drm/nv40/mpeg: fix context handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blobfb135ba4aba90349e58c79d49838860cb7db8105
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 void sync_mm_rss(struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
138 current->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
162 #else /* SPLIT_RSS_COUNTING */
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167 static void check_sync_rss_stat(struct task_struct *task)
171 #endif /* SPLIT_RSS_COUNTING */
173 #ifdef HAVE_GENERIC_MMU_GATHER
175 static int tlb_next_batch(struct mmu_gather *tlb)
177 struct mmu_gather_batch *batch;
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
193 tlb->active->next = batch;
194 tlb->active = batch;
196 return 1;
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 tlb->mm = mm;
208 tlb->fullmm = fullmm;
209 tlb->start = -1UL;
210 tlb->end = 0;
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220 #endif
223 void tlb_flush_mmu(struct mmu_gather *tlb)
225 struct mmu_gather_batch *batch;
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
233 #endif
235 if (tlb_fast_mode(tlb))
236 return;
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
242 tlb->active = &tlb->local;
245 /* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
251 struct mmu_gather_batch *batch, *next;
253 tlb->start = start;
254 tlb->end = end;
255 tlb_flush_mmu(tlb);
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
264 tlb->local.next = NULL;
267 /* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 struct mmu_gather_batch *batch;
277 VM_BUG_ON(!tlb->need_flush);
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
291 VM_BUG_ON(batch->nr > batch->max);
293 return batch->max - batch->nr;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
322 static void tlb_remove_table_rcu(struct rcu_head *head)
324 struct mmu_table_batch *batch;
325 int i;
327 batch = container_of(head, struct mmu_table_batch, rcu);
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
332 free_page((unsigned long)batch);
335 void tlb_table_flush(struct mmu_gather *tlb)
337 struct mmu_table_batch **batch = &tlb->batch;
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 struct mmu_table_batch **batch = &tlb->batch;
349 tlb->need_flush = 1;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
366 (*batch)->nr = 0;
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 void pgd_clear_bad(pgd_t *pgd)
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
387 void pud_clear_bad(pud_t *pud)
389 pud_ERROR(*pud);
390 pud_clear(pud);
393 void pmd_clear_bad(pmd_t *pmd)
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
437 if (end - 1 > ceiling - 1)
438 return;
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
470 if (end - 1 > ceiling - 1)
471 return;
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
479 * This function frees user-level page tables of a process.
481 * Must be called with pagetable lock held.
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
487 pgd_t *pgd;
488 unsigned long next;
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
560 * Optimization: gather nearby vmas into one call down
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
572 vma = next;
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
621 smp_wmb(); /* See comment in __pte_alloc */
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
635 static inline void init_rss_vec(int *rss)
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 int i;
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
656 * The calling function must still handle the error.
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
685 nr_shown = 0;
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 if (vma->vm_ops)
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE);
715 static inline bool is_cow_mapping(vm_flags_t flags)
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
723 return pfn == zero_pfn;
725 #endif
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
730 return zero_pfn;
732 #endif
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 * And for normal mappings this is false.
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
784 unsigned long pfn = pte_pfn(pte);
786 if (HAVE_PTE_SPECIAL) {
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
791 if (!is_zero_pfn(pfn))
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
796 /* !HAVE_PTE_SPECIAL case follows: */
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
813 if (is_zero_pfn(pfn))
814 return NULL;
815 check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
822 * NOTE! We still have PageReserved() pages in the page tables.
823 * eg. VDSO mappings can cause them to exist.
825 out:
826 return pfn_to_page(pfn);
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 unsigned long addr, int *rss)
840 unsigned long vm_flags = vma->vm_flags;
841 pte_t pte = *src_pte;
842 struct page *page;
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
847 swp_entry_t entry = pte_to_swp_entry(pte);
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
858 spin_unlock(&mmlist_lock);
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
873 * COW mappings require pages in both
874 * parent and child to be set to read.
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
882 goto out_set_pte;
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
895 * If it's a shared mapping, mark it clean in
896 * the child
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page);
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
912 out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
914 return 0;
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
921 pte_t *orig_src_pte, *orig_dst_pte;
922 pte_t *src_pte, *dst_pte;
923 spinlock_t *src_ptl, *dst_ptl;
924 int progress = 0;
925 int rss[NR_MM_COUNTERS];
926 swp_entry_t entry = (swp_entry_t){0};
928 again:
929 init_rss_vec(rss);
931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 if (!dst_pte)
933 return -ENOMEM;
934 src_pte = pte_offset_map(src_pmd, addr);
935 src_ptl = pte_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
939 arch_enter_lazy_mmu_mode();
941 do {
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 break;
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963 arch_leave_lazy_mmu_mode();
964 spin_unlock(src_ptl);
965 pte_unmap(orig_src_pte);
966 add_mm_rss_vec(dst_mm, rss);
967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 cond_resched();
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
975 if (addr != end)
976 goto again;
977 return 0;
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
1042 unsigned long mmun_start; /* For mmu_notifiers */
1043 unsigned long mmun_end; /* For mmu_notifiers */
1044 bool is_cow;
1045 int ret;
1048 * Don't copy ptes where a page fault will fill them correctly.
1049 * Fork becomes much lighter when there are big shared or private
1050 * readonly mappings. The tradeoff is that copy_page_range is more
1051 * efficient than faulting.
1053 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1054 VM_PFNMAP | VM_MIXEDMAP))) {
1055 if (!vma->anon_vma)
1056 return 0;
1059 if (is_vm_hugetlb_page(vma))
1060 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1062 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1064 * We do not free on error cases below as remove_vma
1065 * gets called on error from higher level routine
1067 ret = track_pfn_copy(vma);
1068 if (ret)
1069 return ret;
1073 * We need to invalidate the secondary MMU mappings only when
1074 * there could be a permission downgrade on the ptes of the
1075 * parent mm. And a permission downgrade will only happen if
1076 * is_cow_mapping() returns true.
1078 is_cow = is_cow_mapping(vma->vm_flags);
1079 mmun_start = addr;
1080 mmun_end = end;
1081 if (is_cow)
1082 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083 mmun_end);
1085 ret = 0;
1086 dst_pgd = pgd_offset(dst_mm, addr);
1087 src_pgd = pgd_offset(src_mm, addr);
1088 do {
1089 next = pgd_addr_end(addr, end);
1090 if (pgd_none_or_clear_bad(src_pgd))
1091 continue;
1092 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 vma, addr, next))) {
1094 ret = -ENOMEM;
1095 break;
1097 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1099 if (is_cow)
1100 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101 return ret;
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105 struct vm_area_struct *vma, pmd_t *pmd,
1106 unsigned long addr, unsigned long end,
1107 struct zap_details *details)
1109 struct mm_struct *mm = tlb->mm;
1110 int force_flush = 0;
1111 int rss[NR_MM_COUNTERS];
1112 spinlock_t *ptl;
1113 pte_t *start_pte;
1114 pte_t *pte;
1116 again:
1117 init_rss_vec(rss);
1118 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 pte = start_pte;
1120 arch_enter_lazy_mmu_mode();
1121 do {
1122 pte_t ptent = *pte;
1123 if (pte_none(ptent)) {
1124 continue;
1127 if (pte_present(ptent)) {
1128 struct page *page;
1130 page = vm_normal_page(vma, addr, ptent);
1131 if (unlikely(details) && page) {
1133 * unmap_shared_mapping_pages() wants to
1134 * invalidate cache without truncating:
1135 * unmap shared but keep private pages.
1137 if (details->check_mapping &&
1138 details->check_mapping != page->mapping)
1139 continue;
1141 * Each page->index must be checked when
1142 * invalidating or truncating nonlinear.
1144 if (details->nonlinear_vma &&
1145 (page->index < details->first_index ||
1146 page->index > details->last_index))
1147 continue;
1149 ptent = ptep_get_and_clear_full(mm, addr, pte,
1150 tlb->fullmm);
1151 tlb_remove_tlb_entry(tlb, pte, addr);
1152 if (unlikely(!page))
1153 continue;
1154 if (unlikely(details) && details->nonlinear_vma
1155 && linear_page_index(details->nonlinear_vma,
1156 addr) != page->index)
1157 set_pte_at(mm, addr, pte,
1158 pgoff_to_pte(page->index));
1159 if (PageAnon(page))
1160 rss[MM_ANONPAGES]--;
1161 else {
1162 if (pte_dirty(ptent))
1163 set_page_dirty(page);
1164 if (pte_young(ptent) &&
1165 likely(!VM_SequentialReadHint(vma)))
1166 mark_page_accessed(page);
1167 rss[MM_FILEPAGES]--;
1169 page_remove_rmap(page);
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
1172 force_flush = !__tlb_remove_page(tlb, page);
1173 if (force_flush)
1174 break;
1175 continue;
1178 * If details->check_mapping, we leave swap entries;
1179 * if details->nonlinear_vma, we leave file entries.
1181 if (unlikely(details))
1182 continue;
1183 if (pte_file(ptent)) {
1184 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185 print_bad_pte(vma, addr, ptent, NULL);
1186 } else {
1187 swp_entry_t entry = pte_to_swp_entry(ptent);
1189 if (!non_swap_entry(entry))
1190 rss[MM_SWAPENTS]--;
1191 else if (is_migration_entry(entry)) {
1192 struct page *page;
1194 page = migration_entry_to_page(entry);
1196 if (PageAnon(page))
1197 rss[MM_ANONPAGES]--;
1198 else
1199 rss[MM_FILEPAGES]--;
1201 if (unlikely(!free_swap_and_cache(entry)))
1202 print_bad_pte(vma, addr, ptent, NULL);
1204 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205 } while (pte++, addr += PAGE_SIZE, addr != end);
1207 add_mm_rss_vec(mm, rss);
1208 arch_leave_lazy_mmu_mode();
1209 pte_unmap_unlock(start_pte, ptl);
1212 * mmu_gather ran out of room to batch pages, we break out of
1213 * the PTE lock to avoid doing the potential expensive TLB invalidate
1214 * and page-free while holding it.
1216 if (force_flush) {
1217 force_flush = 0;
1219 #ifdef HAVE_GENERIC_MMU_GATHER
1220 tlb->start = addr;
1221 tlb->end = end;
1222 #endif
1223 tlb_flush_mmu(tlb);
1224 if (addr != end)
1225 goto again;
1228 return addr;
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pud_t *pud,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1236 pmd_t *pmd;
1237 unsigned long next;
1239 pmd = pmd_offset(pud, addr);
1240 do {
1241 next = pmd_addr_end(addr, end);
1242 if (pmd_trans_huge(*pmd)) {
1243 if (next - addr != HPAGE_PMD_SIZE) {
1244 #ifdef CONFIG_DEBUG_VM
1245 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1246 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1247 __func__, addr, end,
1248 vma->vm_start,
1249 vma->vm_end);
1250 BUG();
1252 #endif
1253 split_huge_page_pmd(vma->vm_mm, pmd);
1254 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1255 goto next;
1256 /* fall through */
1259 * Here there can be other concurrent MADV_DONTNEED or
1260 * trans huge page faults running, and if the pmd is
1261 * none or trans huge it can change under us. This is
1262 * because MADV_DONTNEED holds the mmap_sem in read
1263 * mode.
1265 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1266 goto next;
1267 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1268 next:
1269 cond_resched();
1270 } while (pmd++, addr = next, addr != end);
1272 return addr;
1275 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma, pgd_t *pgd,
1277 unsigned long addr, unsigned long end,
1278 struct zap_details *details)
1280 pud_t *pud;
1281 unsigned long next;
1283 pud = pud_offset(pgd, addr);
1284 do {
1285 next = pud_addr_end(addr, end);
1286 if (pud_none_or_clear_bad(pud))
1287 continue;
1288 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 } while (pud++, addr = next, addr != end);
1291 return addr;
1294 static void unmap_page_range(struct mmu_gather *tlb,
1295 struct vm_area_struct *vma,
1296 unsigned long addr, unsigned long end,
1297 struct zap_details *details)
1299 pgd_t *pgd;
1300 unsigned long next;
1302 if (details && !details->check_mapping && !details->nonlinear_vma)
1303 details = NULL;
1305 BUG_ON(addr >= end);
1306 mem_cgroup_uncharge_start();
1307 tlb_start_vma(tlb, vma);
1308 pgd = pgd_offset(vma->vm_mm, addr);
1309 do {
1310 next = pgd_addr_end(addr, end);
1311 if (pgd_none_or_clear_bad(pgd))
1312 continue;
1313 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314 } while (pgd++, addr = next, addr != end);
1315 tlb_end_vma(tlb, vma);
1316 mem_cgroup_uncharge_end();
1320 static void unmap_single_vma(struct mmu_gather *tlb,
1321 struct vm_area_struct *vma, unsigned long start_addr,
1322 unsigned long end_addr,
1323 struct zap_details *details)
1325 unsigned long start = max(vma->vm_start, start_addr);
1326 unsigned long end;
1328 if (start >= vma->vm_end)
1329 return;
1330 end = min(vma->vm_end, end_addr);
1331 if (end <= vma->vm_start)
1332 return;
1334 if (vma->vm_file)
1335 uprobe_munmap(vma, start, end);
1337 if (unlikely(vma->vm_flags & VM_PFNMAP))
1338 untrack_pfn(vma, 0, 0);
1340 if (start != end) {
1341 if (unlikely(is_vm_hugetlb_page(vma))) {
1343 * It is undesirable to test vma->vm_file as it
1344 * should be non-null for valid hugetlb area.
1345 * However, vm_file will be NULL in the error
1346 * cleanup path of do_mmap_pgoff. When
1347 * hugetlbfs ->mmap method fails,
1348 * do_mmap_pgoff() nullifies vma->vm_file
1349 * before calling this function to clean up.
1350 * Since no pte has actually been setup, it is
1351 * safe to do nothing in this case.
1353 if (vma->vm_file) {
1354 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1356 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1358 } else
1359 unmap_page_range(tlb, vma, start, end, details);
1364 * unmap_vmas - unmap a range of memory covered by a list of vma's
1365 * @tlb: address of the caller's struct mmu_gather
1366 * @vma: the starting vma
1367 * @start_addr: virtual address at which to start unmapping
1368 * @end_addr: virtual address at which to end unmapping
1370 * Unmap all pages in the vma list.
1372 * Only addresses between `start' and `end' will be unmapped.
1374 * The VMA list must be sorted in ascending virtual address order.
1376 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1377 * range after unmap_vmas() returns. So the only responsibility here is to
1378 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1379 * drops the lock and schedules.
1381 void unmap_vmas(struct mmu_gather *tlb,
1382 struct vm_area_struct *vma, unsigned long start_addr,
1383 unsigned long end_addr)
1385 struct mm_struct *mm = vma->vm_mm;
1387 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1388 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1389 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1390 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1394 * zap_page_range - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
1396 * @start: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 * @details: details of nonlinear truncation or shared cache invalidation
1400 * Caller must protect the VMA list
1402 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1403 unsigned long size, struct zap_details *details)
1405 struct mm_struct *mm = vma->vm_mm;
1406 struct mmu_gather tlb;
1407 unsigned long end = start + size;
1409 lru_add_drain();
1410 tlb_gather_mmu(&tlb, mm, 0);
1411 update_hiwater_rss(mm);
1412 mmu_notifier_invalidate_range_start(mm, start, end);
1413 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1414 unmap_single_vma(&tlb, vma, start, end, details);
1415 mmu_notifier_invalidate_range_end(mm, start, end);
1416 tlb_finish_mmu(&tlb, start, end);
1420 * zap_page_range_single - remove user pages in a given range
1421 * @vma: vm_area_struct holding the applicable pages
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 * @details: details of nonlinear truncation or shared cache invalidation
1426 * The range must fit into one VMA.
1428 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1429 unsigned long size, struct zap_details *details)
1431 struct mm_struct *mm = vma->vm_mm;
1432 struct mmu_gather tlb;
1433 unsigned long end = address + size;
1435 lru_add_drain();
1436 tlb_gather_mmu(&tlb, mm, 0);
1437 update_hiwater_rss(mm);
1438 mmu_notifier_invalidate_range_start(mm, address, end);
1439 unmap_single_vma(&tlb, vma, address, end, details);
1440 mmu_notifier_invalidate_range_end(mm, address, end);
1441 tlb_finish_mmu(&tlb, address, end);
1445 * zap_vma_ptes - remove ptes mapping the vma
1446 * @vma: vm_area_struct holding ptes to be zapped
1447 * @address: starting address of pages to zap
1448 * @size: number of bytes to zap
1450 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1452 * The entire address range must be fully contained within the vma.
1454 * Returns 0 if successful.
1456 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1457 unsigned long size)
1459 if (address < vma->vm_start || address + size > vma->vm_end ||
1460 !(vma->vm_flags & VM_PFNMAP))
1461 return -1;
1462 zap_page_range_single(vma, address, size, NULL);
1463 return 0;
1465 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1468 * follow_page - look up a page descriptor from a user-virtual address
1469 * @vma: vm_area_struct mapping @address
1470 * @address: virtual address to look up
1471 * @flags: flags modifying lookup behaviour
1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476 * an error pointer if there is a mapping to something not represented
1477 * by a page descriptor (see also vm_normal_page()).
1479 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1480 unsigned int flags)
1482 pgd_t *pgd;
1483 pud_t *pud;
1484 pmd_t *pmd;
1485 pte_t *ptep, pte;
1486 spinlock_t *ptl;
1487 struct page *page;
1488 struct mm_struct *mm = vma->vm_mm;
1490 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1491 if (!IS_ERR(page)) {
1492 BUG_ON(flags & FOLL_GET);
1493 goto out;
1496 page = NULL;
1497 pgd = pgd_offset(mm, address);
1498 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1499 goto no_page_table;
1501 pud = pud_offset(pgd, address);
1502 if (pud_none(*pud))
1503 goto no_page_table;
1504 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1505 BUG_ON(flags & FOLL_GET);
1506 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1507 goto out;
1509 if (unlikely(pud_bad(*pud)))
1510 goto no_page_table;
1512 pmd = pmd_offset(pud, address);
1513 if (pmd_none(*pmd))
1514 goto no_page_table;
1515 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1516 BUG_ON(flags & FOLL_GET);
1517 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1518 goto out;
1520 if (pmd_trans_huge(*pmd)) {
1521 if (flags & FOLL_SPLIT) {
1522 split_huge_page_pmd(mm, pmd);
1523 goto split_fallthrough;
1525 spin_lock(&mm->page_table_lock);
1526 if (likely(pmd_trans_huge(*pmd))) {
1527 if (unlikely(pmd_trans_splitting(*pmd))) {
1528 spin_unlock(&mm->page_table_lock);
1529 wait_split_huge_page(vma->anon_vma, pmd);
1530 } else {
1531 page = follow_trans_huge_pmd(vma, address,
1532 pmd, flags);
1533 spin_unlock(&mm->page_table_lock);
1534 goto out;
1536 } else
1537 spin_unlock(&mm->page_table_lock);
1538 /* fall through */
1540 split_fallthrough:
1541 if (unlikely(pmd_bad(*pmd)))
1542 goto no_page_table;
1544 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1546 pte = *ptep;
1547 if (!pte_present(pte))
1548 goto no_page;
1549 if ((flags & FOLL_WRITE) && !pte_write(pte))
1550 goto unlock;
1552 page = vm_normal_page(vma, address, pte);
1553 if (unlikely(!page)) {
1554 if ((flags & FOLL_DUMP) ||
1555 !is_zero_pfn(pte_pfn(pte)))
1556 goto bad_page;
1557 page = pte_page(pte);
1560 if (flags & FOLL_GET)
1561 get_page_foll(page);
1562 if (flags & FOLL_TOUCH) {
1563 if ((flags & FOLL_WRITE) &&
1564 !pte_dirty(pte) && !PageDirty(page))
1565 set_page_dirty(page);
1567 * pte_mkyoung() would be more correct here, but atomic care
1568 * is needed to avoid losing the dirty bit: it is easier to use
1569 * mark_page_accessed().
1571 mark_page_accessed(page);
1573 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1575 * The preliminary mapping check is mainly to avoid the
1576 * pointless overhead of lock_page on the ZERO_PAGE
1577 * which might bounce very badly if there is contention.
1579 * If the page is already locked, we don't need to
1580 * handle it now - vmscan will handle it later if and
1581 * when it attempts to reclaim the page.
1583 if (page->mapping && trylock_page(page)) {
1584 lru_add_drain(); /* push cached pages to LRU */
1586 * Because we lock page here, and migration is
1587 * blocked by the pte's page reference, and we
1588 * know the page is still mapped, we don't even
1589 * need to check for file-cache page truncation.
1591 mlock_vma_page(page);
1592 unlock_page(page);
1595 unlock:
1596 pte_unmap_unlock(ptep, ptl);
1597 out:
1598 return page;
1600 bad_page:
1601 pte_unmap_unlock(ptep, ptl);
1602 return ERR_PTR(-EFAULT);
1604 no_page:
1605 pte_unmap_unlock(ptep, ptl);
1606 if (!pte_none(pte))
1607 return page;
1609 no_page_table:
1611 * When core dumping an enormous anonymous area that nobody
1612 * has touched so far, we don't want to allocate unnecessary pages or
1613 * page tables. Return error instead of NULL to skip handle_mm_fault,
1614 * then get_dump_page() will return NULL to leave a hole in the dump.
1615 * But we can only make this optimization where a hole would surely
1616 * be zero-filled if handle_mm_fault() actually did handle it.
1618 if ((flags & FOLL_DUMP) &&
1619 (!vma->vm_ops || !vma->vm_ops->fault))
1620 return ERR_PTR(-EFAULT);
1621 return page;
1624 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1626 return stack_guard_page_start(vma, addr) ||
1627 stack_guard_page_end(vma, addr+PAGE_SIZE);
1631 * __get_user_pages() - pin user pages in memory
1632 * @tsk: task_struct of target task
1633 * @mm: mm_struct of target mm
1634 * @start: starting user address
1635 * @nr_pages: number of pages from start to pin
1636 * @gup_flags: flags modifying pin behaviour
1637 * @pages: array that receives pointers to the pages pinned.
1638 * Should be at least nr_pages long. Or NULL, if caller
1639 * only intends to ensure the pages are faulted in.
1640 * @vmas: array of pointers to vmas corresponding to each page.
1641 * Or NULL if the caller does not require them.
1642 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1644 * Returns number of pages pinned. This may be fewer than the number
1645 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1646 * were pinned, returns -errno. Each page returned must be released
1647 * with a put_page() call when it is finished with. vmas will only
1648 * remain valid while mmap_sem is held.
1650 * Must be called with mmap_sem held for read or write.
1652 * __get_user_pages walks a process's page tables and takes a reference to
1653 * each struct page that each user address corresponds to at a given
1654 * instant. That is, it takes the page that would be accessed if a user
1655 * thread accesses the given user virtual address at that instant.
1657 * This does not guarantee that the page exists in the user mappings when
1658 * __get_user_pages returns, and there may even be a completely different
1659 * page there in some cases (eg. if mmapped pagecache has been invalidated
1660 * and subsequently re faulted). However it does guarantee that the page
1661 * won't be freed completely. And mostly callers simply care that the page
1662 * contains data that was valid *at some point in time*. Typically, an IO
1663 * or similar operation cannot guarantee anything stronger anyway because
1664 * locks can't be held over the syscall boundary.
1666 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1667 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1668 * appropriate) must be called after the page is finished with, and
1669 * before put_page is called.
1671 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1672 * or mmap_sem contention, and if waiting is needed to pin all pages,
1673 * *@nonblocking will be set to 0.
1675 * In most cases, get_user_pages or get_user_pages_fast should be used
1676 * instead of __get_user_pages. __get_user_pages should be used only if
1677 * you need some special @gup_flags.
1679 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1680 unsigned long start, int nr_pages, unsigned int gup_flags,
1681 struct page **pages, struct vm_area_struct **vmas,
1682 int *nonblocking)
1684 int i;
1685 unsigned long vm_flags;
1687 if (nr_pages <= 0)
1688 return 0;
1690 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1693 * Require read or write permissions.
1694 * If FOLL_FORCE is set, we only require the "MAY" flags.
1696 vm_flags = (gup_flags & FOLL_WRITE) ?
1697 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1698 vm_flags &= (gup_flags & FOLL_FORCE) ?
1699 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1700 i = 0;
1702 do {
1703 struct vm_area_struct *vma;
1705 vma = find_extend_vma(mm, start);
1706 if (!vma && in_gate_area(mm, start)) {
1707 unsigned long pg = start & PAGE_MASK;
1708 pgd_t *pgd;
1709 pud_t *pud;
1710 pmd_t *pmd;
1711 pte_t *pte;
1713 /* user gate pages are read-only */
1714 if (gup_flags & FOLL_WRITE)
1715 return i ? : -EFAULT;
1716 if (pg > TASK_SIZE)
1717 pgd = pgd_offset_k(pg);
1718 else
1719 pgd = pgd_offset_gate(mm, pg);
1720 BUG_ON(pgd_none(*pgd));
1721 pud = pud_offset(pgd, pg);
1722 BUG_ON(pud_none(*pud));
1723 pmd = pmd_offset(pud, pg);
1724 if (pmd_none(*pmd))
1725 return i ? : -EFAULT;
1726 VM_BUG_ON(pmd_trans_huge(*pmd));
1727 pte = pte_offset_map(pmd, pg);
1728 if (pte_none(*pte)) {
1729 pte_unmap(pte);
1730 return i ? : -EFAULT;
1732 vma = get_gate_vma(mm);
1733 if (pages) {
1734 struct page *page;
1736 page = vm_normal_page(vma, start, *pte);
1737 if (!page) {
1738 if (!(gup_flags & FOLL_DUMP) &&
1739 is_zero_pfn(pte_pfn(*pte)))
1740 page = pte_page(*pte);
1741 else {
1742 pte_unmap(pte);
1743 return i ? : -EFAULT;
1746 pages[i] = page;
1747 get_page(page);
1749 pte_unmap(pte);
1750 goto next_page;
1753 if (!vma ||
1754 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1755 !(vm_flags & vma->vm_flags))
1756 return i ? : -EFAULT;
1758 if (is_vm_hugetlb_page(vma)) {
1759 i = follow_hugetlb_page(mm, vma, pages, vmas,
1760 &start, &nr_pages, i, gup_flags);
1761 continue;
1764 do {
1765 struct page *page;
1766 unsigned int foll_flags = gup_flags;
1769 * If we have a pending SIGKILL, don't keep faulting
1770 * pages and potentially allocating memory.
1772 if (unlikely(fatal_signal_pending(current)))
1773 return i ? i : -ERESTARTSYS;
1775 cond_resched();
1776 while (!(page = follow_page(vma, start, foll_flags))) {
1777 int ret;
1778 unsigned int fault_flags = 0;
1780 /* For mlock, just skip the stack guard page. */
1781 if (foll_flags & FOLL_MLOCK) {
1782 if (stack_guard_page(vma, start))
1783 goto next_page;
1785 if (foll_flags & FOLL_WRITE)
1786 fault_flags |= FAULT_FLAG_WRITE;
1787 if (nonblocking)
1788 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1789 if (foll_flags & FOLL_NOWAIT)
1790 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1792 ret = handle_mm_fault(mm, vma, start,
1793 fault_flags);
1795 if (ret & VM_FAULT_ERROR) {
1796 if (ret & VM_FAULT_OOM)
1797 return i ? i : -ENOMEM;
1798 if (ret & (VM_FAULT_HWPOISON |
1799 VM_FAULT_HWPOISON_LARGE)) {
1800 if (i)
1801 return i;
1802 else if (gup_flags & FOLL_HWPOISON)
1803 return -EHWPOISON;
1804 else
1805 return -EFAULT;
1807 if (ret & VM_FAULT_SIGBUS)
1808 return i ? i : -EFAULT;
1809 BUG();
1812 if (tsk) {
1813 if (ret & VM_FAULT_MAJOR)
1814 tsk->maj_flt++;
1815 else
1816 tsk->min_flt++;
1819 if (ret & VM_FAULT_RETRY) {
1820 if (nonblocking)
1821 *nonblocking = 0;
1822 return i;
1826 * The VM_FAULT_WRITE bit tells us that
1827 * do_wp_page has broken COW when necessary,
1828 * even if maybe_mkwrite decided not to set
1829 * pte_write. We can thus safely do subsequent
1830 * page lookups as if they were reads. But only
1831 * do so when looping for pte_write is futile:
1832 * in some cases userspace may also be wanting
1833 * to write to the gotten user page, which a
1834 * read fault here might prevent (a readonly
1835 * page might get reCOWed by userspace write).
1837 if ((ret & VM_FAULT_WRITE) &&
1838 !(vma->vm_flags & VM_WRITE))
1839 foll_flags &= ~FOLL_WRITE;
1841 cond_resched();
1843 if (IS_ERR(page))
1844 return i ? i : PTR_ERR(page);
1845 if (pages) {
1846 pages[i] = page;
1848 flush_anon_page(vma, page, start);
1849 flush_dcache_page(page);
1851 next_page:
1852 if (vmas)
1853 vmas[i] = vma;
1854 i++;
1855 start += PAGE_SIZE;
1856 nr_pages--;
1857 } while (nr_pages && start < vma->vm_end);
1858 } while (nr_pages);
1859 return i;
1861 EXPORT_SYMBOL(__get_user_pages);
1864 * fixup_user_fault() - manually resolve a user page fault
1865 * @tsk: the task_struct to use for page fault accounting, or
1866 * NULL if faults are not to be recorded.
1867 * @mm: mm_struct of target mm
1868 * @address: user address
1869 * @fault_flags:flags to pass down to handle_mm_fault()
1871 * This is meant to be called in the specific scenario where for locking reasons
1872 * we try to access user memory in atomic context (within a pagefault_disable()
1873 * section), this returns -EFAULT, and we want to resolve the user fault before
1874 * trying again.
1876 * Typically this is meant to be used by the futex code.
1878 * The main difference with get_user_pages() is that this function will
1879 * unconditionally call handle_mm_fault() which will in turn perform all the
1880 * necessary SW fixup of the dirty and young bits in the PTE, while
1881 * handle_mm_fault() only guarantees to update these in the struct page.
1883 * This is important for some architectures where those bits also gate the
1884 * access permission to the page because they are maintained in software. On
1885 * such architectures, gup() will not be enough to make a subsequent access
1886 * succeed.
1888 * This should be called with the mm_sem held for read.
1890 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1891 unsigned long address, unsigned int fault_flags)
1893 struct vm_area_struct *vma;
1894 int ret;
1896 vma = find_extend_vma(mm, address);
1897 if (!vma || address < vma->vm_start)
1898 return -EFAULT;
1900 ret = handle_mm_fault(mm, vma, address, fault_flags);
1901 if (ret & VM_FAULT_ERROR) {
1902 if (ret & VM_FAULT_OOM)
1903 return -ENOMEM;
1904 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1905 return -EHWPOISON;
1906 if (ret & VM_FAULT_SIGBUS)
1907 return -EFAULT;
1908 BUG();
1910 if (tsk) {
1911 if (ret & VM_FAULT_MAJOR)
1912 tsk->maj_flt++;
1913 else
1914 tsk->min_flt++;
1916 return 0;
1920 * get_user_pages() - pin user pages in memory
1921 * @tsk: the task_struct to use for page fault accounting, or
1922 * NULL if faults are not to be recorded.
1923 * @mm: mm_struct of target mm
1924 * @start: starting user address
1925 * @nr_pages: number of pages from start to pin
1926 * @write: whether pages will be written to by the caller
1927 * @force: whether to force write access even if user mapping is
1928 * readonly. This will result in the page being COWed even
1929 * in MAP_SHARED mappings. You do not want this.
1930 * @pages: array that receives pointers to the pages pinned.
1931 * Should be at least nr_pages long. Or NULL, if caller
1932 * only intends to ensure the pages are faulted in.
1933 * @vmas: array of pointers to vmas corresponding to each page.
1934 * Or NULL if the caller does not require them.
1936 * Returns number of pages pinned. This may be fewer than the number
1937 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1938 * were pinned, returns -errno. Each page returned must be released
1939 * with a put_page() call when it is finished with. vmas will only
1940 * remain valid while mmap_sem is held.
1942 * Must be called with mmap_sem held for read or write.
1944 * get_user_pages walks a process's page tables and takes a reference to
1945 * each struct page that each user address corresponds to at a given
1946 * instant. That is, it takes the page that would be accessed if a user
1947 * thread accesses the given user virtual address at that instant.
1949 * This does not guarantee that the page exists in the user mappings when
1950 * get_user_pages returns, and there may even be a completely different
1951 * page there in some cases (eg. if mmapped pagecache has been invalidated
1952 * and subsequently re faulted). However it does guarantee that the page
1953 * won't be freed completely. And mostly callers simply care that the page
1954 * contains data that was valid *at some point in time*. Typically, an IO
1955 * or similar operation cannot guarantee anything stronger anyway because
1956 * locks can't be held over the syscall boundary.
1958 * If write=0, the page must not be written to. If the page is written to,
1959 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1960 * after the page is finished with, and before put_page is called.
1962 * get_user_pages is typically used for fewer-copy IO operations, to get a
1963 * handle on the memory by some means other than accesses via the user virtual
1964 * addresses. The pages may be submitted for DMA to devices or accessed via
1965 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1966 * use the correct cache flushing APIs.
1968 * See also get_user_pages_fast, for performance critical applications.
1970 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1971 unsigned long start, int nr_pages, int write, int force,
1972 struct page **pages, struct vm_area_struct **vmas)
1974 int flags = FOLL_TOUCH;
1976 if (pages)
1977 flags |= FOLL_GET;
1978 if (write)
1979 flags |= FOLL_WRITE;
1980 if (force)
1981 flags |= FOLL_FORCE;
1983 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1984 NULL);
1986 EXPORT_SYMBOL(get_user_pages);
1989 * get_dump_page() - pin user page in memory while writing it to core dump
1990 * @addr: user address
1992 * Returns struct page pointer of user page pinned for dump,
1993 * to be freed afterwards by page_cache_release() or put_page().
1995 * Returns NULL on any kind of failure - a hole must then be inserted into
1996 * the corefile, to preserve alignment with its headers; and also returns
1997 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1998 * allowing a hole to be left in the corefile to save diskspace.
2000 * Called without mmap_sem, but after all other threads have been killed.
2002 #ifdef CONFIG_ELF_CORE
2003 struct page *get_dump_page(unsigned long addr)
2005 struct vm_area_struct *vma;
2006 struct page *page;
2008 if (__get_user_pages(current, current->mm, addr, 1,
2009 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2010 NULL) < 1)
2011 return NULL;
2012 flush_cache_page(vma, addr, page_to_pfn(page));
2013 return page;
2015 #endif /* CONFIG_ELF_CORE */
2017 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2018 spinlock_t **ptl)
2020 pgd_t * pgd = pgd_offset(mm, addr);
2021 pud_t * pud = pud_alloc(mm, pgd, addr);
2022 if (pud) {
2023 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2024 if (pmd) {
2025 VM_BUG_ON(pmd_trans_huge(*pmd));
2026 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2029 return NULL;
2033 * This is the old fallback for page remapping.
2035 * For historical reasons, it only allows reserved pages. Only
2036 * old drivers should use this, and they needed to mark their
2037 * pages reserved for the old functions anyway.
2039 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2040 struct page *page, pgprot_t prot)
2042 struct mm_struct *mm = vma->vm_mm;
2043 int retval;
2044 pte_t *pte;
2045 spinlock_t *ptl;
2047 retval = -EINVAL;
2048 if (PageAnon(page))
2049 goto out;
2050 retval = -ENOMEM;
2051 flush_dcache_page(page);
2052 pte = get_locked_pte(mm, addr, &ptl);
2053 if (!pte)
2054 goto out;
2055 retval = -EBUSY;
2056 if (!pte_none(*pte))
2057 goto out_unlock;
2059 /* Ok, finally just insert the thing.. */
2060 get_page(page);
2061 inc_mm_counter_fast(mm, MM_FILEPAGES);
2062 page_add_file_rmap(page);
2063 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2065 retval = 0;
2066 pte_unmap_unlock(pte, ptl);
2067 return retval;
2068 out_unlock:
2069 pte_unmap_unlock(pte, ptl);
2070 out:
2071 return retval;
2075 * vm_insert_page - insert single page into user vma
2076 * @vma: user vma to map to
2077 * @addr: target user address of this page
2078 * @page: source kernel page
2080 * This allows drivers to insert individual pages they've allocated
2081 * into a user vma.
2083 * The page has to be a nice clean _individual_ kernel allocation.
2084 * If you allocate a compound page, you need to have marked it as
2085 * such (__GFP_COMP), or manually just split the page up yourself
2086 * (see split_page()).
2088 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2089 * took an arbitrary page protection parameter. This doesn't allow
2090 * that. Your vma protection will have to be set up correctly, which
2091 * means that if you want a shared writable mapping, you'd better
2092 * ask for a shared writable mapping!
2094 * The page does not need to be reserved.
2096 * Usually this function is called from f_op->mmap() handler
2097 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2098 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2099 * function from other places, for example from page-fault handler.
2101 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2102 struct page *page)
2104 if (addr < vma->vm_start || addr >= vma->vm_end)
2105 return -EFAULT;
2106 if (!page_count(page))
2107 return -EINVAL;
2108 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2109 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2110 BUG_ON(vma->vm_flags & VM_PFNMAP);
2111 vma->vm_flags |= VM_MIXEDMAP;
2113 return insert_page(vma, addr, page, vma->vm_page_prot);
2115 EXPORT_SYMBOL(vm_insert_page);
2117 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 unsigned long pfn, pgprot_t prot)
2120 struct mm_struct *mm = vma->vm_mm;
2121 int retval;
2122 pte_t *pte, entry;
2123 spinlock_t *ptl;
2125 retval = -ENOMEM;
2126 pte = get_locked_pte(mm, addr, &ptl);
2127 if (!pte)
2128 goto out;
2129 retval = -EBUSY;
2130 if (!pte_none(*pte))
2131 goto out_unlock;
2133 /* Ok, finally just insert the thing.. */
2134 entry = pte_mkspecial(pfn_pte(pfn, prot));
2135 set_pte_at(mm, addr, pte, entry);
2136 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2138 retval = 0;
2139 out_unlock:
2140 pte_unmap_unlock(pte, ptl);
2141 out:
2142 return retval;
2146 * vm_insert_pfn - insert single pfn into user vma
2147 * @vma: user vma to map to
2148 * @addr: target user address of this page
2149 * @pfn: source kernel pfn
2151 * Similar to vm_insert_page, this allows drivers to insert individual pages
2152 * they've allocated into a user vma. Same comments apply.
2154 * This function should only be called from a vm_ops->fault handler, and
2155 * in that case the handler should return NULL.
2157 * vma cannot be a COW mapping.
2159 * As this is called only for pages that do not currently exist, we
2160 * do not need to flush old virtual caches or the TLB.
2162 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 unsigned long pfn)
2165 int ret;
2166 pgprot_t pgprot = vma->vm_page_prot;
2168 * Technically, architectures with pte_special can avoid all these
2169 * restrictions (same for remap_pfn_range). However we would like
2170 * consistency in testing and feature parity among all, so we should
2171 * try to keep these invariants in place for everybody.
2173 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2174 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2175 (VM_PFNMAP|VM_MIXEDMAP));
2176 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2177 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2179 if (addr < vma->vm_start || addr >= vma->vm_end)
2180 return -EFAULT;
2181 if (track_pfn_insert(vma, &pgprot, pfn))
2182 return -EINVAL;
2184 ret = insert_pfn(vma, addr, pfn, pgprot);
2186 return ret;
2188 EXPORT_SYMBOL(vm_insert_pfn);
2190 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2191 unsigned long pfn)
2193 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2195 if (addr < vma->vm_start || addr >= vma->vm_end)
2196 return -EFAULT;
2199 * If we don't have pte special, then we have to use the pfn_valid()
2200 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2201 * refcount the page if pfn_valid is true (hence insert_page rather
2202 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2203 * without pte special, it would there be refcounted as a normal page.
2205 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2206 struct page *page;
2208 page = pfn_to_page(pfn);
2209 return insert_page(vma, addr, page, vma->vm_page_prot);
2211 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2213 EXPORT_SYMBOL(vm_insert_mixed);
2216 * maps a range of physical memory into the requested pages. the old
2217 * mappings are removed. any references to nonexistent pages results
2218 * in null mappings (currently treated as "copy-on-access")
2220 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2221 unsigned long addr, unsigned long end,
2222 unsigned long pfn, pgprot_t prot)
2224 pte_t *pte;
2225 spinlock_t *ptl;
2227 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2228 if (!pte)
2229 return -ENOMEM;
2230 arch_enter_lazy_mmu_mode();
2231 do {
2232 BUG_ON(!pte_none(*pte));
2233 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2234 pfn++;
2235 } while (pte++, addr += PAGE_SIZE, addr != end);
2236 arch_leave_lazy_mmu_mode();
2237 pte_unmap_unlock(pte - 1, ptl);
2238 return 0;
2241 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 unsigned long addr, unsigned long end,
2243 unsigned long pfn, pgprot_t prot)
2245 pmd_t *pmd;
2246 unsigned long next;
2248 pfn -= addr >> PAGE_SHIFT;
2249 pmd = pmd_alloc(mm, pud, addr);
2250 if (!pmd)
2251 return -ENOMEM;
2252 VM_BUG_ON(pmd_trans_huge(*pmd));
2253 do {
2254 next = pmd_addr_end(addr, end);
2255 if (remap_pte_range(mm, pmd, addr, next,
2256 pfn + (addr >> PAGE_SHIFT), prot))
2257 return -ENOMEM;
2258 } while (pmd++, addr = next, addr != end);
2259 return 0;
2262 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2263 unsigned long addr, unsigned long end,
2264 unsigned long pfn, pgprot_t prot)
2266 pud_t *pud;
2267 unsigned long next;
2269 pfn -= addr >> PAGE_SHIFT;
2270 pud = pud_alloc(mm, pgd, addr);
2271 if (!pud)
2272 return -ENOMEM;
2273 do {
2274 next = pud_addr_end(addr, end);
2275 if (remap_pmd_range(mm, pud, addr, next,
2276 pfn + (addr >> PAGE_SHIFT), prot))
2277 return -ENOMEM;
2278 } while (pud++, addr = next, addr != end);
2279 return 0;
2283 * remap_pfn_range - remap kernel memory to userspace
2284 * @vma: user vma to map to
2285 * @addr: target user address to start at
2286 * @pfn: physical address of kernel memory
2287 * @size: size of map area
2288 * @prot: page protection flags for this mapping
2290 * Note: this is only safe if the mm semaphore is held when called.
2292 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2293 unsigned long pfn, unsigned long size, pgprot_t prot)
2295 pgd_t *pgd;
2296 unsigned long next;
2297 unsigned long end = addr + PAGE_ALIGN(size);
2298 struct mm_struct *mm = vma->vm_mm;
2299 int err;
2302 * Physically remapped pages are special. Tell the
2303 * rest of the world about it:
2304 * VM_IO tells people not to look at these pages
2305 * (accesses can have side effects).
2306 * VM_PFNMAP tells the core MM that the base pages are just
2307 * raw PFN mappings, and do not have a "struct page" associated
2308 * with them.
2309 * VM_DONTEXPAND
2310 * Disable vma merging and expanding with mremap().
2311 * VM_DONTDUMP
2312 * Omit vma from core dump, even when VM_IO turned off.
2314 * There's a horrible special case to handle copy-on-write
2315 * behaviour that some programs depend on. We mark the "original"
2316 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2317 * See vm_normal_page() for details.
2319 if (is_cow_mapping(vma->vm_flags)) {
2320 if (addr != vma->vm_start || end != vma->vm_end)
2321 return -EINVAL;
2322 vma->vm_pgoff = pfn;
2325 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2326 if (err)
2327 return -EINVAL;
2329 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2331 BUG_ON(addr >= end);
2332 pfn -= addr >> PAGE_SHIFT;
2333 pgd = pgd_offset(mm, addr);
2334 flush_cache_range(vma, addr, end);
2335 do {
2336 next = pgd_addr_end(addr, end);
2337 err = remap_pud_range(mm, pgd, addr, next,
2338 pfn + (addr >> PAGE_SHIFT), prot);
2339 if (err)
2340 break;
2341 } while (pgd++, addr = next, addr != end);
2343 if (err)
2344 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2346 return err;
2348 EXPORT_SYMBOL(remap_pfn_range);
2350 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2351 unsigned long addr, unsigned long end,
2352 pte_fn_t fn, void *data)
2354 pte_t *pte;
2355 int err;
2356 pgtable_t token;
2357 spinlock_t *uninitialized_var(ptl);
2359 pte = (mm == &init_mm) ?
2360 pte_alloc_kernel(pmd, addr) :
2361 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2362 if (!pte)
2363 return -ENOMEM;
2365 BUG_ON(pmd_huge(*pmd));
2367 arch_enter_lazy_mmu_mode();
2369 token = pmd_pgtable(*pmd);
2371 do {
2372 err = fn(pte++, token, addr, data);
2373 if (err)
2374 break;
2375 } while (addr += PAGE_SIZE, addr != end);
2377 arch_leave_lazy_mmu_mode();
2379 if (mm != &init_mm)
2380 pte_unmap_unlock(pte-1, ptl);
2381 return err;
2384 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2385 unsigned long addr, unsigned long end,
2386 pte_fn_t fn, void *data)
2388 pmd_t *pmd;
2389 unsigned long next;
2390 int err;
2392 BUG_ON(pud_huge(*pud));
2394 pmd = pmd_alloc(mm, pud, addr);
2395 if (!pmd)
2396 return -ENOMEM;
2397 do {
2398 next = pmd_addr_end(addr, end);
2399 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2400 if (err)
2401 break;
2402 } while (pmd++, addr = next, addr != end);
2403 return err;
2406 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2407 unsigned long addr, unsigned long end,
2408 pte_fn_t fn, void *data)
2410 pud_t *pud;
2411 unsigned long next;
2412 int err;
2414 pud = pud_alloc(mm, pgd, addr);
2415 if (!pud)
2416 return -ENOMEM;
2417 do {
2418 next = pud_addr_end(addr, end);
2419 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2420 if (err)
2421 break;
2422 } while (pud++, addr = next, addr != end);
2423 return err;
2427 * Scan a region of virtual memory, filling in page tables as necessary
2428 * and calling a provided function on each leaf page table.
2430 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2431 unsigned long size, pte_fn_t fn, void *data)
2433 pgd_t *pgd;
2434 unsigned long next;
2435 unsigned long end = addr + size;
2436 int err;
2438 BUG_ON(addr >= end);
2439 pgd = pgd_offset(mm, addr);
2440 do {
2441 next = pgd_addr_end(addr, end);
2442 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2443 if (err)
2444 break;
2445 } while (pgd++, addr = next, addr != end);
2447 return err;
2449 EXPORT_SYMBOL_GPL(apply_to_page_range);
2452 * handle_pte_fault chooses page fault handler according to an entry
2453 * which was read non-atomically. Before making any commitment, on
2454 * those architectures or configurations (e.g. i386 with PAE) which
2455 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2456 * must check under lock before unmapping the pte and proceeding
2457 * (but do_wp_page is only called after already making such a check;
2458 * and do_anonymous_page can safely check later on).
2460 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2461 pte_t *page_table, pte_t orig_pte)
2463 int same = 1;
2464 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2465 if (sizeof(pte_t) > sizeof(unsigned long)) {
2466 spinlock_t *ptl = pte_lockptr(mm, pmd);
2467 spin_lock(ptl);
2468 same = pte_same(*page_table, orig_pte);
2469 spin_unlock(ptl);
2471 #endif
2472 pte_unmap(page_table);
2473 return same;
2476 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2479 * If the source page was a PFN mapping, we don't have
2480 * a "struct page" for it. We do a best-effort copy by
2481 * just copying from the original user address. If that
2482 * fails, we just zero-fill it. Live with it.
2484 if (unlikely(!src)) {
2485 void *kaddr = kmap_atomic(dst);
2486 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2489 * This really shouldn't fail, because the page is there
2490 * in the page tables. But it might just be unreadable,
2491 * in which case we just give up and fill the result with
2492 * zeroes.
2494 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2495 clear_page(kaddr);
2496 kunmap_atomic(kaddr);
2497 flush_dcache_page(dst);
2498 } else
2499 copy_user_highpage(dst, src, va, vma);
2503 * This routine handles present pages, when users try to write
2504 * to a shared page. It is done by copying the page to a new address
2505 * and decrementing the shared-page counter for the old page.
2507 * Note that this routine assumes that the protection checks have been
2508 * done by the caller (the low-level page fault routine in most cases).
2509 * Thus we can safely just mark it writable once we've done any necessary
2510 * COW.
2512 * We also mark the page dirty at this point even though the page will
2513 * change only once the write actually happens. This avoids a few races,
2514 * and potentially makes it more efficient.
2516 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2517 * but allow concurrent faults), with pte both mapped and locked.
2518 * We return with mmap_sem still held, but pte unmapped and unlocked.
2520 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2521 unsigned long address, pte_t *page_table, pmd_t *pmd,
2522 spinlock_t *ptl, pte_t orig_pte)
2523 __releases(ptl)
2525 struct page *old_page, *new_page = NULL;
2526 pte_t entry;
2527 int ret = 0;
2528 int page_mkwrite = 0;
2529 struct page *dirty_page = NULL;
2530 unsigned long mmun_start; /* For mmu_notifiers */
2531 unsigned long mmun_end; /* For mmu_notifiers */
2532 bool mmun_called = false; /* For mmu_notifiers */
2534 old_page = vm_normal_page(vma, address, orig_pte);
2535 if (!old_page) {
2537 * VM_MIXEDMAP !pfn_valid() case
2539 * We should not cow pages in a shared writeable mapping.
2540 * Just mark the pages writable as we can't do any dirty
2541 * accounting on raw pfn maps.
2543 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2544 (VM_WRITE|VM_SHARED))
2545 goto reuse;
2546 goto gotten;
2550 * Take out anonymous pages first, anonymous shared vmas are
2551 * not dirty accountable.
2553 if (PageAnon(old_page) && !PageKsm(old_page)) {
2554 if (!trylock_page(old_page)) {
2555 page_cache_get(old_page);
2556 pte_unmap_unlock(page_table, ptl);
2557 lock_page(old_page);
2558 page_table = pte_offset_map_lock(mm, pmd, address,
2559 &ptl);
2560 if (!pte_same(*page_table, orig_pte)) {
2561 unlock_page(old_page);
2562 goto unlock;
2564 page_cache_release(old_page);
2566 if (reuse_swap_page(old_page)) {
2568 * The page is all ours. Move it to our anon_vma so
2569 * the rmap code will not search our parent or siblings.
2570 * Protected against the rmap code by the page lock.
2572 page_move_anon_rmap(old_page, vma, address);
2573 unlock_page(old_page);
2574 goto reuse;
2576 unlock_page(old_page);
2577 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2578 (VM_WRITE|VM_SHARED))) {
2580 * Only catch write-faults on shared writable pages,
2581 * read-only shared pages can get COWed by
2582 * get_user_pages(.write=1, .force=1).
2584 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2585 struct vm_fault vmf;
2586 int tmp;
2588 vmf.virtual_address = (void __user *)(address &
2589 PAGE_MASK);
2590 vmf.pgoff = old_page->index;
2591 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2592 vmf.page = old_page;
2595 * Notify the address space that the page is about to
2596 * become writable so that it can prohibit this or wait
2597 * for the page to get into an appropriate state.
2599 * We do this without the lock held, so that it can
2600 * sleep if it needs to.
2602 page_cache_get(old_page);
2603 pte_unmap_unlock(page_table, ptl);
2605 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2606 if (unlikely(tmp &
2607 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2608 ret = tmp;
2609 goto unwritable_page;
2611 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2612 lock_page(old_page);
2613 if (!old_page->mapping) {
2614 ret = 0; /* retry the fault */
2615 unlock_page(old_page);
2616 goto unwritable_page;
2618 } else
2619 VM_BUG_ON(!PageLocked(old_page));
2622 * Since we dropped the lock we need to revalidate
2623 * the PTE as someone else may have changed it. If
2624 * they did, we just return, as we can count on the
2625 * MMU to tell us if they didn't also make it writable.
2627 page_table = pte_offset_map_lock(mm, pmd, address,
2628 &ptl);
2629 if (!pte_same(*page_table, orig_pte)) {
2630 unlock_page(old_page);
2631 goto unlock;
2634 page_mkwrite = 1;
2636 dirty_page = old_page;
2637 get_page(dirty_page);
2639 reuse:
2640 flush_cache_page(vma, address, pte_pfn(orig_pte));
2641 entry = pte_mkyoung(orig_pte);
2642 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2643 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2644 update_mmu_cache(vma, address, page_table);
2645 pte_unmap_unlock(page_table, ptl);
2646 ret |= VM_FAULT_WRITE;
2648 if (!dirty_page)
2649 return ret;
2652 * Yes, Virginia, this is actually required to prevent a race
2653 * with clear_page_dirty_for_io() from clearing the page dirty
2654 * bit after it clear all dirty ptes, but before a racing
2655 * do_wp_page installs a dirty pte.
2657 * __do_fault is protected similarly.
2659 if (!page_mkwrite) {
2660 wait_on_page_locked(dirty_page);
2661 set_page_dirty_balance(dirty_page, page_mkwrite);
2662 /* file_update_time outside page_lock */
2663 if (vma->vm_file)
2664 file_update_time(vma->vm_file);
2666 put_page(dirty_page);
2667 if (page_mkwrite) {
2668 struct address_space *mapping = dirty_page->mapping;
2670 set_page_dirty(dirty_page);
2671 unlock_page(dirty_page);
2672 page_cache_release(dirty_page);
2673 if (mapping) {
2675 * Some device drivers do not set page.mapping
2676 * but still dirty their pages
2678 balance_dirty_pages_ratelimited(mapping);
2682 return ret;
2686 * Ok, we need to copy. Oh, well..
2688 page_cache_get(old_page);
2689 gotten:
2690 pte_unmap_unlock(page_table, ptl);
2692 if (unlikely(anon_vma_prepare(vma)))
2693 goto oom;
2695 if (is_zero_pfn(pte_pfn(orig_pte))) {
2696 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2697 if (!new_page)
2698 goto oom;
2699 } else {
2700 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2701 if (!new_page)
2702 goto oom;
2703 cow_user_page(new_page, old_page, address, vma);
2705 __SetPageUptodate(new_page);
2707 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2708 goto oom_free_new;
2710 mmun_start = address & PAGE_MASK;
2711 mmun_end = (address & PAGE_MASK) + PAGE_SIZE;
2712 mmun_called = true;
2713 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2716 * Re-check the pte - we dropped the lock
2718 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2719 if (likely(pte_same(*page_table, orig_pte))) {
2720 if (old_page) {
2721 if (!PageAnon(old_page)) {
2722 dec_mm_counter_fast(mm, MM_FILEPAGES);
2723 inc_mm_counter_fast(mm, MM_ANONPAGES);
2725 } else
2726 inc_mm_counter_fast(mm, MM_ANONPAGES);
2727 flush_cache_page(vma, address, pte_pfn(orig_pte));
2728 entry = mk_pte(new_page, vma->vm_page_prot);
2729 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2731 * Clear the pte entry and flush it first, before updating the
2732 * pte with the new entry. This will avoid a race condition
2733 * seen in the presence of one thread doing SMC and another
2734 * thread doing COW.
2736 ptep_clear_flush(vma, address, page_table);
2737 page_add_new_anon_rmap(new_page, vma, address);
2739 * We call the notify macro here because, when using secondary
2740 * mmu page tables (such as kvm shadow page tables), we want the
2741 * new page to be mapped directly into the secondary page table.
2743 set_pte_at_notify(mm, address, page_table, entry);
2744 update_mmu_cache(vma, address, page_table);
2745 if (old_page) {
2747 * Only after switching the pte to the new page may
2748 * we remove the mapcount here. Otherwise another
2749 * process may come and find the rmap count decremented
2750 * before the pte is switched to the new page, and
2751 * "reuse" the old page writing into it while our pte
2752 * here still points into it and can be read by other
2753 * threads.
2755 * The critical issue is to order this
2756 * page_remove_rmap with the ptp_clear_flush above.
2757 * Those stores are ordered by (if nothing else,)
2758 * the barrier present in the atomic_add_negative
2759 * in page_remove_rmap.
2761 * Then the TLB flush in ptep_clear_flush ensures that
2762 * no process can access the old page before the
2763 * decremented mapcount is visible. And the old page
2764 * cannot be reused until after the decremented
2765 * mapcount is visible. So transitively, TLBs to
2766 * old page will be flushed before it can be reused.
2768 page_remove_rmap(old_page);
2771 /* Free the old page.. */
2772 new_page = old_page;
2773 ret |= VM_FAULT_WRITE;
2774 } else
2775 mem_cgroup_uncharge_page(new_page);
2777 if (new_page)
2778 page_cache_release(new_page);
2779 unlock:
2780 pte_unmap_unlock(page_table, ptl);
2781 if (mmun_called)
2782 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2783 if (old_page) {
2785 * Don't let another task, with possibly unlocked vma,
2786 * keep the mlocked page.
2788 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2789 lock_page(old_page); /* LRU manipulation */
2790 munlock_vma_page(old_page);
2791 unlock_page(old_page);
2793 page_cache_release(old_page);
2795 return ret;
2796 oom_free_new:
2797 page_cache_release(new_page);
2798 oom:
2799 if (old_page) {
2800 if (page_mkwrite) {
2801 unlock_page(old_page);
2802 page_cache_release(old_page);
2804 page_cache_release(old_page);
2806 return VM_FAULT_OOM;
2808 unwritable_page:
2809 page_cache_release(old_page);
2810 return ret;
2813 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2814 unsigned long start_addr, unsigned long end_addr,
2815 struct zap_details *details)
2817 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2820 static inline void unmap_mapping_range_tree(struct rb_root *root,
2821 struct zap_details *details)
2823 struct vm_area_struct *vma;
2824 pgoff_t vba, vea, zba, zea;
2826 vma_interval_tree_foreach(vma, root,
2827 details->first_index, details->last_index) {
2829 vba = vma->vm_pgoff;
2830 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2831 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2832 zba = details->first_index;
2833 if (zba < vba)
2834 zba = vba;
2835 zea = details->last_index;
2836 if (zea > vea)
2837 zea = vea;
2839 unmap_mapping_range_vma(vma,
2840 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2841 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2842 details);
2846 static inline void unmap_mapping_range_list(struct list_head *head,
2847 struct zap_details *details)
2849 struct vm_area_struct *vma;
2852 * In nonlinear VMAs there is no correspondence between virtual address
2853 * offset and file offset. So we must perform an exhaustive search
2854 * across *all* the pages in each nonlinear VMA, not just the pages
2855 * whose virtual address lies outside the file truncation point.
2857 list_for_each_entry(vma, head, shared.nonlinear) {
2858 details->nonlinear_vma = vma;
2859 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2864 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2865 * @mapping: the address space containing mmaps to be unmapped.
2866 * @holebegin: byte in first page to unmap, relative to the start of
2867 * the underlying file. This will be rounded down to a PAGE_SIZE
2868 * boundary. Note that this is different from truncate_pagecache(), which
2869 * must keep the partial page. In contrast, we must get rid of
2870 * partial pages.
2871 * @holelen: size of prospective hole in bytes. This will be rounded
2872 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2873 * end of the file.
2874 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2875 * but 0 when invalidating pagecache, don't throw away private data.
2877 void unmap_mapping_range(struct address_space *mapping,
2878 loff_t const holebegin, loff_t const holelen, int even_cows)
2880 struct zap_details details;
2881 pgoff_t hba = holebegin >> PAGE_SHIFT;
2882 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2884 /* Check for overflow. */
2885 if (sizeof(holelen) > sizeof(hlen)) {
2886 long long holeend =
2887 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2888 if (holeend & ~(long long)ULONG_MAX)
2889 hlen = ULONG_MAX - hba + 1;
2892 details.check_mapping = even_cows? NULL: mapping;
2893 details.nonlinear_vma = NULL;
2894 details.first_index = hba;
2895 details.last_index = hba + hlen - 1;
2896 if (details.last_index < details.first_index)
2897 details.last_index = ULONG_MAX;
2900 mutex_lock(&mapping->i_mmap_mutex);
2901 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2902 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2903 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2904 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2905 mutex_unlock(&mapping->i_mmap_mutex);
2907 EXPORT_SYMBOL(unmap_mapping_range);
2910 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2911 * but allow concurrent faults), and pte mapped but not yet locked.
2912 * We return with mmap_sem still held, but pte unmapped and unlocked.
2914 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2915 unsigned long address, pte_t *page_table, pmd_t *pmd,
2916 unsigned int flags, pte_t orig_pte)
2918 spinlock_t *ptl;
2919 struct page *page, *swapcache = NULL;
2920 swp_entry_t entry;
2921 pte_t pte;
2922 int locked;
2923 struct mem_cgroup *ptr;
2924 int exclusive = 0;
2925 int ret = 0;
2927 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2928 goto out;
2930 entry = pte_to_swp_entry(orig_pte);
2931 if (unlikely(non_swap_entry(entry))) {
2932 if (is_migration_entry(entry)) {
2933 migration_entry_wait(mm, pmd, address);
2934 } else if (is_hwpoison_entry(entry)) {
2935 ret = VM_FAULT_HWPOISON;
2936 } else {
2937 print_bad_pte(vma, address, orig_pte, NULL);
2938 ret = VM_FAULT_SIGBUS;
2940 goto out;
2942 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2943 page = lookup_swap_cache(entry);
2944 if (!page) {
2945 page = swapin_readahead(entry,
2946 GFP_HIGHUSER_MOVABLE, vma, address);
2947 if (!page) {
2949 * Back out if somebody else faulted in this pte
2950 * while we released the pte lock.
2952 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2953 if (likely(pte_same(*page_table, orig_pte)))
2954 ret = VM_FAULT_OOM;
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956 goto unlock;
2959 /* Had to read the page from swap area: Major fault */
2960 ret = VM_FAULT_MAJOR;
2961 count_vm_event(PGMAJFAULT);
2962 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2963 } else if (PageHWPoison(page)) {
2965 * hwpoisoned dirty swapcache pages are kept for killing
2966 * owner processes (which may be unknown at hwpoison time)
2968 ret = VM_FAULT_HWPOISON;
2969 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2970 goto out_release;
2973 locked = lock_page_or_retry(page, mm, flags);
2975 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2976 if (!locked) {
2977 ret |= VM_FAULT_RETRY;
2978 goto out_release;
2982 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2983 * release the swapcache from under us. The page pin, and pte_same
2984 * test below, are not enough to exclude that. Even if it is still
2985 * swapcache, we need to check that the page's swap has not changed.
2987 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2988 goto out_page;
2990 if (ksm_might_need_to_copy(page, vma, address)) {
2991 swapcache = page;
2992 page = ksm_does_need_to_copy(page, vma, address);
2994 if (unlikely(!page)) {
2995 ret = VM_FAULT_OOM;
2996 page = swapcache;
2997 swapcache = NULL;
2998 goto out_page;
3002 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3003 ret = VM_FAULT_OOM;
3004 goto out_page;
3008 * Back out if somebody else already faulted in this pte.
3010 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3011 if (unlikely(!pte_same(*page_table, orig_pte)))
3012 goto out_nomap;
3014 if (unlikely(!PageUptodate(page))) {
3015 ret = VM_FAULT_SIGBUS;
3016 goto out_nomap;
3020 * The page isn't present yet, go ahead with the fault.
3022 * Be careful about the sequence of operations here.
3023 * To get its accounting right, reuse_swap_page() must be called
3024 * while the page is counted on swap but not yet in mapcount i.e.
3025 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3026 * must be called after the swap_free(), or it will never succeed.
3027 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3028 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3029 * in page->private. In this case, a record in swap_cgroup is silently
3030 * discarded at swap_free().
3033 inc_mm_counter_fast(mm, MM_ANONPAGES);
3034 dec_mm_counter_fast(mm, MM_SWAPENTS);
3035 pte = mk_pte(page, vma->vm_page_prot);
3036 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3037 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038 flags &= ~FAULT_FLAG_WRITE;
3039 ret |= VM_FAULT_WRITE;
3040 exclusive = 1;
3042 flush_icache_page(vma, page);
3043 set_pte_at(mm, address, page_table, pte);
3044 do_page_add_anon_rmap(page, vma, address, exclusive);
3045 /* It's better to call commit-charge after rmap is established */
3046 mem_cgroup_commit_charge_swapin(page, ptr);
3048 swap_free(entry);
3049 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3050 try_to_free_swap(page);
3051 unlock_page(page);
3052 if (swapcache) {
3054 * Hold the lock to avoid the swap entry to be reused
3055 * until we take the PT lock for the pte_same() check
3056 * (to avoid false positives from pte_same). For
3057 * further safety release the lock after the swap_free
3058 * so that the swap count won't change under a
3059 * parallel locked swapcache.
3061 unlock_page(swapcache);
3062 page_cache_release(swapcache);
3065 if (flags & FAULT_FLAG_WRITE) {
3066 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3067 if (ret & VM_FAULT_ERROR)
3068 ret &= VM_FAULT_ERROR;
3069 goto out;
3072 /* No need to invalidate - it was non-present before */
3073 update_mmu_cache(vma, address, page_table);
3074 unlock:
3075 pte_unmap_unlock(page_table, ptl);
3076 out:
3077 return ret;
3078 out_nomap:
3079 mem_cgroup_cancel_charge_swapin(ptr);
3080 pte_unmap_unlock(page_table, ptl);
3081 out_page:
3082 unlock_page(page);
3083 out_release:
3084 page_cache_release(page);
3085 if (swapcache) {
3086 unlock_page(swapcache);
3087 page_cache_release(swapcache);
3089 return ret;
3093 * This is like a special single-page "expand_{down|up}wards()",
3094 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3095 * doesn't hit another vma.
3097 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3099 address &= PAGE_MASK;
3100 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3101 struct vm_area_struct *prev = vma->vm_prev;
3104 * Is there a mapping abutting this one below?
3106 * That's only ok if it's the same stack mapping
3107 * that has gotten split..
3109 if (prev && prev->vm_end == address)
3110 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3112 expand_downwards(vma, address - PAGE_SIZE);
3114 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3115 struct vm_area_struct *next = vma->vm_next;
3117 /* As VM_GROWSDOWN but s/below/above/ */
3118 if (next && next->vm_start == address + PAGE_SIZE)
3119 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3121 expand_upwards(vma, address + PAGE_SIZE);
3123 return 0;
3127 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3128 * but allow concurrent faults), and pte mapped but not yet locked.
3129 * We return with mmap_sem still held, but pte unmapped and unlocked.
3131 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3132 unsigned long address, pte_t *page_table, pmd_t *pmd,
3133 unsigned int flags)
3135 struct page *page;
3136 spinlock_t *ptl;
3137 pte_t entry;
3139 pte_unmap(page_table);
3141 /* Check if we need to add a guard page to the stack */
3142 if (check_stack_guard_page(vma, address) < 0)
3143 return VM_FAULT_SIGBUS;
3145 /* Use the zero-page for reads */
3146 if (!(flags & FAULT_FLAG_WRITE)) {
3147 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3148 vma->vm_page_prot));
3149 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3150 if (!pte_none(*page_table))
3151 goto unlock;
3152 goto setpte;
3155 /* Allocate our own private page. */
3156 if (unlikely(anon_vma_prepare(vma)))
3157 goto oom;
3158 page = alloc_zeroed_user_highpage_movable(vma, address);
3159 if (!page)
3160 goto oom;
3161 __SetPageUptodate(page);
3163 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3164 goto oom_free_page;
3166 entry = mk_pte(page, vma->vm_page_prot);
3167 if (vma->vm_flags & VM_WRITE)
3168 entry = pte_mkwrite(pte_mkdirty(entry));
3170 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3171 if (!pte_none(*page_table))
3172 goto release;
3174 inc_mm_counter_fast(mm, MM_ANONPAGES);
3175 page_add_new_anon_rmap(page, vma, address);
3176 setpte:
3177 set_pte_at(mm, address, page_table, entry);
3179 /* No need to invalidate - it was non-present before */
3180 update_mmu_cache(vma, address, page_table);
3181 unlock:
3182 pte_unmap_unlock(page_table, ptl);
3183 return 0;
3184 release:
3185 mem_cgroup_uncharge_page(page);
3186 page_cache_release(page);
3187 goto unlock;
3188 oom_free_page:
3189 page_cache_release(page);
3190 oom:
3191 return VM_FAULT_OOM;
3195 * __do_fault() tries to create a new page mapping. It aggressively
3196 * tries to share with existing pages, but makes a separate copy if
3197 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3198 * the next page fault.
3200 * As this is called only for pages that do not currently exist, we
3201 * do not need to flush old virtual caches or the TLB.
3203 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3204 * but allow concurrent faults), and pte neither mapped nor locked.
3205 * We return with mmap_sem still held, but pte unmapped and unlocked.
3207 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3208 unsigned long address, pmd_t *pmd,
3209 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3211 pte_t *page_table;
3212 spinlock_t *ptl;
3213 struct page *page;
3214 struct page *cow_page;
3215 pte_t entry;
3216 int anon = 0;
3217 struct page *dirty_page = NULL;
3218 struct vm_fault vmf;
3219 int ret;
3220 int page_mkwrite = 0;
3223 * If we do COW later, allocate page befor taking lock_page()
3224 * on the file cache page. This will reduce lock holding time.
3226 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3228 if (unlikely(anon_vma_prepare(vma)))
3229 return VM_FAULT_OOM;
3231 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3232 if (!cow_page)
3233 return VM_FAULT_OOM;
3235 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3236 page_cache_release(cow_page);
3237 return VM_FAULT_OOM;
3239 } else
3240 cow_page = NULL;
3242 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3243 vmf.pgoff = pgoff;
3244 vmf.flags = flags;
3245 vmf.page = NULL;
3247 ret = vma->vm_ops->fault(vma, &vmf);
3248 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3249 VM_FAULT_RETRY)))
3250 goto uncharge_out;
3252 if (unlikely(PageHWPoison(vmf.page))) {
3253 if (ret & VM_FAULT_LOCKED)
3254 unlock_page(vmf.page);
3255 ret = VM_FAULT_HWPOISON;
3256 goto uncharge_out;
3260 * For consistency in subsequent calls, make the faulted page always
3261 * locked.
3263 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3264 lock_page(vmf.page);
3265 else
3266 VM_BUG_ON(!PageLocked(vmf.page));
3269 * Should we do an early C-O-W break?
3271 page = vmf.page;
3272 if (flags & FAULT_FLAG_WRITE) {
3273 if (!(vma->vm_flags & VM_SHARED)) {
3274 page = cow_page;
3275 anon = 1;
3276 copy_user_highpage(page, vmf.page, address, vma);
3277 __SetPageUptodate(page);
3278 } else {
3280 * If the page will be shareable, see if the backing
3281 * address space wants to know that the page is about
3282 * to become writable
3284 if (vma->vm_ops->page_mkwrite) {
3285 int tmp;
3287 unlock_page(page);
3288 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3289 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3290 if (unlikely(tmp &
3291 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3292 ret = tmp;
3293 goto unwritable_page;
3295 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3296 lock_page(page);
3297 if (!page->mapping) {
3298 ret = 0; /* retry the fault */
3299 unlock_page(page);
3300 goto unwritable_page;
3302 } else
3303 VM_BUG_ON(!PageLocked(page));
3304 page_mkwrite = 1;
3310 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3313 * This silly early PAGE_DIRTY setting removes a race
3314 * due to the bad i386 page protection. But it's valid
3315 * for other architectures too.
3317 * Note that if FAULT_FLAG_WRITE is set, we either now have
3318 * an exclusive copy of the page, or this is a shared mapping,
3319 * so we can make it writable and dirty to avoid having to
3320 * handle that later.
3322 /* Only go through if we didn't race with anybody else... */
3323 if (likely(pte_same(*page_table, orig_pte))) {
3324 flush_icache_page(vma, page);
3325 entry = mk_pte(page, vma->vm_page_prot);
3326 if (flags & FAULT_FLAG_WRITE)
3327 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3328 if (anon) {
3329 inc_mm_counter_fast(mm, MM_ANONPAGES);
3330 page_add_new_anon_rmap(page, vma, address);
3331 } else {
3332 inc_mm_counter_fast(mm, MM_FILEPAGES);
3333 page_add_file_rmap(page);
3334 if (flags & FAULT_FLAG_WRITE) {
3335 dirty_page = page;
3336 get_page(dirty_page);
3339 set_pte_at(mm, address, page_table, entry);
3341 /* no need to invalidate: a not-present page won't be cached */
3342 update_mmu_cache(vma, address, page_table);
3343 } else {
3344 if (cow_page)
3345 mem_cgroup_uncharge_page(cow_page);
3346 if (anon)
3347 page_cache_release(page);
3348 else
3349 anon = 1; /* no anon but release faulted_page */
3352 pte_unmap_unlock(page_table, ptl);
3354 if (dirty_page) {
3355 struct address_space *mapping = page->mapping;
3356 int dirtied = 0;
3358 if (set_page_dirty(dirty_page))
3359 dirtied = 1;
3360 unlock_page(dirty_page);
3361 put_page(dirty_page);
3362 if ((dirtied || page_mkwrite) && mapping) {
3364 * Some device drivers do not set page.mapping but still
3365 * dirty their pages
3367 balance_dirty_pages_ratelimited(mapping);
3370 /* file_update_time outside page_lock */
3371 if (vma->vm_file && !page_mkwrite)
3372 file_update_time(vma->vm_file);
3373 } else {
3374 unlock_page(vmf.page);
3375 if (anon)
3376 page_cache_release(vmf.page);
3379 return ret;
3381 unwritable_page:
3382 page_cache_release(page);
3383 return ret;
3384 uncharge_out:
3385 /* fs's fault handler get error */
3386 if (cow_page) {
3387 mem_cgroup_uncharge_page(cow_page);
3388 page_cache_release(cow_page);
3390 return ret;
3393 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3394 unsigned long address, pte_t *page_table, pmd_t *pmd,
3395 unsigned int flags, pte_t orig_pte)
3397 pgoff_t pgoff = (((address & PAGE_MASK)
3398 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3400 pte_unmap(page_table);
3401 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3405 * Fault of a previously existing named mapping. Repopulate the pte
3406 * from the encoded file_pte if possible. This enables swappable
3407 * nonlinear vmas.
3409 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3410 * but allow concurrent faults), and pte mapped but not yet locked.
3411 * We return with mmap_sem still held, but pte unmapped and unlocked.
3413 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3414 unsigned long address, pte_t *page_table, pmd_t *pmd,
3415 unsigned int flags, pte_t orig_pte)
3417 pgoff_t pgoff;
3419 flags |= FAULT_FLAG_NONLINEAR;
3421 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3422 return 0;
3424 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3426 * Page table corrupted: show pte and kill process.
3428 print_bad_pte(vma, address, orig_pte, NULL);
3429 return VM_FAULT_SIGBUS;
3432 pgoff = pte_to_pgoff(orig_pte);
3433 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3437 * These routines also need to handle stuff like marking pages dirty
3438 * and/or accessed for architectures that don't do it in hardware (most
3439 * RISC architectures). The early dirtying is also good on the i386.
3441 * There is also a hook called "update_mmu_cache()" that architectures
3442 * with external mmu caches can use to update those (ie the Sparc or
3443 * PowerPC hashed page tables that act as extended TLBs).
3445 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3446 * but allow concurrent faults), and pte mapped but not yet locked.
3447 * We return with mmap_sem still held, but pte unmapped and unlocked.
3449 int handle_pte_fault(struct mm_struct *mm,
3450 struct vm_area_struct *vma, unsigned long address,
3451 pte_t *pte, pmd_t *pmd, unsigned int flags)
3453 pte_t entry;
3454 spinlock_t *ptl;
3456 entry = *pte;
3457 if (!pte_present(entry)) {
3458 if (pte_none(entry)) {
3459 if (vma->vm_ops) {
3460 if (likely(vma->vm_ops->fault))
3461 return do_linear_fault(mm, vma, address,
3462 pte, pmd, flags, entry);
3464 return do_anonymous_page(mm, vma, address,
3465 pte, pmd, flags);
3467 if (pte_file(entry))
3468 return do_nonlinear_fault(mm, vma, address,
3469 pte, pmd, flags, entry);
3470 return do_swap_page(mm, vma, address,
3471 pte, pmd, flags, entry);
3474 ptl = pte_lockptr(mm, pmd);
3475 spin_lock(ptl);
3476 if (unlikely(!pte_same(*pte, entry)))
3477 goto unlock;
3478 if (flags & FAULT_FLAG_WRITE) {
3479 if (!pte_write(entry))
3480 return do_wp_page(mm, vma, address,
3481 pte, pmd, ptl, entry);
3482 entry = pte_mkdirty(entry);
3484 entry = pte_mkyoung(entry);
3485 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3486 update_mmu_cache(vma, address, pte);
3487 } else {
3489 * This is needed only for protection faults but the arch code
3490 * is not yet telling us if this is a protection fault or not.
3491 * This still avoids useless tlb flushes for .text page faults
3492 * with threads.
3494 if (flags & FAULT_FLAG_WRITE)
3495 flush_tlb_fix_spurious_fault(vma, address);
3497 unlock:
3498 pte_unmap_unlock(pte, ptl);
3499 return 0;
3503 * By the time we get here, we already hold the mm semaphore
3505 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3506 unsigned long address, unsigned int flags)
3508 pgd_t *pgd;
3509 pud_t *pud;
3510 pmd_t *pmd;
3511 pte_t *pte;
3513 __set_current_state(TASK_RUNNING);
3515 count_vm_event(PGFAULT);
3516 mem_cgroup_count_vm_event(mm, PGFAULT);
3518 /* do counter updates before entering really critical section. */
3519 check_sync_rss_stat(current);
3521 if (unlikely(is_vm_hugetlb_page(vma)))
3522 return hugetlb_fault(mm, vma, address, flags);
3524 retry:
3525 pgd = pgd_offset(mm, address);
3526 pud = pud_alloc(mm, pgd, address);
3527 if (!pud)
3528 return VM_FAULT_OOM;
3529 pmd = pmd_alloc(mm, pud, address);
3530 if (!pmd)
3531 return VM_FAULT_OOM;
3532 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3533 if (!vma->vm_ops)
3534 return do_huge_pmd_anonymous_page(mm, vma, address,
3535 pmd, flags);
3536 } else {
3537 pmd_t orig_pmd = *pmd;
3538 int ret;
3540 barrier();
3541 if (pmd_trans_huge(orig_pmd)) {
3542 if (flags & FAULT_FLAG_WRITE &&
3543 !pmd_write(orig_pmd) &&
3544 !pmd_trans_splitting(orig_pmd)) {
3545 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3546 orig_pmd);
3548 * If COW results in an oom, the huge pmd will
3549 * have been split, so retry the fault on the
3550 * pte for a smaller charge.
3552 if (unlikely(ret & VM_FAULT_OOM))
3553 goto retry;
3554 return ret;
3556 return 0;
3561 * Use __pte_alloc instead of pte_alloc_map, because we can't
3562 * run pte_offset_map on the pmd, if an huge pmd could
3563 * materialize from under us from a different thread.
3565 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3566 return VM_FAULT_OOM;
3567 /* if an huge pmd materialized from under us just retry later */
3568 if (unlikely(pmd_trans_huge(*pmd)))
3569 return 0;
3571 * A regular pmd is established and it can't morph into a huge pmd
3572 * from under us anymore at this point because we hold the mmap_sem
3573 * read mode and khugepaged takes it in write mode. So now it's
3574 * safe to run pte_offset_map().
3576 pte = pte_offset_map(pmd, address);
3578 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3581 #ifndef __PAGETABLE_PUD_FOLDED
3583 * Allocate page upper directory.
3584 * We've already handled the fast-path in-line.
3586 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3588 pud_t *new = pud_alloc_one(mm, address);
3589 if (!new)
3590 return -ENOMEM;
3592 smp_wmb(); /* See comment in __pte_alloc */
3594 spin_lock(&mm->page_table_lock);
3595 if (pgd_present(*pgd)) /* Another has populated it */
3596 pud_free(mm, new);
3597 else
3598 pgd_populate(mm, pgd, new);
3599 spin_unlock(&mm->page_table_lock);
3600 return 0;
3602 #endif /* __PAGETABLE_PUD_FOLDED */
3604 #ifndef __PAGETABLE_PMD_FOLDED
3606 * Allocate page middle directory.
3607 * We've already handled the fast-path in-line.
3609 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3611 pmd_t *new = pmd_alloc_one(mm, address);
3612 if (!new)
3613 return -ENOMEM;
3615 smp_wmb(); /* See comment in __pte_alloc */
3617 spin_lock(&mm->page_table_lock);
3618 #ifndef __ARCH_HAS_4LEVEL_HACK
3619 if (pud_present(*pud)) /* Another has populated it */
3620 pmd_free(mm, new);
3621 else
3622 pud_populate(mm, pud, new);
3623 #else
3624 if (pgd_present(*pud)) /* Another has populated it */
3625 pmd_free(mm, new);
3626 else
3627 pgd_populate(mm, pud, new);
3628 #endif /* __ARCH_HAS_4LEVEL_HACK */
3629 spin_unlock(&mm->page_table_lock);
3630 return 0;
3632 #endif /* __PAGETABLE_PMD_FOLDED */
3634 int make_pages_present(unsigned long addr, unsigned long end)
3636 int ret, len, write;
3637 struct vm_area_struct * vma;
3639 vma = find_vma(current->mm, addr);
3640 if (!vma)
3641 return -ENOMEM;
3643 * We want to touch writable mappings with a write fault in order
3644 * to break COW, except for shared mappings because these don't COW
3645 * and we would not want to dirty them for nothing.
3647 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3648 BUG_ON(addr >= end);
3649 BUG_ON(end > vma->vm_end);
3650 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3651 ret = get_user_pages(current, current->mm, addr,
3652 len, write, 0, NULL, NULL);
3653 if (ret < 0)
3654 return ret;
3655 return ret == len ? 0 : -EFAULT;
3658 #if !defined(__HAVE_ARCH_GATE_AREA)
3660 #if defined(AT_SYSINFO_EHDR)
3661 static struct vm_area_struct gate_vma;
3663 static int __init gate_vma_init(void)
3665 gate_vma.vm_mm = NULL;
3666 gate_vma.vm_start = FIXADDR_USER_START;
3667 gate_vma.vm_end = FIXADDR_USER_END;
3668 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3669 gate_vma.vm_page_prot = __P101;
3671 return 0;
3673 __initcall(gate_vma_init);
3674 #endif
3676 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3678 #ifdef AT_SYSINFO_EHDR
3679 return &gate_vma;
3680 #else
3681 return NULL;
3682 #endif
3685 int in_gate_area_no_mm(unsigned long addr)
3687 #ifdef AT_SYSINFO_EHDR
3688 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3689 return 1;
3690 #endif
3691 return 0;
3694 #endif /* __HAVE_ARCH_GATE_AREA */
3696 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3697 pte_t **ptepp, spinlock_t **ptlp)
3699 pgd_t *pgd;
3700 pud_t *pud;
3701 pmd_t *pmd;
3702 pte_t *ptep;
3704 pgd = pgd_offset(mm, address);
3705 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3706 goto out;
3708 pud = pud_offset(pgd, address);
3709 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3710 goto out;
3712 pmd = pmd_offset(pud, address);
3713 VM_BUG_ON(pmd_trans_huge(*pmd));
3714 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3715 goto out;
3717 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3718 if (pmd_huge(*pmd))
3719 goto out;
3721 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3722 if (!ptep)
3723 goto out;
3724 if (!pte_present(*ptep))
3725 goto unlock;
3726 *ptepp = ptep;
3727 return 0;
3728 unlock:
3729 pte_unmap_unlock(ptep, *ptlp);
3730 out:
3731 return -EINVAL;
3734 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3735 pte_t **ptepp, spinlock_t **ptlp)
3737 int res;
3739 /* (void) is needed to make gcc happy */
3740 (void) __cond_lock(*ptlp,
3741 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3742 return res;
3746 * follow_pfn - look up PFN at a user virtual address
3747 * @vma: memory mapping
3748 * @address: user virtual address
3749 * @pfn: location to store found PFN
3751 * Only IO mappings and raw PFN mappings are allowed.
3753 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3755 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3756 unsigned long *pfn)
3758 int ret = -EINVAL;
3759 spinlock_t *ptl;
3760 pte_t *ptep;
3762 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3763 return ret;
3765 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3766 if (ret)
3767 return ret;
3768 *pfn = pte_pfn(*ptep);
3769 pte_unmap_unlock(ptep, ptl);
3770 return 0;
3772 EXPORT_SYMBOL(follow_pfn);
3774 #ifdef CONFIG_HAVE_IOREMAP_PROT
3775 int follow_phys(struct vm_area_struct *vma,
3776 unsigned long address, unsigned int flags,
3777 unsigned long *prot, resource_size_t *phys)
3779 int ret = -EINVAL;
3780 pte_t *ptep, pte;
3781 spinlock_t *ptl;
3783 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3784 goto out;
3786 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3787 goto out;
3788 pte = *ptep;
3790 if ((flags & FOLL_WRITE) && !pte_write(pte))
3791 goto unlock;
3793 *prot = pgprot_val(pte_pgprot(pte));
3794 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3796 ret = 0;
3797 unlock:
3798 pte_unmap_unlock(ptep, ptl);
3799 out:
3800 return ret;
3803 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3804 void *buf, int len, int write)
3806 resource_size_t phys_addr;
3807 unsigned long prot = 0;
3808 void __iomem *maddr;
3809 int offset = addr & (PAGE_SIZE-1);
3811 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3812 return -EINVAL;
3814 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3815 if (write)
3816 memcpy_toio(maddr + offset, buf, len);
3817 else
3818 memcpy_fromio(buf, maddr + offset, len);
3819 iounmap(maddr);
3821 return len;
3823 #endif
3826 * Access another process' address space as given in mm. If non-NULL, use the
3827 * given task for page fault accounting.
3829 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3830 unsigned long addr, void *buf, int len, int write)
3832 struct vm_area_struct *vma;
3833 void *old_buf = buf;
3835 down_read(&mm->mmap_sem);
3836 /* ignore errors, just check how much was successfully transferred */
3837 while (len) {
3838 int bytes, ret, offset;
3839 void *maddr;
3840 struct page *page = NULL;
3842 ret = get_user_pages(tsk, mm, addr, 1,
3843 write, 1, &page, &vma);
3844 if (ret <= 0) {
3846 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3847 * we can access using slightly different code.
3849 #ifdef CONFIG_HAVE_IOREMAP_PROT
3850 vma = find_vma(mm, addr);
3851 if (!vma || vma->vm_start > addr)
3852 break;
3853 if (vma->vm_ops && vma->vm_ops->access)
3854 ret = vma->vm_ops->access(vma, addr, buf,
3855 len, write);
3856 if (ret <= 0)
3857 #endif
3858 break;
3859 bytes = ret;
3860 } else {
3861 bytes = len;
3862 offset = addr & (PAGE_SIZE-1);
3863 if (bytes > PAGE_SIZE-offset)
3864 bytes = PAGE_SIZE-offset;
3866 maddr = kmap(page);
3867 if (write) {
3868 copy_to_user_page(vma, page, addr,
3869 maddr + offset, buf, bytes);
3870 set_page_dirty_lock(page);
3871 } else {
3872 copy_from_user_page(vma, page, addr,
3873 buf, maddr + offset, bytes);
3875 kunmap(page);
3876 page_cache_release(page);
3878 len -= bytes;
3879 buf += bytes;
3880 addr += bytes;
3882 up_read(&mm->mmap_sem);
3884 return buf - old_buf;
3888 * access_remote_vm - access another process' address space
3889 * @mm: the mm_struct of the target address space
3890 * @addr: start address to access
3891 * @buf: source or destination buffer
3892 * @len: number of bytes to transfer
3893 * @write: whether the access is a write
3895 * The caller must hold a reference on @mm.
3897 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3898 void *buf, int len, int write)
3900 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3904 * Access another process' address space.
3905 * Source/target buffer must be kernel space,
3906 * Do not walk the page table directly, use get_user_pages
3908 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3909 void *buf, int len, int write)
3911 struct mm_struct *mm;
3912 int ret;
3914 mm = get_task_mm(tsk);
3915 if (!mm)
3916 return 0;
3918 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3919 mmput(mm);
3921 return ret;
3925 * Print the name of a VMA.
3927 void print_vma_addr(char *prefix, unsigned long ip)
3929 struct mm_struct *mm = current->mm;
3930 struct vm_area_struct *vma;
3933 * Do not print if we are in atomic
3934 * contexts (in exception stacks, etc.):
3936 if (preempt_count())
3937 return;
3939 down_read(&mm->mmap_sem);
3940 vma = find_vma(mm, ip);
3941 if (vma && vma->vm_file) {
3942 struct file *f = vma->vm_file;
3943 char *buf = (char *)__get_free_page(GFP_KERNEL);
3944 if (buf) {
3945 char *p, *s;
3947 p = d_path(&f->f_path, buf, PAGE_SIZE);
3948 if (IS_ERR(p))
3949 p = "?";
3950 s = strrchr(p, '/');
3951 if (s)
3952 p = s+1;
3953 printk("%s%s[%lx+%lx]", prefix, p,
3954 vma->vm_start,
3955 vma->vm_end - vma->vm_start);
3956 free_page((unsigned long)buf);
3959 up_read(&mm->mmap_sem);
3962 #ifdef CONFIG_PROVE_LOCKING
3963 void might_fault(void)
3966 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3967 * holding the mmap_sem, this is safe because kernel memory doesn't
3968 * get paged out, therefore we'll never actually fault, and the
3969 * below annotations will generate false positives.
3971 if (segment_eq(get_fs(), KERNEL_DS))
3972 return;
3974 might_sleep();
3976 * it would be nicer only to annotate paths which are not under
3977 * pagefault_disable, however that requires a larger audit and
3978 * providing helpers like get_user_atomic.
3980 if (!in_atomic() && current->mm)
3981 might_lock_read(&current->mm->mmap_sem);
3983 EXPORT_SYMBOL(might_fault);
3984 #endif
3986 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3987 static void clear_gigantic_page(struct page *page,
3988 unsigned long addr,
3989 unsigned int pages_per_huge_page)
3991 int i;
3992 struct page *p = page;
3994 might_sleep();
3995 for (i = 0; i < pages_per_huge_page;
3996 i++, p = mem_map_next(p, page, i)) {
3997 cond_resched();
3998 clear_user_highpage(p, addr + i * PAGE_SIZE);
4001 void clear_huge_page(struct page *page,
4002 unsigned long addr, unsigned int pages_per_huge_page)
4004 int i;
4006 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4007 clear_gigantic_page(page, addr, pages_per_huge_page);
4008 return;
4011 might_sleep();
4012 for (i = 0; i < pages_per_huge_page; i++) {
4013 cond_resched();
4014 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4018 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4019 unsigned long addr,
4020 struct vm_area_struct *vma,
4021 unsigned int pages_per_huge_page)
4023 int i;
4024 struct page *dst_base = dst;
4025 struct page *src_base = src;
4027 for (i = 0; i < pages_per_huge_page; ) {
4028 cond_resched();
4029 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4031 i++;
4032 dst = mem_map_next(dst, dst_base, i);
4033 src = mem_map_next(src, src_base, i);
4037 void copy_user_huge_page(struct page *dst, struct page *src,
4038 unsigned long addr, struct vm_area_struct *vma,
4039 unsigned int pages_per_huge_page)
4041 int i;
4043 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4044 copy_user_gigantic_page(dst, src, addr, vma,
4045 pages_per_huge_page);
4046 return;
4049 might_sleep();
4050 for (i = 0; i < pages_per_huge_page; i++) {
4051 cond_resched();
4052 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4055 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */