ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob88e708be1f64e66bbde10b28246f52f3c59de776
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock);
35 static void clear_huge_page(struct page *page, unsigned long addr)
37 int i;
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr, struct vm_area_struct *vma)
49 int i;
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 static void enqueue_huge_page(struct page *page)
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
74 for (z = zonelist->zones; *z; z++) {
75 nid = zone_to_nid(*z);
76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
88 return page;
91 static void free_huge_page(struct page *page)
93 BUG_ON(page_count(page));
95 INIT_LIST_HEAD(&page->lru);
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
102 static int alloc_fresh_huge_page(void)
104 static int nid = 0;
105 struct page *page;
106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107 HUGETLB_PAGE_ORDER);
108 nid = next_node(nid, node_online_map);
109 if (nid == MAX_NUMNODES)
110 nid = first_node(node_online_map);
111 if (page) {
112 set_compound_page_dtor(page, free_huge_page);
113 spin_lock(&hugetlb_lock);
114 nr_huge_pages++;
115 nr_huge_pages_node[page_to_nid(page)]++;
116 spin_unlock(&hugetlb_lock);
117 put_page(page); /* free it into the hugepage allocator */
118 return 1;
120 return 0;
123 static struct page *alloc_huge_page(struct vm_area_struct *vma,
124 unsigned long addr)
126 struct page *page;
128 spin_lock(&hugetlb_lock);
129 if (vma->vm_flags & VM_MAYSHARE)
130 resv_huge_pages--;
131 else if (free_huge_pages <= resv_huge_pages)
132 goto fail;
134 page = dequeue_huge_page(vma, addr);
135 if (!page)
136 goto fail;
138 spin_unlock(&hugetlb_lock);
139 set_page_refcounted(page);
140 return page;
142 fail:
143 if (vma->vm_flags & VM_MAYSHARE)
144 resv_huge_pages++;
145 spin_unlock(&hugetlb_lock);
146 return NULL;
149 static int __init hugetlb_init(void)
151 unsigned long i;
153 if (HPAGE_SHIFT == 0)
154 return 0;
156 for (i = 0; i < MAX_NUMNODES; ++i)
157 INIT_LIST_HEAD(&hugepage_freelists[i]);
159 for (i = 0; i < max_huge_pages; ++i) {
160 if (!alloc_fresh_huge_page())
161 break;
163 max_huge_pages = free_huge_pages = nr_huge_pages = i;
164 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
165 return 0;
167 module_init(hugetlb_init);
169 static int __init hugetlb_setup(char *s)
171 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
172 max_huge_pages = 0;
173 return 1;
175 __setup("hugepages=", hugetlb_setup);
177 #ifdef CONFIG_SYSCTL
178 static void update_and_free_page(struct page *page)
180 int i;
181 nr_huge_pages--;
182 nr_huge_pages_node[page_to_nid(page)]--;
183 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
185 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
186 1 << PG_private | 1<< PG_writeback);
188 page[1].lru.next = NULL;
189 set_page_refcounted(page);
190 __free_pages(page, HUGETLB_PAGE_ORDER);
193 #ifdef CONFIG_HIGHMEM
194 static void try_to_free_low(unsigned long count)
196 int i;
198 for (i = 0; i < MAX_NUMNODES; ++i) {
199 struct page *page, *next;
200 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
201 if (PageHighMem(page))
202 continue;
203 list_del(&page->lru);
204 update_and_free_page(page);
205 free_huge_pages--;
206 free_huge_pages_node[page_to_nid(page)]--;
207 if (count >= nr_huge_pages)
208 return;
212 #else
213 static inline void try_to_free_low(unsigned long count)
216 #endif
218 static unsigned long set_max_huge_pages(unsigned long count)
220 while (count > nr_huge_pages) {
221 if (!alloc_fresh_huge_page())
222 return nr_huge_pages;
224 if (count >= nr_huge_pages)
225 return nr_huge_pages;
227 spin_lock(&hugetlb_lock);
228 count = max(count, resv_huge_pages);
229 try_to_free_low(count);
230 while (count < nr_huge_pages) {
231 struct page *page = dequeue_huge_page(NULL, 0);
232 if (!page)
233 break;
234 update_and_free_page(page);
236 spin_unlock(&hugetlb_lock);
237 return nr_huge_pages;
240 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
241 struct file *file, void __user *buffer,
242 size_t *length, loff_t *ppos)
244 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
245 max_huge_pages = set_max_huge_pages(max_huge_pages);
246 return 0;
248 #endif /* CONFIG_SYSCTL */
250 int hugetlb_report_meminfo(char *buf)
252 return sprintf(buf,
253 "HugePages_Total: %5lu\n"
254 "HugePages_Free: %5lu\n"
255 "HugePages_Rsvd: %5lu\n"
256 "Hugepagesize: %5lu kB\n",
257 nr_huge_pages,
258 free_huge_pages,
259 resv_huge_pages,
260 HPAGE_SIZE/1024);
263 int hugetlb_report_node_meminfo(int nid, char *buf)
265 return sprintf(buf,
266 "Node %d HugePages_Total: %5u\n"
267 "Node %d HugePages_Free: %5u\n",
268 nid, nr_huge_pages_node[nid],
269 nid, free_huge_pages_node[nid]);
272 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
273 unsigned long hugetlb_total_pages(void)
275 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
279 * We cannot handle pagefaults against hugetlb pages at all. They cause
280 * handle_mm_fault() to try to instantiate regular-sized pages in the
281 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
282 * this far.
284 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
285 unsigned long address, int *unused)
287 BUG();
288 return NULL;
291 struct vm_operations_struct hugetlb_vm_ops = {
292 .nopage = hugetlb_nopage,
295 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
296 int writable)
298 pte_t entry;
300 if (writable) {
301 entry =
302 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
303 } else {
304 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
306 entry = pte_mkyoung(entry);
307 entry = pte_mkhuge(entry);
309 return entry;
312 static void set_huge_ptep_writable(struct vm_area_struct *vma,
313 unsigned long address, pte_t *ptep)
315 pte_t entry;
317 entry = pte_mkwrite(pte_mkdirty(*ptep));
318 ptep_set_access_flags(vma, address, ptep, entry, 1);
319 update_mmu_cache(vma, address, entry);
320 lazy_mmu_prot_update(entry);
324 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
325 struct vm_area_struct *vma)
327 pte_t *src_pte, *dst_pte, entry;
328 struct page *ptepage;
329 unsigned long addr;
330 int cow;
332 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
334 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
335 src_pte = huge_pte_offset(src, addr);
336 if (!src_pte)
337 continue;
338 dst_pte = huge_pte_alloc(dst, addr);
339 if (!dst_pte)
340 goto nomem;
341 spin_lock(&dst->page_table_lock);
342 spin_lock(&src->page_table_lock);
343 if (!pte_none(*src_pte)) {
344 if (cow)
345 ptep_set_wrprotect(src, addr, src_pte);
346 entry = *src_pte;
347 ptepage = pte_page(entry);
348 get_page(ptepage);
349 set_huge_pte_at(dst, addr, dst_pte, entry);
351 spin_unlock(&src->page_table_lock);
352 spin_unlock(&dst->page_table_lock);
354 return 0;
356 nomem:
357 return -ENOMEM;
360 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
361 unsigned long end)
363 struct mm_struct *mm = vma->vm_mm;
364 unsigned long address;
365 pte_t *ptep;
366 pte_t pte;
367 struct page *page;
368 struct page *tmp;
370 * A page gathering list, protected by per file i_mmap_lock. The
371 * lock is used to avoid list corruption from multiple unmapping
372 * of the same page since we are using page->lru.
374 LIST_HEAD(page_list);
376 WARN_ON(!is_vm_hugetlb_page(vma));
377 BUG_ON(start & ~HPAGE_MASK);
378 BUG_ON(end & ~HPAGE_MASK);
380 spin_lock(&mm->page_table_lock);
381 for (address = start; address < end; address += HPAGE_SIZE) {
382 ptep = huge_pte_offset(mm, address);
383 if (!ptep)
384 continue;
386 if (huge_pmd_unshare(mm, &address, ptep))
387 continue;
389 pte = huge_ptep_get_and_clear(mm, address, ptep);
390 if (pte_none(pte))
391 continue;
393 page = pte_page(pte);
394 if (pte_dirty(pte))
395 set_page_dirty(page);
396 list_add(&page->lru, &page_list);
398 spin_unlock(&mm->page_table_lock);
399 flush_tlb_range(vma, start, end);
400 list_for_each_entry_safe(page, tmp, &page_list, lru) {
401 list_del(&page->lru);
402 put_page(page);
406 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
407 unsigned long end)
410 * It is undesirable to test vma->vm_file as it should be non-null
411 * for valid hugetlb area. However, vm_file will be NULL in the error
412 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
413 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
414 * to clean up. Since no pte has actually been setup, it is safe to
415 * do nothing in this case.
417 if (vma->vm_file) {
418 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
419 __unmap_hugepage_range(vma, start, end);
420 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
424 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
425 unsigned long address, pte_t *ptep, pte_t pte)
427 struct page *old_page, *new_page;
428 int avoidcopy;
430 old_page = pte_page(pte);
432 /* If no-one else is actually using this page, avoid the copy
433 * and just make the page writable */
434 avoidcopy = (page_count(old_page) == 1);
435 if (avoidcopy) {
436 set_huge_ptep_writable(vma, address, ptep);
437 return VM_FAULT_MINOR;
440 page_cache_get(old_page);
441 new_page = alloc_huge_page(vma, address);
443 if (!new_page) {
444 page_cache_release(old_page);
445 return VM_FAULT_OOM;
448 spin_unlock(&mm->page_table_lock);
449 copy_huge_page(new_page, old_page, address, vma);
450 spin_lock(&mm->page_table_lock);
452 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
453 if (likely(pte_same(*ptep, pte))) {
454 /* Break COW */
455 set_huge_pte_at(mm, address, ptep,
456 make_huge_pte(vma, new_page, 1));
457 /* Make the old page be freed below */
458 new_page = old_page;
460 page_cache_release(new_page);
461 page_cache_release(old_page);
462 return VM_FAULT_MINOR;
465 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
466 unsigned long address, pte_t *ptep, int write_access)
468 int ret = VM_FAULT_SIGBUS;
469 unsigned long idx;
470 unsigned long size;
471 struct page *page;
472 struct address_space *mapping;
473 pte_t new_pte;
475 mapping = vma->vm_file->f_mapping;
476 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
477 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
480 * Use page lock to guard against racing truncation
481 * before we get page_table_lock.
483 retry:
484 page = find_lock_page(mapping, idx);
485 if (!page) {
486 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
487 if (idx >= size)
488 goto out;
489 if (hugetlb_get_quota(mapping))
490 goto out;
491 page = alloc_huge_page(vma, address);
492 if (!page) {
493 hugetlb_put_quota(mapping);
494 ret = VM_FAULT_OOM;
495 goto out;
497 clear_huge_page(page, address);
499 if (vma->vm_flags & VM_SHARED) {
500 int err;
502 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
503 if (err) {
504 put_page(page);
505 hugetlb_put_quota(mapping);
506 if (err == -EEXIST)
507 goto retry;
508 goto out;
510 } else
511 lock_page(page);
514 spin_lock(&mm->page_table_lock);
515 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
516 if (idx >= size)
517 goto backout;
519 ret = VM_FAULT_MINOR;
520 if (!pte_none(*ptep))
521 goto backout;
523 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
524 && (vma->vm_flags & VM_SHARED)));
525 set_huge_pte_at(mm, address, ptep, new_pte);
527 if (write_access && !(vma->vm_flags & VM_SHARED)) {
528 /* Optimization, do the COW without a second fault */
529 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
532 spin_unlock(&mm->page_table_lock);
533 unlock_page(page);
534 out:
535 return ret;
537 backout:
538 spin_unlock(&mm->page_table_lock);
539 hugetlb_put_quota(mapping);
540 unlock_page(page);
541 put_page(page);
542 goto out;
545 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
546 unsigned long address, int write_access)
548 pte_t *ptep;
549 pte_t entry;
550 int ret;
551 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
553 ptep = huge_pte_alloc(mm, address);
554 if (!ptep)
555 return VM_FAULT_OOM;
558 * Serialize hugepage allocation and instantiation, so that we don't
559 * get spurious allocation failures if two CPUs race to instantiate
560 * the same page in the page cache.
562 mutex_lock(&hugetlb_instantiation_mutex);
563 entry = *ptep;
564 if (pte_none(entry)) {
565 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
566 mutex_unlock(&hugetlb_instantiation_mutex);
567 return ret;
570 ret = VM_FAULT_MINOR;
572 spin_lock(&mm->page_table_lock);
573 /* Check for a racing update before calling hugetlb_cow */
574 if (likely(pte_same(entry, *ptep)))
575 if (write_access && !pte_write(entry))
576 ret = hugetlb_cow(mm, vma, address, ptep, entry);
577 spin_unlock(&mm->page_table_lock);
578 mutex_unlock(&hugetlb_instantiation_mutex);
580 return ret;
583 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
584 struct page **pages, struct vm_area_struct **vmas,
585 unsigned long *position, int *length, int i)
587 unsigned long pfn_offset;
588 unsigned long vaddr = *position;
589 int remainder = *length;
591 spin_lock(&mm->page_table_lock);
592 while (vaddr < vma->vm_end && remainder) {
593 pte_t *pte;
594 struct page *page;
597 * Some archs (sparc64, sh*) have multiple pte_ts to
598 * each hugepage. We have to make * sure we get the
599 * first, for the page indexing below to work.
601 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
603 if (!pte || pte_none(*pte)) {
604 int ret;
606 spin_unlock(&mm->page_table_lock);
607 ret = hugetlb_fault(mm, vma, vaddr, 0);
608 spin_lock(&mm->page_table_lock);
609 if (ret == VM_FAULT_MINOR)
610 continue;
612 remainder = 0;
613 if (!i)
614 i = -EFAULT;
615 break;
618 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
619 page = pte_page(*pte);
620 same_page:
621 if (pages) {
622 get_page(page);
623 pages[i] = page + pfn_offset;
626 if (vmas)
627 vmas[i] = vma;
629 vaddr += PAGE_SIZE;
630 ++pfn_offset;
631 --remainder;
632 ++i;
633 if (vaddr < vma->vm_end && remainder &&
634 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
636 * We use pfn_offset to avoid touching the pageframes
637 * of this compound page.
639 goto same_page;
642 spin_unlock(&mm->page_table_lock);
643 *length = remainder;
644 *position = vaddr;
646 return i;
649 void hugetlb_change_protection(struct vm_area_struct *vma,
650 unsigned long address, unsigned long end, pgprot_t newprot)
652 struct mm_struct *mm = vma->vm_mm;
653 unsigned long start = address;
654 pte_t *ptep;
655 pte_t pte;
657 BUG_ON(address >= end);
658 flush_cache_range(vma, address, end);
660 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
661 spin_lock(&mm->page_table_lock);
662 for (; address < end; address += HPAGE_SIZE) {
663 ptep = huge_pte_offset(mm, address);
664 if (!ptep)
665 continue;
666 if (huge_pmd_unshare(mm, &address, ptep))
667 continue;
668 if (!pte_none(*ptep)) {
669 pte = huge_ptep_get_and_clear(mm, address, ptep);
670 pte = pte_mkhuge(pte_modify(pte, newprot));
671 set_huge_pte_at(mm, address, ptep, pte);
672 lazy_mmu_prot_update(pte);
675 spin_unlock(&mm->page_table_lock);
676 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
678 flush_tlb_range(vma, start, end);
681 struct file_region {
682 struct list_head link;
683 long from;
684 long to;
687 static long region_add(struct list_head *head, long f, long t)
689 struct file_region *rg, *nrg, *trg;
691 /* Locate the region we are either in or before. */
692 list_for_each_entry(rg, head, link)
693 if (f <= rg->to)
694 break;
696 /* Round our left edge to the current segment if it encloses us. */
697 if (f > rg->from)
698 f = rg->from;
700 /* Check for and consume any regions we now overlap with. */
701 nrg = rg;
702 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
703 if (&rg->link == head)
704 break;
705 if (rg->from > t)
706 break;
708 /* If this area reaches higher then extend our area to
709 * include it completely. If this is not the first area
710 * which we intend to reuse, free it. */
711 if (rg->to > t)
712 t = rg->to;
713 if (rg != nrg) {
714 list_del(&rg->link);
715 kfree(rg);
718 nrg->from = f;
719 nrg->to = t;
720 return 0;
723 static long region_chg(struct list_head *head, long f, long t)
725 struct file_region *rg, *nrg;
726 long chg = 0;
728 /* Locate the region we are before or in. */
729 list_for_each_entry(rg, head, link)
730 if (f <= rg->to)
731 break;
733 /* If we are below the current region then a new region is required.
734 * Subtle, allocate a new region at the position but make it zero
735 * size such that we can guarentee to record the reservation. */
736 if (&rg->link == head || t < rg->from) {
737 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
738 if (nrg == 0)
739 return -ENOMEM;
740 nrg->from = f;
741 nrg->to = f;
742 INIT_LIST_HEAD(&nrg->link);
743 list_add(&nrg->link, rg->link.prev);
745 return t - f;
748 /* Round our left edge to the current segment if it encloses us. */
749 if (f > rg->from)
750 f = rg->from;
751 chg = t - f;
753 /* Check for and consume any regions we now overlap with. */
754 list_for_each_entry(rg, rg->link.prev, link) {
755 if (&rg->link == head)
756 break;
757 if (rg->from > t)
758 return chg;
760 /* We overlap with this area, if it extends futher than
761 * us then we must extend ourselves. Account for its
762 * existing reservation. */
763 if (rg->to > t) {
764 chg += rg->to - t;
765 t = rg->to;
767 chg -= rg->to - rg->from;
769 return chg;
772 static long region_truncate(struct list_head *head, long end)
774 struct file_region *rg, *trg;
775 long chg = 0;
777 /* Locate the region we are either in or before. */
778 list_for_each_entry(rg, head, link)
779 if (end <= rg->to)
780 break;
781 if (&rg->link == head)
782 return 0;
784 /* If we are in the middle of a region then adjust it. */
785 if (end > rg->from) {
786 chg = rg->to - end;
787 rg->to = end;
788 rg = list_entry(rg->link.next, typeof(*rg), link);
791 /* Drop any remaining regions. */
792 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
793 if (&rg->link == head)
794 break;
795 chg += rg->to - rg->from;
796 list_del(&rg->link);
797 kfree(rg);
799 return chg;
802 static int hugetlb_acct_memory(long delta)
804 int ret = -ENOMEM;
806 spin_lock(&hugetlb_lock);
807 if ((delta + resv_huge_pages) <= free_huge_pages) {
808 resv_huge_pages += delta;
809 ret = 0;
811 spin_unlock(&hugetlb_lock);
812 return ret;
815 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
817 long ret, chg;
819 chg = region_chg(&inode->i_mapping->private_list, from, to);
820 if (chg < 0)
821 return chg;
822 ret = hugetlb_acct_memory(chg);
823 if (ret < 0)
824 return ret;
825 region_add(&inode->i_mapping->private_list, from, to);
826 return 0;
829 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
831 long chg = region_truncate(&inode->i_mapping->private_list, offset);
832 hugetlb_acct_memory(freed - chg);