8(100, ioaddr + RxDMAPollPeriod);
870 iowrite8(127, ioaddr + TxDMAPollPeriod);
871 /* Fix DFE-580TX packet drop issue */
872 if (np->pci_dev->revision >= 0x14)
873 iowrite8(0x01, ioaddr + DebugCtrl1);
874 netif_start_queue(dev);
876 spin_lock_irqsave(&np->lock, flags);
877 reset_tx(dev);
878 spin_unlock_irqrestore(&np->lock, flags);
880 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
882 if (netif_msg_ifup(np))
883 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
884 "MAC Control %x, %4.4x %4.4x.\n",
885 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
886 ioread32(ioaddr + MACCtrl0),
887 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
889 /* Set the timer to check for link beat. */
890 init_timer(&np->timer);
891 np->timer.expires = jiffies + 3*HZ;
892 np->timer.data = (unsigned long)dev;
893 np->timer.function = netdev_timer; /* timer handler */
894 add_timer(&np->timer);
896 /* Enable interrupts by setting the interrupt mask. */
897 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
899 return 0;
902 static void check_duplex(struct net_device *dev)
904 struct netdev_private *np = netdev_priv(dev);
905 void __iomem *ioaddr = np->base;
906 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
907 int negotiated = mii_lpa & np->mii_if.advertising;
908 int duplex;
910 /* Force media */
911 if (!np->an_enable || mii_lpa == 0xffff) {
912 if (np->mii_if.full_duplex)
913 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
914 ioaddr + MACCtrl0);
915 return;
918 /* Autonegotiation */
919 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
920 if (np->mii_if.full_duplex != duplex) {
921 np->mii_if.full_duplex = duplex;
922 if (netif_msg_link(np))
923 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
924 "negotiated capability %4.4x.\n", dev->name,
925 duplex ? "full" : "half", np->phys[0], negotiated);
926 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
930 static void netdev_timer(unsigned long data)
932 struct net_device *dev = (struct net_device *)data;
933 struct netdev_private *np = netdev_priv(dev);
934 void __iomem *ioaddr = np->base;
935 int next_tick = 10*HZ;
937 if (netif_msg_timer(np)) {
938 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
939 "Tx %x Rx %x.\n",
940 dev->name, ioread16(ioaddr + IntrEnable),
941 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
943 check_duplex(dev);
944 np->timer.expires = jiffies + next_tick;
945 add_timer(&np->timer);
948 static void tx_timeout(struct net_device *dev)
950 struct netdev_private *np = netdev_priv(dev);
951 void __iomem *ioaddr = np->base;
952 unsigned long flag;
954 netif_stop_queue(dev);
955 tasklet_disable(&np->tx_tasklet);
956 iowrite16(0, ioaddr + IntrEnable);
957 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
958 "TxFrameId %2.2x,"
959 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
960 ioread8(ioaddr + TxFrameId));
963 int i;
964 for (i=0; i<TX_RING_SIZE; i++) {
965 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
966 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
967 le32_to_cpu(np->tx_ring[i].next_desc),
968 le32_to_cpu(np->tx_ring[i].status),
969 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
970 le32_to_cpu(np->tx_ring[i].frag[0].addr),
971 le32_to_cpu(np->tx_ring[i].frag[0].length));
973 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
974 ioread32(np->base + TxListPtr),
975 netif_queue_stopped(dev));
976 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
977 np->cur_tx, np->cur_tx % TX_RING_SIZE,
978 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
979 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
980 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
982 spin_lock_irqsave(&np->lock, flag);
984 /* Stop and restart the chip's Tx processes . */
985 reset_tx(dev);
986 spin_unlock_irqrestore(&np->lock, flag);
988 dev->if_port = 0;
990 dev->trans_start = jiffies; /* prevent tx timeout */
991 dev->stats.tx_errors++;
992 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
993 netif_wake_queue(dev);
995 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
996 tasklet_enable(&np->tx_tasklet);
1000 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1001 static void init_ring(struct net_device *dev)
1003 struct netdev_private *np = netdev_priv(dev);
1004 int i;
1006 np->cur_rx = np->cur_tx = 0;
1007 np->dirty_rx = np->dirty_tx = 0;
1008 np->cur_task = 0;
1010 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1012 /* Initialize all Rx descriptors. */
1013 for (i = 0; i < RX_RING_SIZE; i++) {
1014 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1015 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1016 np->rx_ring[i].status = 0;
1017 np->rx_ring[i].frag[0].length = 0;
1018 np->rx_skbuff[i] = NULL;
1021 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1022 for (i = 0; i < RX_RING_SIZE; i++) {
1023 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + 2);
1024 np->rx_skbuff[i] = skb;
1025 if (skb == NULL)
1026 break;
1027 skb->dev = dev; /* Mark as being used by this device. */
1028 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1029 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1030 dma_map_single(&np->pci_dev->dev, skb->data,
1031 np->rx_buf_sz, DMA_FROM_DEVICE));
1032 if (dma_mapping_error(&np->pci_dev->dev,
1033 np->rx_ring[i].frag[0].addr)) {
1034 dev_kfree_skb(skb);
1035 np->rx_skbuff[i] = NULL;
1036 break;
1038 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1040 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1042 for (i = 0; i < TX_RING_SIZE; i++) {
1043 np->tx_skbuff[i] = NULL;
1044 np->tx_ring[i].status = 0;
1048 static void tx_poll (unsigned long data)
1050 struct net_device *dev = (struct net_device *)data;
1051 struct netdev_private *np = netdev_priv(dev);
1052 unsigned head = np->cur_task % TX_RING_SIZE;
1053 struct netdev_desc *txdesc =
1054 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1056 /* Chain the next pointer */
1057 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1058 int entry = np->cur_task % TX_RING_SIZE;
1059 txdesc = &np->tx_ring[entry];
1060 if (np->last_tx) {
1061 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1062 entry*sizeof(struct netdev_desc));
1064 np->last_tx = txdesc;
1066 /* Indicate the latest descriptor of tx ring */
1067 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1069 if (ioread32 (np->base + TxListPtr) == 0)
1070 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1071 np->base + TxListPtr);
1074 static netdev_tx_t
1075 start_tx (struct sk_buff *skb, struct net_device *dev)
1077 struct netdev_private *np = netdev_priv(dev);
1078 struct netdev_desc *txdesc;
1079 unsigned entry;
1081 /* Calculate the next Tx descriptor entry. */
1082 entry = np->cur_tx % TX_RING_SIZE;
1083 np->tx_skbuff[entry] = skb;
1084 txdesc = &np->tx_ring[entry];
1086 txdesc->next_desc = 0;
1087 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1088 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1089 skb->data, skb->len, DMA_TO_DEVICE));
1090 if (dma_mapping_error(&np->pci_dev->dev,
1091 txdesc->frag[0].addr))
1092 goto drop_frame;
1093 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1095 /* Increment cur_tx before tasklet_schedule() */
1096 np->cur_tx++;
1097 mb();
1098 /* Schedule a tx_poll() task */
1099 tasklet_schedule(&np->tx_tasklet);
1101 /* On some architectures: explicitly flush cache lines here. */
1102 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1103 !netif_queue_stopped(dev)) {
1104 /* do nothing */
1105 } else {
1106 netif_stop_queue (dev);
1108 if (netif_msg_tx_queued(np)) {
1109 printk (KERN_DEBUG
1110 "%s: Transmit frame #%d queued in slot %d.\n",
1111 dev->name, np->cur_tx, entry);
1113 return NETDEV_TX_OK;
1115 drop_frame:
1116 dev_kfree_skb(skb);
1117 np->tx_skbuff[entry] = NULL;
1118 dev->stats.tx_dropped++;
1119 return NETDEV_TX_OK;
1122 /* Reset hardware tx and free all of tx buffers */
1123 static int
1124 reset_tx (struct net_device *dev)
1126 struct netdev_private *np = netdev_priv(dev);
1127 void __iomem *ioaddr = np->base;
1128 struct sk_buff *skb;
1129 int i;
1131 /* Reset tx logic, TxListPtr will be cleaned */
1132 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1133 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1135 /* free all tx skbuff */
1136 for (i = 0; i < TX_RING_SIZE; i++) {
1137 np->tx_ring[i].next_desc = 0;
1139 skb = np->tx_skbuff[i];
1140 if (skb) {
1141 dma_unmap_single(&np->pci_dev->dev,
1142 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1143 skb->len, DMA_TO_DEVICE);
1144 dev_kfree_skb_any(skb);
1145 np->tx_skbuff[i] = NULL;
1146 dev->stats.tx_dropped++;
1149 np->cur_tx = np->dirty_tx = 0;
1150 np->cur_task = 0;
1152 np->last_tx = NULL;
1153 iowrite8(127, ioaddr + TxDMAPollPeriod);
1155 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1156 return 0;
1159 /* The interrupt handler cleans up after the Tx thread,
1160 and schedule a Rx thread work */
1161 static irqreturn_t intr_handler(int irq, void *dev_instance)
1163 struct net_device *dev = (struct net_device *)dev_instance;
1164 struct netdev_private *np = netdev_priv(dev);
1165 void __iomem *ioaddr = np->base;
1166 int hw_frame_id;
1167 int tx_cnt;
1168 int tx_status;
1169 int handled = 0;
1170 int i;
1173 do {
1174 int intr_status = ioread16(ioaddr + IntrStatus);
1175 iowrite16(intr_status, ioaddr + IntrStatus);
1177 if (netif_msg_intr(np))
1178 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1179 dev->name, intr_status);
1181 if (!(intr_status & DEFAULT_INTR))
1182 break;
1184 handled = 1;
1186 if (intr_status & (IntrRxDMADone)) {
1187 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1188 ioaddr + IntrEnable);
1189 if (np->budget < 0)
1190 np->budget = RX_BUDGET;
1191 tasklet_schedule(&np->rx_tasklet);
1193 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1194 tx_status = ioread16 (ioaddr + TxStatus);
1195 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1196 if (netif_msg_tx_done(np))
1197 printk
1198 ("%s: Transmit status is %2.2x.\n",
1199 dev->name, tx_status);
1200 if (tx_status & 0x1e) {
1201 if (netif_msg_tx_err(np))
1202 printk("%s: Transmit error status %4.4x.\n",
1203 dev->name, tx_status);
1204 dev->stats.tx_errors++;
1205 if (tx_status & 0x10)
1206 dev->stats.tx_fifo_errors++;
1207 if (tx_status & 0x08)
1208 dev->stats.collisions++;
1209 if (tx_status & 0x04)
1210 dev->stats.tx_fifo_errors++;
1211 if (tx_status & 0x02)
1212 dev->stats.tx_window_errors++;
1215 ** This reset has been verified on
1216 ** DFE-580TX boards ! phdm@macqel.be.
1218 if (tx_status & 0x10) { /* TxUnderrun */
1219 /* Restart Tx FIFO and transmitter */
1220 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1221 /* No need to reset the Tx pointer here */
1223 /* Restart the Tx. Need to make sure tx enabled */
1224 i = 10;
1225 do {
1226 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1227 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1228 break;
1229 mdelay(1);
1230 } while (--i);
1232 /* Yup, this is a documentation bug. It cost me *hours*. */
1233 iowrite16 (0, ioaddr + TxStatus);
1234 if (tx_cnt < 0) {
1235 iowrite32(5000, ioaddr + DownCounter);
1236 break;
1238 tx_status = ioread16 (ioaddr + TxStatus);
1240 hw_frame_id = (tx_status >> 8) & 0xff;
1241 } else {
1242 hw_frame_id = ioread8(ioaddr + TxFrameId);
1245 if (np->pci_dev->revision >= 0x14) {
1246 spin_lock(&np->lock);
1247 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1248 int entry = np->dirty_tx % TX_RING_SIZE;
1249 struct sk_buff *skb;
1250 int sw_frame_id;
1251 sw_frame_id = (le32_to_cpu(
1252 np->tx_ring[entry].status) >> 2) & 0xff;
1253 if (sw_frame_id == hw_frame_id &&
1254 !(le32_to_cpu(np->tx_ring[entry].status)
1255 & 0x00010000))
1256 break;
1257 if (sw_frame_id == (hw_frame_id + 1) %
1258 TX_RING_SIZE)
1259 break;
1260 skb = np->tx_skbuff[entry];
1261 /* Free the original skb. */
1262 dma_unmap_single(&np->pci_dev->dev,
1263 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1264 skb->len, DMA_TO_DEVICE);
1265 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1266 np->tx_skbuff[entry] = NULL;
1267 np->tx_ring[entry].frag[0].addr = 0;
1268 np->tx_ring[entry].frag[0].length = 0;
1270 spin_unlock(&np->lock);
1271 } else {
1272 spin_lock(&np->lock);
1273 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1274 int entry = np->dirty_tx % TX_RING_SIZE;
1275 struct sk_buff *skb;
1276 if (!(le32_to_cpu(np->tx_ring[entry].status)
1277 & 0x00010000))
1278 break;
1279 skb = np->tx_skbuff[entry];
1280 /* Free the original skb. */
1281 dma_unmap_single(&np->pci_dev->dev,
1282 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1283 skb->len, DMA_TO_DEVICE);
1284 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1285 np->tx_skbuff[entry] = NULL;
1286 np->tx_ring[entry].frag[0].addr = 0;
1287 np->tx_ring[entry].frag[0].length = 0;
1289 spin_unlock(&np->lock);
1292 if (netif_queue_stopped(dev) &&
1293 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1294 /* The ring is no longer full, clear busy flag. */
1295 netif_wake_queue (dev);
1297 /* Abnormal error summary/uncommon events handlers. */
1298 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1299 netdev_error(dev, intr_status);
1300 } while (0);
1301 if (netif_msg_intr(np))
1302 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1303 dev->name, ioread16(ioaddr + IntrStatus));
1304 return IRQ_RETVAL(handled);
1307 static void rx_poll(unsigned long data)
1309 struct net_device *dev = (struct net_device *)data;
1310 struct netdev_private *np = netdev_priv(dev);
1311 int entry = np->cur_rx % RX_RING_SIZE;
1312 int boguscnt = np->budget;
1313 void __iomem *ioaddr = np->base;
1314 int received = 0;
1316 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1317 while (1) {
1318 struct netdev_desc *desc = &(np->rx_ring[entry]);
1319 u32 frame_status = le32_to_cpu(desc->status);
1320 int pkt_len;
1322 if (--boguscnt < 0) {
1323 goto not_done;
1325 if (!(frame_status & DescOwn))
1326 break;
1327 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1328 if (netif_msg_rx_status(np))
1329 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1330 frame_status);
1331 if (frame_status & 0x001f4000) {
1332 /* There was a error. */
1333 if (netif_msg_rx_err(np))
1334 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1335 frame_status);
1336 dev->stats.rx_errors++;
1337 if (frame_status & 0x00100000)
1338 dev->stats.rx_length_errors++;
1339 if (frame_status & 0x00010000)
1340 dev->stats.rx_fifo_errors++;
1341 if (frame_status & 0x00060000)
1342 dev->stats.rx_frame_errors++;
1343 if (frame_status & 0x00080000)
1344 dev->stats.rx_crc_errors++;
1345 if (frame_status & 0x00100000) {
1346 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1347 " status %8.8x.\n",
1348 dev->name, frame_status);
1350 } else {
1351 struct sk_buff *skb;
1352 #ifndef final_version
1353 if (netif_msg_rx_status(np))
1354 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1355 ", bogus_cnt %d.\n",
1356 pkt_len, boguscnt);
1357 #endif
1358 /* Check if the packet is long enough to accept without copying
1359 to a minimally-sized skbuff. */
1360 if (pkt_len < rx_copybreak &&
1361 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1362 skb_reserve(skb, 2); /* 16 byte align the IP header */
1363 dma_sync_single_for_cpu(&np->pci_dev->dev,
1364 le32_to_cpu(desc->frag[0].addr),
1365 np->rx_buf_sz, DMA_FROM_DEVICE);
1366 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1367 dma_sync_single_for_device(&np->pci_dev->dev,
1368 le32_to_cpu(desc->frag[0].addr),
1369 np->rx_buf_sz, DMA_FROM_DEVICE);
1370 skb_put(skb, pkt_len);
1371 } else {
1372 dma_unmap_single(&np->pci_dev->dev,
1373 le32_to_cpu(desc->frag[0].addr),
1374 np->rx_buf_sz, DMA_FROM_DEVICE);
1375 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1376 np->rx_skbuff[entry] = NULL;
1378 skb->protocol = eth_type_trans(skb, dev);
1379 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1380 netif_rx(skb);
1382 entry = (entry + 1) % RX_RING_SIZE;
1383 received++;
1385 np->cur_rx = entry;
1386 refill_rx (dev);
1387 np->budget -= received;
1388 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1389 return;
1391 not_done:
1392 np->cur_rx = entry;
1393 refill_rx (dev);
1394 if (!received)
1395 received = 1;
1396 np->budget -= received;
1397 if (np->budget <= 0)
1398 np->budget = RX_BUDGET;
1399 tasklet_schedule(&np->rx_tasklet);
1402 static void refill_rx (struct net_device *dev)
1404 struct netdev_private *np = netdev_priv(dev);
1405 int entry;
1406 int cnt = 0;
1408 /* Refill the Rx ring buffers. */
1409 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1410 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1411 struct sk_buff *skb;
1412 entry = np->dirty_rx % RX_RING_SIZE;
1413 if (np->rx_skbuff[entry] == NULL) {
1414 skb = dev_alloc_skb(np->rx_buf_sz + 2);
1415 np->rx_skbuff[entry] = skb;
1416 if (skb == NULL)
1417 break; /* Better luck next round. */
1418 skb->dev = dev; /* Mark as being used by this device. */
1419 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1420 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1421 dma_map_single(&np->pci_dev->dev, skb->data,
1422 np->rx_buf_sz, DMA_FROM_DEVICE));
1423 if (dma_mapping_error(&np->pci_dev->dev,
1424 np->rx_ring[entry].frag[0].addr)) {
1425 dev_kfree_skb_irq(skb);
1426 np->rx_skbuff[entry] = NULL;
1427 break;
1430 /* Perhaps we need not reset this field. */
1431 np->rx_ring[entry].frag[0].length =
1432 cpu_to_le32(np->rx_buf_sz | LastFrag);
1433 np->rx_ring[entry].status = 0;
1434 cnt++;
1437 static void netdev_error(struct net_device *dev, int intr_status)
1439 struct netdev_private *np = netdev_priv(dev);
1440 void __iomem *ioaddr = np->base;
1441 u16 mii_ctl, mii_advertise, mii_lpa;
1442 int speed;
1444 if (intr_status & LinkChange) {
1445 if (mdio_wait_link(dev, 10) == 0) {
1446 printk(KERN_INFO "%s: Link up\n", dev->name);
1447 if (np->an_enable) {
1448 mii_advertise = mdio_read(dev, np->phys[0],
1449 MII_ADVERTISE);
1450 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1451 mii_advertise &= mii_lpa;
1452 printk(KERN_INFO "%s: Link changed: ",
1453 dev->name);
1454 if (mii_advertise & ADVERTISE_100FULL) {
1455 np->speed = 100;
1456 printk("100Mbps, full duplex\n");
1457 } else if (mii_advertise & ADVERTISE_100HALF) {
1458 np->speed = 100;
1459 printk("100Mbps, half duplex\n");
1460 } else if (mii_advertise & ADVERTISE_10FULL) {
1461 np->speed = 10;
1462 printk("10Mbps, full duplex\n");
1463 } else if (mii_advertise & ADVERTISE_10HALF) {
1464 np->speed = 10;
1465 printk("10Mbps, half duplex\n");
1466 } else
1467 printk("\n");
1469 } else {
1470 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1471 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1472 np->speed = speed;
1473 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1474 dev->name, speed);
1475 printk("%s duplex.\n",
1476 (mii_ctl & BMCR_FULLDPLX) ?
1477 "full" : "half");
1479 check_duplex(dev);
1480 if (np->flowctrl && np->mii_if.full_duplex) {
1481 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1482 ioaddr + MulticastFilter1+2);
1483 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1484 ioaddr + MACCtrl0);
1486 netif_carrier_on(dev);
1487 } else {
1488 printk(KERN_INFO "%s: Link down\n", dev->name);
1489 netif_carrier_off(dev);
1492 if (intr_status & StatsMax) {
1493 get_stats(dev);
1495 if (intr_status & IntrPCIErr) {
1496 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1497 dev->name, intr_status);
1498 /* We must do a global reset of DMA to continue. */
1502 static struct net_device_stats *get_stats(struct net_device *dev)
1504 struct netdev_private *np = netdev_priv(dev);
1505 void __iomem *ioaddr = np->base;
1506 unsigned long flags;
1507 u8 late_coll, single_coll, mult_coll;
1509 spin_lock_irqsave(&np->statlock, flags);
1510 /* The chip only need report frame silently dropped. */
1511 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1512 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1513 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1514 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1516 mult_coll = ioread8(ioaddr + StatsMultiColl);
1517 np->xstats.tx_multiple_collisions += mult_coll;
1518 single_coll = ioread8(ioaddr + StatsOneColl);
1519 np->xstats.tx_single_collisions += single_coll;
1520 late_coll = ioread8(ioaddr + StatsLateColl);
1521 np->xstats.tx_late_collisions += late_coll;
1522 dev->stats.collisions += mult_coll
1523 + single_coll
1524 + late_coll;
1526 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1527 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1528 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1529 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1530 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1531 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1532 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1534 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1535 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1536 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1537 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1539 spin_unlock_irqrestore(&np->statlock, flags);
1541 return &dev->stats;
1544 static void set_rx_mode(struct net_device *dev)
1546 struct netdev_private *np = netdev_priv(dev);
1547 void __iomem *ioaddr = np->base;
1548 u16 mc_filter[4]; /* Multicast hash filter */
1549 u32 rx_mode;
1550 int i;
1552 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1553 memset(mc_filter, 0xff, sizeof(mc_filter));
1554 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1555 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1556 (dev->flags & IFF_ALLMULTI)) {
1557 /* Too many to match, or accept all multicasts. */
1558 memset(mc_filter, 0xff, sizeof(mc_filter));
1559 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1560 } else if (!netdev_mc_empty(dev)) {
1561 struct netdev_hw_addr *ha;
1562 int bit;
1563 int index;
1564 int crc;
1565 memset (mc_filter, 0, sizeof (mc_filter));
1566 netdev_for_each_mc_addr(ha, dev) {
1567 crc = ether_crc_le(ETH_ALEN, ha->addr);
1568 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1569 if (crc & 0x80000000) index |= 1 << bit;
1570 mc_filter[index/16] |= (1 << (index % 16));
1572 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1573 } else {
1574 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1575 return;
1577 if (np->mii_if.full_duplex && np->flowctrl)
1578 mc_filter[3] |= 0x0200;
1580 for (i = 0; i < 4; i++)
1581 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1582 iowrite8(rx_mode, ioaddr + RxMode);
1585 static int __set_mac_addr(struct net_device *dev)
1587 struct netdev_private *np = netdev_priv(dev);
1588 u16 addr16;
1590 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1591 iowrite16(addr16, np->base + StationAddr);
1592 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1593 iowrite16(addr16, np->base + StationAddr+2);
1594 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1595 iowrite16(addr16, np->base + StationAddr+4);
1596 return 0;
1599 /* Invoked with rtnl_lock held */
1600 static int sundance_set_mac_addr(struct net_device *dev, void *data)
1602 const struct sockaddr *addr = data;
1604 if (!is_valid_ether_addr(addr->sa_data))
1605 return -EINVAL;
1606 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1607 __set_mac_addr(dev);
1609 return 0;
1612 static const struct {
1613 const char name[ETH_GSTRING_LEN];
1614 } sundance_stats[] = {
1615 { "tx_multiple_collisions" },
1616 { "tx_single_collisions" },
1617 { "tx_late_collisions" },
1618 { "tx_deferred" },
1619 { "tx_deferred_excessive" },
1620 { "tx_aborted" },
1621 { "tx_bcasts" },
1622 { "rx_bcasts" },
1623 { "tx_mcasts" },
1624 { "rx_mcasts" },
1627 static int check_if_running(struct net_device *dev)
1629 if (!netif_running(dev))
1630 return -EINVAL;
1631 return 0;
1634 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1636 struct netdev_private *np = netdev_priv(dev);
1637 strcpy(info->driver, DRV_NAME);
1638 strcpy(info->version, DRV_VERSION);
1639 strcpy(info->bus_info, pci_name(np->pci_dev));
1642 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1644 struct netdev_private *np = netdev_priv(dev);
1645 spin_lock_irq(&np->lock);
1646 mii_ethtool_gset(&np->mii_if, ecmd);
1647 spin_unlock_irq(&np->lock);
1648 return 0;
1651 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1653 struct netdev_private *np = netdev_priv(dev);
1654 int res;
1655 spin_lock_irq(&np->lock);
1656 res = mii_ethtool_sset(&np->mii_if, ecmd);
1657 spin_unlock_irq(&np->lock);
1658 return res;
1661 static int nway_reset(struct net_device *dev)
1663 struct netdev_private *np = netdev_priv(dev);
1664 return mii_nway_restart(&np->mii_if);
1667 static u32 get_link(struct net_device *dev)
1669 struct netdev_private *np = netdev_priv(dev);
1670 return mii_link_ok(&np->mii_if);
1673 static u32 get_msglevel(struct net_device *dev)
1675 struct netdev_private *np = netdev_priv(dev);
1676 return np->msg_enable;
1679 static void set_msglevel(struct net_device *dev, u32 val)
1681 struct netdev_private *np = netdev_priv(dev);
1682 np->msg_enable = val;
1685 static void get_strings(struct net_device *dev, u32 stringset,
1686 u8 *data)
1688 if (stringset == ETH_SS_STATS)
1689 memcpy(data, sundance_stats, sizeof(sundance_stats));
1692 static int get_sset_count(struct net_device *dev, int sset)
1694 switch (sset) {
1695 case ETH_SS_STATS:
1696 return ARRAY_SIZE(sundance_stats);
1697 default:
1698 return -EOPNOTSUPP;
1702 static void get_ethtool_stats(struct net_device *dev,
1703 struct ethtool_stats *stats, u64 *data)
1705 struct netdev_private *np = netdev_priv(dev);
1706 int i = 0;
1708 get_stats(dev);
1709 data[i++] = np->xstats.tx_multiple_collisions;
1710 data[i++] = np->xstats.tx_single_collisions;
1711 data[i++] = np->xstats.tx_late_collisions;
1712 data[i++] = np->xstats.tx_deferred;
1713 data[i++] = np->xstats.tx_deferred_excessive;
1714 data[i++] = np->xstats.tx_aborted;
1715 data[i++] = np->xstats.tx_bcasts;
1716 data[i++] = np->xstats.rx_bcasts;
1717 data[i++] = np->xstats.tx_mcasts;
1718 data[i++] = np->xstats.rx_mcasts;
1721 static const struct ethtool_ops ethtool_ops = {
1722 .begin = check_if_running,
1723 .get_drvinfo = get_drvinfo,
1724 .get_settings = get_settings,
1725 .set_settings = set_settings,
1726 .nway_reset = nway_reset,
1727 .get_link = get_link,
1728 .get_msglevel = get_msglevel,
1729 .set_msglevel = set_msglevel,
1730 .get_strings = get_strings,
1731 .get_sset_count = get_sset_count,
1732 .get_ethtool_stats = get_ethtool_stats,
1735 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1737 struct netdev_private *np = netdev_priv(dev);
1738 int rc;
1740 if (!netif_running(dev))
1741 return -EINVAL;
1743 spin_lock_irq(&np->lock);
1744 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1745 spin_unlock_irq(&np->lock);
1747 return rc;
1750 static int netdev_close(struct net_device *dev)
1752 struct netdev_private *np = netdev_priv(dev);
1753 void __iomem *ioaddr = np->base;
1754 struct sk_buff *skb;
1755 int i;
1757 /* Wait and kill tasklet */
1758 tasklet_kill(&np->rx_tasklet);
1759 tasklet_kill(&np->tx_tasklet);
1760 np->cur_tx = 0;
1761 np->dirty_tx = 0;
1762 np->cur_task = 0;
1763 np->last_tx = NULL;
1765 netif_stop_queue(dev);
1767 if (netif_msg_ifdown(np)) {
1768 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1769 "Rx %4.4x Int %2.2x.\n",
1770 dev->name, ioread8(ioaddr + TxStatus),
1771 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1772 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1773 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1776 /* Disable interrupts by clearing the interrupt mask. */
1777 iowrite16(0x0000, ioaddr + IntrEnable);
1779 /* Disable Rx and Tx DMA for safely release resource */
1780 iowrite32(0x500, ioaddr + DMACtrl);
1782 /* Stop the chip's Tx and Rx processes. */
1783 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1785 for (i = 2000; i > 0; i--) {
1786 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1787 break;
1788 mdelay(1);
1791 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1792 ioaddr + ASIC_HI_WORD(ASICCtrl));
1794 for (i = 2000; i > 0; i--) {
1795 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1796 break;
1797 mdelay(1);
1800 #ifdef __i386__
1801 if (netif_msg_hw(np)) {
1802 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1803 (int)(np->tx_ring_dma));
1804 for (i = 0; i < TX_RING_SIZE; i++)
1805 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1806 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1807 np->tx_ring[i].frag[0].length);
1808 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1809 (int)(np->rx_ring_dma));
1810 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1811 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1812 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1813 np->rx_ring[i].frag[0].length);
1816 #endif /* __i386__ debugging only */
1818 free_irq(dev->irq, dev);
1820 del_timer_sync(&np->timer);
1822 /* Free all the skbuffs in the Rx queue. */
1823 for (i = 0; i < RX_RING_SIZE; i++) {
1824 np->rx_ring[i].status = 0;
1825 skb = np->rx_skbuff[i];
1826 if (skb) {
1827 dma_unmap_single(&np->pci_dev->dev,
1828 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1829 np->rx_buf_sz, DMA_FROM_DEVICE);
1830 dev_kfree_skb(skb);
1831 np->rx_skbuff[i] = NULL;
1833 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1835 for (i = 0; i < TX_RING_SIZE; i++) {
1836 np->tx_ring[i].next_desc = 0;
1837 skb = np->tx_skbuff[i];
1838 if (skb) {
1839 dma_unmap_single(&np->pci_dev->dev,
1840 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1841 skb->len, DMA_TO_DEVICE);
1842 dev_kfree_skb(skb);
1843 np->tx_skbuff[i] = NULL;
1847 return 0;
1850 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1852 struct net_device *dev = pci_get_drvdata(pdev);
1854 if (dev) {
1855 struct netdev_private *np = netdev_priv(dev);
1856 unregister_netdev(dev);
1857 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1858 np->rx_ring, np->rx_ring_dma);
1859 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1860 np->tx_ring, np->tx_ring_dma);
1861 pci_iounmap(pdev, np->base);
1862 pci_release_regions(pdev);
1863 free_netdev(dev);
1864 pci_set_drvdata(pdev, NULL);
1868 #ifdef CONFIG_PM
1870 static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1872 struct net_device *dev = pci_get_drvdata(pci_dev);
1874 if (!netif_running(dev))
1875 return 0;
1877 netdev_close(dev);
1878 netif_device_detach(dev);
1880 pci_save_state(pci_dev);
1881 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1883 return 0;
1886 static int sundance_resume(struct pci_dev *pci_dev)
1888 struct net_device *dev = pci_get_drvdata(pci_dev);
1889 int err = 0;
1891 if (!netif_running(dev))
1892 return 0;
1894 pci_set_power_state(pci_dev, PCI_D0);
1895 pci_restore_state(pci_dev);
1897 err = netdev_open(dev);
1898 if (err) {
1899 printk(KERN_ERR "%s: Can't resume interface!\n",
1900 dev->name);
1901 goto out;
1904 netif_device_attach(dev);
1906 out:
1907 return err;
1910 #endif /* CONFIG_PM */
1912 static struct pci_driver sundance_driver = {
1913 .name = DRV_NAME,
1914 .id_table = sundance_pci_tbl,
1915 .probe = sundance_probe1,
1916 .remove = __devexit_p(sundance_remove1),
1917 #ifdef CONFIG_PM
1918 .suspend = sundance_suspend,
1919 .resume = sundance_resume,
1920 #endif /* CONFIG_PM */
1923 static int __init sundance_init(void)
1925 /* when a module, this is printed whether or not devices are found in probe */
1926 #ifdef MODULE
1927 printk(version);
1928 #endif
1929 return pci_register_driver(&sundance_driver);
1932 static void __exit sundance_exit(void)
1934 pci_unregister_driver(&sundance_driver);
1937 module_init(sundance_init);
1938 module_exit(sundance_exit);