2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
49 #include "ordered-data.h"
52 #include "compression.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args
{
59 struct btrfs_root
*root
;
62 static const struct inode_operations btrfs_dir_inode_operations
;
63 static const struct inode_operations btrfs_symlink_inode_operations
;
64 static const struct inode_operations btrfs_dir_ro_inode_operations
;
65 static const struct inode_operations btrfs_special_inode_operations
;
66 static const struct inode_operations btrfs_file_inode_operations
;
67 static const struct address_space_operations btrfs_aops
;
68 static const struct address_space_operations btrfs_symlink_aops
;
69 static const struct file_operations btrfs_dir_file_operations
;
70 static struct extent_io_ops btrfs_extent_io_ops
;
72 static struct kmem_cache
*btrfs_inode_cachep
;
73 struct kmem_cache
*btrfs_trans_handle_cachep
;
74 struct kmem_cache
*btrfs_transaction_cachep
;
75 struct kmem_cache
*btrfs_path_cachep
;
76 struct kmem_cache
*btrfs_free_space_cachep
;
79 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
80 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
81 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
82 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
83 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
84 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
85 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
86 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
89 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
90 static int btrfs_truncate(struct inode
*inode
);
91 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
92 static noinline
int cow_file_range(struct inode
*inode
,
93 struct page
*locked_page
,
94 u64 start
, u64 end
, int *page_started
,
95 unsigned long *nr_written
, int unlock
);
97 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
98 struct inode
*inode
, struct inode
*dir
,
99 const struct qstr
*qstr
)
103 err
= btrfs_init_acl(trans
, inode
, dir
);
105 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
114 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
115 struct btrfs_root
*root
, struct inode
*inode
,
116 u64 start
, size_t size
, size_t compressed_size
,
118 struct page
**compressed_pages
)
120 struct btrfs_key key
;
121 struct btrfs_path
*path
;
122 struct extent_buffer
*leaf
;
123 struct page
*page
= NULL
;
126 struct btrfs_file_extent_item
*ei
;
129 size_t cur_size
= size
;
131 unsigned long offset
;
133 if (compressed_size
&& compressed_pages
)
134 cur_size
= compressed_size
;
136 path
= btrfs_alloc_path();
140 path
->leave_spinning
= 1;
142 key
.objectid
= btrfs_ino(inode
);
144 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
145 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
147 inode_add_bytes(inode
, size
);
148 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
155 leaf
= path
->nodes
[0];
156 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_file_extent_item
);
158 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
159 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
160 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
161 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
162 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
163 ptr
= btrfs_file_extent_inline_start(ei
);
165 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
168 while (compressed_size
> 0) {
169 cpage
= compressed_pages
[i
];
170 cur_size
= min_t(unsigned long, compressed_size
,
173 kaddr
= kmap_atomic(cpage
, KM_USER0
);
174 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
175 kunmap_atomic(kaddr
, KM_USER0
);
179 compressed_size
-= cur_size
;
181 btrfs_set_file_extent_compression(leaf
, ei
,
184 page
= find_get_page(inode
->i_mapping
,
185 start
>> PAGE_CACHE_SHIFT
);
186 btrfs_set_file_extent_compression(leaf
, ei
, 0);
187 kaddr
= kmap_atomic(page
, KM_USER0
);
188 offset
= start
& (PAGE_CACHE_SIZE
- 1);
189 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
190 kunmap_atomic(kaddr
, KM_USER0
);
191 page_cache_release(page
);
193 btrfs_mark_buffer_dirty(leaf
);
194 btrfs_free_path(path
);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
206 btrfs_update_inode(trans
, root
, inode
);
210 btrfs_free_path(path
);
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
221 struct btrfs_root
*root
,
222 struct inode
*inode
, u64 start
, u64 end
,
223 size_t compressed_size
, int compress_type
,
224 struct page
**compressed_pages
)
226 u64 isize
= i_size_read(inode
);
227 u64 actual_end
= min(end
+ 1, isize
);
228 u64 inline_len
= actual_end
- start
;
229 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
230 ~((u64
)root
->sectorsize
- 1);
232 u64 data_len
= inline_len
;
236 data_len
= compressed_size
;
239 actual_end
>= PAGE_CACHE_SIZE
||
240 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
242 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
244 data_len
> root
->fs_info
->max_inline
) {
248 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
252 if (isize
> actual_end
)
253 inline_len
= min_t(u64
, isize
, actual_end
);
254 ret
= insert_inline_extent(trans
, root
, inode
, start
,
255 inline_len
, compressed_size
,
256 compress_type
, compressed_pages
);
258 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
259 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
263 struct async_extent
{
268 unsigned long nr_pages
;
270 struct list_head list
;
275 struct btrfs_root
*root
;
276 struct page
*locked_page
;
279 struct list_head extents
;
280 struct btrfs_work work
;
283 static noinline
int add_async_extent(struct async_cow
*cow
,
284 u64 start
, u64 ram_size
,
287 unsigned long nr_pages
,
290 struct async_extent
*async_extent
;
292 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
293 BUG_ON(!async_extent
);
294 async_extent
->start
= start
;
295 async_extent
->ram_size
= ram_size
;
296 async_extent
->compressed_size
= compressed_size
;
297 async_extent
->pages
= pages
;
298 async_extent
->nr_pages
= nr_pages
;
299 async_extent
->compress_type
= compress_type
;
300 list_add_tail(&async_extent
->list
, &cow
->extents
);
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline
int compress_file_range(struct inode
*inode
,
321 struct page
*locked_page
,
323 struct async_cow
*async_cow
,
326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
327 struct btrfs_trans_handle
*trans
;
329 u64 blocksize
= root
->sectorsize
;
331 u64 isize
= i_size_read(inode
);
333 struct page
**pages
= NULL
;
334 unsigned long nr_pages
;
335 unsigned long nr_pages_ret
= 0;
336 unsigned long total_compressed
= 0;
337 unsigned long total_in
= 0;
338 unsigned long max_compressed
= 128 * 1024;
339 unsigned long max_uncompressed
= 128 * 1024;
342 int compress_type
= root
->fs_info
->compress_type
;
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL
, inode
);
348 actual_end
= min_t(u64
, isize
, end
+ 1);
351 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
352 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
364 if (actual_end
<= start
)
365 goto cleanup_and_bail_uncompressed
;
367 total_compressed
= actual_end
- start
;
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
379 total_compressed
= min(total_compressed
, max_uncompressed
);
380 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
381 num_bytes
= max(blocksize
, num_bytes
);
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
390 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
391 (btrfs_test_opt(root
, COMPRESS
) ||
392 (BTRFS_I(inode
)->force_compress
) ||
393 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
395 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
398 if (BTRFS_I(inode
)->force_compress
)
399 compress_type
= BTRFS_I(inode
)->force_compress
;
401 ret
= btrfs_compress_pages(compress_type
,
402 inode
->i_mapping
, start
,
403 total_compressed
, pages
,
404 nr_pages
, &nr_pages_ret
,
410 unsigned long offset
= total_compressed
&
411 (PAGE_CACHE_SIZE
- 1);
412 struct page
*page
= pages
[nr_pages_ret
- 1];
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
419 kaddr
= kmap_atomic(page
, KM_USER0
);
420 memset(kaddr
+ offset
, 0,
421 PAGE_CACHE_SIZE
- offset
);
422 kunmap_atomic(kaddr
, KM_USER0
);
428 trans
= btrfs_join_transaction(root
);
429 BUG_ON(IS_ERR(trans
));
430 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
432 /* lets try to make an inline extent */
433 if (ret
|| total_in
< (actual_end
- start
)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
437 ret
= cow_file_range_inline(trans
, root
, inode
,
438 start
, end
, 0, 0, NULL
);
440 /* try making a compressed inline extent */
441 ret
= cow_file_range_inline(trans
, root
, inode
,
444 compress_type
, pages
);
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
452 extent_clear_unlock_delalloc(inode
,
453 &BTRFS_I(inode
)->io_tree
,
455 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
456 EXTENT_CLEAR_DELALLOC
|
457 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
459 btrfs_end_transaction(trans
, root
);
462 btrfs_end_transaction(trans
, root
);
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
471 total_compressed
= (total_compressed
+ blocksize
- 1) &
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
478 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
479 ~(PAGE_CACHE_SIZE
- 1);
480 if (total_compressed
>= total_in
) {
483 num_bytes
= total_in
;
486 if (!will_compress
&& pages
) {
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
491 for (i
= 0; i
< nr_pages_ret
; i
++) {
492 WARN_ON(pages
[i
]->mapping
);
493 page_cache_release(pages
[i
]);
497 total_compressed
= 0;
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
502 !(BTRFS_I(inode
)->force_compress
)) {
503 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
513 add_async_extent(async_cow
, start
, num_bytes
,
514 total_compressed
, pages
, nr_pages_ret
,
517 if (start
+ num_bytes
< end
) {
524 cleanup_and_bail_uncompressed
:
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
532 if (page_offset(locked_page
) >= start
&&
533 page_offset(locked_page
) <= end
) {
534 __set_page_dirty_nobuffers(locked_page
);
535 /* unlocked later on in the async handlers */
537 add_async_extent(async_cow
, start
, end
- start
+ 1,
538 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
546 for (i
= 0; i
< nr_pages_ret
; i
++) {
547 WARN_ON(pages
[i
]->mapping
);
548 page_cache_release(pages
[i
]);
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
561 static noinline
int submit_compressed_extents(struct inode
*inode
,
562 struct async_cow
*async_cow
)
564 struct async_extent
*async_extent
;
566 struct btrfs_trans_handle
*trans
;
567 struct btrfs_key ins
;
568 struct extent_map
*em
;
569 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
570 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
571 struct extent_io_tree
*io_tree
;
574 if (list_empty(&async_cow
->extents
))
578 while (!list_empty(&async_cow
->extents
)) {
579 async_extent
= list_entry(async_cow
->extents
.next
,
580 struct async_extent
, list
);
581 list_del(&async_extent
->list
);
583 io_tree
= &BTRFS_I(inode
)->io_tree
;
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent
->pages
) {
588 int page_started
= 0;
589 unsigned long nr_written
= 0;
591 lock_extent(io_tree
, async_extent
->start
,
592 async_extent
->start
+
593 async_extent
->ram_size
- 1, GFP_NOFS
);
595 /* allocate blocks */
596 ret
= cow_file_range(inode
, async_cow
->locked_page
,
598 async_extent
->start
+
599 async_extent
->ram_size
- 1,
600 &page_started
, &nr_written
, 0);
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
608 if (!page_started
&& !ret
)
609 extent_write_locked_range(io_tree
,
610 inode
, async_extent
->start
,
611 async_extent
->start
+
612 async_extent
->ram_size
- 1,
620 lock_extent(io_tree
, async_extent
->start
,
621 async_extent
->start
+ async_extent
->ram_size
- 1,
624 trans
= btrfs_join_transaction(root
);
625 BUG_ON(IS_ERR(trans
));
626 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
627 ret
= btrfs_reserve_extent(trans
, root
,
628 async_extent
->compressed_size
,
629 async_extent
->compressed_size
,
632 btrfs_end_transaction(trans
, root
);
636 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
637 WARN_ON(async_extent
->pages
[i
]->mapping
);
638 page_cache_release(async_extent
->pages
[i
]);
640 kfree(async_extent
->pages
);
641 async_extent
->nr_pages
= 0;
642 async_extent
->pages
= NULL
;
643 unlock_extent(io_tree
, async_extent
->start
,
644 async_extent
->start
+
645 async_extent
->ram_size
- 1, GFP_NOFS
);
650 * here we're doing allocation and writeback of the
653 btrfs_drop_extent_cache(inode
, async_extent
->start
,
654 async_extent
->start
+
655 async_extent
->ram_size
- 1, 0);
657 em
= alloc_extent_map();
659 em
->start
= async_extent
->start
;
660 em
->len
= async_extent
->ram_size
;
661 em
->orig_start
= em
->start
;
663 em
->block_start
= ins
.objectid
;
664 em
->block_len
= ins
.offset
;
665 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
666 em
->compress_type
= async_extent
->compress_type
;
667 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
668 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
671 write_lock(&em_tree
->lock
);
672 ret
= add_extent_mapping(em_tree
, em
);
673 write_unlock(&em_tree
->lock
);
674 if (ret
!= -EEXIST
) {
678 btrfs_drop_extent_cache(inode
, async_extent
->start
,
679 async_extent
->start
+
680 async_extent
->ram_size
- 1, 0);
683 ret
= btrfs_add_ordered_extent_compress(inode
,
686 async_extent
->ram_size
,
688 BTRFS_ORDERED_COMPRESSED
,
689 async_extent
->compress_type
);
693 * clear dirty, set writeback and unlock the pages.
695 extent_clear_unlock_delalloc(inode
,
696 &BTRFS_I(inode
)->io_tree
,
698 async_extent
->start
+
699 async_extent
->ram_size
- 1,
700 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
701 EXTENT_CLEAR_UNLOCK
|
702 EXTENT_CLEAR_DELALLOC
|
703 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
705 ret
= btrfs_submit_compressed_write(inode
,
707 async_extent
->ram_size
,
709 ins
.offset
, async_extent
->pages
,
710 async_extent
->nr_pages
);
713 alloc_hint
= ins
.objectid
+ ins
.offset
;
721 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
724 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
725 struct extent_map
*em
;
728 read_lock(&em_tree
->lock
);
729 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
736 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
738 em
= search_extent_mapping(em_tree
, 0, 0);
739 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
740 alloc_hint
= em
->block_start
;
744 alloc_hint
= em
->block_start
;
748 read_unlock(&em_tree
->lock
);
753 static inline bool is_free_space_inode(struct btrfs_root
*root
,
756 if (root
== root
->fs_info
->tree_root
||
757 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
)
763 * when extent_io.c finds a delayed allocation range in the file,
764 * the call backs end up in this code. The basic idea is to
765 * allocate extents on disk for the range, and create ordered data structs
766 * in ram to track those extents.
768 * locked_page is the page that writepage had locked already. We use
769 * it to make sure we don't do extra locks or unlocks.
771 * *page_started is set to one if we unlock locked_page and do everything
772 * required to start IO on it. It may be clean and already done with
775 static noinline
int cow_file_range(struct inode
*inode
,
776 struct page
*locked_page
,
777 u64 start
, u64 end
, int *page_started
,
778 unsigned long *nr_written
,
781 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
782 struct btrfs_trans_handle
*trans
;
785 unsigned long ram_size
;
788 u64 blocksize
= root
->sectorsize
;
789 struct btrfs_key ins
;
790 struct extent_map
*em
;
791 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
794 BUG_ON(is_free_space_inode(root
, inode
));
795 trans
= btrfs_join_transaction(root
);
796 BUG_ON(IS_ERR(trans
));
797 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
799 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
800 num_bytes
= max(blocksize
, num_bytes
);
801 disk_num_bytes
= num_bytes
;
804 /* if this is a small write inside eof, kick off defrag */
805 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
806 btrfs_add_inode_defrag(trans
, inode
);
809 /* lets try to make an inline extent */
810 ret
= cow_file_range_inline(trans
, root
, inode
,
811 start
, end
, 0, 0, NULL
);
813 extent_clear_unlock_delalloc(inode
,
814 &BTRFS_I(inode
)->io_tree
,
816 EXTENT_CLEAR_UNLOCK_PAGE
|
817 EXTENT_CLEAR_UNLOCK
|
818 EXTENT_CLEAR_DELALLOC
|
820 EXTENT_SET_WRITEBACK
|
821 EXTENT_END_WRITEBACK
);
823 *nr_written
= *nr_written
+
824 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
831 BUG_ON(disk_num_bytes
>
832 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
834 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
835 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
837 while (disk_num_bytes
> 0) {
840 cur_alloc_size
= disk_num_bytes
;
841 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
842 root
->sectorsize
, 0, alloc_hint
,
846 em
= alloc_extent_map();
849 em
->orig_start
= em
->start
;
850 ram_size
= ins
.offset
;
851 em
->len
= ins
.offset
;
853 em
->block_start
= ins
.objectid
;
854 em
->block_len
= ins
.offset
;
855 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
856 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
859 write_lock(&em_tree
->lock
);
860 ret
= add_extent_mapping(em_tree
, em
);
861 write_unlock(&em_tree
->lock
);
862 if (ret
!= -EEXIST
) {
866 btrfs_drop_extent_cache(inode
, start
,
867 start
+ ram_size
- 1, 0);
870 cur_alloc_size
= ins
.offset
;
871 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
872 ram_size
, cur_alloc_size
, 0);
875 if (root
->root_key
.objectid
==
876 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
877 ret
= btrfs_reloc_clone_csums(inode
, start
,
882 if (disk_num_bytes
< cur_alloc_size
)
885 /* we're not doing compressed IO, don't unlock the first
886 * page (which the caller expects to stay locked), don't
887 * clear any dirty bits and don't set any writeback bits
889 * Do set the Private2 bit so we know this page was properly
890 * setup for writepage
892 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
893 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
896 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
897 start
, start
+ ram_size
- 1,
899 disk_num_bytes
-= cur_alloc_size
;
900 num_bytes
-= cur_alloc_size
;
901 alloc_hint
= ins
.objectid
+ ins
.offset
;
902 start
+= cur_alloc_size
;
906 btrfs_end_transaction(trans
, root
);
912 * work queue call back to started compression on a file and pages
914 static noinline
void async_cow_start(struct btrfs_work
*work
)
916 struct async_cow
*async_cow
;
918 async_cow
= container_of(work
, struct async_cow
, work
);
920 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
921 async_cow
->start
, async_cow
->end
, async_cow
,
924 async_cow
->inode
= NULL
;
928 * work queue call back to submit previously compressed pages
930 static noinline
void async_cow_submit(struct btrfs_work
*work
)
932 struct async_cow
*async_cow
;
933 struct btrfs_root
*root
;
934 unsigned long nr_pages
;
936 async_cow
= container_of(work
, struct async_cow
, work
);
938 root
= async_cow
->root
;
939 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
942 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
944 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
946 waitqueue_active(&root
->fs_info
->async_submit_wait
))
947 wake_up(&root
->fs_info
->async_submit_wait
);
949 if (async_cow
->inode
)
950 submit_compressed_extents(async_cow
->inode
, async_cow
);
953 static noinline
void async_cow_free(struct btrfs_work
*work
)
955 struct async_cow
*async_cow
;
956 async_cow
= container_of(work
, struct async_cow
, work
);
960 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
961 u64 start
, u64 end
, int *page_started
,
962 unsigned long *nr_written
)
964 struct async_cow
*async_cow
;
965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
966 unsigned long nr_pages
;
968 int limit
= 10 * 1024 * 1042;
970 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
971 1, 0, NULL
, GFP_NOFS
);
972 while (start
< end
) {
973 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
975 async_cow
->inode
= inode
;
976 async_cow
->root
= root
;
977 async_cow
->locked_page
= locked_page
;
978 async_cow
->start
= start
;
980 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
983 cur_end
= min(end
, start
+ 512 * 1024 - 1);
985 async_cow
->end
= cur_end
;
986 INIT_LIST_HEAD(&async_cow
->extents
);
988 async_cow
->work
.func
= async_cow_start
;
989 async_cow
->work
.ordered_func
= async_cow_submit
;
990 async_cow
->work
.ordered_free
= async_cow_free
;
991 async_cow
->work
.flags
= 0;
993 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
995 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
997 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1000 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1001 wait_event(root
->fs_info
->async_submit_wait
,
1002 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1006 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1007 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1008 wait_event(root
->fs_info
->async_submit_wait
,
1009 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1013 *nr_written
+= nr_pages
;
1014 start
= cur_end
+ 1;
1020 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1021 u64 bytenr
, u64 num_bytes
)
1024 struct btrfs_ordered_sum
*sums
;
1027 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1028 bytenr
+ num_bytes
- 1, &list
, 0);
1029 if (ret
== 0 && list_empty(&list
))
1032 while (!list_empty(&list
)) {
1033 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1034 list_del(&sums
->list
);
1041 * when nowcow writeback call back. This checks for snapshots or COW copies
1042 * of the extents that exist in the file, and COWs the file as required.
1044 * If no cow copies or snapshots exist, we write directly to the existing
1047 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1048 struct page
*locked_page
,
1049 u64 start
, u64 end
, int *page_started
, int force
,
1050 unsigned long *nr_written
)
1052 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1053 struct btrfs_trans_handle
*trans
;
1054 struct extent_buffer
*leaf
;
1055 struct btrfs_path
*path
;
1056 struct btrfs_file_extent_item
*fi
;
1057 struct btrfs_key found_key
;
1070 u64 ino
= btrfs_ino(inode
);
1072 path
= btrfs_alloc_path();
1075 nolock
= is_free_space_inode(root
, inode
);
1078 trans
= btrfs_join_transaction_nolock(root
);
1080 trans
= btrfs_join_transaction(root
);
1082 BUG_ON(IS_ERR(trans
));
1083 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1085 cow_start
= (u64
)-1;
1088 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1091 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1092 leaf
= path
->nodes
[0];
1093 btrfs_item_key_to_cpu(leaf
, &found_key
,
1094 path
->slots
[0] - 1);
1095 if (found_key
.objectid
== ino
&&
1096 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1101 leaf
= path
->nodes
[0];
1102 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1103 ret
= btrfs_next_leaf(root
, path
);
1108 leaf
= path
->nodes
[0];
1114 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1116 if (found_key
.objectid
> ino
||
1117 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1118 found_key
.offset
> end
)
1121 if (found_key
.offset
> cur_offset
) {
1122 extent_end
= found_key
.offset
;
1127 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1128 struct btrfs_file_extent_item
);
1129 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1131 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1132 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1133 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1134 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1135 extent_end
= found_key
.offset
+
1136 btrfs_file_extent_num_bytes(leaf
, fi
);
1137 if (extent_end
<= start
) {
1141 if (disk_bytenr
== 0)
1143 if (btrfs_file_extent_compression(leaf
, fi
) ||
1144 btrfs_file_extent_encryption(leaf
, fi
) ||
1145 btrfs_file_extent_other_encoding(leaf
, fi
))
1147 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1149 if (btrfs_extent_readonly(root
, disk_bytenr
))
1151 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1153 extent_offset
, disk_bytenr
))
1155 disk_bytenr
+= extent_offset
;
1156 disk_bytenr
+= cur_offset
- found_key
.offset
;
1157 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1159 * force cow if csum exists in the range.
1160 * this ensure that csum for a given extent are
1161 * either valid or do not exist.
1163 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1166 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1167 extent_end
= found_key
.offset
+
1168 btrfs_file_extent_inline_len(leaf
, fi
);
1169 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1174 if (extent_end
<= start
) {
1179 if (cow_start
== (u64
)-1)
1180 cow_start
= cur_offset
;
1181 cur_offset
= extent_end
;
1182 if (cur_offset
> end
)
1188 btrfs_release_path(path
);
1189 if (cow_start
!= (u64
)-1) {
1190 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1191 found_key
.offset
- 1, page_started
,
1194 cow_start
= (u64
)-1;
1197 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1198 struct extent_map
*em
;
1199 struct extent_map_tree
*em_tree
;
1200 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1201 em
= alloc_extent_map();
1203 em
->start
= cur_offset
;
1204 em
->orig_start
= em
->start
;
1205 em
->len
= num_bytes
;
1206 em
->block_len
= num_bytes
;
1207 em
->block_start
= disk_bytenr
;
1208 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1209 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1211 write_lock(&em_tree
->lock
);
1212 ret
= add_extent_mapping(em_tree
, em
);
1213 write_unlock(&em_tree
->lock
);
1214 if (ret
!= -EEXIST
) {
1215 free_extent_map(em
);
1218 btrfs_drop_extent_cache(inode
, em
->start
,
1219 em
->start
+ em
->len
- 1, 0);
1221 type
= BTRFS_ORDERED_PREALLOC
;
1223 type
= BTRFS_ORDERED_NOCOW
;
1226 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1227 num_bytes
, num_bytes
, type
);
1230 if (root
->root_key
.objectid
==
1231 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1232 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1237 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1238 cur_offset
, cur_offset
+ num_bytes
- 1,
1239 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1240 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1241 EXTENT_SET_PRIVATE2
);
1242 cur_offset
= extent_end
;
1243 if (cur_offset
> end
)
1246 btrfs_release_path(path
);
1248 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1249 cow_start
= cur_offset
;
1250 if (cow_start
!= (u64
)-1) {
1251 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1252 page_started
, nr_written
, 1);
1257 ret
= btrfs_end_transaction_nolock(trans
, root
);
1260 ret
= btrfs_end_transaction(trans
, root
);
1263 btrfs_free_path(path
);
1268 * extent_io.c call back to do delayed allocation processing
1270 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1271 u64 start
, u64 end
, int *page_started
,
1272 unsigned long *nr_written
)
1275 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1277 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1278 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1279 page_started
, 1, nr_written
);
1280 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1281 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1282 page_started
, 0, nr_written
);
1283 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1284 !(BTRFS_I(inode
)->force_compress
) &&
1285 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1286 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1287 page_started
, nr_written
, 1);
1289 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1290 page_started
, nr_written
);
1294 static int btrfs_split_extent_hook(struct inode
*inode
,
1295 struct extent_state
*orig
, u64 split
)
1297 /* not delalloc, ignore it */
1298 if (!(orig
->state
& EXTENT_DELALLOC
))
1301 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1311 static int btrfs_merge_extent_hook(struct inode
*inode
,
1312 struct extent_state
*new,
1313 struct extent_state
*other
)
1315 /* not delalloc, ignore it */
1316 if (!(other
->state
& EXTENT_DELALLOC
))
1319 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1328 static int btrfs_set_bit_hook(struct inode
*inode
,
1329 struct extent_state
*state
, int *bits
)
1333 * set_bit and clear bit hooks normally require _irqsave/restore
1334 * but in this case, we are only testing for the DELALLOC
1335 * bit, which is only set or cleared with irqs on
1337 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1338 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1339 u64 len
= state
->end
+ 1 - state
->start
;
1340 bool do_list
= !is_free_space_inode(root
, inode
);
1342 if (*bits
& EXTENT_FIRST_DELALLOC
)
1343 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1345 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1347 spin_lock(&root
->fs_info
->delalloc_lock
);
1348 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1349 root
->fs_info
->delalloc_bytes
+= len
;
1350 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1351 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1352 &root
->fs_info
->delalloc_inodes
);
1354 spin_unlock(&root
->fs_info
->delalloc_lock
);
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1362 static int btrfs_clear_bit_hook(struct inode
*inode
,
1363 struct extent_state
*state
, int *bits
)
1366 * set_bit and clear bit hooks normally require _irqsave/restore
1367 * but in this case, we are only testing for the DELALLOC
1368 * bit, which is only set or cleared with irqs on
1370 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1371 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1372 u64 len
= state
->end
+ 1 - state
->start
;
1373 bool do_list
= !is_free_space_inode(root
, inode
);
1375 if (*bits
& EXTENT_FIRST_DELALLOC
)
1376 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1377 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1378 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1380 if (*bits
& EXTENT_DO_ACCOUNTING
)
1381 btrfs_delalloc_release_metadata(inode
, len
);
1383 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1385 btrfs_free_reserved_data_space(inode
, len
);
1387 spin_lock(&root
->fs_info
->delalloc_lock
);
1388 root
->fs_info
->delalloc_bytes
-= len
;
1389 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1391 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1392 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1393 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1395 spin_unlock(&root
->fs_info
->delalloc_lock
);
1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402 * we don't create bios that span stripes or chunks
1404 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1405 size_t size
, struct bio
*bio
,
1406 unsigned long bio_flags
)
1408 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1409 struct btrfs_mapping_tree
*map_tree
;
1410 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1415 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1418 length
= bio
->bi_size
;
1419 map_tree
= &root
->fs_info
->mapping_tree
;
1420 map_length
= length
;
1421 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1422 &map_length
, NULL
, 0);
1424 if (map_length
< length
+ size
)
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1437 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1438 struct bio
*bio
, int mirror_num
,
1439 unsigned long bio_flags
,
1442 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1445 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1451 * in order to insert checksums into the metadata in large chunks,
1452 * we wait until bio submission time. All the pages in the bio are
1453 * checksummed and sums are attached onto the ordered extent record.
1455 * At IO completion time the cums attached on the ordered extent record
1456 * are inserted into the btree
1458 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1459 int mirror_num
, unsigned long bio_flags
,
1462 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1463 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1467 * extent_io.c submission hook. This does the right thing for csum calculation
1468 * on write, or reading the csums from the tree before a read
1470 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1471 int mirror_num
, unsigned long bio_flags
,
1474 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1478 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1480 if (is_free_space_inode(root
, inode
))
1481 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1483 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1486 if (!(rw
& REQ_WRITE
)) {
1487 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1488 return btrfs_submit_compressed_read(inode
, bio
,
1489 mirror_num
, bio_flags
);
1490 } else if (!skip_sum
) {
1491 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1496 } else if (!skip_sum
) {
1497 /* csum items have already been cloned */
1498 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1500 /* we're doing a write, do the async checksumming */
1501 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1502 inode
, rw
, bio
, mirror_num
,
1503 bio_flags
, bio_offset
,
1504 __btrfs_submit_bio_start
,
1505 __btrfs_submit_bio_done
);
1509 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1513 * given a list of ordered sums record them in the inode. This happens
1514 * at IO completion time based on sums calculated at bio submission time.
1516 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1517 struct inode
*inode
, u64 file_offset
,
1518 struct list_head
*list
)
1520 struct btrfs_ordered_sum
*sum
;
1522 list_for_each_entry(sum
, list
, list
) {
1523 btrfs_csum_file_blocks(trans
,
1524 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1529 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1530 struct extent_state
**cached_state
)
1532 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1534 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1535 cached_state
, GFP_NOFS
);
1538 /* see btrfs_writepage_start_hook for details on why this is required */
1539 struct btrfs_writepage_fixup
{
1541 struct btrfs_work work
;
1544 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1546 struct btrfs_writepage_fixup
*fixup
;
1547 struct btrfs_ordered_extent
*ordered
;
1548 struct extent_state
*cached_state
= NULL
;
1550 struct inode
*inode
;
1554 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1558 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1559 ClearPageChecked(page
);
1563 inode
= page
->mapping
->host
;
1564 page_start
= page_offset(page
);
1565 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1567 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1568 &cached_state
, GFP_NOFS
);
1570 /* already ordered? We're done */
1571 if (PagePrivate2(page
))
1574 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1576 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1577 page_end
, &cached_state
, GFP_NOFS
);
1579 btrfs_start_ordered_extent(inode
, ordered
, 1);
1584 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1585 ClearPageChecked(page
);
1587 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1588 &cached_state
, GFP_NOFS
);
1591 page_cache_release(page
);
1596 * There are a few paths in the higher layers of the kernel that directly
1597 * set the page dirty bit without asking the filesystem if it is a
1598 * good idea. This causes problems because we want to make sure COW
1599 * properly happens and the data=ordered rules are followed.
1601 * In our case any range that doesn't have the ORDERED bit set
1602 * hasn't been properly setup for IO. We kick off an async process
1603 * to fix it up. The async helper will wait for ordered extents, set
1604 * the delalloc bit and make it safe to write the page.
1606 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1608 struct inode
*inode
= page
->mapping
->host
;
1609 struct btrfs_writepage_fixup
*fixup
;
1610 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1612 /* this page is properly in the ordered list */
1613 if (TestClearPagePrivate2(page
))
1616 if (PageChecked(page
))
1619 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1623 SetPageChecked(page
);
1624 page_cache_get(page
);
1625 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1627 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1631 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1632 struct inode
*inode
, u64 file_pos
,
1633 u64 disk_bytenr
, u64 disk_num_bytes
,
1634 u64 num_bytes
, u64 ram_bytes
,
1635 u8 compression
, u8 encryption
,
1636 u16 other_encoding
, int extent_type
)
1638 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1639 struct btrfs_file_extent_item
*fi
;
1640 struct btrfs_path
*path
;
1641 struct extent_buffer
*leaf
;
1642 struct btrfs_key ins
;
1646 path
= btrfs_alloc_path();
1649 path
->leave_spinning
= 1;
1652 * we may be replacing one extent in the tree with another.
1653 * The new extent is pinned in the extent map, and we don't want
1654 * to drop it from the cache until it is completely in the btree.
1656 * So, tell btrfs_drop_extents to leave this extent in the cache.
1657 * the caller is expected to unpin it and allow it to be merged
1660 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1664 ins
.objectid
= btrfs_ino(inode
);
1665 ins
.offset
= file_pos
;
1666 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1667 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1669 leaf
= path
->nodes
[0];
1670 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1671 struct btrfs_file_extent_item
);
1672 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1673 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1674 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1675 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1676 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1677 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1678 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1679 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1680 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1681 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1683 btrfs_unlock_up_safe(path
, 1);
1684 btrfs_set_lock_blocking(leaf
);
1686 btrfs_mark_buffer_dirty(leaf
);
1688 inode_add_bytes(inode
, num_bytes
);
1690 ins
.objectid
= disk_bytenr
;
1691 ins
.offset
= disk_num_bytes
;
1692 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1693 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1694 root
->root_key
.objectid
,
1695 btrfs_ino(inode
), file_pos
, &ins
);
1697 btrfs_free_path(path
);
1703 * helper function for btrfs_finish_ordered_io, this
1704 * just reads in some of the csum leaves to prime them into ram
1705 * before we start the transaction. It limits the amount of btree
1706 * reads required while inside the transaction.
1708 /* as ordered data IO finishes, this gets called so we can finish
1709 * an ordered extent if the range of bytes in the file it covers are
1712 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1714 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1715 struct btrfs_trans_handle
*trans
= NULL
;
1716 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1717 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1718 struct extent_state
*cached_state
= NULL
;
1719 int compress_type
= 0;
1723 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1727 BUG_ON(!ordered_extent
);
1729 nolock
= is_free_space_inode(root
, inode
);
1731 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1732 BUG_ON(!list_empty(&ordered_extent
->list
));
1733 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1736 trans
= btrfs_join_transaction_nolock(root
);
1738 trans
= btrfs_join_transaction(root
);
1739 BUG_ON(IS_ERR(trans
));
1740 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1741 ret
= btrfs_update_inode(trans
, root
, inode
);
1747 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1748 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1749 0, &cached_state
, GFP_NOFS
);
1752 trans
= btrfs_join_transaction_nolock(root
);
1754 trans
= btrfs_join_transaction(root
);
1755 BUG_ON(IS_ERR(trans
));
1756 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1758 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1759 compress_type
= ordered_extent
->compress_type
;
1760 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1761 BUG_ON(compress_type
);
1762 ret
= btrfs_mark_extent_written(trans
, inode
,
1763 ordered_extent
->file_offset
,
1764 ordered_extent
->file_offset
+
1765 ordered_extent
->len
);
1768 BUG_ON(root
== root
->fs_info
->tree_root
);
1769 ret
= insert_reserved_file_extent(trans
, inode
,
1770 ordered_extent
->file_offset
,
1771 ordered_extent
->start
,
1772 ordered_extent
->disk_len
,
1773 ordered_extent
->len
,
1774 ordered_extent
->len
,
1775 compress_type
, 0, 0,
1776 BTRFS_FILE_EXTENT_REG
);
1777 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1778 ordered_extent
->file_offset
,
1779 ordered_extent
->len
);
1782 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1783 ordered_extent
->file_offset
+
1784 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1786 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1787 &ordered_extent
->list
);
1789 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1791 ret
= btrfs_update_inode(trans
, root
, inode
);
1798 btrfs_end_transaction_nolock(trans
, root
);
1800 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1802 btrfs_end_transaction(trans
, root
);
1806 btrfs_put_ordered_extent(ordered_extent
);
1807 /* once for the tree */
1808 btrfs_put_ordered_extent(ordered_extent
);
1813 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1814 struct extent_state
*state
, int uptodate
)
1816 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1818 ClearPagePrivate2(page
);
1819 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1823 * When IO fails, either with EIO or csum verification fails, we
1824 * try other mirrors that might have a good copy of the data. This
1825 * io_failure_record is used to record state as we go through all the
1826 * mirrors. If another mirror has good data, the page is set up to date
1827 * and things continue. If a good mirror can't be found, the original
1828 * bio end_io callback is called to indicate things have failed.
1830 struct io_failure_record
{
1835 unsigned long bio_flags
;
1839 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1840 struct page
*page
, u64 start
, u64 end
,
1841 struct extent_state
*state
)
1843 struct io_failure_record
*failrec
= NULL
;
1845 struct extent_map
*em
;
1846 struct inode
*inode
= page
->mapping
->host
;
1847 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1848 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1855 ret
= get_state_private(failure_tree
, start
, &private);
1857 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1860 failrec
->start
= start
;
1861 failrec
->len
= end
- start
+ 1;
1862 failrec
->last_mirror
= 0;
1863 failrec
->bio_flags
= 0;
1865 read_lock(&em_tree
->lock
);
1866 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1867 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1868 free_extent_map(em
);
1871 read_unlock(&em_tree
->lock
);
1873 if (IS_ERR_OR_NULL(em
)) {
1877 logical
= start
- em
->start
;
1878 logical
= em
->block_start
+ logical
;
1879 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1880 logical
= em
->block_start
;
1881 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1882 extent_set_compress_type(&failrec
->bio_flags
,
1885 failrec
->logical
= logical
;
1886 free_extent_map(em
);
1887 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1888 EXTENT_DIRTY
, GFP_NOFS
);
1889 set_state_private(failure_tree
, start
,
1890 (u64
)(unsigned long)failrec
);
1892 failrec
= (struct io_failure_record
*)(unsigned long)private;
1894 num_copies
= btrfs_num_copies(
1895 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1896 failrec
->logical
, failrec
->len
);
1897 failrec
->last_mirror
++;
1899 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1900 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1903 if (state
&& state
->start
!= failrec
->start
)
1905 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1907 if (!state
|| failrec
->last_mirror
> num_copies
) {
1908 set_state_private(failure_tree
, failrec
->start
, 0);
1909 clear_extent_bits(failure_tree
, failrec
->start
,
1910 failrec
->start
+ failrec
->len
- 1,
1911 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1915 bio
= bio_alloc(GFP_NOFS
, 1);
1916 bio
->bi_private
= state
;
1917 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1918 bio
->bi_sector
= failrec
->logical
>> 9;
1919 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1922 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1923 if (failed_bio
->bi_rw
& REQ_WRITE
)
1928 ret
= BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1929 failrec
->last_mirror
,
1930 failrec
->bio_flags
, 0);
1935 * each time an IO finishes, we do a fast check in the IO failure tree
1936 * to see if we need to process or clean up an io_failure_record
1938 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1941 u64 private_failure
;
1942 struct io_failure_record
*failure
;
1946 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1947 (u64
)-1, 1, EXTENT_DIRTY
, 0)) {
1948 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1949 start
, &private_failure
);
1951 failure
= (struct io_failure_record
*)(unsigned long)
1953 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1955 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1957 failure
->start
+ failure
->len
- 1,
1958 EXTENT_DIRTY
| EXTENT_LOCKED
,
1967 * when reads are done, we need to check csums to verify the data is correct
1968 * if there's a match, we allow the bio to finish. If not, we go through
1969 * the io_failure_record routines to find good copies
1971 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1972 struct extent_state
*state
)
1974 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1975 struct inode
*inode
= page
->mapping
->host
;
1976 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1978 u64
private = ~(u32
)0;
1980 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1983 if (PageChecked(page
)) {
1984 ClearPageChecked(page
);
1988 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1991 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1992 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1993 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1998 if (state
&& state
->start
== start
) {
1999 private = state
->private;
2002 ret
= get_state_private(io_tree
, start
, &private);
2004 kaddr
= kmap_atomic(page
, KM_USER0
);
2008 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
2009 btrfs_csum_final(csum
, (char *)&csum
);
2010 if (csum
!= private)
2013 kunmap_atomic(kaddr
, KM_USER0
);
2015 /* if the io failure tree for this inode is non-empty,
2016 * check to see if we've recovered from a failed IO
2018 btrfs_clean_io_failures(inode
, start
);
2022 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
2024 (unsigned long long)btrfs_ino(page
->mapping
->host
),
2025 (unsigned long long)start
, csum
,
2026 (unsigned long long)private);
2027 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2028 flush_dcache_page(page
);
2029 kunmap_atomic(kaddr
, KM_USER0
);
2035 struct delayed_iput
{
2036 struct list_head list
;
2037 struct inode
*inode
;
2040 void btrfs_add_delayed_iput(struct inode
*inode
)
2042 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2043 struct delayed_iput
*delayed
;
2045 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2048 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2049 delayed
->inode
= inode
;
2051 spin_lock(&fs_info
->delayed_iput_lock
);
2052 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2053 spin_unlock(&fs_info
->delayed_iput_lock
);
2056 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2059 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2060 struct delayed_iput
*delayed
;
2063 spin_lock(&fs_info
->delayed_iput_lock
);
2064 empty
= list_empty(&fs_info
->delayed_iputs
);
2065 spin_unlock(&fs_info
->delayed_iput_lock
);
2069 down_read(&root
->fs_info
->cleanup_work_sem
);
2070 spin_lock(&fs_info
->delayed_iput_lock
);
2071 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2072 spin_unlock(&fs_info
->delayed_iput_lock
);
2074 while (!list_empty(&list
)) {
2075 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2076 list_del(&delayed
->list
);
2077 iput(delayed
->inode
);
2080 up_read(&root
->fs_info
->cleanup_work_sem
);
2084 * calculate extra metadata reservation when snapshotting a subvolume
2085 * contains orphan files.
2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2088 struct btrfs_pending_snapshot
*pending
,
2089 u64
*bytes_to_reserve
)
2091 struct btrfs_root
*root
;
2092 struct btrfs_block_rsv
*block_rsv
;
2096 root
= pending
->root
;
2097 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2100 block_rsv
= root
->orphan_block_rsv
;
2102 /* orphan block reservation for the snapshot */
2103 num_bytes
= block_rsv
->size
;
2106 * after the snapshot is created, COWing tree blocks may use more
2107 * space than it frees. So we should make sure there is enough
2110 index
= trans
->transid
& 0x1;
2111 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2112 num_bytes
+= block_rsv
->size
-
2113 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2116 *bytes_to_reserve
+= num_bytes
;
2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2120 struct btrfs_pending_snapshot
*pending
)
2122 struct btrfs_root
*root
= pending
->root
;
2123 struct btrfs_root
*snap
= pending
->snap
;
2124 struct btrfs_block_rsv
*block_rsv
;
2129 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2132 /* refill source subvolume's orphan block reservation */
2133 block_rsv
= root
->orphan_block_rsv
;
2134 index
= trans
->transid
& 0x1;
2135 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2136 num_bytes
= block_rsv
->size
-
2137 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2138 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2139 root
->orphan_block_rsv
,
2144 /* setup orphan block reservation for the snapshot */
2145 block_rsv
= btrfs_alloc_block_rsv(snap
);
2148 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2149 snap
->orphan_block_rsv
= block_rsv
;
2151 num_bytes
= root
->orphan_block_rsv
->size
;
2152 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2153 block_rsv
, num_bytes
);
2157 /* insert orphan item for the snapshot */
2158 WARN_ON(!root
->orphan_item_inserted
);
2159 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2160 snap
->root_key
.objectid
);
2162 snap
->orphan_item_inserted
= 1;
2166 enum btrfs_orphan_cleanup_state
{
2167 ORPHAN_CLEANUP_STARTED
= 1,
2168 ORPHAN_CLEANUP_DONE
= 2,
2172 * This is called in transaction commmit time. If there are no orphan
2173 * files in the subvolume, it removes orphan item and frees block_rsv
2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2177 struct btrfs_root
*root
)
2181 if (!list_empty(&root
->orphan_list
) ||
2182 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2185 if (root
->orphan_item_inserted
&&
2186 btrfs_root_refs(&root
->root_item
) > 0) {
2187 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2188 root
->root_key
.objectid
);
2190 root
->orphan_item_inserted
= 0;
2193 if (root
->orphan_block_rsv
) {
2194 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2195 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2196 root
->orphan_block_rsv
= NULL
;
2201 * This creates an orphan entry for the given inode in case something goes
2202 * wrong in the middle of an unlink/truncate.
2204 * NOTE: caller of this function should reserve 5 units of metadata for
2207 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2209 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2210 struct btrfs_block_rsv
*block_rsv
= NULL
;
2215 if (!root
->orphan_block_rsv
) {
2216 block_rsv
= btrfs_alloc_block_rsv(root
);
2220 spin_lock(&root
->orphan_lock
);
2221 if (!root
->orphan_block_rsv
) {
2222 root
->orphan_block_rsv
= block_rsv
;
2223 } else if (block_rsv
) {
2224 btrfs_free_block_rsv(root
, block_rsv
);
2228 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2229 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2232 * For proper ENOSPC handling, we should do orphan
2233 * cleanup when mounting. But this introduces backward
2234 * compatibility issue.
2236 if (!xchg(&root
->orphan_item_inserted
, 1))
2244 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2245 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2248 spin_unlock(&root
->orphan_lock
);
2251 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2253 /* grab metadata reservation from transaction handle */
2255 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2259 /* insert an orphan item to track this unlinked/truncated file */
2261 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2265 /* insert an orphan item to track subvolume contains orphan files */
2267 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2268 root
->root_key
.objectid
);
2275 * We have done the truncate/delete so we can go ahead and remove the orphan
2276 * item for this particular inode.
2278 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2281 int delete_item
= 0;
2282 int release_rsv
= 0;
2285 spin_lock(&root
->orphan_lock
);
2286 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2287 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2291 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2292 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2295 spin_unlock(&root
->orphan_lock
);
2297 if (trans
&& delete_item
) {
2298 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2303 btrfs_orphan_release_metadata(inode
);
2309 * this cleans up any orphans that may be left on the list from the last use
2312 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2314 struct btrfs_path
*path
;
2315 struct extent_buffer
*leaf
;
2316 struct btrfs_key key
, found_key
;
2317 struct btrfs_trans_handle
*trans
;
2318 struct inode
*inode
;
2319 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2321 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2324 path
= btrfs_alloc_path();
2331 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2332 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2333 key
.offset
= (u64
)-1;
2336 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2341 * if ret == 0 means we found what we were searching for, which
2342 * is weird, but possible, so only screw with path if we didn't
2343 * find the key and see if we have stuff that matches
2347 if (path
->slots
[0] == 0)
2352 /* pull out the item */
2353 leaf
= path
->nodes
[0];
2354 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2356 /* make sure the item matches what we want */
2357 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2359 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2362 /* release the path since we're done with it */
2363 btrfs_release_path(path
);
2366 * this is where we are basically btrfs_lookup, without the
2367 * crossing root thing. we store the inode number in the
2368 * offset of the orphan item.
2370 found_key
.objectid
= found_key
.offset
;
2371 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2372 found_key
.offset
= 0;
2373 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2374 if (IS_ERR(inode
)) {
2375 ret
= PTR_ERR(inode
);
2380 * add this inode to the orphan list so btrfs_orphan_del does
2381 * the proper thing when we hit it
2383 spin_lock(&root
->orphan_lock
);
2384 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2385 spin_unlock(&root
->orphan_lock
);
2388 * if this is a bad inode, means we actually succeeded in
2389 * removing the inode, but not the orphan record, which means
2390 * we need to manually delete the orphan since iput will just
2391 * do a destroy_inode
2393 if (is_bad_inode(inode
)) {
2394 trans
= btrfs_start_transaction(root
, 0);
2395 if (IS_ERR(trans
)) {
2396 ret
= PTR_ERR(trans
);
2399 btrfs_orphan_del(trans
, inode
);
2400 btrfs_end_transaction(trans
, root
);
2405 /* if we have links, this was a truncate, lets do that */
2406 if (inode
->i_nlink
) {
2407 if (!S_ISREG(inode
->i_mode
)) {
2413 ret
= btrfs_truncate(inode
);
2418 /* this will do delete_inode and everything for us */
2423 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2425 if (root
->orphan_block_rsv
)
2426 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2429 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2430 trans
= btrfs_join_transaction(root
);
2432 btrfs_end_transaction(trans
, root
);
2436 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2438 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2442 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2443 btrfs_free_path(path
);
2448 * very simple check to peek ahead in the leaf looking for xattrs. If we
2449 * don't find any xattrs, we know there can't be any acls.
2451 * slot is the slot the inode is in, objectid is the objectid of the inode
2453 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2454 int slot
, u64 objectid
)
2456 u32 nritems
= btrfs_header_nritems(leaf
);
2457 struct btrfs_key found_key
;
2461 while (slot
< nritems
) {
2462 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2464 /* we found a different objectid, there must not be acls */
2465 if (found_key
.objectid
!= objectid
)
2468 /* we found an xattr, assume we've got an acl */
2469 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2473 * we found a key greater than an xattr key, there can't
2474 * be any acls later on
2476 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2483 * it goes inode, inode backrefs, xattrs, extents,
2484 * so if there are a ton of hard links to an inode there can
2485 * be a lot of backrefs. Don't waste time searching too hard,
2486 * this is just an optimization
2491 /* we hit the end of the leaf before we found an xattr or
2492 * something larger than an xattr. We have to assume the inode
2499 * read an inode from the btree into the in-memory inode
2501 static void btrfs_read_locked_inode(struct inode
*inode
)
2503 struct btrfs_path
*path
;
2504 struct extent_buffer
*leaf
;
2505 struct btrfs_inode_item
*inode_item
;
2506 struct btrfs_timespec
*tspec
;
2507 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2508 struct btrfs_key location
;
2513 path
= btrfs_alloc_path();
2515 path
->leave_spinning
= 1;
2516 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2518 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2522 leaf
= path
->nodes
[0];
2523 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2524 struct btrfs_inode_item
);
2525 if (!leaf
->map_token
)
2526 map_private_extent_buffer(leaf
, (unsigned long)inode_item
,
2527 sizeof(struct btrfs_inode_item
),
2528 &leaf
->map_token
, &leaf
->kaddr
,
2529 &leaf
->map_start
, &leaf
->map_len
,
2532 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2533 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2534 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2535 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2536 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2538 tspec
= btrfs_inode_atime(inode_item
);
2539 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2540 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2542 tspec
= btrfs_inode_mtime(inode_item
);
2543 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2544 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2546 tspec
= btrfs_inode_ctime(inode_item
);
2547 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2548 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2550 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2551 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2552 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2553 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2555 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2557 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2558 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2561 * try to precache a NULL acl entry for files that don't have
2562 * any xattrs or acls
2564 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2567 cache_no_acl(inode
);
2569 if (leaf
->map_token
) {
2570 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
2571 leaf
->map_token
= NULL
;
2574 btrfs_free_path(path
);
2577 switch (inode
->i_mode
& S_IFMT
) {
2579 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2580 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2581 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2582 inode
->i_fop
= &btrfs_file_operations
;
2583 inode
->i_op
= &btrfs_file_inode_operations
;
2586 inode
->i_fop
= &btrfs_dir_file_operations
;
2587 if (root
== root
->fs_info
->tree_root
)
2588 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2590 inode
->i_op
= &btrfs_dir_inode_operations
;
2593 inode
->i_op
= &btrfs_symlink_inode_operations
;
2594 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2595 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2598 inode
->i_op
= &btrfs_special_inode_operations
;
2599 init_special_inode(inode
, inode
->i_mode
, rdev
);
2603 btrfs_update_iflags(inode
);
2607 btrfs_free_path(path
);
2608 make_bad_inode(inode
);
2612 * given a leaf and an inode, copy the inode fields into the leaf
2614 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2615 struct extent_buffer
*leaf
,
2616 struct btrfs_inode_item
*item
,
2617 struct inode
*inode
)
2619 if (!leaf
->map_token
)
2620 map_private_extent_buffer(leaf
, (unsigned long)item
,
2621 sizeof(struct btrfs_inode_item
),
2622 &leaf
->map_token
, &leaf
->kaddr
,
2623 &leaf
->map_start
, &leaf
->map_len
,
2626 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2627 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2628 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2629 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2630 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2632 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2633 inode
->i_atime
.tv_sec
);
2634 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2635 inode
->i_atime
.tv_nsec
);
2637 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2638 inode
->i_mtime
.tv_sec
);
2639 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2640 inode
->i_mtime
.tv_nsec
);
2642 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2643 inode
->i_ctime
.tv_sec
);
2644 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2645 inode
->i_ctime
.tv_nsec
);
2647 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2648 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2649 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2650 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2651 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2652 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2653 btrfs_set_inode_block_group(leaf
, item
, 0);
2655 if (leaf
->map_token
) {
2656 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
2657 leaf
->map_token
= NULL
;
2662 * copy everything in the in-memory inode into the btree.
2664 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2665 struct btrfs_root
*root
, struct inode
*inode
)
2667 struct btrfs_inode_item
*inode_item
;
2668 struct btrfs_path
*path
;
2669 struct extent_buffer
*leaf
;
2673 * If root is tree root, it means this inode is used to
2674 * store free space information. And these inodes are updated
2675 * when committing the transaction, so they needn't delaye to
2676 * be updated, or deadlock will occured.
2678 if (!is_free_space_inode(root
, inode
)) {
2679 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2681 btrfs_set_inode_last_trans(trans
, inode
);
2685 path
= btrfs_alloc_path();
2689 path
->leave_spinning
= 1;
2690 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2698 btrfs_unlock_up_safe(path
, 1);
2699 leaf
= path
->nodes
[0];
2700 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2701 struct btrfs_inode_item
);
2703 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2704 btrfs_mark_buffer_dirty(leaf
);
2705 btrfs_set_inode_last_trans(trans
, inode
);
2708 btrfs_free_path(path
);
2713 * unlink helper that gets used here in inode.c and in the tree logging
2714 * recovery code. It remove a link in a directory with a given name, and
2715 * also drops the back refs in the inode to the directory
2717 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2718 struct btrfs_root
*root
,
2719 struct inode
*dir
, struct inode
*inode
,
2720 const char *name
, int name_len
)
2722 struct btrfs_path
*path
;
2724 struct extent_buffer
*leaf
;
2725 struct btrfs_dir_item
*di
;
2726 struct btrfs_key key
;
2728 u64 ino
= btrfs_ino(inode
);
2729 u64 dir_ino
= btrfs_ino(dir
);
2731 path
= btrfs_alloc_path();
2737 path
->leave_spinning
= 1;
2738 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2739 name
, name_len
, -1);
2748 leaf
= path
->nodes
[0];
2749 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2750 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2753 btrfs_release_path(path
);
2755 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2758 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2759 "inode %llu parent %llu\n", name_len
, name
,
2760 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2764 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2768 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2770 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2772 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2777 btrfs_free_path(path
);
2781 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2782 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2783 btrfs_update_inode(trans
, root
, dir
);
2788 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2789 struct btrfs_root
*root
,
2790 struct inode
*dir
, struct inode
*inode
,
2791 const char *name
, int name_len
)
2794 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2796 btrfs_drop_nlink(inode
);
2797 ret
= btrfs_update_inode(trans
, root
, inode
);
2803 /* helper to check if there is any shared block in the path */
2804 static int check_path_shared(struct btrfs_root
*root
,
2805 struct btrfs_path
*path
)
2807 struct extent_buffer
*eb
;
2811 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2814 if (!path
->nodes
[level
])
2816 eb
= path
->nodes
[level
];
2817 if (!btrfs_block_can_be_shared(root
, eb
))
2819 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2828 * helper to start transaction for unlink and rmdir.
2830 * unlink and rmdir are special in btrfs, they do not always free space.
2831 * so in enospc case, we should make sure they will free space before
2832 * allowing them to use the global metadata reservation.
2834 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2835 struct dentry
*dentry
)
2837 struct btrfs_trans_handle
*trans
;
2838 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2839 struct btrfs_path
*path
;
2840 struct btrfs_inode_ref
*ref
;
2841 struct btrfs_dir_item
*di
;
2842 struct inode
*inode
= dentry
->d_inode
;
2847 u64 ino
= btrfs_ino(inode
);
2848 u64 dir_ino
= btrfs_ino(dir
);
2850 trans
= btrfs_start_transaction(root
, 10);
2851 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2854 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2855 return ERR_PTR(-ENOSPC
);
2857 /* check if there is someone else holds reference */
2858 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2859 return ERR_PTR(-ENOSPC
);
2861 if (atomic_read(&inode
->i_count
) > 2)
2862 return ERR_PTR(-ENOSPC
);
2864 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2865 return ERR_PTR(-ENOSPC
);
2867 path
= btrfs_alloc_path();
2869 root
->fs_info
->enospc_unlink
= 0;
2870 return ERR_PTR(-ENOMEM
);
2873 trans
= btrfs_start_transaction(root
, 0);
2874 if (IS_ERR(trans
)) {
2875 btrfs_free_path(path
);
2876 root
->fs_info
->enospc_unlink
= 0;
2880 path
->skip_locking
= 1;
2881 path
->search_commit_root
= 1;
2883 ret
= btrfs_lookup_inode(trans
, root
, path
,
2884 &BTRFS_I(dir
)->location
, 0);
2890 if (check_path_shared(root
, path
))
2895 btrfs_release_path(path
);
2897 ret
= btrfs_lookup_inode(trans
, root
, path
,
2898 &BTRFS_I(inode
)->location
, 0);
2904 if (check_path_shared(root
, path
))
2909 btrfs_release_path(path
);
2911 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2912 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2919 if (check_path_shared(root
, path
))
2921 btrfs_release_path(path
);
2929 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2930 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2936 if (check_path_shared(root
, path
))
2942 btrfs_release_path(path
);
2944 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2945 dentry
->d_name
.name
, dentry
->d_name
.len
,
2952 if (check_path_shared(root
, path
))
2954 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2955 btrfs_release_path(path
);
2958 * This is a commit root search, if we can lookup inode item and other
2959 * relative items in the commit root, it means the transaction of
2960 * dir/file creation has been committed, and the dir index item that we
2961 * delay to insert has also been inserted into the commit root. So
2962 * we needn't worry about the delayed insertion of the dir index item
2965 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2966 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2971 BUG_ON(ret
== -ENOENT
);
2972 if (check_path_shared(root
, path
))
2977 btrfs_free_path(path
);
2979 btrfs_end_transaction(trans
, root
);
2980 root
->fs_info
->enospc_unlink
= 0;
2981 return ERR_PTR(err
);
2984 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2988 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2989 struct btrfs_root
*root
)
2991 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2992 BUG_ON(!root
->fs_info
->enospc_unlink
);
2993 root
->fs_info
->enospc_unlink
= 0;
2995 btrfs_end_transaction_throttle(trans
, root
);
2998 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3000 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3001 struct btrfs_trans_handle
*trans
;
3002 struct inode
*inode
= dentry
->d_inode
;
3004 unsigned long nr
= 0;
3006 trans
= __unlink_start_trans(dir
, dentry
);
3008 return PTR_ERR(trans
);
3010 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3012 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3013 dentry
->d_name
.name
, dentry
->d_name
.len
);
3016 if (inode
->i_nlink
== 0) {
3017 ret
= btrfs_orphan_add(trans
, inode
);
3021 nr
= trans
->blocks_used
;
3022 __unlink_end_trans(trans
, root
);
3023 btrfs_btree_balance_dirty(root
, nr
);
3027 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3028 struct btrfs_root
*root
,
3029 struct inode
*dir
, u64 objectid
,
3030 const char *name
, int name_len
)
3032 struct btrfs_path
*path
;
3033 struct extent_buffer
*leaf
;
3034 struct btrfs_dir_item
*di
;
3035 struct btrfs_key key
;
3038 u64 dir_ino
= btrfs_ino(dir
);
3040 path
= btrfs_alloc_path();
3044 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3045 name
, name_len
, -1);
3046 BUG_ON(IS_ERR_OR_NULL(di
));
3048 leaf
= path
->nodes
[0];
3049 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3050 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3051 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3053 btrfs_release_path(path
);
3055 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3056 objectid
, root
->root_key
.objectid
,
3057 dir_ino
, &index
, name
, name_len
);
3059 BUG_ON(ret
!= -ENOENT
);
3060 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3062 BUG_ON(IS_ERR_OR_NULL(di
));
3064 leaf
= path
->nodes
[0];
3065 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3066 btrfs_release_path(path
);
3069 btrfs_release_path(path
);
3071 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3074 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3075 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3076 ret
= btrfs_update_inode(trans
, root
, dir
);
3079 btrfs_free_path(path
);
3083 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3085 struct inode
*inode
= dentry
->d_inode
;
3087 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3088 struct btrfs_trans_handle
*trans
;
3089 unsigned long nr
= 0;
3091 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3092 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3095 trans
= __unlink_start_trans(dir
, dentry
);
3097 return PTR_ERR(trans
);
3099 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3100 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3101 BTRFS_I(inode
)->location
.objectid
,
3102 dentry
->d_name
.name
,
3103 dentry
->d_name
.len
);
3107 err
= btrfs_orphan_add(trans
, inode
);
3111 /* now the directory is empty */
3112 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3113 dentry
->d_name
.name
, dentry
->d_name
.len
);
3115 btrfs_i_size_write(inode
, 0);
3117 nr
= trans
->blocks_used
;
3118 __unlink_end_trans(trans
, root
);
3119 btrfs_btree_balance_dirty(root
, nr
);
3125 * this can truncate away extent items, csum items and directory items.
3126 * It starts at a high offset and removes keys until it can't find
3127 * any higher than new_size
3129 * csum items that cross the new i_size are truncated to the new size
3132 * min_type is the minimum key type to truncate down to. If set to 0, this
3133 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3136 struct btrfs_root
*root
,
3137 struct inode
*inode
,
3138 u64 new_size
, u32 min_type
)
3140 struct btrfs_path
*path
;
3141 struct extent_buffer
*leaf
;
3142 struct btrfs_file_extent_item
*fi
;
3143 struct btrfs_key key
;
3144 struct btrfs_key found_key
;
3145 u64 extent_start
= 0;
3146 u64 extent_num_bytes
= 0;
3147 u64 extent_offset
= 0;
3149 u64 mask
= root
->sectorsize
- 1;
3150 u32 found_type
= (u8
)-1;
3153 int pending_del_nr
= 0;
3154 int pending_del_slot
= 0;
3155 int extent_type
= -1;
3159 u64 ino
= btrfs_ino(inode
);
3161 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3163 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3164 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3167 * This function is also used to drop the items in the log tree before
3168 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169 * it is used to drop the loged items. So we shouldn't kill the delayed
3172 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3173 btrfs_kill_delayed_inode_items(inode
);
3175 path
= btrfs_alloc_path();
3180 key
.offset
= (u64
)-1;
3184 path
->leave_spinning
= 1;
3185 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3192 /* there are no items in the tree for us to truncate, we're
3195 if (path
->slots
[0] == 0)
3202 leaf
= path
->nodes
[0];
3203 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3204 found_type
= btrfs_key_type(&found_key
);
3207 if (found_key
.objectid
!= ino
)
3210 if (found_type
< min_type
)
3213 item_end
= found_key
.offset
;
3214 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3215 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3216 struct btrfs_file_extent_item
);
3217 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3218 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3219 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3220 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3222 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3224 btrfs_file_extent_num_bytes(leaf
, fi
);
3225 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3226 item_end
+= btrfs_file_extent_inline_len(leaf
,
3231 if (found_type
> min_type
) {
3234 if (item_end
< new_size
)
3236 if (found_key
.offset
>= new_size
)
3242 /* FIXME, shrink the extent if the ref count is only 1 */
3243 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3246 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3248 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3249 if (!del_item
&& !encoding
) {
3250 u64 orig_num_bytes
=
3251 btrfs_file_extent_num_bytes(leaf
, fi
);
3252 extent_num_bytes
= new_size
-
3253 found_key
.offset
+ root
->sectorsize
- 1;
3254 extent_num_bytes
= extent_num_bytes
&
3255 ~((u64
)root
->sectorsize
- 1);
3256 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3258 num_dec
= (orig_num_bytes
-
3260 if (root
->ref_cows
&& extent_start
!= 0)
3261 inode_sub_bytes(inode
, num_dec
);
3262 btrfs_mark_buffer_dirty(leaf
);
3265 btrfs_file_extent_disk_num_bytes(leaf
,
3267 extent_offset
= found_key
.offset
-
3268 btrfs_file_extent_offset(leaf
, fi
);
3270 /* FIXME blocksize != 4096 */
3271 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3272 if (extent_start
!= 0) {
3275 inode_sub_bytes(inode
, num_dec
);
3278 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3280 * we can't truncate inline items that have had
3284 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3285 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3286 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3287 u32 size
= new_size
- found_key
.offset
;
3289 if (root
->ref_cows
) {
3290 inode_sub_bytes(inode
, item_end
+ 1 -
3294 btrfs_file_extent_calc_inline_size(size
);
3295 ret
= btrfs_truncate_item(trans
, root
, path
,
3297 } else if (root
->ref_cows
) {
3298 inode_sub_bytes(inode
, item_end
+ 1 -
3304 if (!pending_del_nr
) {
3305 /* no pending yet, add ourselves */
3306 pending_del_slot
= path
->slots
[0];
3308 } else if (pending_del_nr
&&
3309 path
->slots
[0] + 1 == pending_del_slot
) {
3310 /* hop on the pending chunk */
3312 pending_del_slot
= path
->slots
[0];
3319 if (found_extent
&& (root
->ref_cows
||
3320 root
== root
->fs_info
->tree_root
)) {
3321 btrfs_set_path_blocking(path
);
3322 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3323 extent_num_bytes
, 0,
3324 btrfs_header_owner(leaf
),
3325 ino
, extent_offset
);
3329 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3332 if (path
->slots
[0] == 0 ||
3333 path
->slots
[0] != pending_del_slot
) {
3334 if (root
->ref_cows
&&
3335 BTRFS_I(inode
)->location
.objectid
!=
3336 BTRFS_FREE_INO_OBJECTID
) {
3340 if (pending_del_nr
) {
3341 ret
= btrfs_del_items(trans
, root
, path
,
3347 btrfs_release_path(path
);
3354 if (pending_del_nr
) {
3355 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3359 btrfs_free_path(path
);
3364 * taken from block_truncate_page, but does cow as it zeros out
3365 * any bytes left in the last page in the file.
3367 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3369 struct inode
*inode
= mapping
->host
;
3370 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3371 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3372 struct btrfs_ordered_extent
*ordered
;
3373 struct extent_state
*cached_state
= NULL
;
3375 u32 blocksize
= root
->sectorsize
;
3376 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3377 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3383 if ((offset
& (blocksize
- 1)) == 0)
3385 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3391 page
= grab_cache_page(mapping
, index
);
3393 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3397 page_start
= page_offset(page
);
3398 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3400 if (!PageUptodate(page
)) {
3401 ret
= btrfs_readpage(NULL
, page
);
3403 if (page
->mapping
!= mapping
) {
3405 page_cache_release(page
);
3408 if (!PageUptodate(page
)) {
3413 wait_on_page_writeback(page
);
3415 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3417 set_page_extent_mapped(page
);
3419 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3421 unlock_extent_cached(io_tree
, page_start
, page_end
,
3422 &cached_state
, GFP_NOFS
);
3424 page_cache_release(page
);
3425 btrfs_start_ordered_extent(inode
, ordered
, 1);
3426 btrfs_put_ordered_extent(ordered
);
3430 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3431 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3432 0, 0, &cached_state
, GFP_NOFS
);
3434 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3437 unlock_extent_cached(io_tree
, page_start
, page_end
,
3438 &cached_state
, GFP_NOFS
);
3443 if (offset
!= PAGE_CACHE_SIZE
) {
3445 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3446 flush_dcache_page(page
);
3449 ClearPageChecked(page
);
3450 set_page_dirty(page
);
3451 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3456 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3458 page_cache_release(page
);
3464 * This function puts in dummy file extents for the area we're creating a hole
3465 * for. So if we are truncating this file to a larger size we need to insert
3466 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467 * the range between oldsize and size
3469 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3471 struct btrfs_trans_handle
*trans
;
3472 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3473 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3474 struct extent_map
*em
= NULL
;
3475 struct extent_state
*cached_state
= NULL
;
3476 u64 mask
= root
->sectorsize
- 1;
3477 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3478 u64 block_end
= (size
+ mask
) & ~mask
;
3484 if (size
<= hole_start
)
3488 struct btrfs_ordered_extent
*ordered
;
3489 btrfs_wait_ordered_range(inode
, hole_start
,
3490 block_end
- hole_start
);
3491 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3492 &cached_state
, GFP_NOFS
);
3493 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3496 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3497 &cached_state
, GFP_NOFS
);
3498 btrfs_put_ordered_extent(ordered
);
3501 cur_offset
= hole_start
;
3503 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3504 block_end
- cur_offset
, 0);
3505 BUG_ON(IS_ERR_OR_NULL(em
));
3506 last_byte
= min(extent_map_end(em
), block_end
);
3507 last_byte
= (last_byte
+ mask
) & ~mask
;
3508 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3510 hole_size
= last_byte
- cur_offset
;
3512 trans
= btrfs_start_transaction(root
, 2);
3513 if (IS_ERR(trans
)) {
3514 err
= PTR_ERR(trans
);
3518 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3519 cur_offset
+ hole_size
,
3524 err
= btrfs_insert_file_extent(trans
, root
,
3525 btrfs_ino(inode
), cur_offset
, 0,
3526 0, hole_size
, 0, hole_size
,
3531 btrfs_drop_extent_cache(inode
, hole_start
,
3534 btrfs_end_transaction(trans
, root
);
3536 free_extent_map(em
);
3538 cur_offset
= last_byte
;
3539 if (cur_offset
>= block_end
)
3543 free_extent_map(em
);
3544 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3549 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3551 loff_t oldsize
= i_size_read(inode
);
3554 if (newsize
== oldsize
)
3557 if (newsize
> oldsize
) {
3558 i_size_write(inode
, newsize
);
3559 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3560 truncate_pagecache(inode
, oldsize
, newsize
);
3561 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3563 btrfs_setsize(inode
, oldsize
);
3567 mark_inode_dirty(inode
);
3571 * We're truncating a file that used to have good data down to
3572 * zero. Make sure it gets into the ordered flush list so that
3573 * any new writes get down to disk quickly.
3576 BTRFS_I(inode
)->ordered_data_close
= 1;
3578 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3579 truncate_setsize(inode
, newsize
);
3580 ret
= btrfs_truncate(inode
);
3586 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3588 struct inode
*inode
= dentry
->d_inode
;
3589 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3592 if (btrfs_root_readonly(root
))
3595 err
= inode_change_ok(inode
, attr
);
3599 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3600 err
= btrfs_setsize(inode
, attr
->ia_size
);
3605 if (attr
->ia_valid
) {
3606 setattr_copy(inode
, attr
);
3607 mark_inode_dirty(inode
);
3609 if (attr
->ia_valid
& ATTR_MODE
)
3610 err
= btrfs_acl_chmod(inode
);
3616 void btrfs_evict_inode(struct inode
*inode
)
3618 struct btrfs_trans_handle
*trans
;
3619 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3623 trace_btrfs_inode_evict(inode
);
3625 truncate_inode_pages(&inode
->i_data
, 0);
3626 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3627 is_free_space_inode(root
, inode
)))
3630 if (is_bad_inode(inode
)) {
3631 btrfs_orphan_del(NULL
, inode
);
3634 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3635 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3637 if (root
->fs_info
->log_root_recovering
) {
3638 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3642 if (inode
->i_nlink
> 0) {
3643 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3647 btrfs_i_size_write(inode
, 0);
3650 trans
= btrfs_join_transaction(root
);
3651 BUG_ON(IS_ERR(trans
));
3652 trans
->block_rsv
= root
->orphan_block_rsv
;
3654 ret
= btrfs_block_rsv_check(trans
, root
,
3655 root
->orphan_block_rsv
, 0, 5);
3657 BUG_ON(ret
!= -EAGAIN
);
3658 ret
= btrfs_commit_transaction(trans
, root
);
3663 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3667 nr
= trans
->blocks_used
;
3668 btrfs_end_transaction(trans
, root
);
3670 btrfs_btree_balance_dirty(root
, nr
);
3675 ret
= btrfs_orphan_del(trans
, inode
);
3679 if (!(root
== root
->fs_info
->tree_root
||
3680 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3681 btrfs_return_ino(root
, btrfs_ino(inode
));
3683 nr
= trans
->blocks_used
;
3684 btrfs_end_transaction(trans
, root
);
3685 btrfs_btree_balance_dirty(root
, nr
);
3687 end_writeback(inode
);
3692 * this returns the key found in the dir entry in the location pointer.
3693 * If no dir entries were found, location->objectid is 0.
3695 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3696 struct btrfs_key
*location
)
3698 const char *name
= dentry
->d_name
.name
;
3699 int namelen
= dentry
->d_name
.len
;
3700 struct btrfs_dir_item
*di
;
3701 struct btrfs_path
*path
;
3702 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3705 path
= btrfs_alloc_path();
3708 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3713 if (IS_ERR_OR_NULL(di
))
3716 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3718 btrfs_free_path(path
);
3721 location
->objectid
= 0;
3726 * when we hit a tree root in a directory, the btrfs part of the inode
3727 * needs to be changed to reflect the root directory of the tree root. This
3728 * is kind of like crossing a mount point.
3730 static int fixup_tree_root_location(struct btrfs_root
*root
,
3732 struct dentry
*dentry
,
3733 struct btrfs_key
*location
,
3734 struct btrfs_root
**sub_root
)
3736 struct btrfs_path
*path
;
3737 struct btrfs_root
*new_root
;
3738 struct btrfs_root_ref
*ref
;
3739 struct extent_buffer
*leaf
;
3743 path
= btrfs_alloc_path();
3750 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3751 BTRFS_I(dir
)->root
->root_key
.objectid
,
3752 location
->objectid
);
3759 leaf
= path
->nodes
[0];
3760 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3761 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3762 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3765 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3766 (unsigned long)(ref
+ 1),
3767 dentry
->d_name
.len
);
3771 btrfs_release_path(path
);
3773 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3774 if (IS_ERR(new_root
)) {
3775 err
= PTR_ERR(new_root
);
3779 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3784 *sub_root
= new_root
;
3785 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3786 location
->type
= BTRFS_INODE_ITEM_KEY
;
3787 location
->offset
= 0;
3790 btrfs_free_path(path
);
3794 static void inode_tree_add(struct inode
*inode
)
3796 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3797 struct btrfs_inode
*entry
;
3799 struct rb_node
*parent
;
3800 u64 ino
= btrfs_ino(inode
);
3802 p
= &root
->inode_tree
.rb_node
;
3805 if (inode_unhashed(inode
))
3808 spin_lock(&root
->inode_lock
);
3811 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3813 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3814 p
= &parent
->rb_left
;
3815 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3816 p
= &parent
->rb_right
;
3818 WARN_ON(!(entry
->vfs_inode
.i_state
&
3819 (I_WILL_FREE
| I_FREEING
)));
3820 rb_erase(parent
, &root
->inode_tree
);
3821 RB_CLEAR_NODE(parent
);
3822 spin_unlock(&root
->inode_lock
);
3826 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3827 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3828 spin_unlock(&root
->inode_lock
);
3831 static void inode_tree_del(struct inode
*inode
)
3833 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3836 spin_lock(&root
->inode_lock
);
3837 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3838 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3839 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3840 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3842 spin_unlock(&root
->inode_lock
);
3845 * Free space cache has inodes in the tree root, but the tree root has a
3846 * root_refs of 0, so this could end up dropping the tree root as a
3847 * snapshot, so we need the extra !root->fs_info->tree_root check to
3848 * make sure we don't drop it.
3850 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3851 root
!= root
->fs_info
->tree_root
) {
3852 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3853 spin_lock(&root
->inode_lock
);
3854 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3855 spin_unlock(&root
->inode_lock
);
3857 btrfs_add_dead_root(root
);
3861 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3863 struct rb_node
*node
;
3864 struct rb_node
*prev
;
3865 struct btrfs_inode
*entry
;
3866 struct inode
*inode
;
3869 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3871 spin_lock(&root
->inode_lock
);
3873 node
= root
->inode_tree
.rb_node
;
3877 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3879 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3880 node
= node
->rb_left
;
3881 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3882 node
= node
->rb_right
;
3888 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3889 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3893 prev
= rb_next(prev
);
3897 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3898 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3899 inode
= igrab(&entry
->vfs_inode
);
3901 spin_unlock(&root
->inode_lock
);
3902 if (atomic_read(&inode
->i_count
) > 1)
3903 d_prune_aliases(inode
);
3905 * btrfs_drop_inode will have it removed from
3906 * the inode cache when its usage count
3911 spin_lock(&root
->inode_lock
);
3915 if (cond_resched_lock(&root
->inode_lock
))
3918 node
= rb_next(node
);
3920 spin_unlock(&root
->inode_lock
);
3924 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3926 struct btrfs_iget_args
*args
= p
;
3927 inode
->i_ino
= args
->ino
;
3928 BTRFS_I(inode
)->root
= args
->root
;
3929 btrfs_set_inode_space_info(args
->root
, inode
);
3933 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3935 struct btrfs_iget_args
*args
= opaque
;
3936 return args
->ino
== btrfs_ino(inode
) &&
3937 args
->root
== BTRFS_I(inode
)->root
;
3940 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3942 struct btrfs_root
*root
)
3944 struct inode
*inode
;
3945 struct btrfs_iget_args args
;
3946 args
.ino
= objectid
;
3949 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3950 btrfs_init_locked_inode
,
3955 /* Get an inode object given its location and corresponding root.
3956 * Returns in *is_new if the inode was read from disk
3958 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3959 struct btrfs_root
*root
, int *new)
3961 struct inode
*inode
;
3963 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3965 return ERR_PTR(-ENOMEM
);
3967 if (inode
->i_state
& I_NEW
) {
3968 BTRFS_I(inode
)->root
= root
;
3969 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3970 btrfs_read_locked_inode(inode
);
3971 inode_tree_add(inode
);
3972 unlock_new_inode(inode
);
3980 static struct inode
*new_simple_dir(struct super_block
*s
,
3981 struct btrfs_key
*key
,
3982 struct btrfs_root
*root
)
3984 struct inode
*inode
= new_inode(s
);
3987 return ERR_PTR(-ENOMEM
);
3989 BTRFS_I(inode
)->root
= root
;
3990 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3991 BTRFS_I(inode
)->dummy_inode
= 1;
3993 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3994 inode
->i_op
= &simple_dir_inode_operations
;
3995 inode
->i_fop
= &simple_dir_operations
;
3996 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3997 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4002 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4004 struct inode
*inode
;
4005 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4006 struct btrfs_root
*sub_root
= root
;
4007 struct btrfs_key location
;
4011 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4012 return ERR_PTR(-ENAMETOOLONG
);
4014 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4017 return ERR_PTR(ret
);
4019 if (location
.objectid
== 0)
4022 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4023 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4027 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4029 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4030 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4031 &location
, &sub_root
);
4034 inode
= ERR_PTR(ret
);
4036 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4038 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4040 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4042 if (!IS_ERR(inode
) && root
!= sub_root
) {
4043 down_read(&root
->fs_info
->cleanup_work_sem
);
4044 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4045 ret
= btrfs_orphan_cleanup(sub_root
);
4046 up_read(&root
->fs_info
->cleanup_work_sem
);
4048 inode
= ERR_PTR(ret
);
4054 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4056 struct btrfs_root
*root
;
4058 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4059 dentry
= dentry
->d_parent
;
4061 if (dentry
->d_inode
) {
4062 root
= BTRFS_I(dentry
->d_inode
)->root
;
4063 if (btrfs_root_refs(&root
->root_item
) == 0)
4069 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4070 struct nameidata
*nd
)
4072 struct inode
*inode
;
4074 inode
= btrfs_lookup_dentry(dir
, dentry
);
4076 return ERR_CAST(inode
);
4078 return d_splice_alias(inode
, dentry
);
4081 unsigned char btrfs_filetype_table
[] = {
4082 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4085 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4088 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4089 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4090 struct btrfs_item
*item
;
4091 struct btrfs_dir_item
*di
;
4092 struct btrfs_key key
;
4093 struct btrfs_key found_key
;
4094 struct btrfs_path
*path
;
4095 struct list_head ins_list
;
4096 struct list_head del_list
;
4098 struct extent_buffer
*leaf
;
4100 unsigned char d_type
;
4105 int key_type
= BTRFS_DIR_INDEX_KEY
;
4109 int is_curr
= 0; /* filp->f_pos points to the current index? */
4111 /* FIXME, use a real flag for deciding about the key type */
4112 if (root
->fs_info
->tree_root
== root
)
4113 key_type
= BTRFS_DIR_ITEM_KEY
;
4115 /* special case for "." */
4116 if (filp
->f_pos
== 0) {
4117 over
= filldir(dirent
, ".", 1, 1, btrfs_ino(inode
), DT_DIR
);
4122 /* special case for .., just use the back ref */
4123 if (filp
->f_pos
== 1) {
4124 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4125 over
= filldir(dirent
, "..", 2,
4131 path
= btrfs_alloc_path();
4137 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4138 INIT_LIST_HEAD(&ins_list
);
4139 INIT_LIST_HEAD(&del_list
);
4140 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4143 btrfs_set_key_type(&key
, key_type
);
4144 key
.offset
= filp
->f_pos
;
4145 key
.objectid
= btrfs_ino(inode
);
4147 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4152 leaf
= path
->nodes
[0];
4153 slot
= path
->slots
[0];
4154 if (slot
>= btrfs_header_nritems(leaf
)) {
4155 ret
= btrfs_next_leaf(root
, path
);
4163 item
= btrfs_item_nr(leaf
, slot
);
4164 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4166 if (found_key
.objectid
!= key
.objectid
)
4168 if (btrfs_key_type(&found_key
) != key_type
)
4170 if (found_key
.offset
< filp
->f_pos
)
4172 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4173 btrfs_should_delete_dir_index(&del_list
,
4177 filp
->f_pos
= found_key
.offset
;
4180 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4182 di_total
= btrfs_item_size(leaf
, item
);
4184 while (di_cur
< di_total
) {
4185 struct btrfs_key location
;
4187 if (verify_dir_item(root
, leaf
, di
))
4190 name_len
= btrfs_dir_name_len(leaf
, di
);
4191 if (name_len
<= sizeof(tmp_name
)) {
4192 name_ptr
= tmp_name
;
4194 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4200 read_extent_buffer(leaf
, name_ptr
,
4201 (unsigned long)(di
+ 1), name_len
);
4203 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4204 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4206 /* is this a reference to our own snapshot? If so
4209 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4210 location
.objectid
== root
->root_key
.objectid
) {
4214 over
= filldir(dirent
, name_ptr
, name_len
,
4215 found_key
.offset
, location
.objectid
,
4219 if (name_ptr
!= tmp_name
)
4224 di_len
= btrfs_dir_name_len(leaf
, di
) +
4225 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4227 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4233 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4236 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4242 /* Reached end of directory/root. Bump pos past the last item. */
4243 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4245 * 32-bit glibc will use getdents64, but then strtol -
4246 * so the last number we can serve is this.
4248 filp
->f_pos
= 0x7fffffff;
4254 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4255 btrfs_put_delayed_items(&ins_list
, &del_list
);
4256 btrfs_free_path(path
);
4260 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4262 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4263 struct btrfs_trans_handle
*trans
;
4265 bool nolock
= false;
4267 if (BTRFS_I(inode
)->dummy_inode
)
4270 if (btrfs_fs_closing(root
->fs_info
) && is_free_space_inode(root
, inode
))
4273 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4275 trans
= btrfs_join_transaction_nolock(root
);
4277 trans
= btrfs_join_transaction(root
);
4279 return PTR_ERR(trans
);
4281 ret
= btrfs_end_transaction_nolock(trans
, root
);
4283 ret
= btrfs_commit_transaction(trans
, root
);
4289 * This is somewhat expensive, updating the tree every time the
4290 * inode changes. But, it is most likely to find the inode in cache.
4291 * FIXME, needs more benchmarking...there are no reasons other than performance
4292 * to keep or drop this code.
4294 void btrfs_dirty_inode(struct inode
*inode
, int flags
)
4296 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4297 struct btrfs_trans_handle
*trans
;
4300 if (BTRFS_I(inode
)->dummy_inode
)
4303 trans
= btrfs_join_transaction(root
);
4304 BUG_ON(IS_ERR(trans
));
4306 ret
= btrfs_update_inode(trans
, root
, inode
);
4307 if (ret
&& ret
== -ENOSPC
) {
4308 /* whoops, lets try again with the full transaction */
4309 btrfs_end_transaction(trans
, root
);
4310 trans
= btrfs_start_transaction(root
, 1);
4311 if (IS_ERR(trans
)) {
4312 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4313 "dirty inode %llu error %ld\n",
4314 (unsigned long long)btrfs_ino(inode
),
4319 ret
= btrfs_update_inode(trans
, root
, inode
);
4321 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4322 "dirty inode %llu error %d\n",
4323 (unsigned long long)btrfs_ino(inode
),
4327 btrfs_end_transaction(trans
, root
);
4328 if (BTRFS_I(inode
)->delayed_node
)
4329 btrfs_balance_delayed_items(root
);
4333 * find the highest existing sequence number in a directory
4334 * and then set the in-memory index_cnt variable to reflect
4335 * free sequence numbers
4337 static int btrfs_set_inode_index_count(struct inode
*inode
)
4339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4340 struct btrfs_key key
, found_key
;
4341 struct btrfs_path
*path
;
4342 struct extent_buffer
*leaf
;
4345 key
.objectid
= btrfs_ino(inode
);
4346 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4347 key
.offset
= (u64
)-1;
4349 path
= btrfs_alloc_path();
4353 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4356 /* FIXME: we should be able to handle this */
4362 * MAGIC NUMBER EXPLANATION:
4363 * since we search a directory based on f_pos we have to start at 2
4364 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4365 * else has to start at 2
4367 if (path
->slots
[0] == 0) {
4368 BTRFS_I(inode
)->index_cnt
= 2;
4374 leaf
= path
->nodes
[0];
4375 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4377 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4378 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4379 BTRFS_I(inode
)->index_cnt
= 2;
4383 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4385 btrfs_free_path(path
);
4390 * helper to find a free sequence number in a given directory. This current
4391 * code is very simple, later versions will do smarter things in the btree
4393 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4397 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4398 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4400 ret
= btrfs_set_inode_index_count(dir
);
4406 *index
= BTRFS_I(dir
)->index_cnt
;
4407 BTRFS_I(dir
)->index_cnt
++;
4412 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4413 struct btrfs_root
*root
,
4415 const char *name
, int name_len
,
4416 u64 ref_objectid
, u64 objectid
, int mode
,
4419 struct inode
*inode
;
4420 struct btrfs_inode_item
*inode_item
;
4421 struct btrfs_key
*location
;
4422 struct btrfs_path
*path
;
4423 struct btrfs_inode_ref
*ref
;
4424 struct btrfs_key key
[2];
4430 path
= btrfs_alloc_path();
4433 inode
= new_inode(root
->fs_info
->sb
);
4435 btrfs_free_path(path
);
4436 return ERR_PTR(-ENOMEM
);
4440 * we have to initialize this early, so we can reclaim the inode
4441 * number if we fail afterwards in this function.
4443 inode
->i_ino
= objectid
;
4446 trace_btrfs_inode_request(dir
);
4448 ret
= btrfs_set_inode_index(dir
, index
);
4450 btrfs_free_path(path
);
4452 return ERR_PTR(ret
);
4456 * index_cnt is ignored for everything but a dir,
4457 * btrfs_get_inode_index_count has an explanation for the magic
4460 BTRFS_I(inode
)->index_cnt
= 2;
4461 BTRFS_I(inode
)->root
= root
;
4462 BTRFS_I(inode
)->generation
= trans
->transid
;
4463 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4464 btrfs_set_inode_space_info(root
, inode
);
4471 key
[0].objectid
= objectid
;
4472 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4475 key
[1].objectid
= objectid
;
4476 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4477 key
[1].offset
= ref_objectid
;
4479 sizes
[0] = sizeof(struct btrfs_inode_item
);
4480 sizes
[1] = name_len
+ sizeof(*ref
);
4482 path
->leave_spinning
= 1;
4483 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4487 inode_init_owner(inode
, dir
, mode
);
4488 inode_set_bytes(inode
, 0);
4489 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4490 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4491 struct btrfs_inode_item
);
4492 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4494 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4495 struct btrfs_inode_ref
);
4496 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4497 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4498 ptr
= (unsigned long)(ref
+ 1);
4499 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4501 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4502 btrfs_free_path(path
);
4504 location
= &BTRFS_I(inode
)->location
;
4505 location
->objectid
= objectid
;
4506 location
->offset
= 0;
4507 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4509 btrfs_inherit_iflags(inode
, dir
);
4511 if ((mode
& S_IFREG
)) {
4512 if (btrfs_test_opt(root
, NODATASUM
))
4513 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4514 if (btrfs_test_opt(root
, NODATACOW
) ||
4515 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4516 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4519 insert_inode_hash(inode
);
4520 inode_tree_add(inode
);
4522 trace_btrfs_inode_new(inode
);
4527 BTRFS_I(dir
)->index_cnt
--;
4528 btrfs_free_path(path
);
4530 return ERR_PTR(ret
);
4533 static inline u8
btrfs_inode_type(struct inode
*inode
)
4535 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4539 * utility function to add 'inode' into 'parent_inode' with
4540 * a give name and a given sequence number.
4541 * if 'add_backref' is true, also insert a backref from the
4542 * inode to the parent directory.
4544 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4545 struct inode
*parent_inode
, struct inode
*inode
,
4546 const char *name
, int name_len
, int add_backref
, u64 index
)
4549 struct btrfs_key key
;
4550 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4551 u64 ino
= btrfs_ino(inode
);
4552 u64 parent_ino
= btrfs_ino(parent_inode
);
4554 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4555 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4558 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4562 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4563 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4564 key
.objectid
, root
->root_key
.objectid
,
4565 parent_ino
, index
, name
, name_len
);
4566 } else if (add_backref
) {
4567 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4572 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4574 btrfs_inode_type(inode
), index
);
4577 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4579 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4580 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4585 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4586 struct inode
*dir
, struct dentry
*dentry
,
4587 struct inode
*inode
, int backref
, u64 index
)
4589 int err
= btrfs_add_link(trans
, dir
, inode
,
4590 dentry
->d_name
.name
, dentry
->d_name
.len
,
4593 d_instantiate(dentry
, inode
);
4601 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4602 int mode
, dev_t rdev
)
4604 struct btrfs_trans_handle
*trans
;
4605 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4606 struct inode
*inode
= NULL
;
4610 unsigned long nr
= 0;
4613 if (!new_valid_dev(rdev
))
4617 * 2 for inode item and ref
4619 * 1 for xattr if selinux is on
4621 trans
= btrfs_start_transaction(root
, 5);
4623 return PTR_ERR(trans
);
4625 err
= btrfs_find_free_ino(root
, &objectid
);
4629 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4630 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4632 if (IS_ERR(inode
)) {
4633 err
= PTR_ERR(inode
);
4637 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4643 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4647 inode
->i_op
= &btrfs_special_inode_operations
;
4648 init_special_inode(inode
, inode
->i_mode
, rdev
);
4649 btrfs_update_inode(trans
, root
, inode
);
4652 nr
= trans
->blocks_used
;
4653 btrfs_end_transaction_throttle(trans
, root
);
4654 btrfs_btree_balance_dirty(root
, nr
);
4656 inode_dec_link_count(inode
);
4662 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4663 int mode
, struct nameidata
*nd
)
4665 struct btrfs_trans_handle
*trans
;
4666 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4667 struct inode
*inode
= NULL
;
4670 unsigned long nr
= 0;
4675 * 2 for inode item and ref
4677 * 1 for xattr if selinux is on
4679 trans
= btrfs_start_transaction(root
, 5);
4681 return PTR_ERR(trans
);
4683 err
= btrfs_find_free_ino(root
, &objectid
);
4687 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4688 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4690 if (IS_ERR(inode
)) {
4691 err
= PTR_ERR(inode
);
4695 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4701 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4705 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4706 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4707 inode
->i_fop
= &btrfs_file_operations
;
4708 inode
->i_op
= &btrfs_file_inode_operations
;
4709 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4712 nr
= trans
->blocks_used
;
4713 btrfs_end_transaction_throttle(trans
, root
);
4715 inode_dec_link_count(inode
);
4718 btrfs_btree_balance_dirty(root
, nr
);
4722 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4723 struct dentry
*dentry
)
4725 struct btrfs_trans_handle
*trans
;
4726 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4727 struct inode
*inode
= old_dentry
->d_inode
;
4729 unsigned long nr
= 0;
4733 /* do not allow sys_link's with other subvols of the same device */
4734 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4737 if (inode
->i_nlink
== ~0U)
4740 err
= btrfs_set_inode_index(dir
, &index
);
4745 * 2 items for inode and inode ref
4746 * 2 items for dir items
4747 * 1 item for parent inode
4749 trans
= btrfs_start_transaction(root
, 5);
4750 if (IS_ERR(trans
)) {
4751 err
= PTR_ERR(trans
);
4755 btrfs_inc_nlink(inode
);
4756 inode
->i_ctime
= CURRENT_TIME
;
4759 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4764 struct dentry
*parent
= dget_parent(dentry
);
4765 err
= btrfs_update_inode(trans
, root
, inode
);
4767 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4771 nr
= trans
->blocks_used
;
4772 btrfs_end_transaction_throttle(trans
, root
);
4775 inode_dec_link_count(inode
);
4778 btrfs_btree_balance_dirty(root
, nr
);
4782 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4784 struct inode
*inode
= NULL
;
4785 struct btrfs_trans_handle
*trans
;
4786 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4788 int drop_on_err
= 0;
4791 unsigned long nr
= 1;
4794 * 2 items for inode and ref
4795 * 2 items for dir items
4796 * 1 for xattr if selinux is on
4798 trans
= btrfs_start_transaction(root
, 5);
4800 return PTR_ERR(trans
);
4802 err
= btrfs_find_free_ino(root
, &objectid
);
4806 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4807 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4808 S_IFDIR
| mode
, &index
);
4809 if (IS_ERR(inode
)) {
4810 err
= PTR_ERR(inode
);
4816 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4820 inode
->i_op
= &btrfs_dir_inode_operations
;
4821 inode
->i_fop
= &btrfs_dir_file_operations
;
4823 btrfs_i_size_write(inode
, 0);
4824 err
= btrfs_update_inode(trans
, root
, inode
);
4828 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4829 dentry
->d_name
.len
, 0, index
);
4833 d_instantiate(dentry
, inode
);
4837 nr
= trans
->blocks_used
;
4838 btrfs_end_transaction_throttle(trans
, root
);
4841 btrfs_btree_balance_dirty(root
, nr
);
4845 /* helper for btfs_get_extent. Given an existing extent in the tree,
4846 * and an extent that you want to insert, deal with overlap and insert
4847 * the new extent into the tree.
4849 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4850 struct extent_map
*existing
,
4851 struct extent_map
*em
,
4852 u64 map_start
, u64 map_len
)
4856 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4857 start_diff
= map_start
- em
->start
;
4858 em
->start
= map_start
;
4860 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4861 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4862 em
->block_start
+= start_diff
;
4863 em
->block_len
-= start_diff
;
4865 return add_extent_mapping(em_tree
, em
);
4868 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4869 struct inode
*inode
, struct page
*page
,
4870 size_t pg_offset
, u64 extent_offset
,
4871 struct btrfs_file_extent_item
*item
)
4874 struct extent_buffer
*leaf
= path
->nodes
[0];
4877 unsigned long inline_size
;
4881 WARN_ON(pg_offset
!= 0);
4882 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4883 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4884 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4885 btrfs_item_nr(leaf
, path
->slots
[0]));
4886 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4889 ptr
= btrfs_file_extent_inline_start(item
);
4891 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4893 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4894 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4895 extent_offset
, inline_size
, max_size
);
4897 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4898 unsigned long copy_size
= min_t(u64
,
4899 PAGE_CACHE_SIZE
- pg_offset
,
4900 max_size
- extent_offset
);
4901 memset(kaddr
+ pg_offset
, 0, copy_size
);
4902 kunmap_atomic(kaddr
, KM_USER0
);
4909 * a bit scary, this does extent mapping from logical file offset to the disk.
4910 * the ugly parts come from merging extents from the disk with the in-ram
4911 * representation. This gets more complex because of the data=ordered code,
4912 * where the in-ram extents might be locked pending data=ordered completion.
4914 * This also copies inline extents directly into the page.
4917 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4918 size_t pg_offset
, u64 start
, u64 len
,
4924 u64 extent_start
= 0;
4926 u64 objectid
= btrfs_ino(inode
);
4928 struct btrfs_path
*path
= NULL
;
4929 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4930 struct btrfs_file_extent_item
*item
;
4931 struct extent_buffer
*leaf
;
4932 struct btrfs_key found_key
;
4933 struct extent_map
*em
= NULL
;
4934 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4935 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4936 struct btrfs_trans_handle
*trans
= NULL
;
4940 read_lock(&em_tree
->lock
);
4941 em
= lookup_extent_mapping(em_tree
, start
, len
);
4943 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4944 read_unlock(&em_tree
->lock
);
4947 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4948 free_extent_map(em
);
4949 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4950 free_extent_map(em
);
4954 em
= alloc_extent_map();
4959 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4960 em
->start
= EXTENT_MAP_HOLE
;
4961 em
->orig_start
= EXTENT_MAP_HOLE
;
4963 em
->block_len
= (u64
)-1;
4966 path
= btrfs_alloc_path();
4972 * Chances are we'll be called again, so go ahead and do
4978 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4979 objectid
, start
, trans
!= NULL
);
4986 if (path
->slots
[0] == 0)
4991 leaf
= path
->nodes
[0];
4992 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4993 struct btrfs_file_extent_item
);
4994 /* are we inside the extent that was found? */
4995 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4996 found_type
= btrfs_key_type(&found_key
);
4997 if (found_key
.objectid
!= objectid
||
4998 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5002 found_type
= btrfs_file_extent_type(leaf
, item
);
5003 extent_start
= found_key
.offset
;
5004 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5005 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5006 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5007 extent_end
= extent_start
+
5008 btrfs_file_extent_num_bytes(leaf
, item
);
5009 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5011 size
= btrfs_file_extent_inline_len(leaf
, item
);
5012 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5013 ~((u64
)root
->sectorsize
- 1);
5016 if (start
>= extent_end
) {
5018 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5019 ret
= btrfs_next_leaf(root
, path
);
5026 leaf
= path
->nodes
[0];
5028 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5029 if (found_key
.objectid
!= objectid
||
5030 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5032 if (start
+ len
<= found_key
.offset
)
5035 em
->len
= found_key
.offset
- start
;
5039 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5040 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5041 em
->start
= extent_start
;
5042 em
->len
= extent_end
- extent_start
;
5043 em
->orig_start
= extent_start
-
5044 btrfs_file_extent_offset(leaf
, item
);
5045 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5047 em
->block_start
= EXTENT_MAP_HOLE
;
5050 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5051 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5052 em
->compress_type
= compress_type
;
5053 em
->block_start
= bytenr
;
5054 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5057 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5058 em
->block_start
= bytenr
;
5059 em
->block_len
= em
->len
;
5060 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5061 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5064 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5068 size_t extent_offset
;
5071 em
->block_start
= EXTENT_MAP_INLINE
;
5072 if (!page
|| create
) {
5073 em
->start
= extent_start
;
5074 em
->len
= extent_end
- extent_start
;
5078 size
= btrfs_file_extent_inline_len(leaf
, item
);
5079 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5080 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5081 size
- extent_offset
);
5082 em
->start
= extent_start
+ extent_offset
;
5083 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5084 ~((u64
)root
->sectorsize
- 1);
5085 em
->orig_start
= EXTENT_MAP_INLINE
;
5086 if (compress_type
) {
5087 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5088 em
->compress_type
= compress_type
;
5090 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5091 if (create
== 0 && !PageUptodate(page
)) {
5092 if (btrfs_file_extent_compression(leaf
, item
) !=
5093 BTRFS_COMPRESS_NONE
) {
5094 ret
= uncompress_inline(path
, inode
, page
,
5096 extent_offset
, item
);
5100 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5102 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5103 memset(map
+ pg_offset
+ copy_size
, 0,
5104 PAGE_CACHE_SIZE
- pg_offset
-
5109 flush_dcache_page(page
);
5110 } else if (create
&& PageUptodate(page
)) {
5114 free_extent_map(em
);
5117 btrfs_release_path(path
);
5118 trans
= btrfs_join_transaction(root
);
5121 return ERR_CAST(trans
);
5125 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5128 btrfs_mark_buffer_dirty(leaf
);
5130 set_extent_uptodate(io_tree
, em
->start
,
5131 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5134 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5141 em
->block_start
= EXTENT_MAP_HOLE
;
5142 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5144 btrfs_release_path(path
);
5145 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5146 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5147 "[%llu %llu]\n", (unsigned long long)em
->start
,
5148 (unsigned long long)em
->len
,
5149 (unsigned long long)start
,
5150 (unsigned long long)len
);
5156 write_lock(&em_tree
->lock
);
5157 ret
= add_extent_mapping(em_tree
, em
);
5158 /* it is possible that someone inserted the extent into the tree
5159 * while we had the lock dropped. It is also possible that
5160 * an overlapping map exists in the tree
5162 if (ret
== -EEXIST
) {
5163 struct extent_map
*existing
;
5167 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5168 if (existing
&& (existing
->start
> start
||
5169 existing
->start
+ existing
->len
<= start
)) {
5170 free_extent_map(existing
);
5174 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5177 err
= merge_extent_mapping(em_tree
, existing
,
5180 free_extent_map(existing
);
5182 free_extent_map(em
);
5187 free_extent_map(em
);
5191 free_extent_map(em
);
5196 write_unlock(&em_tree
->lock
);
5199 trace_btrfs_get_extent(root
, em
);
5202 btrfs_free_path(path
);
5204 ret
= btrfs_end_transaction(trans
, root
);
5209 free_extent_map(em
);
5210 return ERR_PTR(err
);
5215 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5216 size_t pg_offset
, u64 start
, u64 len
,
5219 struct extent_map
*em
;
5220 struct extent_map
*hole_em
= NULL
;
5221 u64 range_start
= start
;
5227 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5232 * if our em maps to a hole, there might
5233 * actually be delalloc bytes behind it
5235 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5241 /* check to see if we've wrapped (len == -1 or similar) */
5250 /* ok, we didn't find anything, lets look for delalloc */
5251 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5252 end
, len
, EXTENT_DELALLOC
, 1);
5253 found_end
= range_start
+ found
;
5254 if (found_end
< range_start
)
5255 found_end
= (u64
)-1;
5258 * we didn't find anything useful, return
5259 * the original results from get_extent()
5261 if (range_start
> end
|| found_end
<= start
) {
5267 /* adjust the range_start to make sure it doesn't
5268 * go backwards from the start they passed in
5270 range_start
= max(start
,range_start
);
5271 found
= found_end
- range_start
;
5274 u64 hole_start
= start
;
5277 em
= alloc_extent_map();
5283 * when btrfs_get_extent can't find anything it
5284 * returns one huge hole
5286 * make sure what it found really fits our range, and
5287 * adjust to make sure it is based on the start from
5291 u64 calc_end
= extent_map_end(hole_em
);
5293 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5294 free_extent_map(hole_em
);
5297 hole_start
= max(hole_em
->start
, start
);
5298 hole_len
= calc_end
- hole_start
;
5302 if (hole_em
&& range_start
> hole_start
) {
5303 /* our hole starts before our delalloc, so we
5304 * have to return just the parts of the hole
5305 * that go until the delalloc starts
5307 em
->len
= min(hole_len
,
5308 range_start
- hole_start
);
5309 em
->start
= hole_start
;
5310 em
->orig_start
= hole_start
;
5312 * don't adjust block start at all,
5313 * it is fixed at EXTENT_MAP_HOLE
5315 em
->block_start
= hole_em
->block_start
;
5316 em
->block_len
= hole_len
;
5318 em
->start
= range_start
;
5320 em
->orig_start
= range_start
;
5321 em
->block_start
= EXTENT_MAP_DELALLOC
;
5322 em
->block_len
= found
;
5324 } else if (hole_em
) {
5329 free_extent_map(hole_em
);
5331 free_extent_map(em
);
5332 return ERR_PTR(err
);
5337 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5338 struct extent_map
*em
,
5341 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5342 struct btrfs_trans_handle
*trans
;
5343 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5344 struct btrfs_key ins
;
5347 bool insert
= false;
5350 * Ok if the extent map we looked up is a hole and is for the exact
5351 * range we want, there is no reason to allocate a new one, however if
5352 * it is not right then we need to free this one and drop the cache for
5355 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5357 free_extent_map(em
);
5360 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5363 trans
= btrfs_join_transaction(root
);
5365 return ERR_CAST(trans
);
5367 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5368 btrfs_add_inode_defrag(trans
, inode
);
5370 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5372 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5373 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5374 alloc_hint
, (u64
)-1, &ins
, 1);
5381 em
= alloc_extent_map();
5383 em
= ERR_PTR(-ENOMEM
);
5389 em
->orig_start
= em
->start
;
5390 em
->len
= ins
.offset
;
5392 em
->block_start
= ins
.objectid
;
5393 em
->block_len
= ins
.offset
;
5394 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5397 * We need to do this because if we're using the original em we searched
5398 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5401 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5404 write_lock(&em_tree
->lock
);
5405 ret
= add_extent_mapping(em_tree
, em
);
5406 write_unlock(&em_tree
->lock
);
5409 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5412 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5413 ins
.offset
, ins
.offset
, 0);
5415 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5419 btrfs_end_transaction(trans
, root
);
5424 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5425 * block must be cow'd
5427 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5428 struct inode
*inode
, u64 offset
, u64 len
)
5430 struct btrfs_path
*path
;
5432 struct extent_buffer
*leaf
;
5433 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5434 struct btrfs_file_extent_item
*fi
;
5435 struct btrfs_key key
;
5443 path
= btrfs_alloc_path();
5447 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5452 slot
= path
->slots
[0];
5455 /* can't find the item, must cow */
5462 leaf
= path
->nodes
[0];
5463 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5464 if (key
.objectid
!= btrfs_ino(inode
) ||
5465 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5466 /* not our file or wrong item type, must cow */
5470 if (key
.offset
> offset
) {
5471 /* Wrong offset, must cow */
5475 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5476 found_type
= btrfs_file_extent_type(leaf
, fi
);
5477 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5478 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5479 /* not a regular extent, must cow */
5482 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5483 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5485 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5486 if (extent_end
< offset
+ len
) {
5487 /* extent doesn't include our full range, must cow */
5491 if (btrfs_extent_readonly(root
, disk_bytenr
))
5495 * look for other files referencing this extent, if we
5496 * find any we must cow
5498 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5499 key
.offset
- backref_offset
, disk_bytenr
))
5503 * adjust disk_bytenr and num_bytes to cover just the bytes
5504 * in this extent we are about to write. If there
5505 * are any csums in that range we have to cow in order
5506 * to keep the csums correct
5508 disk_bytenr
+= backref_offset
;
5509 disk_bytenr
+= offset
- key
.offset
;
5510 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5511 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5514 * all of the above have passed, it is safe to overwrite this extent
5519 btrfs_free_path(path
);
5523 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5524 struct buffer_head
*bh_result
, int create
)
5526 struct extent_map
*em
;
5527 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5528 u64 start
= iblock
<< inode
->i_blkbits
;
5529 u64 len
= bh_result
->b_size
;
5530 struct btrfs_trans_handle
*trans
;
5532 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5537 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5538 * io. INLINE is special, and we could probably kludge it in here, but
5539 * it's still buffered so for safety lets just fall back to the generic
5542 * For COMPRESSED we _have_ to read the entire extent in so we can
5543 * decompress it, so there will be buffering required no matter what we
5544 * do, so go ahead and fallback to buffered.
5546 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5547 * to buffered IO. Don't blame me, this is the price we pay for using
5550 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5551 em
->block_start
== EXTENT_MAP_INLINE
) {
5552 free_extent_map(em
);
5556 /* Just a good old fashioned hole, return */
5557 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5558 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5559 free_extent_map(em
);
5560 /* DIO will do one hole at a time, so just unlock a sector */
5561 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5562 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5567 * We don't allocate a new extent in the following cases
5569 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5571 * 2) The extent is marked as PREALLOC. We're good to go here and can
5572 * just use the extent.
5576 len
= em
->len
- (start
- em
->start
);
5580 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5581 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5582 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5587 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5588 type
= BTRFS_ORDERED_PREALLOC
;
5590 type
= BTRFS_ORDERED_NOCOW
;
5591 len
= min(len
, em
->len
- (start
- em
->start
));
5592 block_start
= em
->block_start
+ (start
- em
->start
);
5595 * we're not going to log anything, but we do need
5596 * to make sure the current transaction stays open
5597 * while we look for nocow cross refs
5599 trans
= btrfs_join_transaction(root
);
5603 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5604 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5605 block_start
, len
, len
, type
);
5606 btrfs_end_transaction(trans
, root
);
5608 free_extent_map(em
);
5613 btrfs_end_transaction(trans
, root
);
5617 * this will cow the extent, reset the len in case we changed
5620 len
= bh_result
->b_size
;
5621 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5624 len
= min(len
, em
->len
- (start
- em
->start
));
5626 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5627 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5630 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5632 bh_result
->b_size
= len
;
5633 bh_result
->b_bdev
= em
->bdev
;
5634 set_buffer_mapped(bh_result
);
5635 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5636 set_buffer_new(bh_result
);
5638 free_extent_map(em
);
5643 struct btrfs_dio_private
{
5644 struct inode
*inode
;
5651 /* number of bios pending for this dio */
5652 atomic_t pending_bios
;
5657 struct bio
*orig_bio
;
5660 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5662 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5663 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5664 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5665 struct inode
*inode
= dip
->inode
;
5666 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5668 u32
*private = dip
->csums
;
5670 start
= dip
->logical_offset
;
5672 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5673 struct page
*page
= bvec
->bv_page
;
5676 unsigned long flags
;
5678 local_irq_save(flags
);
5679 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5680 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5681 csum
, bvec
->bv_len
);
5682 btrfs_csum_final(csum
, (char *)&csum
);
5683 kunmap_atomic(kaddr
, KM_IRQ0
);
5684 local_irq_restore(flags
);
5686 flush_dcache_page(bvec
->bv_page
);
5687 if (csum
!= *private) {
5688 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5689 " %llu csum %u private %u\n",
5690 (unsigned long long)btrfs_ino(inode
),
5691 (unsigned long long)start
,
5697 start
+= bvec
->bv_len
;
5700 } while (bvec
<= bvec_end
);
5702 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5703 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5704 bio
->bi_private
= dip
->private;
5709 /* If we had a csum failure make sure to clear the uptodate flag */
5711 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5712 dio_end_io(bio
, err
);
5715 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5717 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5718 struct inode
*inode
= dip
->inode
;
5719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5720 struct btrfs_trans_handle
*trans
;
5721 struct btrfs_ordered_extent
*ordered
= NULL
;
5722 struct extent_state
*cached_state
= NULL
;
5723 u64 ordered_offset
= dip
->logical_offset
;
5724 u64 ordered_bytes
= dip
->bytes
;
5730 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5738 trans
= btrfs_join_transaction(root
);
5739 if (IS_ERR(trans
)) {
5743 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5745 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5746 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5748 ret
= btrfs_update_inode(trans
, root
, inode
);
5753 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5754 ordered
->file_offset
+ ordered
->len
- 1, 0,
5755 &cached_state
, GFP_NOFS
);
5757 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5758 ret
= btrfs_mark_extent_written(trans
, inode
,
5759 ordered
->file_offset
,
5760 ordered
->file_offset
+
5767 ret
= insert_reserved_file_extent(trans
, inode
,
5768 ordered
->file_offset
,
5774 BTRFS_FILE_EXTENT_REG
);
5775 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5776 ordered
->file_offset
, ordered
->len
);
5784 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5785 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5787 btrfs_update_inode(trans
, root
, inode
);
5790 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5791 ordered
->file_offset
+ ordered
->len
- 1,
5792 &cached_state
, GFP_NOFS
);
5794 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5795 btrfs_end_transaction(trans
, root
);
5796 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5797 btrfs_put_ordered_extent(ordered
);
5798 btrfs_put_ordered_extent(ordered
);
5802 * our bio might span multiple ordered extents. If we haven't
5803 * completed the accounting for the whole dio, go back and try again
5805 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5806 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5811 bio
->bi_private
= dip
->private;
5816 /* If we had an error make sure to clear the uptodate flag */
5818 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5819 dio_end_io(bio
, err
);
5822 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5823 struct bio
*bio
, int mirror_num
,
5824 unsigned long bio_flags
, u64 offset
)
5827 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5828 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5833 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5835 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5838 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5839 "sector %#Lx len %u err no %d\n",
5840 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5841 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5845 * before atomic variable goto zero, we must make sure
5846 * dip->errors is perceived to be set.
5848 smp_mb__before_atomic_dec();
5851 /* if there are more bios still pending for this dio, just exit */
5852 if (!atomic_dec_and_test(&dip
->pending_bios
))
5856 bio_io_error(dip
->orig_bio
);
5858 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5859 bio_endio(dip
->orig_bio
, 0);
5865 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5866 u64 first_sector
, gfp_t gfp_flags
)
5868 int nr_vecs
= bio_get_nr_vecs(bdev
);
5869 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5872 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5873 int rw
, u64 file_offset
, int skip_sum
,
5874 u32
*csums
, int async_submit
)
5876 int write
= rw
& REQ_WRITE
;
5877 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5881 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5888 if (write
&& async_submit
) {
5889 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5890 inode
, rw
, bio
, 0, 0,
5892 __btrfs_submit_bio_start_direct_io
,
5893 __btrfs_submit_bio_done
);
5897 * If we aren't doing async submit, calculate the csum of the
5900 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5903 } else if (!skip_sum
) {
5904 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5905 file_offset
, csums
);
5911 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5917 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5920 struct inode
*inode
= dip
->inode
;
5921 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5922 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5924 struct bio
*orig_bio
= dip
->orig_bio
;
5925 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5926 u64 start_sector
= orig_bio
->bi_sector
;
5927 u64 file_offset
= dip
->logical_offset
;
5931 u32
*csums
= dip
->csums
;
5933 int async_submit
= 0;
5934 int write
= rw
& REQ_WRITE
;
5936 map_length
= orig_bio
->bi_size
;
5937 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5938 &map_length
, NULL
, 0);
5944 if (map_length
>= orig_bio
->bi_size
) {
5950 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5953 bio
->bi_private
= dip
;
5954 bio
->bi_end_io
= btrfs_end_dio_bio
;
5955 atomic_inc(&dip
->pending_bios
);
5957 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5958 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5959 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5960 bvec
->bv_offset
) < bvec
->bv_len
)) {
5962 * inc the count before we submit the bio so
5963 * we know the end IO handler won't happen before
5964 * we inc the count. Otherwise, the dip might get freed
5965 * before we're done setting it up
5967 atomic_inc(&dip
->pending_bios
);
5968 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5969 file_offset
, skip_sum
,
5970 csums
, async_submit
);
5973 atomic_dec(&dip
->pending_bios
);
5977 /* Write's use the ordered csums */
5978 if (!write
&& !skip_sum
)
5979 csums
= csums
+ nr_pages
;
5980 start_sector
+= submit_len
>> 9;
5981 file_offset
+= submit_len
;
5986 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5987 start_sector
, GFP_NOFS
);
5990 bio
->bi_private
= dip
;
5991 bio
->bi_end_io
= btrfs_end_dio_bio
;
5993 map_length
= orig_bio
->bi_size
;
5994 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5995 &map_length
, NULL
, 0);
6001 submit_len
+= bvec
->bv_len
;
6008 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6009 csums
, async_submit
);
6017 * before atomic variable goto zero, we must
6018 * make sure dip->errors is perceived to be set.
6020 smp_mb__before_atomic_dec();
6021 if (atomic_dec_and_test(&dip
->pending_bios
))
6022 bio_io_error(dip
->orig_bio
);
6024 /* bio_end_io() will handle error, so we needn't return it */
6028 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6031 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6032 struct btrfs_dio_private
*dip
;
6033 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6035 int write
= rw
& REQ_WRITE
;
6038 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6040 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6047 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6048 if (!write
&& !skip_sum
) {
6049 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6057 dip
->private = bio
->bi_private
;
6059 dip
->logical_offset
= file_offset
;
6063 dip
->bytes
+= bvec
->bv_len
;
6065 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6067 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6068 bio
->bi_private
= dip
;
6070 dip
->orig_bio
= bio
;
6071 atomic_set(&dip
->pending_bios
, 0);
6074 bio
->bi_end_io
= btrfs_endio_direct_write
;
6076 bio
->bi_end_io
= btrfs_endio_direct_read
;
6078 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6083 * If this is a write, we need to clean up the reserved space and kill
6084 * the ordered extent.
6087 struct btrfs_ordered_extent
*ordered
;
6088 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6089 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6090 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6091 btrfs_free_reserved_extent(root
, ordered
->start
,
6093 btrfs_put_ordered_extent(ordered
);
6094 btrfs_put_ordered_extent(ordered
);
6096 bio_endio(bio
, ret
);
6099 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6100 const struct iovec
*iov
, loff_t offset
,
6101 unsigned long nr_segs
)
6107 unsigned blocksize_mask
= root
->sectorsize
- 1;
6108 ssize_t retval
= -EINVAL
;
6109 loff_t end
= offset
;
6111 if (offset
& blocksize_mask
)
6114 /* Check the memory alignment. Blocks cannot straddle pages */
6115 for (seg
= 0; seg
< nr_segs
; seg
++) {
6116 addr
= (unsigned long)iov
[seg
].iov_base
;
6117 size
= iov
[seg
].iov_len
;
6119 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6122 /* If this is a write we don't need to check anymore */
6127 * Check to make sure we don't have duplicate iov_base's in this
6128 * iovec, if so return EINVAL, otherwise we'll get csum errors
6129 * when reading back.
6131 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6132 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6140 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6141 const struct iovec
*iov
, loff_t offset
,
6142 unsigned long nr_segs
)
6144 struct file
*file
= iocb
->ki_filp
;
6145 struct inode
*inode
= file
->f_mapping
->host
;
6146 struct btrfs_ordered_extent
*ordered
;
6147 struct extent_state
*cached_state
= NULL
;
6148 u64 lockstart
, lockend
;
6150 int writing
= rw
& WRITE
;
6152 size_t count
= iov_length(iov
, nr_segs
);
6154 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6160 lockend
= offset
+ count
- 1;
6163 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6169 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6170 0, &cached_state
, GFP_NOFS
);
6172 * We're concerned with the entire range that we're going to be
6173 * doing DIO to, so we need to make sure theres no ordered
6174 * extents in this range.
6176 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6177 lockend
- lockstart
+ 1);
6180 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6181 &cached_state
, GFP_NOFS
);
6182 btrfs_start_ordered_extent(inode
, ordered
, 1);
6183 btrfs_put_ordered_extent(ordered
);
6188 * we don't use btrfs_set_extent_delalloc because we don't want
6189 * the dirty or uptodate bits
6192 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6193 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6194 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6197 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6198 lockend
, EXTENT_LOCKED
| write_bits
,
6199 1, 0, &cached_state
, GFP_NOFS
);
6204 free_extent_state(cached_state
);
6205 cached_state
= NULL
;
6207 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6208 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6209 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6210 btrfs_submit_direct
, 0);
6212 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6213 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6214 offset
+ iov_length(iov
, nr_segs
) - 1,
6215 EXTENT_LOCKED
| write_bits
, 1, 0,
6216 &cached_state
, GFP_NOFS
);
6217 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6219 * We're falling back to buffered, unlock the section we didn't
6222 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6223 offset
+ iov_length(iov
, nr_segs
) - 1,
6224 EXTENT_LOCKED
| write_bits
, 1, 0,
6225 &cached_state
, GFP_NOFS
);
6228 free_extent_state(cached_state
);
6232 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6233 __u64 start
, __u64 len
)
6235 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6238 int btrfs_readpage(struct file
*file
, struct page
*page
)
6240 struct extent_io_tree
*tree
;
6241 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6242 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6245 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6247 struct extent_io_tree
*tree
;
6250 if (current
->flags
& PF_MEMALLOC
) {
6251 redirty_page_for_writepage(wbc
, page
);
6255 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6256 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6259 int btrfs_writepages(struct address_space
*mapping
,
6260 struct writeback_control
*wbc
)
6262 struct extent_io_tree
*tree
;
6264 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6265 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6269 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6270 struct list_head
*pages
, unsigned nr_pages
)
6272 struct extent_io_tree
*tree
;
6273 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6274 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6277 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6279 struct extent_io_tree
*tree
;
6280 struct extent_map_tree
*map
;
6283 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6284 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6285 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6287 ClearPagePrivate(page
);
6288 set_page_private(page
, 0);
6289 page_cache_release(page
);
6294 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6296 if (PageWriteback(page
) || PageDirty(page
))
6298 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6301 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6303 struct extent_io_tree
*tree
;
6304 struct btrfs_ordered_extent
*ordered
;
6305 struct extent_state
*cached_state
= NULL
;
6306 u64 page_start
= page_offset(page
);
6307 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6311 * we have the page locked, so new writeback can't start,
6312 * and the dirty bit won't be cleared while we are here.
6314 * Wait for IO on this page so that we can safely clear
6315 * the PagePrivate2 bit and do ordered accounting
6317 wait_on_page_writeback(page
);
6319 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6321 btrfs_releasepage(page
, GFP_NOFS
);
6324 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6326 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6330 * IO on this page will never be started, so we need
6331 * to account for any ordered extents now
6333 clear_extent_bit(tree
, page_start
, page_end
,
6334 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6335 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6336 &cached_state
, GFP_NOFS
);
6338 * whoever cleared the private bit is responsible
6339 * for the finish_ordered_io
6341 if (TestClearPagePrivate2(page
)) {
6342 btrfs_finish_ordered_io(page
->mapping
->host
,
6343 page_start
, page_end
);
6345 btrfs_put_ordered_extent(ordered
);
6346 cached_state
= NULL
;
6347 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6350 clear_extent_bit(tree
, page_start
, page_end
,
6351 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6352 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6353 __btrfs_releasepage(page
, GFP_NOFS
);
6355 ClearPageChecked(page
);
6356 if (PagePrivate(page
)) {
6357 ClearPagePrivate(page
);
6358 set_page_private(page
, 0);
6359 page_cache_release(page
);
6364 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6365 * called from a page fault handler when a page is first dirtied. Hence we must
6366 * be careful to check for EOF conditions here. We set the page up correctly
6367 * for a written page which means we get ENOSPC checking when writing into
6368 * holes and correct delalloc and unwritten extent mapping on filesystems that
6369 * support these features.
6371 * We are not allowed to take the i_mutex here so we have to play games to
6372 * protect against truncate races as the page could now be beyond EOF. Because
6373 * vmtruncate() writes the inode size before removing pages, once we have the
6374 * page lock we can determine safely if the page is beyond EOF. If it is not
6375 * beyond EOF, then the page is guaranteed safe against truncation until we
6378 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6380 struct page
*page
= vmf
->page
;
6381 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6382 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6383 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6384 struct btrfs_ordered_extent
*ordered
;
6385 struct extent_state
*cached_state
= NULL
;
6387 unsigned long zero_start
;
6393 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6397 else /* -ENOSPC, -EIO, etc */
6398 ret
= VM_FAULT_SIGBUS
;
6402 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6405 size
= i_size_read(inode
);
6406 page_start
= page_offset(page
);
6407 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6409 if ((page
->mapping
!= inode
->i_mapping
) ||
6410 (page_start
>= size
)) {
6411 /* page got truncated out from underneath us */
6414 wait_on_page_writeback(page
);
6416 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6418 set_page_extent_mapped(page
);
6421 * we can't set the delalloc bits if there are pending ordered
6422 * extents. Drop our locks and wait for them to finish
6424 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6426 unlock_extent_cached(io_tree
, page_start
, page_end
,
6427 &cached_state
, GFP_NOFS
);
6429 btrfs_start_ordered_extent(inode
, ordered
, 1);
6430 btrfs_put_ordered_extent(ordered
);
6435 * XXX - page_mkwrite gets called every time the page is dirtied, even
6436 * if it was already dirty, so for space accounting reasons we need to
6437 * clear any delalloc bits for the range we are fixing to save. There
6438 * is probably a better way to do this, but for now keep consistent with
6439 * prepare_pages in the normal write path.
6441 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6442 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6443 0, 0, &cached_state
, GFP_NOFS
);
6445 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6448 unlock_extent_cached(io_tree
, page_start
, page_end
,
6449 &cached_state
, GFP_NOFS
);
6450 ret
= VM_FAULT_SIGBUS
;
6455 /* page is wholly or partially inside EOF */
6456 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6457 zero_start
= size
& ~PAGE_CACHE_MASK
;
6459 zero_start
= PAGE_CACHE_SIZE
;
6461 if (zero_start
!= PAGE_CACHE_SIZE
) {
6463 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6464 flush_dcache_page(page
);
6467 ClearPageChecked(page
);
6468 set_page_dirty(page
);
6469 SetPageUptodate(page
);
6471 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6472 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6474 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6478 return VM_FAULT_LOCKED
;
6480 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6485 static int btrfs_truncate(struct inode
*inode
)
6487 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6488 struct btrfs_block_rsv
*rsv
;
6491 struct btrfs_trans_handle
*trans
;
6493 u64 mask
= root
->sectorsize
- 1;
6495 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6499 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6500 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6503 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6504 * 3 things going on here
6506 * 1) We need to reserve space for our orphan item and the space to
6507 * delete our orphan item. Lord knows we don't want to have a dangling
6508 * orphan item because we didn't reserve space to remove it.
6510 * 2) We need to reserve space to update our inode.
6512 * 3) We need to have something to cache all the space that is going to
6513 * be free'd up by the truncate operation, but also have some slack
6514 * space reserved in case it uses space during the truncate (thank you
6515 * very much snapshotting).
6517 * And we need these to all be seperate. The fact is we can use alot of
6518 * space doing the truncate, and we have no earthly idea how much space
6519 * we will use, so we need the truncate reservation to be seperate so it
6520 * doesn't end up using space reserved for updating the inode or
6521 * removing the orphan item. We also need to be able to stop the
6522 * transaction and start a new one, which means we need to be able to
6523 * update the inode several times, and we have no idea of knowing how
6524 * many times that will be, so we can't just reserve 1 item for the
6525 * entirety of the opration, so that has to be done seperately as well.
6526 * Then there is the orphan item, which does indeed need to be held on
6527 * to for the whole operation, and we need nobody to touch this reserved
6528 * space except the orphan code.
6530 * So that leaves us with
6532 * 1) root->orphan_block_rsv - for the orphan deletion.
6533 * 2) rsv - for the truncate reservation, which we will steal from the
6534 * transaction reservation.
6535 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6536 * updating the inode.
6538 rsv
= btrfs_alloc_block_rsv(root
);
6541 btrfs_add_durable_block_rsv(root
->fs_info
, rsv
);
6543 trans
= btrfs_start_transaction(root
, 4);
6544 if (IS_ERR(trans
)) {
6545 err
= PTR_ERR(trans
);
6550 * Reserve space for the truncate process. Truncate should be adding
6551 * space, but if there are snapshots it may end up using space.
6553 ret
= btrfs_truncate_reserve_metadata(trans
, root
, rsv
);
6556 ret
= btrfs_orphan_add(trans
, inode
);
6558 btrfs_end_transaction(trans
, root
);
6562 nr
= trans
->blocks_used
;
6563 btrfs_end_transaction(trans
, root
);
6564 btrfs_btree_balance_dirty(root
, nr
);
6567 * Ok so we've already migrated our bytes over for the truncate, so here
6568 * just reserve the one slot we need for updating the inode.
6570 trans
= btrfs_start_transaction(root
, 1);
6571 if (IS_ERR(trans
)) {
6572 err
= PTR_ERR(trans
);
6575 trans
->block_rsv
= rsv
;
6578 * setattr is responsible for setting the ordered_data_close flag,
6579 * but that is only tested during the last file release. That
6580 * could happen well after the next commit, leaving a great big
6581 * window where new writes may get lost if someone chooses to write
6582 * to this file after truncating to zero
6584 * The inode doesn't have any dirty data here, and so if we commit
6585 * this is a noop. If someone immediately starts writing to the inode
6586 * it is very likely we'll catch some of their writes in this
6587 * transaction, and the commit will find this file on the ordered
6588 * data list with good things to send down.
6590 * This is a best effort solution, there is still a window where
6591 * using truncate to replace the contents of the file will
6592 * end up with a zero length file after a crash.
6594 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6595 btrfs_add_ordered_operation(trans
, root
, inode
);
6599 trans
= btrfs_start_transaction(root
, 3);
6600 if (IS_ERR(trans
)) {
6601 err
= PTR_ERR(trans
);
6605 ret
= btrfs_truncate_reserve_metadata(trans
, root
,
6609 trans
->block_rsv
= rsv
;
6612 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6614 BTRFS_EXTENT_DATA_KEY
);
6615 if (ret
!= -EAGAIN
) {
6620 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6621 ret
= btrfs_update_inode(trans
, root
, inode
);
6627 nr
= trans
->blocks_used
;
6628 btrfs_end_transaction(trans
, root
);
6630 btrfs_btree_balance_dirty(root
, nr
);
6633 if (ret
== 0 && inode
->i_nlink
> 0) {
6634 trans
->block_rsv
= root
->orphan_block_rsv
;
6635 ret
= btrfs_orphan_del(trans
, inode
);
6638 } else if (ret
&& inode
->i_nlink
> 0) {
6640 * Failed to do the truncate, remove us from the in memory
6643 ret
= btrfs_orphan_del(NULL
, inode
);
6646 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6647 ret
= btrfs_update_inode(trans
, root
, inode
);
6651 nr
= trans
->blocks_used
;
6652 ret
= btrfs_end_transaction_throttle(trans
, root
);
6653 btrfs_btree_balance_dirty(root
, nr
);
6656 btrfs_free_block_rsv(root
, rsv
);
6665 * create a new subvolume directory/inode (helper for the ioctl).
6667 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6668 struct btrfs_root
*new_root
, u64 new_dirid
)
6670 struct inode
*inode
;
6674 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6675 new_dirid
, S_IFDIR
| 0700, &index
);
6677 return PTR_ERR(inode
);
6678 inode
->i_op
= &btrfs_dir_inode_operations
;
6679 inode
->i_fop
= &btrfs_dir_file_operations
;
6682 btrfs_i_size_write(inode
, 0);
6684 err
= btrfs_update_inode(trans
, new_root
, inode
);
6691 /* helper function for file defrag and space balancing. This
6692 * forces readahead on a given range of bytes in an inode
6694 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6695 struct file_ra_state
*ra
, struct file
*file
,
6696 pgoff_t offset
, pgoff_t last_index
)
6698 pgoff_t req_size
= last_index
- offset
+ 1;
6700 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6701 return offset
+ req_size
;
6704 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6706 struct btrfs_inode
*ei
;
6707 struct inode
*inode
;
6709 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6714 ei
->space_info
= NULL
;
6718 ei
->last_sub_trans
= 0;
6719 ei
->logged_trans
= 0;
6720 ei
->delalloc_bytes
= 0;
6721 ei
->reserved_bytes
= 0;
6722 ei
->disk_i_size
= 0;
6724 ei
->index_cnt
= (u64
)-1;
6725 ei
->last_unlink_trans
= 0;
6727 atomic_set(&ei
->outstanding_extents
, 0);
6728 atomic_set(&ei
->reserved_extents
, 0);
6730 ei
->ordered_data_close
= 0;
6731 ei
->orphan_meta_reserved
= 0;
6732 ei
->dummy_inode
= 0;
6734 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6736 ei
->delayed_node
= NULL
;
6738 inode
= &ei
->vfs_inode
;
6739 extent_map_tree_init(&ei
->extent_tree
);
6740 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6741 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6742 mutex_init(&ei
->log_mutex
);
6743 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6744 INIT_LIST_HEAD(&ei
->i_orphan
);
6745 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6746 INIT_LIST_HEAD(&ei
->ordered_operations
);
6747 RB_CLEAR_NODE(&ei
->rb_node
);
6752 static void btrfs_i_callback(struct rcu_head
*head
)
6754 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6755 INIT_LIST_HEAD(&inode
->i_dentry
);
6756 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6759 void btrfs_destroy_inode(struct inode
*inode
)
6761 struct btrfs_ordered_extent
*ordered
;
6762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6764 WARN_ON(!list_empty(&inode
->i_dentry
));
6765 WARN_ON(inode
->i_data
.nrpages
);
6766 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6767 WARN_ON(atomic_read(&BTRFS_I(inode
)->reserved_extents
));
6770 * This can happen where we create an inode, but somebody else also
6771 * created the same inode and we need to destroy the one we already
6778 * Make sure we're properly removed from the ordered operation
6782 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6783 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6784 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6785 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6788 spin_lock(&root
->orphan_lock
);
6789 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6790 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6791 (unsigned long long)btrfs_ino(inode
));
6792 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6794 spin_unlock(&root
->orphan_lock
);
6797 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6801 printk(KERN_ERR
"btrfs found ordered "
6802 "extent %llu %llu on inode cleanup\n",
6803 (unsigned long long)ordered
->file_offset
,
6804 (unsigned long long)ordered
->len
);
6805 btrfs_remove_ordered_extent(inode
, ordered
);
6806 btrfs_put_ordered_extent(ordered
);
6807 btrfs_put_ordered_extent(ordered
);
6810 inode_tree_del(inode
);
6811 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6813 btrfs_remove_delayed_node(inode
);
6814 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6817 int btrfs_drop_inode(struct inode
*inode
)
6819 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6821 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6822 !is_free_space_inode(root
, inode
))
6825 return generic_drop_inode(inode
);
6828 static void init_once(void *foo
)
6830 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6832 inode_init_once(&ei
->vfs_inode
);
6835 void btrfs_destroy_cachep(void)
6837 if (btrfs_inode_cachep
)
6838 kmem_cache_destroy(btrfs_inode_cachep
);
6839 if (btrfs_trans_handle_cachep
)
6840 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6841 if (btrfs_transaction_cachep
)
6842 kmem_cache_destroy(btrfs_transaction_cachep
);
6843 if (btrfs_path_cachep
)
6844 kmem_cache_destroy(btrfs_path_cachep
);
6845 if (btrfs_free_space_cachep
)
6846 kmem_cache_destroy(btrfs_free_space_cachep
);
6849 int btrfs_init_cachep(void)
6851 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6852 sizeof(struct btrfs_inode
), 0,
6853 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6854 if (!btrfs_inode_cachep
)
6857 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6858 sizeof(struct btrfs_trans_handle
), 0,
6859 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6860 if (!btrfs_trans_handle_cachep
)
6863 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6864 sizeof(struct btrfs_transaction
), 0,
6865 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6866 if (!btrfs_transaction_cachep
)
6869 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6870 sizeof(struct btrfs_path
), 0,
6871 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6872 if (!btrfs_path_cachep
)
6875 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6876 sizeof(struct btrfs_free_space
), 0,
6877 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6878 if (!btrfs_free_space_cachep
)
6883 btrfs_destroy_cachep();
6887 static int btrfs_getattr(struct vfsmount
*mnt
,
6888 struct dentry
*dentry
, struct kstat
*stat
)
6890 struct inode
*inode
= dentry
->d_inode
;
6891 generic_fillattr(inode
, stat
);
6892 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6893 stat
->blksize
= PAGE_CACHE_SIZE
;
6894 stat
->blocks
= (inode_get_bytes(inode
) +
6895 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6900 * If a file is moved, it will inherit the cow and compression flags of the new
6903 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6905 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6906 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6908 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6909 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6911 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6913 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6914 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6916 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6919 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6920 struct inode
*new_dir
, struct dentry
*new_dentry
)
6922 struct btrfs_trans_handle
*trans
;
6923 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6924 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6925 struct inode
*new_inode
= new_dentry
->d_inode
;
6926 struct inode
*old_inode
= old_dentry
->d_inode
;
6927 struct timespec ctime
= CURRENT_TIME
;
6931 u64 old_ino
= btrfs_ino(old_inode
);
6933 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6936 /* we only allow rename subvolume link between subvolumes */
6937 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6940 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6941 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6944 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6945 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6948 * we're using rename to replace one file with another.
6949 * and the replacement file is large. Start IO on it now so
6950 * we don't add too much work to the end of the transaction
6952 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6953 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6954 filemap_flush(old_inode
->i_mapping
);
6956 /* close the racy window with snapshot create/destroy ioctl */
6957 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6958 down_read(&root
->fs_info
->subvol_sem
);
6960 * We want to reserve the absolute worst case amount of items. So if
6961 * both inodes are subvols and we need to unlink them then that would
6962 * require 4 item modifications, but if they are both normal inodes it
6963 * would require 5 item modifications, so we'll assume their normal
6964 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6965 * should cover the worst case number of items we'll modify.
6967 trans
= btrfs_start_transaction(root
, 20);
6968 if (IS_ERR(trans
)) {
6969 ret
= PTR_ERR(trans
);
6974 btrfs_record_root_in_trans(trans
, dest
);
6976 ret
= btrfs_set_inode_index(new_dir
, &index
);
6980 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6981 /* force full log commit if subvolume involved. */
6982 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6984 ret
= btrfs_insert_inode_ref(trans
, dest
,
6985 new_dentry
->d_name
.name
,
6986 new_dentry
->d_name
.len
,
6988 btrfs_ino(new_dir
), index
);
6992 * this is an ugly little race, but the rename is required
6993 * to make sure that if we crash, the inode is either at the
6994 * old name or the new one. pinning the log transaction lets
6995 * us make sure we don't allow a log commit to come in after
6996 * we unlink the name but before we add the new name back in.
6998 btrfs_pin_log_trans(root
);
7001 * make sure the inode gets flushed if it is replacing
7004 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7005 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7007 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7008 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7009 old_inode
->i_ctime
= ctime
;
7011 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7012 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7014 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7015 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7016 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7017 old_dentry
->d_name
.name
,
7018 old_dentry
->d_name
.len
);
7020 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7021 old_dentry
->d_inode
,
7022 old_dentry
->d_name
.name
,
7023 old_dentry
->d_name
.len
);
7025 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7030 new_inode
->i_ctime
= CURRENT_TIME
;
7031 if (unlikely(btrfs_ino(new_inode
) ==
7032 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7033 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7034 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7036 new_dentry
->d_name
.name
,
7037 new_dentry
->d_name
.len
);
7038 BUG_ON(new_inode
->i_nlink
== 0);
7040 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7041 new_dentry
->d_inode
,
7042 new_dentry
->d_name
.name
,
7043 new_dentry
->d_name
.len
);
7046 if (new_inode
->i_nlink
== 0) {
7047 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7052 fixup_inode_flags(new_dir
, old_inode
);
7054 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7055 new_dentry
->d_name
.name
,
7056 new_dentry
->d_name
.len
, 0, index
);
7059 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7060 struct dentry
*parent
= dget_parent(new_dentry
);
7061 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7063 btrfs_end_log_trans(root
);
7066 btrfs_end_transaction_throttle(trans
, root
);
7068 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7069 up_read(&root
->fs_info
->subvol_sem
);
7075 * some fairly slow code that needs optimization. This walks the list
7076 * of all the inodes with pending delalloc and forces them to disk.
7078 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7080 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7081 struct btrfs_inode
*binode
;
7082 struct inode
*inode
;
7084 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7087 spin_lock(&root
->fs_info
->delalloc_lock
);
7088 while (!list_empty(head
)) {
7089 binode
= list_entry(head
->next
, struct btrfs_inode
,
7091 inode
= igrab(&binode
->vfs_inode
);
7093 list_del_init(&binode
->delalloc_inodes
);
7094 spin_unlock(&root
->fs_info
->delalloc_lock
);
7096 filemap_flush(inode
->i_mapping
);
7098 btrfs_add_delayed_iput(inode
);
7103 spin_lock(&root
->fs_info
->delalloc_lock
);
7105 spin_unlock(&root
->fs_info
->delalloc_lock
);
7107 /* the filemap_flush will queue IO into the worker threads, but
7108 * we have to make sure the IO is actually started and that
7109 * ordered extents get created before we return
7111 atomic_inc(&root
->fs_info
->async_submit_draining
);
7112 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7113 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7114 wait_event(root
->fs_info
->async_submit_wait
,
7115 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7116 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7118 atomic_dec(&root
->fs_info
->async_submit_draining
);
7122 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7123 const char *symname
)
7125 struct btrfs_trans_handle
*trans
;
7126 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7127 struct btrfs_path
*path
;
7128 struct btrfs_key key
;
7129 struct inode
*inode
= NULL
;
7137 struct btrfs_file_extent_item
*ei
;
7138 struct extent_buffer
*leaf
;
7139 unsigned long nr
= 0;
7141 name_len
= strlen(symname
) + 1;
7142 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7143 return -ENAMETOOLONG
;
7146 * 2 items for inode item and ref
7147 * 2 items for dir items
7148 * 1 item for xattr if selinux is on
7150 trans
= btrfs_start_transaction(root
, 5);
7152 return PTR_ERR(trans
);
7154 err
= btrfs_find_free_ino(root
, &objectid
);
7158 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7159 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7160 S_IFLNK
|S_IRWXUGO
, &index
);
7161 if (IS_ERR(inode
)) {
7162 err
= PTR_ERR(inode
);
7166 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7172 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7176 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7177 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7178 inode
->i_fop
= &btrfs_file_operations
;
7179 inode
->i_op
= &btrfs_file_inode_operations
;
7180 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7185 path
= btrfs_alloc_path();
7187 key
.objectid
= btrfs_ino(inode
);
7189 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7190 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7191 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7195 btrfs_free_path(path
);
7198 leaf
= path
->nodes
[0];
7199 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7200 struct btrfs_file_extent_item
);
7201 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7202 btrfs_set_file_extent_type(leaf
, ei
,
7203 BTRFS_FILE_EXTENT_INLINE
);
7204 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7205 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7206 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7207 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7209 ptr
= btrfs_file_extent_inline_start(ei
);
7210 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7211 btrfs_mark_buffer_dirty(leaf
);
7212 btrfs_free_path(path
);
7214 inode
->i_op
= &btrfs_symlink_inode_operations
;
7215 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7216 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7217 inode_set_bytes(inode
, name_len
);
7218 btrfs_i_size_write(inode
, name_len
- 1);
7219 err
= btrfs_update_inode(trans
, root
, inode
);
7224 nr
= trans
->blocks_used
;
7225 btrfs_end_transaction_throttle(trans
, root
);
7227 inode_dec_link_count(inode
);
7230 btrfs_btree_balance_dirty(root
, nr
);
7234 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7235 u64 start
, u64 num_bytes
, u64 min_size
,
7236 loff_t actual_len
, u64
*alloc_hint
,
7237 struct btrfs_trans_handle
*trans
)
7239 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7240 struct btrfs_key ins
;
7241 u64 cur_offset
= start
;
7244 bool own_trans
= true;
7248 while (num_bytes
> 0) {
7250 trans
= btrfs_start_transaction(root
, 3);
7251 if (IS_ERR(trans
)) {
7252 ret
= PTR_ERR(trans
);
7257 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7258 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7261 btrfs_end_transaction(trans
, root
);
7265 ret
= insert_reserved_file_extent(trans
, inode
,
7266 cur_offset
, ins
.objectid
,
7267 ins
.offset
, ins
.offset
,
7268 ins
.offset
, 0, 0, 0,
7269 BTRFS_FILE_EXTENT_PREALLOC
);
7271 btrfs_drop_extent_cache(inode
, cur_offset
,
7272 cur_offset
+ ins
.offset
-1, 0);
7274 num_bytes
-= ins
.offset
;
7275 cur_offset
+= ins
.offset
;
7276 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7278 inode
->i_ctime
= CURRENT_TIME
;
7279 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7280 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7281 (actual_len
> inode
->i_size
) &&
7282 (cur_offset
> inode
->i_size
)) {
7283 if (cur_offset
> actual_len
)
7284 i_size
= actual_len
;
7286 i_size
= cur_offset
;
7287 i_size_write(inode
, i_size
);
7288 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7291 ret
= btrfs_update_inode(trans
, root
, inode
);
7295 btrfs_end_transaction(trans
, root
);
7300 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7301 u64 start
, u64 num_bytes
, u64 min_size
,
7302 loff_t actual_len
, u64
*alloc_hint
)
7304 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7305 min_size
, actual_len
, alloc_hint
,
7309 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7310 struct btrfs_trans_handle
*trans
, int mode
,
7311 u64 start
, u64 num_bytes
, u64 min_size
,
7312 loff_t actual_len
, u64
*alloc_hint
)
7314 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7315 min_size
, actual_len
, alloc_hint
, trans
);
7318 static int btrfs_set_page_dirty(struct page
*page
)
7320 return __set_page_dirty_nobuffers(page
);
7323 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7327 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7329 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7331 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7334 static const struct inode_operations btrfs_dir_inode_operations
= {
7335 .getattr
= btrfs_getattr
,
7336 .lookup
= btrfs_lookup
,
7337 .create
= btrfs_create
,
7338 .unlink
= btrfs_unlink
,
7340 .mkdir
= btrfs_mkdir
,
7341 .rmdir
= btrfs_rmdir
,
7342 .rename
= btrfs_rename
,
7343 .symlink
= btrfs_symlink
,
7344 .setattr
= btrfs_setattr
,
7345 .mknod
= btrfs_mknod
,
7346 .setxattr
= btrfs_setxattr
,
7347 .getxattr
= btrfs_getxattr
,
7348 .listxattr
= btrfs_listxattr
,
7349 .removexattr
= btrfs_removexattr
,
7350 .permission
= btrfs_permission
,
7352 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7353 .lookup
= btrfs_lookup
,
7354 .permission
= btrfs_permission
,
7357 static const struct file_operations btrfs_dir_file_operations
= {
7358 .llseek
= generic_file_llseek
,
7359 .read
= generic_read_dir
,
7360 .readdir
= btrfs_real_readdir
,
7361 .unlocked_ioctl
= btrfs_ioctl
,
7362 #ifdef CONFIG_COMPAT
7363 .compat_ioctl
= btrfs_ioctl
,
7365 .release
= btrfs_release_file
,
7366 .fsync
= btrfs_sync_file
,
7369 static struct extent_io_ops btrfs_extent_io_ops
= {
7370 .fill_delalloc
= run_delalloc_range
,
7371 .submit_bio_hook
= btrfs_submit_bio_hook
,
7372 .merge_bio_hook
= btrfs_merge_bio_hook
,
7373 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7374 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7375 .writepage_start_hook
= btrfs_writepage_start_hook
,
7376 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7377 .set_bit_hook
= btrfs_set_bit_hook
,
7378 .clear_bit_hook
= btrfs_clear_bit_hook
,
7379 .merge_extent_hook
= btrfs_merge_extent_hook
,
7380 .split_extent_hook
= btrfs_split_extent_hook
,
7384 * btrfs doesn't support the bmap operation because swapfiles
7385 * use bmap to make a mapping of extents in the file. They assume
7386 * these extents won't change over the life of the file and they
7387 * use the bmap result to do IO directly to the drive.
7389 * the btrfs bmap call would return logical addresses that aren't
7390 * suitable for IO and they also will change frequently as COW
7391 * operations happen. So, swapfile + btrfs == corruption.
7393 * For now we're avoiding this by dropping bmap.
7395 static const struct address_space_operations btrfs_aops
= {
7396 .readpage
= btrfs_readpage
,
7397 .writepage
= btrfs_writepage
,
7398 .writepages
= btrfs_writepages
,
7399 .readpages
= btrfs_readpages
,
7400 .direct_IO
= btrfs_direct_IO
,
7401 .invalidatepage
= btrfs_invalidatepage
,
7402 .releasepage
= btrfs_releasepage
,
7403 .set_page_dirty
= btrfs_set_page_dirty
,
7404 .error_remove_page
= generic_error_remove_page
,
7407 static const struct address_space_operations btrfs_symlink_aops
= {
7408 .readpage
= btrfs_readpage
,
7409 .writepage
= btrfs_writepage
,
7410 .invalidatepage
= btrfs_invalidatepage
,
7411 .releasepage
= btrfs_releasepage
,
7414 static const struct inode_operations btrfs_file_inode_operations
= {
7415 .getattr
= btrfs_getattr
,
7416 .setattr
= btrfs_setattr
,
7417 .setxattr
= btrfs_setxattr
,
7418 .getxattr
= btrfs_getxattr
,
7419 .listxattr
= btrfs_listxattr
,
7420 .removexattr
= btrfs_removexattr
,
7421 .permission
= btrfs_permission
,
7422 .fiemap
= btrfs_fiemap
,
7424 static const struct inode_operations btrfs_special_inode_operations
= {
7425 .getattr
= btrfs_getattr
,
7426 .setattr
= btrfs_setattr
,
7427 .permission
= btrfs_permission
,
7428 .setxattr
= btrfs_setxattr
,
7429 .getxattr
= btrfs_getxattr
,
7430 .listxattr
= btrfs_listxattr
,
7431 .removexattr
= btrfs_removexattr
,
7433 static const struct inode_operations btrfs_symlink_inode_operations
= {
7434 .readlink
= generic_readlink
,
7435 .follow_link
= page_follow_link_light
,
7436 .put_link
= page_put_link
,
7437 .getattr
= btrfs_getattr
,
7438 .permission
= btrfs_permission
,
7439 .setxattr
= btrfs_setxattr
,
7440 .getxattr
= btrfs_getxattr
,
7441 .listxattr
= btrfs_listxattr
,
7442 .removexattr
= btrfs_removexattr
,
7445 const struct dentry_operations btrfs_dentry_operations
= {
7446 .d_delete
= btrfs_dentry_delete
,