x86, ioapic: Move nr_ioapic_registers calculation to mp_register_ioapic.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / apic / io_apic.c
blobdae9240bd287b09ebff43bb4fe36537ed8f0283c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/nmi.h>
58 #include <asm/msidef.h>
59 #include <asm/hypertransport.h>
60 #include <asm/setup.h>
61 #include <asm/irq_remapping.h>
62 #include <asm/hpet.h>
63 #include <asm/hw_irq.h>
65 #include <asm/apic.h>
67 #define __apicdebuginit(type) static type __init
68 #define for_each_irq_pin(entry, head) \
69 for (entry = head; entry; entry = entry->next)
72 * Is the SiS APIC rmw bug present ?
73 * -1 = don't know, 0 = no, 1 = yes
75 int sis_apic_bug = -1;
77 static DEFINE_RAW_SPINLOCK(ioapic_lock);
78 static DEFINE_RAW_SPINLOCK(vector_lock);
81 * # of IRQ routing registers
83 int nr_ioapic_registers[MAX_IO_APICS];
85 /* I/O APIC entries */
86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
87 int nr_ioapics;
89 /* IO APIC gsi routing info */
90 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
92 /* The last gsi number used */
93 u32 gsi_end;
95 /* MP IRQ source entries */
96 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
98 /* # of MP IRQ source entries */
99 int mp_irq_entries;
101 /* GSI interrupts */
102 static int nr_irqs_gsi = NR_IRQS_LEGACY;
104 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
105 int mp_bus_id_to_type[MAX_MP_BUSSES];
106 #endif
108 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
110 int skip_ioapic_setup;
112 void arch_disable_smp_support(void)
114 #ifdef CONFIG_PCI
115 noioapicquirk = 1;
116 noioapicreroute = -1;
117 #endif
118 skip_ioapic_setup = 1;
121 static int __init parse_noapic(char *str)
123 /* disable IO-APIC */
124 arch_disable_smp_support();
125 return 0;
127 early_param("noapic", parse_noapic);
129 struct irq_pin_list {
130 int apic, pin;
131 struct irq_pin_list *next;
134 static struct irq_pin_list *get_one_free_irq_2_pin(int node)
136 struct irq_pin_list *pin;
138 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140 return pin;
143 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
144 #ifdef CONFIG_SPARSE_IRQ
145 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
146 #else
147 static struct irq_cfg irq_cfgx[NR_IRQS];
148 #endif
150 int __init arch_early_irq_init(void)
152 struct irq_cfg *cfg;
153 struct irq_desc *desc;
154 int count;
155 int node;
156 int i;
158 if (!legacy_pic->nr_legacy_irqs) {
159 nr_irqs_gsi = 0;
160 io_apic_irqs = ~0UL;
163 cfg = irq_cfgx;
164 count = ARRAY_SIZE(irq_cfgx);
165 node= cpu_to_node(boot_cpu_id);
167 for (i = 0; i < count; i++) {
168 desc = irq_to_desc(i);
169 desc->chip_data = &cfg[i];
170 zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
171 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
173 * For legacy IRQ's, start with assigning irq0 to irq15 to
174 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
176 if (i < legacy_pic->nr_legacy_irqs) {
177 cfg[i].vector = IRQ0_VECTOR + i;
178 cpumask_set_cpu(0, cfg[i].domain);
182 return 0;
185 #ifdef CONFIG_SPARSE_IRQ
186 struct irq_cfg *irq_cfg(unsigned int irq)
188 struct irq_cfg *cfg = NULL;
189 struct irq_desc *desc;
191 desc = irq_to_desc(irq);
192 if (desc)
193 cfg = desc->chip_data;
195 return cfg;
198 static struct irq_cfg *get_one_free_irq_cfg(int node)
200 struct irq_cfg *cfg;
202 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
203 if (cfg) {
204 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
205 kfree(cfg);
206 cfg = NULL;
207 } else if (!zalloc_cpumask_var_node(&cfg->old_domain,
208 GFP_ATOMIC, node)) {
209 free_cpumask_var(cfg->domain);
210 kfree(cfg);
211 cfg = NULL;
215 return cfg;
218 int arch_init_chip_data(struct irq_desc *desc, int node)
220 struct irq_cfg *cfg;
222 cfg = desc->chip_data;
223 if (!cfg) {
224 desc->chip_data = get_one_free_irq_cfg(node);
225 if (!desc->chip_data) {
226 printk(KERN_ERR "can not alloc irq_cfg\n");
227 BUG_ON(1);
231 return 0;
234 /* for move_irq_desc */
235 static void
236 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int node)
238 struct irq_pin_list *old_entry, *head, *tail, *entry;
240 cfg->irq_2_pin = NULL;
241 old_entry = old_cfg->irq_2_pin;
242 if (!old_entry)
243 return;
245 entry = get_one_free_irq_2_pin(node);
246 if (!entry)
247 return;
249 entry->apic = old_entry->apic;
250 entry->pin = old_entry->pin;
251 head = entry;
252 tail = entry;
253 old_entry = old_entry->next;
254 while (old_entry) {
255 entry = get_one_free_irq_2_pin(node);
256 if (!entry) {
257 entry = head;
258 while (entry) {
259 head = entry->next;
260 kfree(entry);
261 entry = head;
263 /* still use the old one */
264 return;
266 entry->apic = old_entry->apic;
267 entry->pin = old_entry->pin;
268 tail->next = entry;
269 tail = entry;
270 old_entry = old_entry->next;
273 tail->next = NULL;
274 cfg->irq_2_pin = head;
277 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
279 struct irq_pin_list *entry, *next;
281 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
282 return;
284 entry = old_cfg->irq_2_pin;
286 while (entry) {
287 next = entry->next;
288 kfree(entry);
289 entry = next;
291 old_cfg->irq_2_pin = NULL;
294 void arch_init_copy_chip_data(struct irq_desc *old_desc,
295 struct irq_desc *desc, int node)
297 struct irq_cfg *cfg;
298 struct irq_cfg *old_cfg;
300 cfg = get_one_free_irq_cfg(node);
302 if (!cfg)
303 return;
305 desc->chip_data = cfg;
307 old_cfg = old_desc->chip_data;
309 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
311 init_copy_irq_2_pin(old_cfg, cfg, node);
314 static void free_irq_cfg(struct irq_cfg *old_cfg)
316 kfree(old_cfg);
319 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
321 struct irq_cfg *old_cfg, *cfg;
323 old_cfg = old_desc->chip_data;
324 cfg = desc->chip_data;
326 if (old_cfg == cfg)
327 return;
329 if (old_cfg) {
330 free_irq_2_pin(old_cfg, cfg);
331 free_irq_cfg(old_cfg);
332 old_desc->chip_data = NULL;
335 /* end for move_irq_desc */
337 #else
338 struct irq_cfg *irq_cfg(unsigned int irq)
340 return irq < nr_irqs ? irq_cfgx + irq : NULL;
343 #endif
345 struct io_apic {
346 unsigned int index;
347 unsigned int unused[3];
348 unsigned int data;
349 unsigned int unused2[11];
350 unsigned int eoi;
353 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
355 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
356 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
359 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
361 struct io_apic __iomem *io_apic = io_apic_base(apic);
362 writel(vector, &io_apic->eoi);
365 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
367 struct io_apic __iomem *io_apic = io_apic_base(apic);
368 writel(reg, &io_apic->index);
369 return readl(&io_apic->data);
372 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
374 struct io_apic __iomem *io_apic = io_apic_base(apic);
375 writel(reg, &io_apic->index);
376 writel(value, &io_apic->data);
380 * Re-write a value: to be used for read-modify-write
381 * cycles where the read already set up the index register.
383 * Older SiS APIC requires we rewrite the index register
385 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
387 struct io_apic __iomem *io_apic = io_apic_base(apic);
389 if (sis_apic_bug)
390 writel(reg, &io_apic->index);
391 writel(value, &io_apic->data);
394 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
396 struct irq_pin_list *entry;
397 unsigned long flags;
399 raw_spin_lock_irqsave(&ioapic_lock, flags);
400 for_each_irq_pin(entry, cfg->irq_2_pin) {
401 unsigned int reg;
402 int pin;
404 pin = entry->pin;
405 reg = io_apic_read(entry->apic, 0x10 + pin*2);
406 /* Is the remote IRR bit set? */
407 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
408 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
409 return true;
412 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
414 return false;
417 union entry_union {
418 struct { u32 w1, w2; };
419 struct IO_APIC_route_entry entry;
422 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
424 union entry_union eu;
425 unsigned long flags;
426 raw_spin_lock_irqsave(&ioapic_lock, flags);
427 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
428 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
429 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
430 return eu.entry;
434 * When we write a new IO APIC routing entry, we need to write the high
435 * word first! If the mask bit in the low word is clear, we will enable
436 * the interrupt, and we need to make sure the entry is fully populated
437 * before that happens.
439 static void
440 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
442 union entry_union eu = {{0, 0}};
444 eu.entry = e;
445 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
446 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
449 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
451 unsigned long flags;
452 raw_spin_lock_irqsave(&ioapic_lock, flags);
453 __ioapic_write_entry(apic, pin, e);
454 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
458 * When we mask an IO APIC routing entry, we need to write the low
459 * word first, in order to set the mask bit before we change the
460 * high bits!
462 static void ioapic_mask_entry(int apic, int pin)
464 unsigned long flags;
465 union entry_union eu = { .entry.mask = 1 };
467 raw_spin_lock_irqsave(&ioapic_lock, flags);
468 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
469 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
470 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
474 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
475 * shared ISA-space IRQs, so we have to support them. We are super
476 * fast in the common case, and fast for shared ISA-space IRQs.
478 static int
479 add_pin_to_irq_node_nopanic(struct irq_cfg *cfg, int node, int apic, int pin)
481 struct irq_pin_list **last, *entry;
483 /* don't allow duplicates */
484 last = &cfg->irq_2_pin;
485 for_each_irq_pin(entry, cfg->irq_2_pin) {
486 if (entry->apic == apic && entry->pin == pin)
487 return 0;
488 last = &entry->next;
491 entry = get_one_free_irq_2_pin(node);
492 if (!entry) {
493 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
494 node, apic, pin);
495 return -ENOMEM;
497 entry->apic = apic;
498 entry->pin = pin;
500 *last = entry;
501 return 0;
504 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
506 if (add_pin_to_irq_node_nopanic(cfg, node, apic, pin))
507 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
511 * Reroute an IRQ to a different pin.
513 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
514 int oldapic, int oldpin,
515 int newapic, int newpin)
517 struct irq_pin_list *entry;
519 for_each_irq_pin(entry, cfg->irq_2_pin) {
520 if (entry->apic == oldapic && entry->pin == oldpin) {
521 entry->apic = newapic;
522 entry->pin = newpin;
523 /* every one is different, right? */
524 return;
528 /* old apic/pin didn't exist, so just add new ones */
529 add_pin_to_irq_node(cfg, node, newapic, newpin);
532 static void __io_apic_modify_irq(struct irq_pin_list *entry,
533 int mask_and, int mask_or,
534 void (*final)(struct irq_pin_list *entry))
536 unsigned int reg, pin;
538 pin = entry->pin;
539 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
540 reg &= mask_and;
541 reg |= mask_or;
542 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
543 if (final)
544 final(entry);
547 static void io_apic_modify_irq(struct irq_cfg *cfg,
548 int mask_and, int mask_or,
549 void (*final)(struct irq_pin_list *entry))
551 struct irq_pin_list *entry;
553 for_each_irq_pin(entry, cfg->irq_2_pin)
554 __io_apic_modify_irq(entry, mask_and, mask_or, final);
557 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
559 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
560 IO_APIC_REDIR_MASKED, NULL);
563 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
565 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
566 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
569 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
571 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
574 static void io_apic_sync(struct irq_pin_list *entry)
577 * Synchronize the IO-APIC and the CPU by doing
578 * a dummy read from the IO-APIC
580 struct io_apic __iomem *io_apic;
581 io_apic = io_apic_base(entry->apic);
582 readl(&io_apic->data);
585 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
587 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
590 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
592 struct irq_cfg *cfg = desc->chip_data;
593 unsigned long flags;
595 BUG_ON(!cfg);
597 raw_spin_lock_irqsave(&ioapic_lock, flags);
598 __mask_IO_APIC_irq(cfg);
599 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
602 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
604 struct irq_cfg *cfg = desc->chip_data;
605 unsigned long flags;
607 raw_spin_lock_irqsave(&ioapic_lock, flags);
608 __unmask_IO_APIC_irq(cfg);
609 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
612 static void mask_IO_APIC_irq(unsigned int irq)
614 struct irq_desc *desc = irq_to_desc(irq);
616 mask_IO_APIC_irq_desc(desc);
618 static void unmask_IO_APIC_irq(unsigned int irq)
620 struct irq_desc *desc = irq_to_desc(irq);
622 unmask_IO_APIC_irq_desc(desc);
625 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
627 struct IO_APIC_route_entry entry;
629 /* Check delivery_mode to be sure we're not clearing an SMI pin */
630 entry = ioapic_read_entry(apic, pin);
631 if (entry.delivery_mode == dest_SMI)
632 return;
634 * Disable it in the IO-APIC irq-routing table:
636 ioapic_mask_entry(apic, pin);
639 static void clear_IO_APIC (void)
641 int apic, pin;
643 for (apic = 0; apic < nr_ioapics; apic++)
644 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
645 clear_IO_APIC_pin(apic, pin);
648 #ifdef CONFIG_X86_32
650 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
651 * specific CPU-side IRQs.
654 #define MAX_PIRQS 8
655 static int pirq_entries[MAX_PIRQS] = {
656 [0 ... MAX_PIRQS - 1] = -1
659 static int __init ioapic_pirq_setup(char *str)
661 int i, max;
662 int ints[MAX_PIRQS+1];
664 get_options(str, ARRAY_SIZE(ints), ints);
666 apic_printk(APIC_VERBOSE, KERN_INFO
667 "PIRQ redirection, working around broken MP-BIOS.\n");
668 max = MAX_PIRQS;
669 if (ints[0] < MAX_PIRQS)
670 max = ints[0];
672 for (i = 0; i < max; i++) {
673 apic_printk(APIC_VERBOSE, KERN_DEBUG
674 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
676 * PIRQs are mapped upside down, usually.
678 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
680 return 1;
683 __setup("pirq=", ioapic_pirq_setup);
684 #endif /* CONFIG_X86_32 */
686 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
688 int apic;
689 struct IO_APIC_route_entry **ioapic_entries;
691 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
692 GFP_ATOMIC);
693 if (!ioapic_entries)
694 return 0;
696 for (apic = 0; apic < nr_ioapics; apic++) {
697 ioapic_entries[apic] =
698 kzalloc(sizeof(struct IO_APIC_route_entry) *
699 nr_ioapic_registers[apic], GFP_ATOMIC);
700 if (!ioapic_entries[apic])
701 goto nomem;
704 return ioapic_entries;
706 nomem:
707 while (--apic >= 0)
708 kfree(ioapic_entries[apic]);
709 kfree(ioapic_entries);
711 return 0;
715 * Saves all the IO-APIC RTE's
717 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
719 int apic, pin;
721 if (!ioapic_entries)
722 return -ENOMEM;
724 for (apic = 0; apic < nr_ioapics; apic++) {
725 if (!ioapic_entries[apic])
726 return -ENOMEM;
728 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
729 ioapic_entries[apic][pin] =
730 ioapic_read_entry(apic, pin);
733 return 0;
737 * Mask all IO APIC entries.
739 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
741 int apic, pin;
743 if (!ioapic_entries)
744 return;
746 for (apic = 0; apic < nr_ioapics; apic++) {
747 if (!ioapic_entries[apic])
748 break;
750 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
751 struct IO_APIC_route_entry entry;
753 entry = ioapic_entries[apic][pin];
754 if (!entry.mask) {
755 entry.mask = 1;
756 ioapic_write_entry(apic, pin, entry);
763 * Restore IO APIC entries which was saved in ioapic_entries.
765 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
767 int apic, pin;
769 if (!ioapic_entries)
770 return -ENOMEM;
772 for (apic = 0; apic < nr_ioapics; apic++) {
773 if (!ioapic_entries[apic])
774 return -ENOMEM;
776 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
777 ioapic_write_entry(apic, pin,
778 ioapic_entries[apic][pin]);
780 return 0;
783 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
785 int apic;
787 for (apic = 0; apic < nr_ioapics; apic++)
788 kfree(ioapic_entries[apic]);
790 kfree(ioapic_entries);
794 * Find the IRQ entry number of a certain pin.
796 static int find_irq_entry(int apic, int pin, int type)
798 int i;
800 for (i = 0; i < mp_irq_entries; i++)
801 if (mp_irqs[i].irqtype == type &&
802 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
803 mp_irqs[i].dstapic == MP_APIC_ALL) &&
804 mp_irqs[i].dstirq == pin)
805 return i;
807 return -1;
811 * Find the pin to which IRQ[irq] (ISA) is connected
813 static int __init find_isa_irq_pin(int irq, int type)
815 int i;
817 for (i = 0; i < mp_irq_entries; i++) {
818 int lbus = mp_irqs[i].srcbus;
820 if (test_bit(lbus, mp_bus_not_pci) &&
821 (mp_irqs[i].irqtype == type) &&
822 (mp_irqs[i].srcbusirq == irq))
824 return mp_irqs[i].dstirq;
826 return -1;
829 static int __init find_isa_irq_apic(int irq, int type)
831 int i;
833 for (i = 0; i < mp_irq_entries; i++) {
834 int lbus = mp_irqs[i].srcbus;
836 if (test_bit(lbus, mp_bus_not_pci) &&
837 (mp_irqs[i].irqtype == type) &&
838 (mp_irqs[i].srcbusirq == irq))
839 break;
841 if (i < mp_irq_entries) {
842 int apic;
843 for(apic = 0; apic < nr_ioapics; apic++) {
844 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
845 return apic;
849 return -1;
852 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
854 * EISA Edge/Level control register, ELCR
856 static int EISA_ELCR(unsigned int irq)
858 if (irq < legacy_pic->nr_legacy_irqs) {
859 unsigned int port = 0x4d0 + (irq >> 3);
860 return (inb(port) >> (irq & 7)) & 1;
862 apic_printk(APIC_VERBOSE, KERN_INFO
863 "Broken MPtable reports ISA irq %d\n", irq);
864 return 0;
867 #endif
869 /* ISA interrupts are always polarity zero edge triggered,
870 * when listed as conforming in the MP table. */
872 #define default_ISA_trigger(idx) (0)
873 #define default_ISA_polarity(idx) (0)
875 /* EISA interrupts are always polarity zero and can be edge or level
876 * trigger depending on the ELCR value. If an interrupt is listed as
877 * EISA conforming in the MP table, that means its trigger type must
878 * be read in from the ELCR */
880 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
881 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
883 /* PCI interrupts are always polarity one level triggered,
884 * when listed as conforming in the MP table. */
886 #define default_PCI_trigger(idx) (1)
887 #define default_PCI_polarity(idx) (1)
889 /* MCA interrupts are always polarity zero level triggered,
890 * when listed as conforming in the MP table. */
892 #define default_MCA_trigger(idx) (1)
893 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
895 static int MPBIOS_polarity(int idx)
897 int bus = mp_irqs[idx].srcbus;
898 int polarity;
901 * Determine IRQ line polarity (high active or low active):
903 switch (mp_irqs[idx].irqflag & 3)
905 case 0: /* conforms, ie. bus-type dependent polarity */
906 if (test_bit(bus, mp_bus_not_pci))
907 polarity = default_ISA_polarity(idx);
908 else
909 polarity = default_PCI_polarity(idx);
910 break;
911 case 1: /* high active */
913 polarity = 0;
914 break;
916 case 2: /* reserved */
918 printk(KERN_WARNING "broken BIOS!!\n");
919 polarity = 1;
920 break;
922 case 3: /* low active */
924 polarity = 1;
925 break;
927 default: /* invalid */
929 printk(KERN_WARNING "broken BIOS!!\n");
930 polarity = 1;
931 break;
934 return polarity;
937 static int MPBIOS_trigger(int idx)
939 int bus = mp_irqs[idx].srcbus;
940 int trigger;
943 * Determine IRQ trigger mode (edge or level sensitive):
945 switch ((mp_irqs[idx].irqflag>>2) & 3)
947 case 0: /* conforms, ie. bus-type dependent */
948 if (test_bit(bus, mp_bus_not_pci))
949 trigger = default_ISA_trigger(idx);
950 else
951 trigger = default_PCI_trigger(idx);
952 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
953 switch (mp_bus_id_to_type[bus]) {
954 case MP_BUS_ISA: /* ISA pin */
956 /* set before the switch */
957 break;
959 case MP_BUS_EISA: /* EISA pin */
961 trigger = default_EISA_trigger(idx);
962 break;
964 case MP_BUS_PCI: /* PCI pin */
966 /* set before the switch */
967 break;
969 case MP_BUS_MCA: /* MCA pin */
971 trigger = default_MCA_trigger(idx);
972 break;
974 default:
976 printk(KERN_WARNING "broken BIOS!!\n");
977 trigger = 1;
978 break;
981 #endif
982 break;
983 case 1: /* edge */
985 trigger = 0;
986 break;
988 case 2: /* reserved */
990 printk(KERN_WARNING "broken BIOS!!\n");
991 trigger = 1;
992 break;
994 case 3: /* level */
996 trigger = 1;
997 break;
999 default: /* invalid */
1001 printk(KERN_WARNING "broken BIOS!!\n");
1002 trigger = 0;
1003 break;
1006 return trigger;
1009 static inline int irq_polarity(int idx)
1011 return MPBIOS_polarity(idx);
1014 static inline int irq_trigger(int idx)
1016 return MPBIOS_trigger(idx);
1019 int (*ioapic_renumber_irq)(int ioapic, int irq);
1020 static int pin_2_irq(int idx, int apic, int pin)
1022 int irq, i;
1023 int bus = mp_irqs[idx].srcbus;
1026 * Debugging check, we are in big trouble if this message pops up!
1028 if (mp_irqs[idx].dstirq != pin)
1029 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1031 if (test_bit(bus, mp_bus_not_pci)) {
1032 irq = mp_irqs[idx].srcbusirq;
1033 } else {
1035 * PCI IRQs are mapped in order
1037 i = irq = 0;
1038 while (i < apic)
1039 irq += nr_ioapic_registers[i++];
1040 irq += pin;
1042 * For MPS mode, so far only needed by ES7000 platform
1044 if (ioapic_renumber_irq)
1045 irq = ioapic_renumber_irq(apic, irq);
1048 #ifdef CONFIG_X86_32
1050 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1052 if ((pin >= 16) && (pin <= 23)) {
1053 if (pirq_entries[pin-16] != -1) {
1054 if (!pirq_entries[pin-16]) {
1055 apic_printk(APIC_VERBOSE, KERN_DEBUG
1056 "disabling PIRQ%d\n", pin-16);
1057 } else {
1058 irq = pirq_entries[pin-16];
1059 apic_printk(APIC_VERBOSE, KERN_DEBUG
1060 "using PIRQ%d -> IRQ %d\n",
1061 pin-16, irq);
1065 #endif
1067 return irq;
1071 * Find a specific PCI IRQ entry.
1072 * Not an __init, possibly needed by modules
1074 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
1075 struct io_apic_irq_attr *irq_attr)
1077 int apic, i, best_guess = -1;
1079 apic_printk(APIC_DEBUG,
1080 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1081 bus, slot, pin);
1082 if (test_bit(bus, mp_bus_not_pci)) {
1083 apic_printk(APIC_VERBOSE,
1084 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1085 return -1;
1087 for (i = 0; i < mp_irq_entries; i++) {
1088 int lbus = mp_irqs[i].srcbus;
1090 for (apic = 0; apic < nr_ioapics; apic++)
1091 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1092 mp_irqs[i].dstapic == MP_APIC_ALL)
1093 break;
1095 if (!test_bit(lbus, mp_bus_not_pci) &&
1096 !mp_irqs[i].irqtype &&
1097 (bus == lbus) &&
1098 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1099 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1101 if (!(apic || IO_APIC_IRQ(irq)))
1102 continue;
1104 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1105 set_io_apic_irq_attr(irq_attr, apic,
1106 mp_irqs[i].dstirq,
1107 irq_trigger(i),
1108 irq_polarity(i));
1109 return irq;
1112 * Use the first all-but-pin matching entry as a
1113 * best-guess fuzzy result for broken mptables.
1115 if (best_guess < 0) {
1116 set_io_apic_irq_attr(irq_attr, apic,
1117 mp_irqs[i].dstirq,
1118 irq_trigger(i),
1119 irq_polarity(i));
1120 best_guess = irq;
1124 return best_guess;
1126 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1128 void lock_vector_lock(void)
1130 /* Used to the online set of cpus does not change
1131 * during assign_irq_vector.
1133 raw_spin_lock(&vector_lock);
1136 void unlock_vector_lock(void)
1138 raw_spin_unlock(&vector_lock);
1141 static int
1142 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1145 * NOTE! The local APIC isn't very good at handling
1146 * multiple interrupts at the same interrupt level.
1147 * As the interrupt level is determined by taking the
1148 * vector number and shifting that right by 4, we
1149 * want to spread these out a bit so that they don't
1150 * all fall in the same interrupt level.
1152 * Also, we've got to be careful not to trash gate
1153 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1155 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1156 static int current_offset = VECTOR_OFFSET_START % 8;
1157 unsigned int old_vector;
1158 int cpu, err;
1159 cpumask_var_t tmp_mask;
1161 if (cfg->move_in_progress)
1162 return -EBUSY;
1164 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1165 return -ENOMEM;
1167 old_vector = cfg->vector;
1168 if (old_vector) {
1169 cpumask_and(tmp_mask, mask, cpu_online_mask);
1170 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1171 if (!cpumask_empty(tmp_mask)) {
1172 free_cpumask_var(tmp_mask);
1173 return 0;
1177 /* Only try and allocate irqs on cpus that are present */
1178 err = -ENOSPC;
1179 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1180 int new_cpu;
1181 int vector, offset;
1183 apic->vector_allocation_domain(cpu, tmp_mask);
1185 vector = current_vector;
1186 offset = current_offset;
1187 next:
1188 vector += 8;
1189 if (vector >= first_system_vector) {
1190 /* If out of vectors on large boxen, must share them. */
1191 offset = (offset + 1) % 8;
1192 vector = FIRST_EXTERNAL_VECTOR + offset;
1194 if (unlikely(current_vector == vector))
1195 continue;
1197 if (test_bit(vector, used_vectors))
1198 goto next;
1200 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1201 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1202 goto next;
1203 /* Found one! */
1204 current_vector = vector;
1205 current_offset = offset;
1206 if (old_vector) {
1207 cfg->move_in_progress = 1;
1208 cpumask_copy(cfg->old_domain, cfg->domain);
1210 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1211 per_cpu(vector_irq, new_cpu)[vector] = irq;
1212 cfg->vector = vector;
1213 cpumask_copy(cfg->domain, tmp_mask);
1214 err = 0;
1215 break;
1217 free_cpumask_var(tmp_mask);
1218 return err;
1221 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1223 int err;
1224 unsigned long flags;
1226 raw_spin_lock_irqsave(&vector_lock, flags);
1227 err = __assign_irq_vector(irq, cfg, mask);
1228 raw_spin_unlock_irqrestore(&vector_lock, flags);
1229 return err;
1232 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1234 int cpu, vector;
1236 BUG_ON(!cfg->vector);
1238 vector = cfg->vector;
1239 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1240 per_cpu(vector_irq, cpu)[vector] = -1;
1242 cfg->vector = 0;
1243 cpumask_clear(cfg->domain);
1245 if (likely(!cfg->move_in_progress))
1246 return;
1247 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1248 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1249 vector++) {
1250 if (per_cpu(vector_irq, cpu)[vector] != irq)
1251 continue;
1252 per_cpu(vector_irq, cpu)[vector] = -1;
1253 break;
1256 cfg->move_in_progress = 0;
1259 void __setup_vector_irq(int cpu)
1261 /* Initialize vector_irq on a new cpu */
1262 int irq, vector;
1263 struct irq_cfg *cfg;
1264 struct irq_desc *desc;
1267 * vector_lock will make sure that we don't run into irq vector
1268 * assignments that might be happening on another cpu in parallel,
1269 * while we setup our initial vector to irq mappings.
1271 raw_spin_lock(&vector_lock);
1272 /* Mark the inuse vectors */
1273 for_each_irq_desc(irq, desc) {
1274 cfg = desc->chip_data;
1277 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1278 * will be part of the irq_cfg's domain.
1280 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1281 cpumask_set_cpu(cpu, cfg->domain);
1283 if (!cpumask_test_cpu(cpu, cfg->domain))
1284 continue;
1285 vector = cfg->vector;
1286 per_cpu(vector_irq, cpu)[vector] = irq;
1288 /* Mark the free vectors */
1289 for (vector = 0; vector < NR_VECTORS; ++vector) {
1290 irq = per_cpu(vector_irq, cpu)[vector];
1291 if (irq < 0)
1292 continue;
1294 cfg = irq_cfg(irq);
1295 if (!cpumask_test_cpu(cpu, cfg->domain))
1296 per_cpu(vector_irq, cpu)[vector] = -1;
1298 raw_spin_unlock(&vector_lock);
1301 static struct irq_chip ioapic_chip;
1302 static struct irq_chip ir_ioapic_chip;
1304 #define IOAPIC_AUTO -1
1305 #define IOAPIC_EDGE 0
1306 #define IOAPIC_LEVEL 1
1308 #ifdef CONFIG_X86_32
1309 static inline int IO_APIC_irq_trigger(int irq)
1311 int apic, idx, pin;
1313 for (apic = 0; apic < nr_ioapics; apic++) {
1314 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1315 idx = find_irq_entry(apic, pin, mp_INT);
1316 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1317 return irq_trigger(idx);
1321 * nonexistent IRQs are edge default
1323 return 0;
1325 #else
1326 static inline int IO_APIC_irq_trigger(int irq)
1328 return 1;
1330 #endif
1332 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1335 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1336 trigger == IOAPIC_LEVEL)
1337 desc->status |= IRQ_LEVEL;
1338 else
1339 desc->status &= ~IRQ_LEVEL;
1341 if (irq_remapped(irq)) {
1342 desc->status |= IRQ_MOVE_PCNTXT;
1343 if (trigger)
1344 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1345 handle_fasteoi_irq,
1346 "fasteoi");
1347 else
1348 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1349 handle_edge_irq, "edge");
1350 return;
1353 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1354 trigger == IOAPIC_LEVEL)
1355 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1356 handle_fasteoi_irq,
1357 "fasteoi");
1358 else
1359 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1360 handle_edge_irq, "edge");
1363 int setup_ioapic_entry(int apic_id, int irq,
1364 struct IO_APIC_route_entry *entry,
1365 unsigned int destination, int trigger,
1366 int polarity, int vector, int pin)
1369 * add it to the IO-APIC irq-routing table:
1371 memset(entry,0,sizeof(*entry));
1373 if (intr_remapping_enabled) {
1374 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1375 struct irte irte;
1376 struct IR_IO_APIC_route_entry *ir_entry =
1377 (struct IR_IO_APIC_route_entry *) entry;
1378 int index;
1380 if (!iommu)
1381 panic("No mapping iommu for ioapic %d\n", apic_id);
1383 index = alloc_irte(iommu, irq, 1);
1384 if (index < 0)
1385 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1387 memset(&irte, 0, sizeof(irte));
1389 irte.present = 1;
1390 irte.dst_mode = apic->irq_dest_mode;
1392 * Trigger mode in the IRTE will always be edge, and the
1393 * actual level or edge trigger will be setup in the IO-APIC
1394 * RTE. This will help simplify level triggered irq migration.
1395 * For more details, see the comments above explainig IO-APIC
1396 * irq migration in the presence of interrupt-remapping.
1398 irte.trigger_mode = 0;
1399 irte.dlvry_mode = apic->irq_delivery_mode;
1400 irte.vector = vector;
1401 irte.dest_id = IRTE_DEST(destination);
1403 /* Set source-id of interrupt request */
1404 set_ioapic_sid(&irte, apic_id);
1406 modify_irte(irq, &irte);
1408 ir_entry->index2 = (index >> 15) & 0x1;
1409 ir_entry->zero = 0;
1410 ir_entry->format = 1;
1411 ir_entry->index = (index & 0x7fff);
1413 * IO-APIC RTE will be configured with virtual vector.
1414 * irq handler will do the explicit EOI to the io-apic.
1416 ir_entry->vector = pin;
1417 } else {
1418 entry->delivery_mode = apic->irq_delivery_mode;
1419 entry->dest_mode = apic->irq_dest_mode;
1420 entry->dest = destination;
1421 entry->vector = vector;
1424 entry->mask = 0; /* enable IRQ */
1425 entry->trigger = trigger;
1426 entry->polarity = polarity;
1428 /* Mask level triggered irqs.
1429 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1431 if (trigger)
1432 entry->mask = 1;
1433 return 0;
1436 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1437 int trigger, int polarity)
1439 struct irq_cfg *cfg;
1440 struct IO_APIC_route_entry entry;
1441 unsigned int dest;
1443 if (!IO_APIC_IRQ(irq))
1444 return;
1446 cfg = desc->chip_data;
1449 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1450 * controllers like 8259. Now that IO-APIC can handle this irq, update
1451 * the cfg->domain.
1453 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1454 apic->vector_allocation_domain(0, cfg->domain);
1456 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1457 return;
1459 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1461 apic_printk(APIC_VERBOSE,KERN_DEBUG
1462 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1463 "IRQ %d Mode:%i Active:%i)\n",
1464 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1465 irq, trigger, polarity);
1468 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1469 dest, trigger, polarity, cfg->vector, pin)) {
1470 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1471 mp_ioapics[apic_id].apicid, pin);
1472 __clear_irq_vector(irq, cfg);
1473 return;
1476 ioapic_register_intr(irq, desc, trigger);
1477 if (irq < legacy_pic->nr_legacy_irqs)
1478 legacy_pic->chip->mask(irq);
1480 ioapic_write_entry(apic_id, pin, entry);
1483 static struct {
1484 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1485 } mp_ioapic_routing[MAX_IO_APICS];
1487 static void __init setup_IO_APIC_irqs(void)
1489 int apic_id, pin, idx, irq;
1490 int notcon = 0;
1491 struct irq_desc *desc;
1492 struct irq_cfg *cfg;
1493 int node = cpu_to_node(boot_cpu_id);
1495 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1497 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1498 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1499 idx = find_irq_entry(apic_id, pin, mp_INT);
1500 if (idx == -1) {
1501 if (!notcon) {
1502 notcon = 1;
1503 apic_printk(APIC_VERBOSE,
1504 KERN_DEBUG " %d-%d",
1505 mp_ioapics[apic_id].apicid, pin);
1506 } else
1507 apic_printk(APIC_VERBOSE, " %d-%d",
1508 mp_ioapics[apic_id].apicid, pin);
1509 continue;
1511 if (notcon) {
1512 apic_printk(APIC_VERBOSE,
1513 " (apicid-pin) not connected\n");
1514 notcon = 0;
1517 irq = pin_2_irq(idx, apic_id, pin);
1519 if ((apic_id > 0) && (irq > 16))
1520 continue;
1523 * Skip the timer IRQ if there's a quirk handler
1524 * installed and if it returns 1:
1526 if (apic->multi_timer_check &&
1527 apic->multi_timer_check(apic_id, irq))
1528 continue;
1530 desc = irq_to_desc_alloc_node(irq, node);
1531 if (!desc) {
1532 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1533 continue;
1535 cfg = desc->chip_data;
1536 add_pin_to_irq_node(cfg, node, apic_id, pin);
1538 * don't mark it in pin_programmed, so later acpi could
1539 * set it correctly when irq < 16
1541 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1542 irq_trigger(idx), irq_polarity(idx));
1545 if (notcon)
1546 apic_printk(APIC_VERBOSE,
1547 " (apicid-pin) not connected\n");
1551 * for the gsit that is not in first ioapic
1552 * but could not use acpi_register_gsi()
1553 * like some special sci in IBM x3330
1555 void setup_IO_APIC_irq_extra(u32 gsi)
1557 int apic_id = 0, pin, idx, irq;
1558 int node = cpu_to_node(boot_cpu_id);
1559 struct irq_desc *desc;
1560 struct irq_cfg *cfg;
1563 * Convert 'gsi' to 'ioapic.pin'.
1565 apic_id = mp_find_ioapic(gsi);
1566 if (apic_id < 0)
1567 return;
1569 pin = mp_find_ioapic_pin(apic_id, gsi);
1570 idx = find_irq_entry(apic_id, pin, mp_INT);
1571 if (idx == -1)
1572 return;
1574 irq = pin_2_irq(idx, apic_id, pin);
1575 #ifdef CONFIG_SPARSE_IRQ
1576 desc = irq_to_desc(irq);
1577 if (desc)
1578 return;
1579 #endif
1580 desc = irq_to_desc_alloc_node(irq, node);
1581 if (!desc) {
1582 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1583 return;
1586 cfg = desc->chip_data;
1587 add_pin_to_irq_node(cfg, node, apic_id, pin);
1589 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1590 pr_debug("Pin %d-%d already programmed\n",
1591 mp_ioapics[apic_id].apicid, pin);
1592 return;
1594 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1596 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1597 irq_trigger(idx), irq_polarity(idx));
1601 * Set up the timer pin, possibly with the 8259A-master behind.
1603 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1604 int vector)
1606 struct IO_APIC_route_entry entry;
1608 if (intr_remapping_enabled)
1609 return;
1611 memset(&entry, 0, sizeof(entry));
1614 * We use logical delivery to get the timer IRQ
1615 * to the first CPU.
1617 entry.dest_mode = apic->irq_dest_mode;
1618 entry.mask = 0; /* don't mask IRQ for edge */
1619 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1620 entry.delivery_mode = apic->irq_delivery_mode;
1621 entry.polarity = 0;
1622 entry.trigger = 0;
1623 entry.vector = vector;
1626 * The timer IRQ doesn't have to know that behind the
1627 * scene we may have a 8259A-master in AEOI mode ...
1629 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1632 * Add it to the IO-APIC irq-routing table:
1634 ioapic_write_entry(apic_id, pin, entry);
1638 __apicdebuginit(void) print_IO_APIC(void)
1640 int apic, i;
1641 union IO_APIC_reg_00 reg_00;
1642 union IO_APIC_reg_01 reg_01;
1643 union IO_APIC_reg_02 reg_02;
1644 union IO_APIC_reg_03 reg_03;
1645 unsigned long flags;
1646 struct irq_cfg *cfg;
1647 struct irq_desc *desc;
1648 unsigned int irq;
1650 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1651 for (i = 0; i < nr_ioapics; i++)
1652 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1653 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1656 * We are a bit conservative about what we expect. We have to
1657 * know about every hardware change ASAP.
1659 printk(KERN_INFO "testing the IO APIC.......................\n");
1661 for (apic = 0; apic < nr_ioapics; apic++) {
1663 raw_spin_lock_irqsave(&ioapic_lock, flags);
1664 reg_00.raw = io_apic_read(apic, 0);
1665 reg_01.raw = io_apic_read(apic, 1);
1666 if (reg_01.bits.version >= 0x10)
1667 reg_02.raw = io_apic_read(apic, 2);
1668 if (reg_01.bits.version >= 0x20)
1669 reg_03.raw = io_apic_read(apic, 3);
1670 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1672 printk("\n");
1673 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1674 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1675 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1676 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1677 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1679 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1680 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1682 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1683 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1686 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1687 * but the value of reg_02 is read as the previous read register
1688 * value, so ignore it if reg_02 == reg_01.
1690 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1691 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1692 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1696 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1697 * or reg_03, but the value of reg_0[23] is read as the previous read
1698 * register value, so ignore it if reg_03 == reg_0[12].
1700 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1701 reg_03.raw != reg_01.raw) {
1702 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1703 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1706 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1708 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1709 " Stat Dmod Deli Vect:\n");
1711 for (i = 0; i <= reg_01.bits.entries; i++) {
1712 struct IO_APIC_route_entry entry;
1714 entry = ioapic_read_entry(apic, i);
1716 printk(KERN_DEBUG " %02x %03X ",
1718 entry.dest
1721 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1722 entry.mask,
1723 entry.trigger,
1724 entry.irr,
1725 entry.polarity,
1726 entry.delivery_status,
1727 entry.dest_mode,
1728 entry.delivery_mode,
1729 entry.vector
1733 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1734 for_each_irq_desc(irq, desc) {
1735 struct irq_pin_list *entry;
1737 cfg = desc->chip_data;
1738 entry = cfg->irq_2_pin;
1739 if (!entry)
1740 continue;
1741 printk(KERN_DEBUG "IRQ%d ", irq);
1742 for_each_irq_pin(entry, cfg->irq_2_pin)
1743 printk("-> %d:%d", entry->apic, entry->pin);
1744 printk("\n");
1747 printk(KERN_INFO ".................................... done.\n");
1749 return;
1752 __apicdebuginit(void) print_APIC_field(int base)
1754 int i;
1756 printk(KERN_DEBUG);
1758 for (i = 0; i < 8; i++)
1759 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1761 printk(KERN_CONT "\n");
1764 __apicdebuginit(void) print_local_APIC(void *dummy)
1766 unsigned int i, v, ver, maxlvt;
1767 u64 icr;
1769 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1770 smp_processor_id(), hard_smp_processor_id());
1771 v = apic_read(APIC_ID);
1772 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1773 v = apic_read(APIC_LVR);
1774 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1775 ver = GET_APIC_VERSION(v);
1776 maxlvt = lapic_get_maxlvt();
1778 v = apic_read(APIC_TASKPRI);
1779 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1781 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1782 if (!APIC_XAPIC(ver)) {
1783 v = apic_read(APIC_ARBPRI);
1784 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1785 v & APIC_ARBPRI_MASK);
1787 v = apic_read(APIC_PROCPRI);
1788 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1792 * Remote read supported only in the 82489DX and local APIC for
1793 * Pentium processors.
1795 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1796 v = apic_read(APIC_RRR);
1797 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1800 v = apic_read(APIC_LDR);
1801 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1802 if (!x2apic_enabled()) {
1803 v = apic_read(APIC_DFR);
1804 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1806 v = apic_read(APIC_SPIV);
1807 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1809 printk(KERN_DEBUG "... APIC ISR field:\n");
1810 print_APIC_field(APIC_ISR);
1811 printk(KERN_DEBUG "... APIC TMR field:\n");
1812 print_APIC_field(APIC_TMR);
1813 printk(KERN_DEBUG "... APIC IRR field:\n");
1814 print_APIC_field(APIC_IRR);
1816 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1817 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1818 apic_write(APIC_ESR, 0);
1820 v = apic_read(APIC_ESR);
1821 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1824 icr = apic_icr_read();
1825 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1826 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1828 v = apic_read(APIC_LVTT);
1829 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1831 if (maxlvt > 3) { /* PC is LVT#4. */
1832 v = apic_read(APIC_LVTPC);
1833 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1835 v = apic_read(APIC_LVT0);
1836 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1837 v = apic_read(APIC_LVT1);
1838 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1840 if (maxlvt > 2) { /* ERR is LVT#3. */
1841 v = apic_read(APIC_LVTERR);
1842 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1845 v = apic_read(APIC_TMICT);
1846 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1847 v = apic_read(APIC_TMCCT);
1848 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1849 v = apic_read(APIC_TDCR);
1850 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1852 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1853 v = apic_read(APIC_EFEAT);
1854 maxlvt = (v >> 16) & 0xff;
1855 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1856 v = apic_read(APIC_ECTRL);
1857 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1858 for (i = 0; i < maxlvt; i++) {
1859 v = apic_read(APIC_EILVTn(i));
1860 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1863 printk("\n");
1866 __apicdebuginit(void) print_local_APICs(int maxcpu)
1868 int cpu;
1870 if (!maxcpu)
1871 return;
1873 preempt_disable();
1874 for_each_online_cpu(cpu) {
1875 if (cpu >= maxcpu)
1876 break;
1877 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1879 preempt_enable();
1882 __apicdebuginit(void) print_PIC(void)
1884 unsigned int v;
1885 unsigned long flags;
1887 if (!legacy_pic->nr_legacy_irqs)
1888 return;
1890 printk(KERN_DEBUG "\nprinting PIC contents\n");
1892 raw_spin_lock_irqsave(&i8259A_lock, flags);
1894 v = inb(0xa1) << 8 | inb(0x21);
1895 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1897 v = inb(0xa0) << 8 | inb(0x20);
1898 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1900 outb(0x0b,0xa0);
1901 outb(0x0b,0x20);
1902 v = inb(0xa0) << 8 | inb(0x20);
1903 outb(0x0a,0xa0);
1904 outb(0x0a,0x20);
1906 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1908 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1910 v = inb(0x4d1) << 8 | inb(0x4d0);
1911 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1914 static int __initdata show_lapic = 1;
1915 static __init int setup_show_lapic(char *arg)
1917 int num = -1;
1919 if (strcmp(arg, "all") == 0) {
1920 show_lapic = CONFIG_NR_CPUS;
1921 } else {
1922 get_option(&arg, &num);
1923 if (num >= 0)
1924 show_lapic = num;
1927 return 1;
1929 __setup("show_lapic=", setup_show_lapic);
1931 __apicdebuginit(int) print_ICs(void)
1933 if (apic_verbosity == APIC_QUIET)
1934 return 0;
1936 print_PIC();
1938 /* don't print out if apic is not there */
1939 if (!cpu_has_apic && !apic_from_smp_config())
1940 return 0;
1942 print_local_APICs(show_lapic);
1943 print_IO_APIC();
1945 return 0;
1948 fs_initcall(print_ICs);
1951 /* Where if anywhere is the i8259 connect in external int mode */
1952 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1954 void __init enable_IO_APIC(void)
1956 int i8259_apic, i8259_pin;
1957 int apic;
1959 if (!legacy_pic->nr_legacy_irqs)
1960 return;
1962 for(apic = 0; apic < nr_ioapics; apic++) {
1963 int pin;
1964 /* See if any of the pins is in ExtINT mode */
1965 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1966 struct IO_APIC_route_entry entry;
1967 entry = ioapic_read_entry(apic, pin);
1969 /* If the interrupt line is enabled and in ExtInt mode
1970 * I have found the pin where the i8259 is connected.
1972 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1973 ioapic_i8259.apic = apic;
1974 ioapic_i8259.pin = pin;
1975 goto found_i8259;
1979 found_i8259:
1980 /* Look to see what if the MP table has reported the ExtINT */
1981 /* If we could not find the appropriate pin by looking at the ioapic
1982 * the i8259 probably is not connected the ioapic but give the
1983 * mptable a chance anyway.
1985 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1986 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1987 /* Trust the MP table if nothing is setup in the hardware */
1988 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1989 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1990 ioapic_i8259.pin = i8259_pin;
1991 ioapic_i8259.apic = i8259_apic;
1993 /* Complain if the MP table and the hardware disagree */
1994 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1995 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1997 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2001 * Do not trust the IO-APIC being empty at bootup
2003 clear_IO_APIC();
2007 * Not an __init, needed by the reboot code
2009 void disable_IO_APIC(void)
2012 * Clear the IO-APIC before rebooting:
2014 clear_IO_APIC();
2016 if (!legacy_pic->nr_legacy_irqs)
2017 return;
2020 * If the i8259 is routed through an IOAPIC
2021 * Put that IOAPIC in virtual wire mode
2022 * so legacy interrupts can be delivered.
2024 * With interrupt-remapping, for now we will use virtual wire A mode,
2025 * as virtual wire B is little complex (need to configure both
2026 * IOAPIC RTE aswell as interrupt-remapping table entry).
2027 * As this gets called during crash dump, keep this simple for now.
2029 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2030 struct IO_APIC_route_entry entry;
2032 memset(&entry, 0, sizeof(entry));
2033 entry.mask = 0; /* Enabled */
2034 entry.trigger = 0; /* Edge */
2035 entry.irr = 0;
2036 entry.polarity = 0; /* High */
2037 entry.delivery_status = 0;
2038 entry.dest_mode = 0; /* Physical */
2039 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2040 entry.vector = 0;
2041 entry.dest = read_apic_id();
2044 * Add it to the IO-APIC irq-routing table:
2046 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2050 * Use virtual wire A mode when interrupt remapping is enabled.
2052 if (cpu_has_apic || apic_from_smp_config())
2053 disconnect_bsp_APIC(!intr_remapping_enabled &&
2054 ioapic_i8259.pin != -1);
2057 #ifdef CONFIG_X86_32
2059 * function to set the IO-APIC physical IDs based on the
2060 * values stored in the MPC table.
2062 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2065 void __init setup_ioapic_ids_from_mpc(void)
2067 union IO_APIC_reg_00 reg_00;
2068 physid_mask_t phys_id_present_map;
2069 int apic_id;
2070 int i;
2071 unsigned char old_id;
2072 unsigned long flags;
2074 if (acpi_ioapic)
2075 return;
2077 * Don't check I/O APIC IDs for xAPIC systems. They have
2078 * no meaning without the serial APIC bus.
2080 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2081 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2082 return;
2084 * This is broken; anything with a real cpu count has to
2085 * circumvent this idiocy regardless.
2087 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
2090 * Set the IOAPIC ID to the value stored in the MPC table.
2092 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2094 /* Read the register 0 value */
2095 raw_spin_lock_irqsave(&ioapic_lock, flags);
2096 reg_00.raw = io_apic_read(apic_id, 0);
2097 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2099 old_id = mp_ioapics[apic_id].apicid;
2101 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2102 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2103 apic_id, mp_ioapics[apic_id].apicid);
2104 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2105 reg_00.bits.ID);
2106 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2110 * Sanity check, is the ID really free? Every APIC in a
2111 * system must have a unique ID or we get lots of nice
2112 * 'stuck on smp_invalidate_needed IPI wait' messages.
2114 if (apic->check_apicid_used(&phys_id_present_map,
2115 mp_ioapics[apic_id].apicid)) {
2116 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2117 apic_id, mp_ioapics[apic_id].apicid);
2118 for (i = 0; i < get_physical_broadcast(); i++)
2119 if (!physid_isset(i, phys_id_present_map))
2120 break;
2121 if (i >= get_physical_broadcast())
2122 panic("Max APIC ID exceeded!\n");
2123 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2125 physid_set(i, phys_id_present_map);
2126 mp_ioapics[apic_id].apicid = i;
2127 } else {
2128 physid_mask_t tmp;
2129 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2130 apic_printk(APIC_VERBOSE, "Setting %d in the "
2131 "phys_id_present_map\n",
2132 mp_ioapics[apic_id].apicid);
2133 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2138 * We need to adjust the IRQ routing table
2139 * if the ID changed.
2141 if (old_id != mp_ioapics[apic_id].apicid)
2142 for (i = 0; i < mp_irq_entries; i++)
2143 if (mp_irqs[i].dstapic == old_id)
2144 mp_irqs[i].dstapic
2145 = mp_ioapics[apic_id].apicid;
2148 * Read the right value from the MPC table and
2149 * write it into the ID register.
2151 apic_printk(APIC_VERBOSE, KERN_INFO
2152 "...changing IO-APIC physical APIC ID to %d ...",
2153 mp_ioapics[apic_id].apicid);
2155 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2156 raw_spin_lock_irqsave(&ioapic_lock, flags);
2157 io_apic_write(apic_id, 0, reg_00.raw);
2158 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2161 * Sanity check
2163 raw_spin_lock_irqsave(&ioapic_lock, flags);
2164 reg_00.raw = io_apic_read(apic_id, 0);
2165 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2166 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2167 printk("could not set ID!\n");
2168 else
2169 apic_printk(APIC_VERBOSE, " ok.\n");
2172 #endif
2174 int no_timer_check __initdata;
2176 static int __init notimercheck(char *s)
2178 no_timer_check = 1;
2179 return 1;
2181 __setup("no_timer_check", notimercheck);
2184 * There is a nasty bug in some older SMP boards, their mptable lies
2185 * about the timer IRQ. We do the following to work around the situation:
2187 * - timer IRQ defaults to IO-APIC IRQ
2188 * - if this function detects that timer IRQs are defunct, then we fall
2189 * back to ISA timer IRQs
2191 static int __init timer_irq_works(void)
2193 unsigned long t1 = jiffies;
2194 unsigned long flags;
2196 if (no_timer_check)
2197 return 1;
2199 local_save_flags(flags);
2200 local_irq_enable();
2201 /* Let ten ticks pass... */
2202 mdelay((10 * 1000) / HZ);
2203 local_irq_restore(flags);
2206 * Expect a few ticks at least, to be sure some possible
2207 * glue logic does not lock up after one or two first
2208 * ticks in a non-ExtINT mode. Also the local APIC
2209 * might have cached one ExtINT interrupt. Finally, at
2210 * least one tick may be lost due to delays.
2213 /* jiffies wrap? */
2214 if (time_after(jiffies, t1 + 4))
2215 return 1;
2216 return 0;
2220 * In the SMP+IOAPIC case it might happen that there are an unspecified
2221 * number of pending IRQ events unhandled. These cases are very rare,
2222 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2223 * better to do it this way as thus we do not have to be aware of
2224 * 'pending' interrupts in the IRQ path, except at this point.
2227 * Edge triggered needs to resend any interrupt
2228 * that was delayed but this is now handled in the device
2229 * independent code.
2233 * Starting up a edge-triggered IO-APIC interrupt is
2234 * nasty - we need to make sure that we get the edge.
2235 * If it is already asserted for some reason, we need
2236 * return 1 to indicate that is was pending.
2238 * This is not complete - we should be able to fake
2239 * an edge even if it isn't on the 8259A...
2242 static unsigned int startup_ioapic_irq(unsigned int irq)
2244 int was_pending = 0;
2245 unsigned long flags;
2246 struct irq_cfg *cfg;
2248 raw_spin_lock_irqsave(&ioapic_lock, flags);
2249 if (irq < legacy_pic->nr_legacy_irqs) {
2250 legacy_pic->chip->mask(irq);
2251 if (legacy_pic->irq_pending(irq))
2252 was_pending = 1;
2254 cfg = irq_cfg(irq);
2255 __unmask_IO_APIC_irq(cfg);
2256 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2258 return was_pending;
2261 static int ioapic_retrigger_irq(unsigned int irq)
2264 struct irq_cfg *cfg = irq_cfg(irq);
2265 unsigned long flags;
2267 raw_spin_lock_irqsave(&vector_lock, flags);
2268 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2269 raw_spin_unlock_irqrestore(&vector_lock, flags);
2271 return 1;
2275 * Level and edge triggered IO-APIC interrupts need different handling,
2276 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2277 * handled with the level-triggered descriptor, but that one has slightly
2278 * more overhead. Level-triggered interrupts cannot be handled with the
2279 * edge-triggered handler, without risking IRQ storms and other ugly
2280 * races.
2283 #ifdef CONFIG_SMP
2284 void send_cleanup_vector(struct irq_cfg *cfg)
2286 cpumask_var_t cleanup_mask;
2288 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2289 unsigned int i;
2290 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2291 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2292 } else {
2293 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2294 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2295 free_cpumask_var(cleanup_mask);
2297 cfg->move_in_progress = 0;
2300 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2302 int apic, pin;
2303 struct irq_pin_list *entry;
2304 u8 vector = cfg->vector;
2306 for_each_irq_pin(entry, cfg->irq_2_pin) {
2307 unsigned int reg;
2309 apic = entry->apic;
2310 pin = entry->pin;
2312 * With interrupt-remapping, destination information comes
2313 * from interrupt-remapping table entry.
2315 if (!irq_remapped(irq))
2316 io_apic_write(apic, 0x11 + pin*2, dest);
2317 reg = io_apic_read(apic, 0x10 + pin*2);
2318 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2319 reg |= vector;
2320 io_apic_modify(apic, 0x10 + pin*2, reg);
2325 * Either sets desc->affinity to a valid value, and returns
2326 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2327 * leaves desc->affinity untouched.
2329 unsigned int
2330 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask,
2331 unsigned int *dest_id)
2333 struct irq_cfg *cfg;
2334 unsigned int irq;
2336 if (!cpumask_intersects(mask, cpu_online_mask))
2337 return -1;
2339 irq = desc->irq;
2340 cfg = desc->chip_data;
2341 if (assign_irq_vector(irq, cfg, mask))
2342 return -1;
2344 cpumask_copy(desc->affinity, mask);
2346 *dest_id = apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
2347 return 0;
2350 static int
2351 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2353 struct irq_cfg *cfg;
2354 unsigned long flags;
2355 unsigned int dest;
2356 unsigned int irq;
2357 int ret = -1;
2359 irq = desc->irq;
2360 cfg = desc->chip_data;
2362 raw_spin_lock_irqsave(&ioapic_lock, flags);
2363 ret = set_desc_affinity(desc, mask, &dest);
2364 if (!ret) {
2365 /* Only the high 8 bits are valid. */
2366 dest = SET_APIC_LOGICAL_ID(dest);
2367 __target_IO_APIC_irq(irq, dest, cfg);
2369 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2371 return ret;
2374 static int
2375 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
2377 struct irq_desc *desc;
2379 desc = irq_to_desc(irq);
2381 return set_ioapic_affinity_irq_desc(desc, mask);
2384 #ifdef CONFIG_INTR_REMAP
2387 * Migrate the IO-APIC irq in the presence of intr-remapping.
2389 * For both level and edge triggered, irq migration is a simple atomic
2390 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2392 * For level triggered, we eliminate the io-apic RTE modification (with the
2393 * updated vector information), by using a virtual vector (io-apic pin number).
2394 * Real vector that is used for interrupting cpu will be coming from
2395 * the interrupt-remapping table entry.
2397 static int
2398 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2400 struct irq_cfg *cfg;
2401 struct irte irte;
2402 unsigned int dest;
2403 unsigned int irq;
2404 int ret = -1;
2406 if (!cpumask_intersects(mask, cpu_online_mask))
2407 return ret;
2409 irq = desc->irq;
2410 if (get_irte(irq, &irte))
2411 return ret;
2413 cfg = desc->chip_data;
2414 if (assign_irq_vector(irq, cfg, mask))
2415 return ret;
2417 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2419 irte.vector = cfg->vector;
2420 irte.dest_id = IRTE_DEST(dest);
2423 * Modified the IRTE and flushes the Interrupt entry cache.
2425 modify_irte(irq, &irte);
2427 if (cfg->move_in_progress)
2428 send_cleanup_vector(cfg);
2430 cpumask_copy(desc->affinity, mask);
2432 return 0;
2436 * Migrates the IRQ destination in the process context.
2438 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2439 const struct cpumask *mask)
2441 return migrate_ioapic_irq_desc(desc, mask);
2443 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2444 const struct cpumask *mask)
2446 struct irq_desc *desc = irq_to_desc(irq);
2448 return set_ir_ioapic_affinity_irq_desc(desc, mask);
2450 #else
2451 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2452 const struct cpumask *mask)
2454 return 0;
2456 #endif
2458 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2460 unsigned vector, me;
2462 ack_APIC_irq();
2463 exit_idle();
2464 irq_enter();
2466 me = smp_processor_id();
2467 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2468 unsigned int irq;
2469 unsigned int irr;
2470 struct irq_desc *desc;
2471 struct irq_cfg *cfg;
2472 irq = __get_cpu_var(vector_irq)[vector];
2474 if (irq == -1)
2475 continue;
2477 desc = irq_to_desc(irq);
2478 if (!desc)
2479 continue;
2481 cfg = irq_cfg(irq);
2482 raw_spin_lock(&desc->lock);
2485 * Check if the irq migration is in progress. If so, we
2486 * haven't received the cleanup request yet for this irq.
2488 if (cfg->move_in_progress)
2489 goto unlock;
2491 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2492 goto unlock;
2494 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2496 * Check if the vector that needs to be cleanedup is
2497 * registered at the cpu's IRR. If so, then this is not
2498 * the best time to clean it up. Lets clean it up in the
2499 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2500 * to myself.
2502 if (irr & (1 << (vector % 32))) {
2503 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2504 goto unlock;
2506 __get_cpu_var(vector_irq)[vector] = -1;
2507 unlock:
2508 raw_spin_unlock(&desc->lock);
2511 irq_exit();
2514 static void __irq_complete_move(struct irq_desc **descp, unsigned vector)
2516 struct irq_desc *desc = *descp;
2517 struct irq_cfg *cfg = desc->chip_data;
2518 unsigned me;
2520 if (likely(!cfg->move_in_progress))
2521 return;
2523 me = smp_processor_id();
2525 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2526 send_cleanup_vector(cfg);
2529 static void irq_complete_move(struct irq_desc **descp)
2531 __irq_complete_move(descp, ~get_irq_regs()->orig_ax);
2534 void irq_force_complete_move(int irq)
2536 struct irq_desc *desc = irq_to_desc(irq);
2537 struct irq_cfg *cfg = desc->chip_data;
2539 __irq_complete_move(&desc, cfg->vector);
2541 #else
2542 static inline void irq_complete_move(struct irq_desc **descp) {}
2543 #endif
2545 static void ack_apic_edge(unsigned int irq)
2547 struct irq_desc *desc = irq_to_desc(irq);
2549 irq_complete_move(&desc);
2550 move_native_irq(irq);
2551 ack_APIC_irq();
2554 atomic_t irq_mis_count;
2557 * IO-APIC versions below 0x20 don't support EOI register.
2558 * For the record, here is the information about various versions:
2559 * 0Xh 82489DX
2560 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2561 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2562 * 30h-FFh Reserved
2564 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2565 * version as 0x2. This is an error with documentation and these ICH chips
2566 * use io-apic's of version 0x20.
2568 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2569 * Otherwise, we simulate the EOI message manually by changing the trigger
2570 * mode to edge and then back to level, with RTE being masked during this.
2572 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2574 struct irq_pin_list *entry;
2576 for_each_irq_pin(entry, cfg->irq_2_pin) {
2577 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2579 * Intr-remapping uses pin number as the virtual vector
2580 * in the RTE. Actual vector is programmed in
2581 * intr-remapping table entry. Hence for the io-apic
2582 * EOI we use the pin number.
2584 if (irq_remapped(irq))
2585 io_apic_eoi(entry->apic, entry->pin);
2586 else
2587 io_apic_eoi(entry->apic, cfg->vector);
2588 } else {
2589 __mask_and_edge_IO_APIC_irq(entry);
2590 __unmask_and_level_IO_APIC_irq(entry);
2595 static void eoi_ioapic_irq(struct irq_desc *desc)
2597 struct irq_cfg *cfg;
2598 unsigned long flags;
2599 unsigned int irq;
2601 irq = desc->irq;
2602 cfg = desc->chip_data;
2604 raw_spin_lock_irqsave(&ioapic_lock, flags);
2605 __eoi_ioapic_irq(irq, cfg);
2606 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2609 static void ack_apic_level(unsigned int irq)
2611 struct irq_desc *desc = irq_to_desc(irq);
2612 unsigned long v;
2613 int i;
2614 struct irq_cfg *cfg;
2615 int do_unmask_irq = 0;
2617 irq_complete_move(&desc);
2618 #ifdef CONFIG_GENERIC_PENDING_IRQ
2619 /* If we are moving the irq we need to mask it */
2620 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2621 do_unmask_irq = 1;
2622 mask_IO_APIC_irq_desc(desc);
2624 #endif
2627 * It appears there is an erratum which affects at least version 0x11
2628 * of I/O APIC (that's the 82093AA and cores integrated into various
2629 * chipsets). Under certain conditions a level-triggered interrupt is
2630 * erroneously delivered as edge-triggered one but the respective IRR
2631 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2632 * message but it will never arrive and further interrupts are blocked
2633 * from the source. The exact reason is so far unknown, but the
2634 * phenomenon was observed when two consecutive interrupt requests
2635 * from a given source get delivered to the same CPU and the source is
2636 * temporarily disabled in between.
2638 * A workaround is to simulate an EOI message manually. We achieve it
2639 * by setting the trigger mode to edge and then to level when the edge
2640 * trigger mode gets detected in the TMR of a local APIC for a
2641 * level-triggered interrupt. We mask the source for the time of the
2642 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2643 * The idea is from Manfred Spraul. --macro
2645 * Also in the case when cpu goes offline, fixup_irqs() will forward
2646 * any unhandled interrupt on the offlined cpu to the new cpu
2647 * destination that is handling the corresponding interrupt. This
2648 * interrupt forwarding is done via IPI's. Hence, in this case also
2649 * level-triggered io-apic interrupt will be seen as an edge
2650 * interrupt in the IRR. And we can't rely on the cpu's EOI
2651 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2652 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2653 * supporting EOI register, we do an explicit EOI to clear the
2654 * remote IRR and on IO-APIC's which don't have an EOI register,
2655 * we use the above logic (mask+edge followed by unmask+level) from
2656 * Manfred Spraul to clear the remote IRR.
2658 cfg = desc->chip_data;
2659 i = cfg->vector;
2660 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2663 * We must acknowledge the irq before we move it or the acknowledge will
2664 * not propagate properly.
2666 ack_APIC_irq();
2669 * Tail end of clearing remote IRR bit (either by delivering the EOI
2670 * message via io-apic EOI register write or simulating it using
2671 * mask+edge followed by unnask+level logic) manually when the
2672 * level triggered interrupt is seen as the edge triggered interrupt
2673 * at the cpu.
2675 if (!(v & (1 << (i & 0x1f)))) {
2676 atomic_inc(&irq_mis_count);
2678 eoi_ioapic_irq(desc);
2681 /* Now we can move and renable the irq */
2682 if (unlikely(do_unmask_irq)) {
2683 /* Only migrate the irq if the ack has been received.
2685 * On rare occasions the broadcast level triggered ack gets
2686 * delayed going to ioapics, and if we reprogram the
2687 * vector while Remote IRR is still set the irq will never
2688 * fire again.
2690 * To prevent this scenario we read the Remote IRR bit
2691 * of the ioapic. This has two effects.
2692 * - On any sane system the read of the ioapic will
2693 * flush writes (and acks) going to the ioapic from
2694 * this cpu.
2695 * - We get to see if the ACK has actually been delivered.
2697 * Based on failed experiments of reprogramming the
2698 * ioapic entry from outside of irq context starting
2699 * with masking the ioapic entry and then polling until
2700 * Remote IRR was clear before reprogramming the
2701 * ioapic I don't trust the Remote IRR bit to be
2702 * completey accurate.
2704 * However there appears to be no other way to plug
2705 * this race, so if the Remote IRR bit is not
2706 * accurate and is causing problems then it is a hardware bug
2707 * and you can go talk to the chipset vendor about it.
2709 cfg = desc->chip_data;
2710 if (!io_apic_level_ack_pending(cfg))
2711 move_masked_irq(irq);
2712 unmask_IO_APIC_irq_desc(desc);
2716 #ifdef CONFIG_INTR_REMAP
2717 static void ir_ack_apic_edge(unsigned int irq)
2719 ack_APIC_irq();
2722 static void ir_ack_apic_level(unsigned int irq)
2724 struct irq_desc *desc = irq_to_desc(irq);
2726 ack_APIC_irq();
2727 eoi_ioapic_irq(desc);
2729 #endif /* CONFIG_INTR_REMAP */
2731 static struct irq_chip ioapic_chip __read_mostly = {
2732 .name = "IO-APIC",
2733 .startup = startup_ioapic_irq,
2734 .mask = mask_IO_APIC_irq,
2735 .unmask = unmask_IO_APIC_irq,
2736 .ack = ack_apic_edge,
2737 .eoi = ack_apic_level,
2738 #ifdef CONFIG_SMP
2739 .set_affinity = set_ioapic_affinity_irq,
2740 #endif
2741 .retrigger = ioapic_retrigger_irq,
2744 static struct irq_chip ir_ioapic_chip __read_mostly = {
2745 .name = "IR-IO-APIC",
2746 .startup = startup_ioapic_irq,
2747 .mask = mask_IO_APIC_irq,
2748 .unmask = unmask_IO_APIC_irq,
2749 #ifdef CONFIG_INTR_REMAP
2750 .ack = ir_ack_apic_edge,
2751 .eoi = ir_ack_apic_level,
2752 #ifdef CONFIG_SMP
2753 .set_affinity = set_ir_ioapic_affinity_irq,
2754 #endif
2755 #endif
2756 .retrigger = ioapic_retrigger_irq,
2759 static inline void init_IO_APIC_traps(void)
2761 int irq;
2762 struct irq_desc *desc;
2763 struct irq_cfg *cfg;
2766 * NOTE! The local APIC isn't very good at handling
2767 * multiple interrupts at the same interrupt level.
2768 * As the interrupt level is determined by taking the
2769 * vector number and shifting that right by 4, we
2770 * want to spread these out a bit so that they don't
2771 * all fall in the same interrupt level.
2773 * Also, we've got to be careful not to trash gate
2774 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2776 for_each_irq_desc(irq, desc) {
2777 cfg = desc->chip_data;
2778 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2780 * Hmm.. We don't have an entry for this,
2781 * so default to an old-fashioned 8259
2782 * interrupt if we can..
2784 if (irq < legacy_pic->nr_legacy_irqs)
2785 legacy_pic->make_irq(irq);
2786 else
2787 /* Strange. Oh, well.. */
2788 desc->chip = &no_irq_chip;
2794 * The local APIC irq-chip implementation:
2797 static void mask_lapic_irq(unsigned int irq)
2799 unsigned long v;
2801 v = apic_read(APIC_LVT0);
2802 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2805 static void unmask_lapic_irq(unsigned int irq)
2807 unsigned long v;
2809 v = apic_read(APIC_LVT0);
2810 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2813 static void ack_lapic_irq(unsigned int irq)
2815 ack_APIC_irq();
2818 static struct irq_chip lapic_chip __read_mostly = {
2819 .name = "local-APIC",
2820 .mask = mask_lapic_irq,
2821 .unmask = unmask_lapic_irq,
2822 .ack = ack_lapic_irq,
2825 static void lapic_register_intr(int irq, struct irq_desc *desc)
2827 desc->status &= ~IRQ_LEVEL;
2828 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2829 "edge");
2832 static void __init setup_nmi(void)
2835 * Dirty trick to enable the NMI watchdog ...
2836 * We put the 8259A master into AEOI mode and
2837 * unmask on all local APICs LVT0 as NMI.
2839 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2840 * is from Maciej W. Rozycki - so we do not have to EOI from
2841 * the NMI handler or the timer interrupt.
2843 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2845 enable_NMI_through_LVT0();
2847 apic_printk(APIC_VERBOSE, " done.\n");
2851 * This looks a bit hackish but it's about the only one way of sending
2852 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2853 * not support the ExtINT mode, unfortunately. We need to send these
2854 * cycles as some i82489DX-based boards have glue logic that keeps the
2855 * 8259A interrupt line asserted until INTA. --macro
2857 static inline void __init unlock_ExtINT_logic(void)
2859 int apic, pin, i;
2860 struct IO_APIC_route_entry entry0, entry1;
2861 unsigned char save_control, save_freq_select;
2863 pin = find_isa_irq_pin(8, mp_INT);
2864 if (pin == -1) {
2865 WARN_ON_ONCE(1);
2866 return;
2868 apic = find_isa_irq_apic(8, mp_INT);
2869 if (apic == -1) {
2870 WARN_ON_ONCE(1);
2871 return;
2874 entry0 = ioapic_read_entry(apic, pin);
2875 clear_IO_APIC_pin(apic, pin);
2877 memset(&entry1, 0, sizeof(entry1));
2879 entry1.dest_mode = 0; /* physical delivery */
2880 entry1.mask = 0; /* unmask IRQ now */
2881 entry1.dest = hard_smp_processor_id();
2882 entry1.delivery_mode = dest_ExtINT;
2883 entry1.polarity = entry0.polarity;
2884 entry1.trigger = 0;
2885 entry1.vector = 0;
2887 ioapic_write_entry(apic, pin, entry1);
2889 save_control = CMOS_READ(RTC_CONTROL);
2890 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2891 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2892 RTC_FREQ_SELECT);
2893 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2895 i = 100;
2896 while (i-- > 0) {
2897 mdelay(10);
2898 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2899 i -= 10;
2902 CMOS_WRITE(save_control, RTC_CONTROL);
2903 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2904 clear_IO_APIC_pin(apic, pin);
2906 ioapic_write_entry(apic, pin, entry0);
2909 static int disable_timer_pin_1 __initdata;
2910 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2911 static int __init disable_timer_pin_setup(char *arg)
2913 disable_timer_pin_1 = 1;
2914 return 0;
2916 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2918 int timer_through_8259 __initdata;
2921 * This code may look a bit paranoid, but it's supposed to cooperate with
2922 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2923 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2924 * fanatically on his truly buggy board.
2926 * FIXME: really need to revamp this for all platforms.
2928 static inline void __init check_timer(void)
2930 struct irq_desc *desc = irq_to_desc(0);
2931 struct irq_cfg *cfg = desc->chip_data;
2932 int node = cpu_to_node(boot_cpu_id);
2933 int apic1, pin1, apic2, pin2;
2934 unsigned long flags;
2935 int no_pin1 = 0;
2937 local_irq_save(flags);
2940 * get/set the timer IRQ vector:
2942 legacy_pic->chip->mask(0);
2943 assign_irq_vector(0, cfg, apic->target_cpus());
2946 * As IRQ0 is to be enabled in the 8259A, the virtual
2947 * wire has to be disabled in the local APIC. Also
2948 * timer interrupts need to be acknowledged manually in
2949 * the 8259A for the i82489DX when using the NMI
2950 * watchdog as that APIC treats NMIs as level-triggered.
2951 * The AEOI mode will finish them in the 8259A
2952 * automatically.
2954 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2955 legacy_pic->init(1);
2956 #ifdef CONFIG_X86_32
2958 unsigned int ver;
2960 ver = apic_read(APIC_LVR);
2961 ver = GET_APIC_VERSION(ver);
2962 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2964 #endif
2966 pin1 = find_isa_irq_pin(0, mp_INT);
2967 apic1 = find_isa_irq_apic(0, mp_INT);
2968 pin2 = ioapic_i8259.pin;
2969 apic2 = ioapic_i8259.apic;
2971 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2972 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2973 cfg->vector, apic1, pin1, apic2, pin2);
2976 * Some BIOS writers are clueless and report the ExtINTA
2977 * I/O APIC input from the cascaded 8259A as the timer
2978 * interrupt input. So just in case, if only one pin
2979 * was found above, try it both directly and through the
2980 * 8259A.
2982 if (pin1 == -1) {
2983 if (intr_remapping_enabled)
2984 panic("BIOS bug: timer not connected to IO-APIC");
2985 pin1 = pin2;
2986 apic1 = apic2;
2987 no_pin1 = 1;
2988 } else if (pin2 == -1) {
2989 pin2 = pin1;
2990 apic2 = apic1;
2993 if (pin1 != -1) {
2995 * Ok, does IRQ0 through the IOAPIC work?
2997 if (no_pin1) {
2998 add_pin_to_irq_node(cfg, node, apic1, pin1);
2999 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
3000 } else {
3001 /* for edge trigger, setup_IO_APIC_irq already
3002 * leave it unmasked.
3003 * so only need to unmask if it is level-trigger
3004 * do we really have level trigger timer?
3006 int idx;
3007 idx = find_irq_entry(apic1, pin1, mp_INT);
3008 if (idx != -1 && irq_trigger(idx))
3009 unmask_IO_APIC_irq_desc(desc);
3011 if (timer_irq_works()) {
3012 if (nmi_watchdog == NMI_IO_APIC) {
3013 setup_nmi();
3014 legacy_pic->chip->unmask(0);
3016 if (disable_timer_pin_1 > 0)
3017 clear_IO_APIC_pin(0, pin1);
3018 goto out;
3020 if (intr_remapping_enabled)
3021 panic("timer doesn't work through Interrupt-remapped IO-APIC");
3022 local_irq_disable();
3023 clear_IO_APIC_pin(apic1, pin1);
3024 if (!no_pin1)
3025 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
3026 "8254 timer not connected to IO-APIC\n");
3028 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
3029 "(IRQ0) through the 8259A ...\n");
3030 apic_printk(APIC_QUIET, KERN_INFO
3031 "..... (found apic %d pin %d) ...\n", apic2, pin2);
3033 * legacy devices should be connected to IO APIC #0
3035 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
3036 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
3037 legacy_pic->chip->unmask(0);
3038 if (timer_irq_works()) {
3039 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
3040 timer_through_8259 = 1;
3041 if (nmi_watchdog == NMI_IO_APIC) {
3042 legacy_pic->chip->mask(0);
3043 setup_nmi();
3044 legacy_pic->chip->unmask(0);
3046 goto out;
3049 * Cleanup, just in case ...
3051 local_irq_disable();
3052 legacy_pic->chip->mask(0);
3053 clear_IO_APIC_pin(apic2, pin2);
3054 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
3057 if (nmi_watchdog == NMI_IO_APIC) {
3058 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
3059 "through the IO-APIC - disabling NMI Watchdog!\n");
3060 nmi_watchdog = NMI_NONE;
3062 #ifdef CONFIG_X86_32
3063 timer_ack = 0;
3064 #endif
3066 apic_printk(APIC_QUIET, KERN_INFO
3067 "...trying to set up timer as Virtual Wire IRQ...\n");
3069 lapic_register_intr(0, desc);
3070 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3071 legacy_pic->chip->unmask(0);
3073 if (timer_irq_works()) {
3074 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3075 goto out;
3077 local_irq_disable();
3078 legacy_pic->chip->mask(0);
3079 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3080 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3082 apic_printk(APIC_QUIET, KERN_INFO
3083 "...trying to set up timer as ExtINT IRQ...\n");
3085 legacy_pic->init(0);
3086 legacy_pic->make_irq(0);
3087 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3089 unlock_ExtINT_logic();
3091 if (timer_irq_works()) {
3092 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3093 goto out;
3095 local_irq_disable();
3096 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3097 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3098 "report. Then try booting with the 'noapic' option.\n");
3099 out:
3100 local_irq_restore(flags);
3104 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3105 * to devices. However there may be an I/O APIC pin available for
3106 * this interrupt regardless. The pin may be left unconnected, but
3107 * typically it will be reused as an ExtINT cascade interrupt for
3108 * the master 8259A. In the MPS case such a pin will normally be
3109 * reported as an ExtINT interrupt in the MP table. With ACPI
3110 * there is no provision for ExtINT interrupts, and in the absence
3111 * of an override it would be treated as an ordinary ISA I/O APIC
3112 * interrupt, that is edge-triggered and unmasked by default. We
3113 * used to do this, but it caused problems on some systems because
3114 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3115 * the same ExtINT cascade interrupt to drive the local APIC of the
3116 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3117 * the I/O APIC in all cases now. No actual device should request
3118 * it anyway. --macro
3120 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
3122 void __init setup_IO_APIC(void)
3126 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3128 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
3130 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3132 * Set up IO-APIC IRQ routing.
3134 x86_init.mpparse.setup_ioapic_ids();
3136 sync_Arb_IDs();
3137 setup_IO_APIC_irqs();
3138 init_IO_APIC_traps();
3139 if (legacy_pic->nr_legacy_irqs)
3140 check_timer();
3144 * Called after all the initialization is done. If we didnt find any
3145 * APIC bugs then we can allow the modify fast path
3148 static int __init io_apic_bug_finalize(void)
3150 if (sis_apic_bug == -1)
3151 sis_apic_bug = 0;
3152 return 0;
3155 late_initcall(io_apic_bug_finalize);
3157 struct sysfs_ioapic_data {
3158 struct sys_device dev;
3159 struct IO_APIC_route_entry entry[0];
3161 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3163 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3165 struct IO_APIC_route_entry *entry;
3166 struct sysfs_ioapic_data *data;
3167 int i;
3169 data = container_of(dev, struct sysfs_ioapic_data, dev);
3170 entry = data->entry;
3171 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3172 *entry = ioapic_read_entry(dev->id, i);
3174 return 0;
3177 static int ioapic_resume(struct sys_device *dev)
3179 struct IO_APIC_route_entry *entry;
3180 struct sysfs_ioapic_data *data;
3181 unsigned long flags;
3182 union IO_APIC_reg_00 reg_00;
3183 int i;
3185 data = container_of(dev, struct sysfs_ioapic_data, dev);
3186 entry = data->entry;
3188 raw_spin_lock_irqsave(&ioapic_lock, flags);
3189 reg_00.raw = io_apic_read(dev->id, 0);
3190 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3191 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3192 io_apic_write(dev->id, 0, reg_00.raw);
3194 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3195 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3196 ioapic_write_entry(dev->id, i, entry[i]);
3198 return 0;
3201 static struct sysdev_class ioapic_sysdev_class = {
3202 .name = "ioapic",
3203 .suspend = ioapic_suspend,
3204 .resume = ioapic_resume,
3207 static int __init ioapic_init_sysfs(void)
3209 struct sys_device * dev;
3210 int i, size, error;
3212 error = sysdev_class_register(&ioapic_sysdev_class);
3213 if (error)
3214 return error;
3216 for (i = 0; i < nr_ioapics; i++ ) {
3217 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3218 * sizeof(struct IO_APIC_route_entry);
3219 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3220 if (!mp_ioapic_data[i]) {
3221 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3222 continue;
3224 dev = &mp_ioapic_data[i]->dev;
3225 dev->id = i;
3226 dev->cls = &ioapic_sysdev_class;
3227 error = sysdev_register(dev);
3228 if (error) {
3229 kfree(mp_ioapic_data[i]);
3230 mp_ioapic_data[i] = NULL;
3231 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3232 continue;
3236 return 0;
3239 device_initcall(ioapic_init_sysfs);
3242 * Dynamic irq allocate and deallocation
3244 unsigned int create_irq_nr(unsigned int irq_want, int node)
3246 /* Allocate an unused irq */
3247 unsigned int irq;
3248 unsigned int new;
3249 unsigned long flags;
3250 struct irq_cfg *cfg_new = NULL;
3251 struct irq_desc *desc_new = NULL;
3253 irq = 0;
3254 if (irq_want < nr_irqs_gsi)
3255 irq_want = nr_irqs_gsi;
3257 raw_spin_lock_irqsave(&vector_lock, flags);
3258 for (new = irq_want; new < nr_irqs; new++) {
3259 desc_new = irq_to_desc_alloc_node(new, node);
3260 if (!desc_new) {
3261 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3262 continue;
3264 cfg_new = desc_new->chip_data;
3266 if (cfg_new->vector != 0)
3267 continue;
3269 desc_new = move_irq_desc(desc_new, node);
3270 cfg_new = desc_new->chip_data;
3272 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3273 irq = new;
3274 break;
3276 raw_spin_unlock_irqrestore(&vector_lock, flags);
3278 if (irq > 0)
3279 dynamic_irq_init_keep_chip_data(irq);
3281 return irq;
3284 int create_irq(void)
3286 int node = cpu_to_node(boot_cpu_id);
3287 unsigned int irq_want;
3288 int irq;
3290 irq_want = nr_irqs_gsi;
3291 irq = create_irq_nr(irq_want, node);
3293 if (irq == 0)
3294 irq = -1;
3296 return irq;
3299 void destroy_irq(unsigned int irq)
3301 unsigned long flags;
3303 dynamic_irq_cleanup_keep_chip_data(irq);
3305 free_irte(irq);
3306 raw_spin_lock_irqsave(&vector_lock, flags);
3307 __clear_irq_vector(irq, get_irq_chip_data(irq));
3308 raw_spin_unlock_irqrestore(&vector_lock, flags);
3312 * MSI message composition
3314 #ifdef CONFIG_PCI_MSI
3315 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3316 struct msi_msg *msg, u8 hpet_id)
3318 struct irq_cfg *cfg;
3319 int err;
3320 unsigned dest;
3322 if (disable_apic)
3323 return -ENXIO;
3325 cfg = irq_cfg(irq);
3326 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3327 if (err)
3328 return err;
3330 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3332 if (irq_remapped(irq)) {
3333 struct irte irte;
3334 int ir_index;
3335 u16 sub_handle;
3337 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3338 BUG_ON(ir_index == -1);
3340 memset (&irte, 0, sizeof(irte));
3342 irte.present = 1;
3343 irte.dst_mode = apic->irq_dest_mode;
3344 irte.trigger_mode = 0; /* edge */
3345 irte.dlvry_mode = apic->irq_delivery_mode;
3346 irte.vector = cfg->vector;
3347 irte.dest_id = IRTE_DEST(dest);
3349 /* Set source-id of interrupt request */
3350 if (pdev)
3351 set_msi_sid(&irte, pdev);
3352 else
3353 set_hpet_sid(&irte, hpet_id);
3355 modify_irte(irq, &irte);
3357 msg->address_hi = MSI_ADDR_BASE_HI;
3358 msg->data = sub_handle;
3359 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3360 MSI_ADDR_IR_SHV |
3361 MSI_ADDR_IR_INDEX1(ir_index) |
3362 MSI_ADDR_IR_INDEX2(ir_index);
3363 } else {
3364 if (x2apic_enabled())
3365 msg->address_hi = MSI_ADDR_BASE_HI |
3366 MSI_ADDR_EXT_DEST_ID(dest);
3367 else
3368 msg->address_hi = MSI_ADDR_BASE_HI;
3370 msg->address_lo =
3371 MSI_ADDR_BASE_LO |
3372 ((apic->irq_dest_mode == 0) ?
3373 MSI_ADDR_DEST_MODE_PHYSICAL:
3374 MSI_ADDR_DEST_MODE_LOGICAL) |
3375 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3376 MSI_ADDR_REDIRECTION_CPU:
3377 MSI_ADDR_REDIRECTION_LOWPRI) |
3378 MSI_ADDR_DEST_ID(dest);
3380 msg->data =
3381 MSI_DATA_TRIGGER_EDGE |
3382 MSI_DATA_LEVEL_ASSERT |
3383 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3384 MSI_DATA_DELIVERY_FIXED:
3385 MSI_DATA_DELIVERY_LOWPRI) |
3386 MSI_DATA_VECTOR(cfg->vector);
3388 return err;
3391 #ifdef CONFIG_SMP
3392 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3394 struct irq_desc *desc = irq_to_desc(irq);
3395 struct irq_cfg *cfg;
3396 struct msi_msg msg;
3397 unsigned int dest;
3399 if (set_desc_affinity(desc, mask, &dest))
3400 return -1;
3402 cfg = desc->chip_data;
3404 read_msi_msg_desc(desc, &msg);
3406 msg.data &= ~MSI_DATA_VECTOR_MASK;
3407 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3408 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3409 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3411 write_msi_msg_desc(desc, &msg);
3413 return 0;
3415 #ifdef CONFIG_INTR_REMAP
3417 * Migrate the MSI irq to another cpumask. This migration is
3418 * done in the process context using interrupt-remapping hardware.
3420 static int
3421 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3423 struct irq_desc *desc = irq_to_desc(irq);
3424 struct irq_cfg *cfg = desc->chip_data;
3425 unsigned int dest;
3426 struct irte irte;
3428 if (get_irte(irq, &irte))
3429 return -1;
3431 if (set_desc_affinity(desc, mask, &dest))
3432 return -1;
3434 irte.vector = cfg->vector;
3435 irte.dest_id = IRTE_DEST(dest);
3438 * atomically update the IRTE with the new destination and vector.
3440 modify_irte(irq, &irte);
3443 * After this point, all the interrupts will start arriving
3444 * at the new destination. So, time to cleanup the previous
3445 * vector allocation.
3447 if (cfg->move_in_progress)
3448 send_cleanup_vector(cfg);
3450 return 0;
3453 #endif
3454 #endif /* CONFIG_SMP */
3457 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3458 * which implement the MSI or MSI-X Capability Structure.
3460 static struct irq_chip msi_chip = {
3461 .name = "PCI-MSI",
3462 .unmask = unmask_msi_irq,
3463 .mask = mask_msi_irq,
3464 .ack = ack_apic_edge,
3465 #ifdef CONFIG_SMP
3466 .set_affinity = set_msi_irq_affinity,
3467 #endif
3468 .retrigger = ioapic_retrigger_irq,
3471 static struct irq_chip msi_ir_chip = {
3472 .name = "IR-PCI-MSI",
3473 .unmask = unmask_msi_irq,
3474 .mask = mask_msi_irq,
3475 #ifdef CONFIG_INTR_REMAP
3476 .ack = ir_ack_apic_edge,
3477 #ifdef CONFIG_SMP
3478 .set_affinity = ir_set_msi_irq_affinity,
3479 #endif
3480 #endif
3481 .retrigger = ioapic_retrigger_irq,
3485 * Map the PCI dev to the corresponding remapping hardware unit
3486 * and allocate 'nvec' consecutive interrupt-remapping table entries
3487 * in it.
3489 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3491 struct intel_iommu *iommu;
3492 int index;
3494 iommu = map_dev_to_ir(dev);
3495 if (!iommu) {
3496 printk(KERN_ERR
3497 "Unable to map PCI %s to iommu\n", pci_name(dev));
3498 return -ENOENT;
3501 index = alloc_irte(iommu, irq, nvec);
3502 if (index < 0) {
3503 printk(KERN_ERR
3504 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3505 pci_name(dev));
3506 return -ENOSPC;
3508 return index;
3511 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3513 int ret;
3514 struct msi_msg msg;
3516 ret = msi_compose_msg(dev, irq, &msg, -1);
3517 if (ret < 0)
3518 return ret;
3520 set_irq_msi(irq, msidesc);
3521 write_msi_msg(irq, &msg);
3523 if (irq_remapped(irq)) {
3524 struct irq_desc *desc = irq_to_desc(irq);
3526 * irq migration in process context
3528 desc->status |= IRQ_MOVE_PCNTXT;
3529 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3530 } else
3531 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3533 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3535 return 0;
3538 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3540 unsigned int irq;
3541 int ret, sub_handle;
3542 struct msi_desc *msidesc;
3543 unsigned int irq_want;
3544 struct intel_iommu *iommu = NULL;
3545 int index = 0;
3546 int node;
3548 /* x86 doesn't support multiple MSI yet */
3549 if (type == PCI_CAP_ID_MSI && nvec > 1)
3550 return 1;
3552 node = dev_to_node(&dev->dev);
3553 irq_want = nr_irqs_gsi;
3554 sub_handle = 0;
3555 list_for_each_entry(msidesc, &dev->msi_list, list) {
3556 irq = create_irq_nr(irq_want, node);
3557 if (irq == 0)
3558 return -1;
3559 irq_want = irq + 1;
3560 if (!intr_remapping_enabled)
3561 goto no_ir;
3563 if (!sub_handle) {
3565 * allocate the consecutive block of IRTE's
3566 * for 'nvec'
3568 index = msi_alloc_irte(dev, irq, nvec);
3569 if (index < 0) {
3570 ret = index;
3571 goto error;
3573 } else {
3574 iommu = map_dev_to_ir(dev);
3575 if (!iommu) {
3576 ret = -ENOENT;
3577 goto error;
3580 * setup the mapping between the irq and the IRTE
3581 * base index, the sub_handle pointing to the
3582 * appropriate interrupt remap table entry.
3584 set_irte_irq(irq, iommu, index, sub_handle);
3586 no_ir:
3587 ret = setup_msi_irq(dev, msidesc, irq);
3588 if (ret < 0)
3589 goto error;
3590 sub_handle++;
3592 return 0;
3594 error:
3595 destroy_irq(irq);
3596 return ret;
3599 void arch_teardown_msi_irq(unsigned int irq)
3601 destroy_irq(irq);
3604 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3605 #ifdef CONFIG_SMP
3606 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3608 struct irq_desc *desc = irq_to_desc(irq);
3609 struct irq_cfg *cfg;
3610 struct msi_msg msg;
3611 unsigned int dest;
3613 if (set_desc_affinity(desc, mask, &dest))
3614 return -1;
3616 cfg = desc->chip_data;
3618 dmar_msi_read(irq, &msg);
3620 msg.data &= ~MSI_DATA_VECTOR_MASK;
3621 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3622 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3623 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3625 dmar_msi_write(irq, &msg);
3627 return 0;
3630 #endif /* CONFIG_SMP */
3632 static struct irq_chip dmar_msi_type = {
3633 .name = "DMAR_MSI",
3634 .unmask = dmar_msi_unmask,
3635 .mask = dmar_msi_mask,
3636 .ack = ack_apic_edge,
3637 #ifdef CONFIG_SMP
3638 .set_affinity = dmar_msi_set_affinity,
3639 #endif
3640 .retrigger = ioapic_retrigger_irq,
3643 int arch_setup_dmar_msi(unsigned int irq)
3645 int ret;
3646 struct msi_msg msg;
3648 ret = msi_compose_msg(NULL, irq, &msg, -1);
3649 if (ret < 0)
3650 return ret;
3651 dmar_msi_write(irq, &msg);
3652 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3653 "edge");
3654 return 0;
3656 #endif
3658 #ifdef CONFIG_HPET_TIMER
3660 #ifdef CONFIG_SMP
3661 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3663 struct irq_desc *desc = irq_to_desc(irq);
3664 struct irq_cfg *cfg;
3665 struct msi_msg msg;
3666 unsigned int dest;
3668 if (set_desc_affinity(desc, mask, &dest))
3669 return -1;
3671 cfg = desc->chip_data;
3673 hpet_msi_read(irq, &msg);
3675 msg.data &= ~MSI_DATA_VECTOR_MASK;
3676 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3677 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3678 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3680 hpet_msi_write(irq, &msg);
3682 return 0;
3685 #endif /* CONFIG_SMP */
3687 static struct irq_chip ir_hpet_msi_type = {
3688 .name = "IR-HPET_MSI",
3689 .unmask = hpet_msi_unmask,
3690 .mask = hpet_msi_mask,
3691 #ifdef CONFIG_INTR_REMAP
3692 .ack = ir_ack_apic_edge,
3693 #ifdef CONFIG_SMP
3694 .set_affinity = ir_set_msi_irq_affinity,
3695 #endif
3696 #endif
3697 .retrigger = ioapic_retrigger_irq,
3700 static struct irq_chip hpet_msi_type = {
3701 .name = "HPET_MSI",
3702 .unmask = hpet_msi_unmask,
3703 .mask = hpet_msi_mask,
3704 .ack = ack_apic_edge,
3705 #ifdef CONFIG_SMP
3706 .set_affinity = hpet_msi_set_affinity,
3707 #endif
3708 .retrigger = ioapic_retrigger_irq,
3711 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3713 int ret;
3714 struct msi_msg msg;
3715 struct irq_desc *desc = irq_to_desc(irq);
3717 if (intr_remapping_enabled) {
3718 struct intel_iommu *iommu = map_hpet_to_ir(id);
3719 int index;
3721 if (!iommu)
3722 return -1;
3724 index = alloc_irte(iommu, irq, 1);
3725 if (index < 0)
3726 return -1;
3729 ret = msi_compose_msg(NULL, irq, &msg, id);
3730 if (ret < 0)
3731 return ret;
3733 hpet_msi_write(irq, &msg);
3734 desc->status |= IRQ_MOVE_PCNTXT;
3735 if (irq_remapped(irq))
3736 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3737 handle_edge_irq, "edge");
3738 else
3739 set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3740 handle_edge_irq, "edge");
3742 return 0;
3744 #endif
3746 #endif /* CONFIG_PCI_MSI */
3748 * Hypertransport interrupt support
3750 #ifdef CONFIG_HT_IRQ
3752 #ifdef CONFIG_SMP
3754 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3756 struct ht_irq_msg msg;
3757 fetch_ht_irq_msg(irq, &msg);
3759 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3760 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3762 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3763 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3765 write_ht_irq_msg(irq, &msg);
3768 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3770 struct irq_desc *desc = irq_to_desc(irq);
3771 struct irq_cfg *cfg;
3772 unsigned int dest;
3774 if (set_desc_affinity(desc, mask, &dest))
3775 return -1;
3777 cfg = desc->chip_data;
3779 target_ht_irq(irq, dest, cfg->vector);
3781 return 0;
3784 #endif
3786 static struct irq_chip ht_irq_chip = {
3787 .name = "PCI-HT",
3788 .mask = mask_ht_irq,
3789 .unmask = unmask_ht_irq,
3790 .ack = ack_apic_edge,
3791 #ifdef CONFIG_SMP
3792 .set_affinity = set_ht_irq_affinity,
3793 #endif
3794 .retrigger = ioapic_retrigger_irq,
3797 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3799 struct irq_cfg *cfg;
3800 int err;
3802 if (disable_apic)
3803 return -ENXIO;
3805 cfg = irq_cfg(irq);
3806 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3807 if (!err) {
3808 struct ht_irq_msg msg;
3809 unsigned dest;
3811 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3812 apic->target_cpus());
3814 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3816 msg.address_lo =
3817 HT_IRQ_LOW_BASE |
3818 HT_IRQ_LOW_DEST_ID(dest) |
3819 HT_IRQ_LOW_VECTOR(cfg->vector) |
3820 ((apic->irq_dest_mode == 0) ?
3821 HT_IRQ_LOW_DM_PHYSICAL :
3822 HT_IRQ_LOW_DM_LOGICAL) |
3823 HT_IRQ_LOW_RQEOI_EDGE |
3824 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3825 HT_IRQ_LOW_MT_FIXED :
3826 HT_IRQ_LOW_MT_ARBITRATED) |
3827 HT_IRQ_LOW_IRQ_MASKED;
3829 write_ht_irq_msg(irq, &msg);
3831 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3832 handle_edge_irq, "edge");
3834 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3836 return err;
3838 #endif /* CONFIG_HT_IRQ */
3840 int __init io_apic_get_redir_entries (int ioapic)
3842 union IO_APIC_reg_01 reg_01;
3843 unsigned long flags;
3845 raw_spin_lock_irqsave(&ioapic_lock, flags);
3846 reg_01.raw = io_apic_read(ioapic, 1);
3847 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3849 /* The register returns the maximum index redir index
3850 * supported, which is one less than the total number of redir
3851 * entries.
3853 return reg_01.bits.entries + 1;
3856 void __init probe_nr_irqs_gsi(void)
3858 int nr = 0;
3860 nr = acpi_probe_gsi();
3861 if (nr > nr_irqs_gsi) {
3862 nr_irqs_gsi = nr;
3863 } else {
3864 /* for acpi=off or acpi is not compiled in */
3865 int idx;
3867 nr = 0;
3868 for (idx = 0; idx < nr_ioapics; idx++)
3869 nr += io_apic_get_redir_entries(idx);
3871 if (nr > nr_irqs_gsi)
3872 nr_irqs_gsi = nr;
3875 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3878 #ifdef CONFIG_SPARSE_IRQ
3879 int __init arch_probe_nr_irqs(void)
3881 int nr;
3883 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3884 nr_irqs = NR_VECTORS * nr_cpu_ids;
3886 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3887 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3889 * for MSI and HT dyn irq
3891 nr += nr_irqs_gsi * 16;
3892 #endif
3893 if (nr < nr_irqs)
3894 nr_irqs = nr;
3896 return 0;
3898 #endif
3900 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3901 struct io_apic_irq_attr *irq_attr)
3903 struct irq_desc *desc;
3904 struct irq_cfg *cfg;
3905 int node;
3906 int ioapic, pin;
3907 int trigger, polarity;
3909 ioapic = irq_attr->ioapic;
3910 if (!IO_APIC_IRQ(irq)) {
3911 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3912 ioapic);
3913 return -EINVAL;
3916 if (dev)
3917 node = dev_to_node(dev);
3918 else
3919 node = cpu_to_node(boot_cpu_id);
3921 desc = irq_to_desc_alloc_node(irq, node);
3922 if (!desc) {
3923 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3924 return 0;
3927 pin = irq_attr->ioapic_pin;
3928 trigger = irq_attr->trigger;
3929 polarity = irq_attr->polarity;
3932 * IRQs < 16 are already in the irq_2_pin[] map
3934 if (irq >= legacy_pic->nr_legacy_irqs) {
3935 cfg = desc->chip_data;
3936 if (add_pin_to_irq_node_nopanic(cfg, node, ioapic, pin)) {
3937 printk(KERN_INFO "can not add pin %d for irq %d\n",
3938 pin, irq);
3939 return 0;
3943 setup_IO_APIC_irq(ioapic, pin, irq, desc, trigger, polarity);
3945 return 0;
3948 int io_apic_set_pci_routing(struct device *dev, int irq,
3949 struct io_apic_irq_attr *irq_attr)
3951 int ioapic, pin;
3953 * Avoid pin reprogramming. PRTs typically include entries
3954 * with redundant pin->gsi mappings (but unique PCI devices);
3955 * we only program the IOAPIC on the first.
3957 ioapic = irq_attr->ioapic;
3958 pin = irq_attr->ioapic_pin;
3959 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3960 pr_debug("Pin %d-%d already programmed\n",
3961 mp_ioapics[ioapic].apicid, pin);
3962 return 0;
3964 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3966 return __io_apic_set_pci_routing(dev, irq, irq_attr);
3969 u8 __init io_apic_unique_id(u8 id)
3971 #ifdef CONFIG_X86_32
3972 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3973 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3974 return io_apic_get_unique_id(nr_ioapics, id);
3975 else
3976 return id;
3977 #else
3978 int i;
3979 DECLARE_BITMAP(used, 256);
3981 bitmap_zero(used, 256);
3982 for (i = 0; i < nr_ioapics; i++) {
3983 struct mpc_ioapic *ia = &mp_ioapics[i];
3984 __set_bit(ia->apicid, used);
3986 if (!test_bit(id, used))
3987 return id;
3988 return find_first_zero_bit(used, 256);
3989 #endif
3992 #ifdef CONFIG_X86_32
3993 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3995 union IO_APIC_reg_00 reg_00;
3996 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3997 physid_mask_t tmp;
3998 unsigned long flags;
3999 int i = 0;
4002 * The P4 platform supports up to 256 APIC IDs on two separate APIC
4003 * buses (one for LAPICs, one for IOAPICs), where predecessors only
4004 * supports up to 16 on one shared APIC bus.
4006 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
4007 * advantage of new APIC bus architecture.
4010 if (physids_empty(apic_id_map))
4011 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
4013 raw_spin_lock_irqsave(&ioapic_lock, flags);
4014 reg_00.raw = io_apic_read(ioapic, 0);
4015 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4017 if (apic_id >= get_physical_broadcast()) {
4018 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
4019 "%d\n", ioapic, apic_id, reg_00.bits.ID);
4020 apic_id = reg_00.bits.ID;
4024 * Every APIC in a system must have a unique ID or we get lots of nice
4025 * 'stuck on smp_invalidate_needed IPI wait' messages.
4027 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
4029 for (i = 0; i < get_physical_broadcast(); i++) {
4030 if (!apic->check_apicid_used(&apic_id_map, i))
4031 break;
4034 if (i == get_physical_broadcast())
4035 panic("Max apic_id exceeded!\n");
4037 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
4038 "trying %d\n", ioapic, apic_id, i);
4040 apic_id = i;
4043 apic->apicid_to_cpu_present(apic_id, &tmp);
4044 physids_or(apic_id_map, apic_id_map, tmp);
4046 if (reg_00.bits.ID != apic_id) {
4047 reg_00.bits.ID = apic_id;
4049 raw_spin_lock_irqsave(&ioapic_lock, flags);
4050 io_apic_write(ioapic, 0, reg_00.raw);
4051 reg_00.raw = io_apic_read(ioapic, 0);
4052 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4054 /* Sanity check */
4055 if (reg_00.bits.ID != apic_id) {
4056 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
4057 return -1;
4061 apic_printk(APIC_VERBOSE, KERN_INFO
4062 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
4064 return apic_id;
4066 #endif
4068 int __init io_apic_get_version(int ioapic)
4070 union IO_APIC_reg_01 reg_01;
4071 unsigned long flags;
4073 raw_spin_lock_irqsave(&ioapic_lock, flags);
4074 reg_01.raw = io_apic_read(ioapic, 1);
4075 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
4077 return reg_01.bits.version;
4080 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
4082 int ioapic, pin, idx;
4084 if (skip_ioapic_setup)
4085 return -1;
4087 ioapic = mp_find_ioapic(gsi);
4088 if (ioapic < 0)
4089 return -1;
4091 pin = mp_find_ioapic_pin(ioapic, gsi);
4092 if (pin < 0)
4093 return -1;
4095 idx = find_irq_entry(ioapic, pin, mp_INT);
4096 if (idx < 0)
4097 return -1;
4099 *trigger = irq_trigger(idx);
4100 *polarity = irq_polarity(idx);
4101 return 0;
4105 * This function currently is only a helper for the i386 smp boot process where
4106 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4107 * so mask in all cases should simply be apic->target_cpus()
4109 #ifdef CONFIG_SMP
4110 void __init setup_ioapic_dest(void)
4112 int pin, ioapic, irq, irq_entry;
4113 struct irq_desc *desc;
4114 const struct cpumask *mask;
4116 if (skip_ioapic_setup == 1)
4117 return;
4119 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
4120 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4121 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4122 if (irq_entry == -1)
4123 continue;
4124 irq = pin_2_irq(irq_entry, ioapic, pin);
4126 if ((ioapic > 0) && (irq > 16))
4127 continue;
4129 desc = irq_to_desc(irq);
4132 * Honour affinities which have been set in early boot
4134 if (desc->status &
4135 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4136 mask = desc->affinity;
4137 else
4138 mask = apic->target_cpus();
4140 if (intr_remapping_enabled)
4141 set_ir_ioapic_affinity_irq_desc(desc, mask);
4142 else
4143 set_ioapic_affinity_irq_desc(desc, mask);
4147 #endif
4149 #define IOAPIC_RESOURCE_NAME_SIZE 11
4151 static struct resource *ioapic_resources;
4153 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
4155 unsigned long n;
4156 struct resource *res;
4157 char *mem;
4158 int i;
4160 if (nr_ioapics <= 0)
4161 return NULL;
4163 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4164 n *= nr_ioapics;
4166 mem = alloc_bootmem(n);
4167 res = (void *)mem;
4169 mem += sizeof(struct resource) * nr_ioapics;
4171 for (i = 0; i < nr_ioapics; i++) {
4172 res[i].name = mem;
4173 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4174 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
4175 mem += IOAPIC_RESOURCE_NAME_SIZE;
4178 ioapic_resources = res;
4180 return res;
4183 void __init ioapic_init_mappings(void)
4185 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4186 struct resource *ioapic_res;
4187 int i;
4189 ioapic_res = ioapic_setup_resources(nr_ioapics);
4190 for (i = 0; i < nr_ioapics; i++) {
4191 if (smp_found_config) {
4192 ioapic_phys = mp_ioapics[i].apicaddr;
4193 #ifdef CONFIG_X86_32
4194 if (!ioapic_phys) {
4195 printk(KERN_ERR
4196 "WARNING: bogus zero IO-APIC "
4197 "address found in MPTABLE, "
4198 "disabling IO/APIC support!\n");
4199 smp_found_config = 0;
4200 skip_ioapic_setup = 1;
4201 goto fake_ioapic_page;
4203 #endif
4204 } else {
4205 #ifdef CONFIG_X86_32
4206 fake_ioapic_page:
4207 #endif
4208 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
4209 ioapic_phys = __pa(ioapic_phys);
4211 set_fixmap_nocache(idx, ioapic_phys);
4212 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
4213 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
4214 ioapic_phys);
4215 idx++;
4217 ioapic_res->start = ioapic_phys;
4218 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
4219 ioapic_res++;
4223 void __init ioapic_insert_resources(void)
4225 int i;
4226 struct resource *r = ioapic_resources;
4228 if (!r) {
4229 if (nr_ioapics > 0)
4230 printk(KERN_ERR
4231 "IO APIC resources couldn't be allocated.\n");
4232 return;
4235 for (i = 0; i < nr_ioapics; i++) {
4236 insert_resource(&iomem_resource, r);
4237 r++;
4241 int mp_find_ioapic(u32 gsi)
4243 int i = 0;
4245 /* Find the IOAPIC that manages this GSI. */
4246 for (i = 0; i < nr_ioapics; i++) {
4247 if ((gsi >= mp_gsi_routing[i].gsi_base)
4248 && (gsi <= mp_gsi_routing[i].gsi_end))
4249 return i;
4252 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4253 return -1;
4256 int mp_find_ioapic_pin(int ioapic, u32 gsi)
4258 if (WARN_ON(ioapic == -1))
4259 return -1;
4260 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4261 return -1;
4263 return gsi - mp_gsi_routing[ioapic].gsi_base;
4266 static int bad_ioapic(unsigned long address)
4268 if (nr_ioapics >= MAX_IO_APICS) {
4269 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4270 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4271 return 1;
4273 if (!address) {
4274 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4275 " found in table, skipping!\n");
4276 return 1;
4278 return 0;
4281 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4283 int idx = 0;
4284 int entries;
4286 if (bad_ioapic(address))
4287 return;
4289 idx = nr_ioapics;
4291 mp_ioapics[idx].type = MP_IOAPIC;
4292 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4293 mp_ioapics[idx].apicaddr = address;
4295 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4296 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4297 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4300 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4301 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4303 entries = io_apic_get_redir_entries(idx);
4304 mp_gsi_routing[idx].gsi_base = gsi_base;
4305 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4308 * The number of IO-APIC IRQ registers (== #pins):
4310 nr_ioapic_registers[idx] = entries;
4312 if (mp_gsi_routing[idx].gsi_end > gsi_end)
4313 gsi_end = mp_gsi_routing[idx].gsi_end;
4315 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4316 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4317 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4318 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4320 nr_ioapics++;
4323 /* Enable IOAPIC early just for system timer */
4324 void __init pre_init_apic_IRQ0(void)
4326 struct irq_cfg *cfg;
4327 struct irq_desc *desc;
4329 printk(KERN_INFO "Early APIC setup for system timer0\n");
4330 #ifndef CONFIG_SMP
4331 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
4332 #endif
4333 desc = irq_to_desc_alloc_node(0, 0);
4335 setup_local_APIC();
4337 cfg = irq_cfg(0);
4338 add_pin_to_irq_node(cfg, 0, 0, 0);
4339 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4341 setup_IO_APIC_irq(0, 0, 0, desc, 0, 0);