sfc: Extend MTD driver for use with new NICs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sfc / falcon.c
blob950de847d22b815ae26574d15c69fa2895c56cab
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 /**************************************************************************
34 * Configurable values
36 **************************************************************************
39 /* This is set to 16 for a good reason. In summary, if larger than
40 * 16, the descriptor cache holds more than a default socket
41 * buffer's worth of packets (for UDP we can only have at most one
42 * socket buffer's worth outstanding). This combined with the fact
43 * that we only get 1 TX event per descriptor cache means the NIC
44 * goes idle.
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
49 #define RX_DC_ENTRIES 64
50 #define RX_DC_ENTRIES_ORDER 3
52 static const unsigned int
53 /* "Large" EEPROM device: Atmel AT25640 or similar
54 * 8 KB, 16-bit address, 32 B write block */
55 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
56 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
57 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
58 /* Default flash device: Atmel AT25F1024
59 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
60 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
61 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
62 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
63 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
64 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
66 /* RX FIFO XOFF watermark
68 * When the amount of the RX FIFO increases used increases past this
69 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
70 * This also has an effect on RX/TX arbitration
72 int efx_nic_rx_xoff_thresh = -1;
73 module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
74 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
76 /* RX FIFO XON watermark
78 * When the amount of the RX FIFO used decreases below this
79 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
80 * This also has an effect on RX/TX arbitration
82 int efx_nic_rx_xon_thresh = -1;
83 module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
84 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
86 /* If EFX_MAX_INT_ERRORS internal errors occur within
87 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
88 * disable it.
90 #define EFX_INT_ERROR_EXPIRE 3600
91 #define EFX_MAX_INT_ERRORS 5
93 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
95 #define EFX_FLUSH_INTERVAL 10
96 #define EFX_FLUSH_POLL_COUNT 100
98 /**************************************************************************
100 * Falcon constants
102 **************************************************************************
105 /* Size and alignment of special buffers (4KB) */
106 #define EFX_BUF_SIZE 4096
108 /* Depth of RX flush request fifo */
109 #define EFX_RX_FLUSH_COUNT 4
111 /**************************************************************************
113 * Solarstorm hardware access
115 **************************************************************************/
117 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
118 unsigned int index)
120 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
121 value, index);
124 /* Read the current event from the event queue */
125 static inline efx_qword_t *efx_event(struct efx_channel *channel,
126 unsigned int index)
128 return (((efx_qword_t *) (channel->eventq.addr)) + index);
131 /* See if an event is present
133 * We check both the high and low dword of the event for all ones. We
134 * wrote all ones when we cleared the event, and no valid event can
135 * have all ones in either its high or low dwords. This approach is
136 * robust against reordering.
138 * Note that using a single 64-bit comparison is incorrect; even
139 * though the CPU read will be atomic, the DMA write may not be.
141 static inline int efx_event_present(efx_qword_t *event)
143 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
144 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
147 /**************************************************************************
149 * I2C bus - this is a bit-bashing interface using GPIO pins
150 * Note that it uses the output enables to tristate the outputs
151 * SDA is the data pin and SCL is the clock
153 **************************************************************************
155 static void falcon_setsda(void *data, int state)
157 struct efx_nic *efx = (struct efx_nic *)data;
158 efx_oword_t reg;
160 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
161 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
162 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
165 static void falcon_setscl(void *data, int state)
167 struct efx_nic *efx = (struct efx_nic *)data;
168 efx_oword_t reg;
170 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
171 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
172 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
175 static int falcon_getsda(void *data)
177 struct efx_nic *efx = (struct efx_nic *)data;
178 efx_oword_t reg;
180 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
181 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
184 static int falcon_getscl(void *data)
186 struct efx_nic *efx = (struct efx_nic *)data;
187 efx_oword_t reg;
189 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
190 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
193 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
194 .setsda = falcon_setsda,
195 .setscl = falcon_setscl,
196 .getsda = falcon_getsda,
197 .getscl = falcon_getscl,
198 .udelay = 5,
199 /* Wait up to 50 ms for slave to let us pull SCL high */
200 .timeout = DIV_ROUND_UP(HZ, 20),
203 /**************************************************************************
205 * Special buffer handling
206 * Special buffers are used for event queues and the TX and RX
207 * descriptor rings.
209 *************************************************************************/
212 * Initialise a special buffer
214 * This will define a buffer (previously allocated via
215 * efx_alloc_special_buffer()) in the buffer table, allowing
216 * it to be used for event queues, descriptor rings etc.
218 static void
219 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
221 efx_qword_t buf_desc;
222 int index;
223 dma_addr_t dma_addr;
224 int i;
226 EFX_BUG_ON_PARANOID(!buffer->addr);
228 /* Write buffer descriptors to NIC */
229 for (i = 0; i < buffer->entries; i++) {
230 index = buffer->index + i;
231 dma_addr = buffer->dma_addr + (i * 4096);
232 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
233 index, (unsigned long long)dma_addr);
234 EFX_POPULATE_QWORD_3(buf_desc,
235 FRF_AZ_BUF_ADR_REGION, 0,
236 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
237 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
238 efx_write_buf_tbl(efx, &buf_desc, index);
242 /* Unmaps a buffer and clears the buffer table entries */
243 static void
244 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
246 efx_oword_t buf_tbl_upd;
247 unsigned int start = buffer->index;
248 unsigned int end = (buffer->index + buffer->entries - 1);
250 if (!buffer->entries)
251 return;
253 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
254 buffer->index, buffer->index + buffer->entries - 1);
256 EFX_POPULATE_OWORD_4(buf_tbl_upd,
257 FRF_AZ_BUF_UPD_CMD, 0,
258 FRF_AZ_BUF_CLR_CMD, 1,
259 FRF_AZ_BUF_CLR_END_ID, end,
260 FRF_AZ_BUF_CLR_START_ID, start);
261 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
265 * Allocate a new special buffer
267 * This allocates memory for a new buffer, clears it and allocates a
268 * new buffer ID range. It does not write into the buffer table.
270 * This call will allocate 4KB buffers, since 8KB buffers can't be
271 * used for event queues and descriptor rings.
273 static int efx_alloc_special_buffer(struct efx_nic *efx,
274 struct efx_special_buffer *buffer,
275 unsigned int len)
277 len = ALIGN(len, EFX_BUF_SIZE);
279 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
280 &buffer->dma_addr);
281 if (!buffer->addr)
282 return -ENOMEM;
283 buffer->len = len;
284 buffer->entries = len / EFX_BUF_SIZE;
285 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
287 /* All zeros is a potentially valid event so memset to 0xff */
288 memset(buffer->addr, 0xff, len);
290 /* Select new buffer ID */
291 buffer->index = efx->next_buffer_table;
292 efx->next_buffer_table += buffer->entries;
294 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
295 "(virt %p phys %llx)\n", buffer->index,
296 buffer->index + buffer->entries - 1,
297 (u64)buffer->dma_addr, len,
298 buffer->addr, (u64)virt_to_phys(buffer->addr));
300 return 0;
303 static void
304 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
306 if (!buffer->addr)
307 return;
309 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
310 "(virt %p phys %llx)\n", buffer->index,
311 buffer->index + buffer->entries - 1,
312 (u64)buffer->dma_addr, buffer->len,
313 buffer->addr, (u64)virt_to_phys(buffer->addr));
315 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
316 buffer->dma_addr);
317 buffer->addr = NULL;
318 buffer->entries = 0;
321 /**************************************************************************
323 * Generic buffer handling
324 * These buffers are used for interrupt status and MAC stats
326 **************************************************************************/
328 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
329 unsigned int len)
331 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
332 &buffer->dma_addr);
333 if (!buffer->addr)
334 return -ENOMEM;
335 buffer->len = len;
336 memset(buffer->addr, 0, len);
337 return 0;
340 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
342 if (buffer->addr) {
343 pci_free_consistent(efx->pci_dev, buffer->len,
344 buffer->addr, buffer->dma_addr);
345 buffer->addr = NULL;
349 /**************************************************************************
351 * TX path
353 **************************************************************************/
355 /* Returns a pointer to the specified transmit descriptor in the TX
356 * descriptor queue belonging to the specified channel.
358 static inline efx_qword_t *
359 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
361 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
364 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
365 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
367 unsigned write_ptr;
368 efx_dword_t reg;
370 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
371 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
372 efx_writed_page(tx_queue->efx, &reg,
373 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
377 /* For each entry inserted into the software descriptor ring, create a
378 * descriptor in the hardware TX descriptor ring (in host memory), and
379 * write a doorbell.
381 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384 struct efx_tx_buffer *buffer;
385 efx_qword_t *txd;
386 unsigned write_ptr;
388 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
390 do {
391 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
392 buffer = &tx_queue->buffer[write_ptr];
393 txd = efx_tx_desc(tx_queue, write_ptr);
394 ++tx_queue->write_count;
396 /* Create TX descriptor ring entry */
397 EFX_POPULATE_QWORD_4(*txd,
398 FSF_AZ_TX_KER_CONT, buffer->continuation,
399 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
400 FSF_AZ_TX_KER_BUF_REGION, 0,
401 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
402 } while (tx_queue->write_count != tx_queue->insert_count);
404 wmb(); /* Ensure descriptors are written before they are fetched */
405 efx_notify_tx_desc(tx_queue);
408 /* Allocate hardware resources for a TX queue */
409 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
411 struct efx_nic *efx = tx_queue->efx;
412 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
413 EFX_TXQ_SIZE & EFX_TXQ_MASK);
414 return efx_alloc_special_buffer(efx, &tx_queue->txd,
415 EFX_TXQ_SIZE * sizeof(efx_qword_t));
418 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
420 efx_oword_t tx_desc_ptr;
421 struct efx_nic *efx = tx_queue->efx;
423 tx_queue->flushed = FLUSH_NONE;
425 /* Pin TX descriptor ring */
426 efx_init_special_buffer(efx, &tx_queue->txd);
428 /* Push TX descriptor ring to card */
429 EFX_POPULATE_OWORD_10(tx_desc_ptr,
430 FRF_AZ_TX_DESCQ_EN, 1,
431 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
432 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
433 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
434 FRF_AZ_TX_DESCQ_EVQ_ID,
435 tx_queue->channel->channel,
436 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
437 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
438 FRF_AZ_TX_DESCQ_SIZE,
439 __ffs(tx_queue->txd.entries),
440 FRF_AZ_TX_DESCQ_TYPE, 0,
441 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
443 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
444 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
445 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
446 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
447 !csum);
450 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
451 tx_queue->queue);
453 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
454 efx_oword_t reg;
456 /* Only 128 bits in this register */
457 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
459 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
460 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
461 clear_bit_le(tx_queue->queue, (void *)&reg);
462 else
463 set_bit_le(tx_queue->queue, (void *)&reg);
464 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
468 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
470 struct efx_nic *efx = tx_queue->efx;
471 efx_oword_t tx_flush_descq;
473 tx_queue->flushed = FLUSH_PENDING;
475 /* Post a flush command */
476 EFX_POPULATE_OWORD_2(tx_flush_descq,
477 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
478 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
479 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
482 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
484 struct efx_nic *efx = tx_queue->efx;
485 efx_oword_t tx_desc_ptr;
487 /* The queue should have been flushed */
488 WARN_ON(tx_queue->flushed != FLUSH_DONE);
490 /* Remove TX descriptor ring from card */
491 EFX_ZERO_OWORD(tx_desc_ptr);
492 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
493 tx_queue->queue);
495 /* Unpin TX descriptor ring */
496 efx_fini_special_buffer(efx, &tx_queue->txd);
499 /* Free buffers backing TX queue */
500 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
502 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
505 /**************************************************************************
507 * RX path
509 **************************************************************************/
511 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
512 static inline efx_qword_t *
513 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
515 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
518 /* This creates an entry in the RX descriptor queue */
519 static inline void
520 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
522 struct efx_rx_buffer *rx_buf;
523 efx_qword_t *rxd;
525 rxd = efx_rx_desc(rx_queue, index);
526 rx_buf = efx_rx_buffer(rx_queue, index);
527 EFX_POPULATE_QWORD_3(*rxd,
528 FSF_AZ_RX_KER_BUF_SIZE,
529 rx_buf->len -
530 rx_queue->efx->type->rx_buffer_padding,
531 FSF_AZ_RX_KER_BUF_REGION, 0,
532 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
535 /* This writes to the RX_DESC_WPTR register for the specified receive
536 * descriptor ring.
538 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
540 efx_dword_t reg;
541 unsigned write_ptr;
543 while (rx_queue->notified_count != rx_queue->added_count) {
544 efx_build_rx_desc(rx_queue,
545 rx_queue->notified_count &
546 EFX_RXQ_MASK);
547 ++rx_queue->notified_count;
550 wmb();
551 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
552 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
553 efx_writed_page(rx_queue->efx, &reg,
554 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
557 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
559 struct efx_nic *efx = rx_queue->efx;
560 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
561 EFX_RXQ_SIZE & EFX_RXQ_MASK);
562 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
563 EFX_RXQ_SIZE * sizeof(efx_qword_t));
566 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
568 efx_oword_t rx_desc_ptr;
569 struct efx_nic *efx = rx_queue->efx;
570 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
571 bool iscsi_digest_en = is_b0;
573 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
574 rx_queue->queue, rx_queue->rxd.index,
575 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
577 rx_queue->flushed = FLUSH_NONE;
579 /* Pin RX descriptor ring */
580 efx_init_special_buffer(efx, &rx_queue->rxd);
582 /* Push RX descriptor ring to card */
583 EFX_POPULATE_OWORD_10(rx_desc_ptr,
584 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
585 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
586 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
587 FRF_AZ_RX_DESCQ_EVQ_ID,
588 rx_queue->channel->channel,
589 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
590 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
591 FRF_AZ_RX_DESCQ_SIZE,
592 __ffs(rx_queue->rxd.entries),
593 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
594 /* For >=B0 this is scatter so disable */
595 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
596 FRF_AZ_RX_DESCQ_EN, 1);
597 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
598 rx_queue->queue);
601 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
603 struct efx_nic *efx = rx_queue->efx;
604 efx_oword_t rx_flush_descq;
606 rx_queue->flushed = FLUSH_PENDING;
608 /* Post a flush command */
609 EFX_POPULATE_OWORD_2(rx_flush_descq,
610 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
611 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
612 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
615 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
617 efx_oword_t rx_desc_ptr;
618 struct efx_nic *efx = rx_queue->efx;
620 /* The queue should already have been flushed */
621 WARN_ON(rx_queue->flushed != FLUSH_DONE);
623 /* Remove RX descriptor ring from card */
624 EFX_ZERO_OWORD(rx_desc_ptr);
625 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
626 rx_queue->queue);
628 /* Unpin RX descriptor ring */
629 efx_fini_special_buffer(efx, &rx_queue->rxd);
632 /* Free buffers backing RX queue */
633 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
635 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
638 /**************************************************************************
640 * Event queue processing
641 * Event queues are processed by per-channel tasklets.
643 **************************************************************************/
645 /* Update a channel's event queue's read pointer (RPTR) register
647 * This writes the EVQ_RPTR_REG register for the specified channel's
648 * event queue.
650 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
651 * whereas channel->eventq_read_ptr contains the index of the "next to
652 * read" event.
654 void efx_nic_eventq_read_ack(struct efx_channel *channel)
656 efx_dword_t reg;
657 struct efx_nic *efx = channel->efx;
659 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
660 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
661 channel->channel);
664 /* Use HW to insert a SW defined event */
665 void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
667 efx_oword_t drv_ev_reg;
669 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
670 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
671 drv_ev_reg.u32[0] = event->u32[0];
672 drv_ev_reg.u32[1] = event->u32[1];
673 drv_ev_reg.u32[2] = 0;
674 drv_ev_reg.u32[3] = 0;
675 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
676 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
679 /* Handle a transmit completion event
681 * The NIC batches TX completion events; the message we receive is of
682 * the form "complete all TX events up to this index".
684 static void
685 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
687 unsigned int tx_ev_desc_ptr;
688 unsigned int tx_ev_q_label;
689 struct efx_tx_queue *tx_queue;
690 struct efx_nic *efx = channel->efx;
692 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
693 /* Transmit completion */
694 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
695 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
696 tx_queue = &efx->tx_queue[tx_ev_q_label];
697 channel->irq_mod_score +=
698 (tx_ev_desc_ptr - tx_queue->read_count) &
699 EFX_TXQ_MASK;
700 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
701 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
702 /* Rewrite the FIFO write pointer */
703 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
704 tx_queue = &efx->tx_queue[tx_ev_q_label];
706 if (efx_dev_registered(efx))
707 netif_tx_lock(efx->net_dev);
708 efx_notify_tx_desc(tx_queue);
709 if (efx_dev_registered(efx))
710 netif_tx_unlock(efx->net_dev);
711 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
712 EFX_WORKAROUND_10727(efx)) {
713 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
714 } else {
715 EFX_ERR(efx, "channel %d unexpected TX event "
716 EFX_QWORD_FMT"\n", channel->channel,
717 EFX_QWORD_VAL(*event));
721 /* Detect errors included in the rx_evt_pkt_ok bit. */
722 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
723 const efx_qword_t *event,
724 bool *rx_ev_pkt_ok,
725 bool *discard)
727 struct efx_nic *efx = rx_queue->efx;
728 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
729 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
730 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
731 bool rx_ev_other_err, rx_ev_pause_frm;
732 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
733 unsigned rx_ev_pkt_type;
735 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
736 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
737 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
738 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
739 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
740 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
741 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
742 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
743 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
744 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
745 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
746 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
747 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
748 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
749 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
751 /* Every error apart from tobe_disc and pause_frm */
752 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
753 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
754 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
756 /* Count errors that are not in MAC stats. Ignore expected
757 * checksum errors during self-test. */
758 if (rx_ev_frm_trunc)
759 ++rx_queue->channel->n_rx_frm_trunc;
760 else if (rx_ev_tobe_disc)
761 ++rx_queue->channel->n_rx_tobe_disc;
762 else if (!efx->loopback_selftest) {
763 if (rx_ev_ip_hdr_chksum_err)
764 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
765 else if (rx_ev_tcp_udp_chksum_err)
766 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
769 /* The frame must be discarded if any of these are true. */
770 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
771 rx_ev_tobe_disc | rx_ev_pause_frm);
773 /* TOBE_DISC is expected on unicast mismatches; don't print out an
774 * error message. FRM_TRUNC indicates RXDP dropped the packet due
775 * to a FIFO overflow.
777 #ifdef EFX_ENABLE_DEBUG
778 if (rx_ev_other_err) {
779 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
780 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
781 rx_queue->queue, EFX_QWORD_VAL(*event),
782 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
783 rx_ev_ip_hdr_chksum_err ?
784 " [IP_HDR_CHKSUM_ERR]" : "",
785 rx_ev_tcp_udp_chksum_err ?
786 " [TCP_UDP_CHKSUM_ERR]" : "",
787 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
788 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
789 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
790 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
791 rx_ev_pause_frm ? " [PAUSE]" : "");
793 #endif
796 /* Handle receive events that are not in-order. */
797 static void
798 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
800 struct efx_nic *efx = rx_queue->efx;
801 unsigned expected, dropped;
803 expected = rx_queue->removed_count & EFX_RXQ_MASK;
804 dropped = (index - expected) & EFX_RXQ_MASK;
805 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
806 dropped, index, expected);
808 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
809 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
812 /* Handle a packet received event
814 * The NIC gives a "discard" flag if it's a unicast packet with the
815 * wrong destination address
816 * Also "is multicast" and "matches multicast filter" flags can be used to
817 * discard non-matching multicast packets.
819 static void
820 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
822 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
823 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
824 unsigned expected_ptr;
825 bool rx_ev_pkt_ok, discard = false, checksummed;
826 struct efx_rx_queue *rx_queue;
827 struct efx_nic *efx = channel->efx;
829 /* Basic packet information */
830 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
831 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
832 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
833 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
834 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
835 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
836 channel->channel);
838 rx_queue = &efx->rx_queue[channel->channel];
840 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
841 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
842 if (unlikely(rx_ev_desc_ptr != expected_ptr))
843 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
845 if (likely(rx_ev_pkt_ok)) {
846 /* If packet is marked as OK and packet type is TCP/IP or
847 * UDP/IP, then we can rely on the hardware checksum.
849 checksummed =
850 likely(efx->rx_checksum_enabled) &&
851 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
852 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
853 } else {
854 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
855 checksummed = false;
858 /* Detect multicast packets that didn't match the filter */
859 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
860 if (rx_ev_mcast_pkt) {
861 unsigned int rx_ev_mcast_hash_match =
862 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
864 if (unlikely(!rx_ev_mcast_hash_match)) {
865 ++channel->n_rx_mcast_mismatch;
866 discard = true;
870 channel->irq_mod_score += 2;
872 /* Handle received packet */
873 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
874 checksummed, discard);
877 /* Global events are basically PHY events */
878 static void
879 efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
881 struct efx_nic *efx = channel->efx;
882 bool handled = false;
884 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
885 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
886 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
887 /* Ignored */
888 handled = true;
891 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
892 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
893 efx->xmac_poll_required = true;
894 handled = true;
897 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
898 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
899 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
900 EFX_ERR(efx, "channel %d seen global RX_RESET "
901 "event. Resetting.\n", channel->channel);
903 atomic_inc(&efx->rx_reset);
904 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
905 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
906 handled = true;
909 if (!handled)
910 EFX_ERR(efx, "channel %d unknown global event "
911 EFX_QWORD_FMT "\n", channel->channel,
912 EFX_QWORD_VAL(*event));
915 static void
916 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
918 struct efx_nic *efx = channel->efx;
919 unsigned int ev_sub_code;
920 unsigned int ev_sub_data;
922 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
923 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
925 switch (ev_sub_code) {
926 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
927 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
928 channel->channel, ev_sub_data);
929 break;
930 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
931 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
932 channel->channel, ev_sub_data);
933 break;
934 case FSE_AZ_EVQ_INIT_DONE_EV:
935 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
936 channel->channel, ev_sub_data);
937 break;
938 case FSE_AZ_SRM_UPD_DONE_EV:
939 EFX_TRACE(efx, "channel %d SRAM update done\n",
940 channel->channel);
941 break;
942 case FSE_AZ_WAKE_UP_EV:
943 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
944 channel->channel, ev_sub_data);
945 break;
946 case FSE_AZ_TIMER_EV:
947 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
948 channel->channel, ev_sub_data);
949 break;
950 case FSE_AA_RX_RECOVER_EV:
951 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
952 "Resetting.\n", channel->channel);
953 atomic_inc(&efx->rx_reset);
954 efx_schedule_reset(efx,
955 EFX_WORKAROUND_6555(efx) ?
956 RESET_TYPE_RX_RECOVERY :
957 RESET_TYPE_DISABLE);
958 break;
959 case FSE_BZ_RX_DSC_ERROR_EV:
960 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
961 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
962 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
963 break;
964 case FSE_BZ_TX_DSC_ERROR_EV:
965 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
966 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
967 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
968 break;
969 default:
970 EFX_TRACE(efx, "channel %d unknown driver event code %d "
971 "data %04x\n", channel->channel, ev_sub_code,
972 ev_sub_data);
973 break;
977 int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
979 unsigned int read_ptr;
980 efx_qword_t event, *p_event;
981 int ev_code;
982 int rx_packets = 0;
984 read_ptr = channel->eventq_read_ptr;
986 do {
987 p_event = efx_event(channel, read_ptr);
988 event = *p_event;
990 if (!efx_event_present(&event))
991 /* End of events */
992 break;
994 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
995 channel->channel, EFX_QWORD_VAL(event));
997 /* Clear this event by marking it all ones */
998 EFX_SET_QWORD(*p_event);
1000 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1002 switch (ev_code) {
1003 case FSE_AZ_EV_CODE_RX_EV:
1004 efx_handle_rx_event(channel, &event);
1005 ++rx_packets;
1006 break;
1007 case FSE_AZ_EV_CODE_TX_EV:
1008 efx_handle_tx_event(channel, &event);
1009 break;
1010 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1011 channel->eventq_magic = EFX_QWORD_FIELD(
1012 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1013 EFX_LOG(channel->efx, "channel %d received generated "
1014 "event "EFX_QWORD_FMT"\n", channel->channel,
1015 EFX_QWORD_VAL(event));
1016 break;
1017 case FSE_AZ_EV_CODE_GLOBAL_EV:
1018 efx_handle_global_event(channel, &event);
1019 break;
1020 case FSE_AZ_EV_CODE_DRIVER_EV:
1021 efx_handle_driver_event(channel, &event);
1022 break;
1023 default:
1024 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1025 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1026 ev_code, EFX_QWORD_VAL(event));
1029 /* Increment read pointer */
1030 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1032 } while (rx_packets < rx_quota);
1034 channel->eventq_read_ptr = read_ptr;
1035 return rx_packets;
1038 static void falcon_push_irq_moderation(struct efx_channel *channel)
1040 efx_dword_t timer_cmd;
1041 struct efx_nic *efx = channel->efx;
1043 /* Set timer register */
1044 if (channel->irq_moderation) {
1045 EFX_POPULATE_DWORD_2(timer_cmd,
1046 FRF_AB_TC_TIMER_MODE,
1047 FFE_BB_TIMER_MODE_INT_HLDOFF,
1048 FRF_AB_TC_TIMER_VAL,
1049 channel->irq_moderation - 1);
1050 } else {
1051 EFX_POPULATE_DWORD_2(timer_cmd,
1052 FRF_AB_TC_TIMER_MODE,
1053 FFE_BB_TIMER_MODE_DIS,
1054 FRF_AB_TC_TIMER_VAL, 0);
1056 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1057 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1058 channel->channel);
1062 /* Allocate buffer table entries for event queue */
1063 int efx_nic_probe_eventq(struct efx_channel *channel)
1065 struct efx_nic *efx = channel->efx;
1066 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1067 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1068 return efx_alloc_special_buffer(efx, &channel->eventq,
1069 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1072 void efx_nic_init_eventq(struct efx_channel *channel)
1074 efx_oword_t evq_ptr;
1075 struct efx_nic *efx = channel->efx;
1077 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1078 channel->channel, channel->eventq.index,
1079 channel->eventq.index + channel->eventq.entries - 1);
1081 /* Pin event queue buffer */
1082 efx_init_special_buffer(efx, &channel->eventq);
1084 /* Fill event queue with all ones (i.e. empty events) */
1085 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1087 /* Push event queue to card */
1088 EFX_POPULATE_OWORD_3(evq_ptr,
1089 FRF_AZ_EVQ_EN, 1,
1090 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1091 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1092 efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1093 channel->channel);
1095 efx->type->push_irq_moderation(channel);
1098 void efx_nic_fini_eventq(struct efx_channel *channel)
1100 efx_oword_t eventq_ptr;
1101 struct efx_nic *efx = channel->efx;
1103 /* Remove event queue from card */
1104 EFX_ZERO_OWORD(eventq_ptr);
1105 efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1106 channel->channel);
1108 /* Unpin event queue */
1109 efx_fini_special_buffer(efx, &channel->eventq);
1112 /* Free buffers backing event queue */
1113 void efx_nic_remove_eventq(struct efx_channel *channel)
1115 efx_free_special_buffer(channel->efx, &channel->eventq);
1119 /* Generates a test event on the event queue. A subsequent call to
1120 * process_eventq() should pick up the event and place the value of
1121 * "magic" into channel->eventq_magic;
1123 void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
1125 efx_qword_t test_event;
1127 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1128 FSE_AZ_EV_CODE_DRV_GEN_EV,
1129 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1130 efx_generate_event(channel, &test_event);
1133 /**************************************************************************
1135 * Flush handling
1137 **************************************************************************/
1140 static void efx_poll_flush_events(struct efx_nic *efx)
1142 struct efx_channel *channel = &efx->channel[0];
1143 struct efx_tx_queue *tx_queue;
1144 struct efx_rx_queue *rx_queue;
1145 unsigned int read_ptr = channel->eventq_read_ptr;
1146 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1148 do {
1149 efx_qword_t *event = efx_event(channel, read_ptr);
1150 int ev_code, ev_sub_code, ev_queue;
1151 bool ev_failed;
1153 if (!efx_event_present(event))
1154 break;
1156 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1157 ev_sub_code = EFX_QWORD_FIELD(*event,
1158 FSF_AZ_DRIVER_EV_SUBCODE);
1159 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1160 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1161 ev_queue = EFX_QWORD_FIELD(*event,
1162 FSF_AZ_DRIVER_EV_SUBDATA);
1163 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1164 tx_queue = efx->tx_queue + ev_queue;
1165 tx_queue->flushed = FLUSH_DONE;
1167 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1168 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1169 ev_queue = EFX_QWORD_FIELD(
1170 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1171 ev_failed = EFX_QWORD_FIELD(
1172 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1173 if (ev_queue < efx->n_rx_queues) {
1174 rx_queue = efx->rx_queue + ev_queue;
1175 rx_queue->flushed =
1176 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1180 /* We're about to destroy the queue anyway, so
1181 * it's ok to throw away every non-flush event */
1182 EFX_SET_QWORD(*event);
1184 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1185 } while (read_ptr != end_ptr);
1187 channel->eventq_read_ptr = read_ptr;
1190 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
1192 static void falcon_prepare_flush(struct efx_nic *efx)
1194 falcon_deconfigure_mac_wrapper(efx);
1196 /* Wait for the tx and rx fifo's to get to the next packet boundary
1197 * (~1ms without back-pressure), then to drain the remainder of the
1198 * fifo's at data path speeds (negligible), with a healthy margin. */
1199 msleep(10);
1202 /* Handle tx and rx flushes at the same time, since they run in
1203 * parallel in the hardware and there's no reason for us to
1204 * serialise them */
1205 int efx_nic_flush_queues(struct efx_nic *efx)
1207 struct efx_rx_queue *rx_queue;
1208 struct efx_tx_queue *tx_queue;
1209 int i, tx_pending, rx_pending;
1211 /* If necessary prepare the hardware for flushing */
1212 efx->type->prepare_flush(efx);
1214 /* Flush all tx queues in parallel */
1215 efx_for_each_tx_queue(tx_queue, efx)
1216 efx_flush_tx_queue(tx_queue);
1218 /* The hardware supports four concurrent rx flushes, each of which may
1219 * need to be retried if there is an outstanding descriptor fetch */
1220 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1221 rx_pending = tx_pending = 0;
1222 efx_for_each_rx_queue(rx_queue, efx) {
1223 if (rx_queue->flushed == FLUSH_PENDING)
1224 ++rx_pending;
1226 efx_for_each_rx_queue(rx_queue, efx) {
1227 if (rx_pending == EFX_RX_FLUSH_COUNT)
1228 break;
1229 if (rx_queue->flushed == FLUSH_FAILED ||
1230 rx_queue->flushed == FLUSH_NONE) {
1231 efx_flush_rx_queue(rx_queue);
1232 ++rx_pending;
1235 efx_for_each_tx_queue(tx_queue, efx) {
1236 if (tx_queue->flushed != FLUSH_DONE)
1237 ++tx_pending;
1240 if (rx_pending == 0 && tx_pending == 0)
1241 return 0;
1243 msleep(EFX_FLUSH_INTERVAL);
1244 efx_poll_flush_events(efx);
1247 /* Mark the queues as all flushed. We're going to return failure
1248 * leading to a reset, or fake up success anyway */
1249 efx_for_each_tx_queue(tx_queue, efx) {
1250 if (tx_queue->flushed != FLUSH_DONE)
1251 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1252 tx_queue->queue);
1253 tx_queue->flushed = FLUSH_DONE;
1255 efx_for_each_rx_queue(rx_queue, efx) {
1256 if (rx_queue->flushed != FLUSH_DONE)
1257 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1258 rx_queue->queue);
1259 rx_queue->flushed = FLUSH_DONE;
1262 if (EFX_WORKAROUND_7803(efx))
1263 return 0;
1265 return -ETIMEDOUT;
1268 /**************************************************************************
1270 * Hardware interrupts
1271 * The hardware interrupt handler does very little work; all the event
1272 * queue processing is carried out by per-channel tasklets.
1274 **************************************************************************/
1276 /* Enable/disable/generate interrupts */
1277 static inline void efx_nic_interrupts(struct efx_nic *efx,
1278 bool enabled, bool force)
1280 efx_oword_t int_en_reg_ker;
1282 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1283 FRF_AZ_KER_INT_KER, force,
1284 FRF_AZ_DRV_INT_EN_KER, enabled);
1285 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1288 void efx_nic_enable_interrupts(struct efx_nic *efx)
1290 struct efx_channel *channel;
1292 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1293 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1295 /* Enable interrupts */
1296 efx_nic_interrupts(efx, true, false);
1298 /* Force processing of all the channels to get the EVQ RPTRs up to
1299 date */
1300 efx_for_each_channel(channel, efx)
1301 efx_schedule_channel(channel);
1304 void efx_nic_disable_interrupts(struct efx_nic *efx)
1306 /* Disable interrupts */
1307 efx_nic_interrupts(efx, false, false);
1310 /* Generate a test interrupt
1311 * Interrupt must already have been enabled, otherwise nasty things
1312 * may happen.
1314 void efx_nic_generate_interrupt(struct efx_nic *efx)
1316 efx_nic_interrupts(efx, true, true);
1319 /* Acknowledge a legacy interrupt from Falcon
1321 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1323 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1324 * BIU. Interrupt acknowledge is read sensitive so must write instead
1325 * (then read to ensure the BIU collector is flushed)
1327 * NB most hardware supports MSI interrupts
1329 inline void falcon_irq_ack_a1(struct efx_nic *efx)
1331 efx_dword_t reg;
1333 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1334 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1335 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1338 /* Process a fatal interrupt
1339 * Disable bus mastering ASAP and schedule a reset
1341 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1343 struct falcon_nic_data *nic_data = efx->nic_data;
1344 efx_oword_t *int_ker = efx->irq_status.addr;
1345 efx_oword_t fatal_intr;
1346 int error, mem_perr;
1348 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1349 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1351 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1352 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1353 EFX_OWORD_VAL(fatal_intr),
1354 error ? "disabling bus mastering" : "no recognised error");
1355 if (error == 0)
1356 goto out;
1358 /* If this is a memory parity error dump which blocks are offending */
1359 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1360 if (mem_perr) {
1361 efx_oword_t reg;
1362 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1363 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1364 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1367 /* Disable both devices */
1368 pci_clear_master(efx->pci_dev);
1369 if (efx_nic_is_dual_func(efx))
1370 pci_clear_master(nic_data->pci_dev2);
1371 efx_nic_disable_interrupts(efx);
1373 /* Count errors and reset or disable the NIC accordingly */
1374 if (efx->int_error_count == 0 ||
1375 time_after(jiffies, efx->int_error_expire)) {
1376 efx->int_error_count = 0;
1377 efx->int_error_expire =
1378 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1380 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1381 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1382 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1383 } else {
1384 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1385 "NIC will be disabled\n");
1386 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1388 out:
1389 return IRQ_HANDLED;
1392 /* Handle a legacy interrupt
1393 * Acknowledges the interrupt and schedule event queue processing.
1395 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1397 struct efx_nic *efx = dev_id;
1398 efx_oword_t *int_ker = efx->irq_status.addr;
1399 irqreturn_t result = IRQ_NONE;
1400 struct efx_channel *channel;
1401 efx_dword_t reg;
1402 u32 queues;
1403 int syserr;
1405 /* Read the ISR which also ACKs the interrupts */
1406 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1407 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1409 /* Check to see if we have a serious error condition */
1410 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1411 if (unlikely(syserr))
1412 return efx_nic_fatal_interrupt(efx);
1414 /* Schedule processing of any interrupting queues */
1415 efx_for_each_channel(channel, efx) {
1416 if ((queues & 1) ||
1417 efx_event_present(
1418 efx_event(channel, channel->eventq_read_ptr))) {
1419 efx_schedule_channel(channel);
1420 result = IRQ_HANDLED;
1422 queues >>= 1;
1425 if (result == IRQ_HANDLED) {
1426 efx->last_irq_cpu = raw_smp_processor_id();
1427 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1428 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1431 return result;
1435 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1437 struct efx_nic *efx = dev_id;
1438 efx_oword_t *int_ker = efx->irq_status.addr;
1439 struct efx_channel *channel;
1440 int syserr;
1441 int queues;
1443 /* Check to see if this is our interrupt. If it isn't, we
1444 * exit without having touched the hardware.
1446 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1447 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1448 raw_smp_processor_id());
1449 return IRQ_NONE;
1451 efx->last_irq_cpu = raw_smp_processor_id();
1452 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1453 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1455 /* Check to see if we have a serious error condition */
1456 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1457 if (unlikely(syserr))
1458 return efx_nic_fatal_interrupt(efx);
1460 /* Determine interrupting queues, clear interrupt status
1461 * register and acknowledge the device interrupt.
1463 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
1464 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
1465 EFX_ZERO_OWORD(*int_ker);
1466 wmb(); /* Ensure the vector is cleared before interrupt ack */
1467 falcon_irq_ack_a1(efx);
1469 /* Schedule processing of any interrupting queues */
1470 channel = &efx->channel[0];
1471 while (queues) {
1472 if (queues & 0x01)
1473 efx_schedule_channel(channel);
1474 channel++;
1475 queues >>= 1;
1478 return IRQ_HANDLED;
1481 /* Handle an MSI interrupt
1483 * Handle an MSI hardware interrupt. This routine schedules event
1484 * queue processing. No interrupt acknowledgement cycle is necessary.
1485 * Also, we never need to check that the interrupt is for us, since
1486 * MSI interrupts cannot be shared.
1488 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1490 struct efx_channel *channel = dev_id;
1491 struct efx_nic *efx = channel->efx;
1492 efx_oword_t *int_ker = efx->irq_status.addr;
1493 int syserr;
1495 efx->last_irq_cpu = raw_smp_processor_id();
1496 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1497 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1499 /* Check to see if we have a serious error condition */
1500 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1501 if (unlikely(syserr))
1502 return efx_nic_fatal_interrupt(efx);
1504 /* Schedule processing of the channel */
1505 efx_schedule_channel(channel);
1507 return IRQ_HANDLED;
1511 /* Setup RSS indirection table.
1512 * This maps from the hash value of the packet to RXQ
1514 static void efx_setup_rss_indir_table(struct efx_nic *efx)
1516 int i = 0;
1517 unsigned long offset;
1518 efx_dword_t dword;
1520 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1521 return;
1523 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1524 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1525 offset += 0x10) {
1526 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1527 i % efx->n_rx_queues);
1528 efx_writed(efx, &dword, offset);
1529 i++;
1533 /* Hook interrupt handler(s)
1534 * Try MSI and then legacy interrupts.
1536 int efx_nic_init_interrupt(struct efx_nic *efx)
1538 struct efx_channel *channel;
1539 int rc;
1541 if (!EFX_INT_MODE_USE_MSI(efx)) {
1542 irq_handler_t handler;
1543 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1544 handler = efx_legacy_interrupt;
1545 else
1546 handler = falcon_legacy_interrupt_a1;
1548 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1549 efx->name, efx);
1550 if (rc) {
1551 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1552 efx->pci_dev->irq);
1553 goto fail1;
1555 return 0;
1558 /* Hook MSI or MSI-X interrupt */
1559 efx_for_each_channel(channel, efx) {
1560 rc = request_irq(channel->irq, efx_msi_interrupt,
1561 IRQF_PROBE_SHARED, /* Not shared */
1562 channel->name, channel);
1563 if (rc) {
1564 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1565 goto fail2;
1569 return 0;
1571 fail2:
1572 efx_for_each_channel(channel, efx)
1573 free_irq(channel->irq, channel);
1574 fail1:
1575 return rc;
1578 void efx_nic_fini_interrupt(struct efx_nic *efx)
1580 struct efx_channel *channel;
1581 efx_oword_t reg;
1583 /* Disable MSI/MSI-X interrupts */
1584 efx_for_each_channel(channel, efx) {
1585 if (channel->irq)
1586 free_irq(channel->irq, channel);
1589 /* ACK legacy interrupt */
1590 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1591 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1592 else
1593 falcon_irq_ack_a1(efx);
1595 /* Disable legacy interrupt */
1596 if (efx->legacy_irq)
1597 free_irq(efx->legacy_irq, efx);
1600 /**************************************************************************
1602 * EEPROM/flash
1604 **************************************************************************
1607 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1609 static int falcon_spi_poll(struct efx_nic *efx)
1611 efx_oword_t reg;
1612 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1613 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1616 /* Wait for SPI command completion */
1617 static int falcon_spi_wait(struct efx_nic *efx)
1619 /* Most commands will finish quickly, so we start polling at
1620 * very short intervals. Sometimes the command may have to
1621 * wait for VPD or expansion ROM access outside of our
1622 * control, so we allow up to 100 ms. */
1623 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1624 int i;
1626 for (i = 0; i < 10; i++) {
1627 if (!falcon_spi_poll(efx))
1628 return 0;
1629 udelay(10);
1632 for (;;) {
1633 if (!falcon_spi_poll(efx))
1634 return 0;
1635 if (time_after_eq(jiffies, timeout)) {
1636 EFX_ERR(efx, "timed out waiting for SPI\n");
1637 return -ETIMEDOUT;
1639 schedule_timeout_uninterruptible(1);
1643 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
1644 unsigned int command, int address,
1645 const void *in, void *out, size_t len)
1647 bool addressed = (address >= 0);
1648 bool reading = (out != NULL);
1649 efx_oword_t reg;
1650 int rc;
1652 /* Input validation */
1653 if (len > FALCON_SPI_MAX_LEN)
1654 return -EINVAL;
1655 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1657 /* Check that previous command is not still running */
1658 rc = falcon_spi_poll(efx);
1659 if (rc)
1660 return rc;
1662 /* Program address register, if we have an address */
1663 if (addressed) {
1664 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1665 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1668 /* Program data register, if we have data */
1669 if (in != NULL) {
1670 memcpy(&reg, in, len);
1671 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1674 /* Issue read/write command */
1675 EFX_POPULATE_OWORD_7(reg,
1676 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1677 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1678 FRF_AB_EE_SPI_HCMD_DABCNT, len,
1679 FRF_AB_EE_SPI_HCMD_READ, reading,
1680 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1681 FRF_AB_EE_SPI_HCMD_ADBCNT,
1682 (addressed ? spi->addr_len : 0),
1683 FRF_AB_EE_SPI_HCMD_ENC, command);
1684 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1686 /* Wait for read/write to complete */
1687 rc = falcon_spi_wait(efx);
1688 if (rc)
1689 return rc;
1691 /* Read data */
1692 if (out != NULL) {
1693 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1694 memcpy(out, &reg, len);
1697 return 0;
1700 static size_t
1701 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1703 return min(FALCON_SPI_MAX_LEN,
1704 (spi->block_size - (start & (spi->block_size - 1))));
1707 static inline u8
1708 efx_spi_munge_command(const struct efx_spi_device *spi,
1709 const u8 command, const unsigned int address)
1711 return command | (((address >> 8) & spi->munge_address) << 3);
1714 /* Wait up to 10 ms for buffered write completion */
1716 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
1718 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1719 u8 status;
1720 int rc;
1722 for (;;) {
1723 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
1724 &status, sizeof(status));
1725 if (rc)
1726 return rc;
1727 if (!(status & SPI_STATUS_NRDY))
1728 return 0;
1729 if (time_after_eq(jiffies, timeout)) {
1730 EFX_ERR(efx, "SPI write timeout on device %d"
1731 " last status=0x%02x\n",
1732 spi->device_id, status);
1733 return -ETIMEDOUT;
1735 schedule_timeout_uninterruptible(1);
1739 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
1740 loff_t start, size_t len, size_t *retlen, u8 *buffer)
1742 size_t block_len, pos = 0;
1743 unsigned int command;
1744 int rc = 0;
1746 while (pos < len) {
1747 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1749 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1750 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
1751 buffer + pos, block_len);
1752 if (rc)
1753 break;
1754 pos += block_len;
1756 /* Avoid locking up the system */
1757 cond_resched();
1758 if (signal_pending(current)) {
1759 rc = -EINTR;
1760 break;
1764 if (retlen)
1765 *retlen = pos;
1766 return rc;
1770 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
1771 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
1773 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1774 size_t block_len, pos = 0;
1775 unsigned int command;
1776 int rc = 0;
1778 while (pos < len) {
1779 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
1780 if (rc)
1781 break;
1783 block_len = min(len - pos,
1784 falcon_spi_write_limit(spi, start + pos));
1785 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1786 rc = falcon_spi_cmd(efx, spi, command, start + pos,
1787 buffer + pos, NULL, block_len);
1788 if (rc)
1789 break;
1791 rc = falcon_spi_wait_write(efx, spi);
1792 if (rc)
1793 break;
1795 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1796 rc = falcon_spi_cmd(efx, spi, command, start + pos,
1797 NULL, verify_buffer, block_len);
1798 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1799 rc = -EIO;
1800 break;
1803 pos += block_len;
1805 /* Avoid locking up the system */
1806 cond_resched();
1807 if (signal_pending(current)) {
1808 rc = -EINTR;
1809 break;
1813 if (retlen)
1814 *retlen = pos;
1815 return rc;
1818 /**************************************************************************
1820 * MAC wrapper
1822 **************************************************************************
1825 static void falcon_push_multicast_hash(struct efx_nic *efx)
1827 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1829 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1831 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1832 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1835 static void falcon_reset_macs(struct efx_nic *efx)
1837 struct falcon_nic_data *nic_data = efx->nic_data;
1838 efx_oword_t reg, mac_ctrl;
1839 int count;
1841 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1842 /* It's not safe to use GLB_CTL_REG to reset the
1843 * macs, so instead use the internal MAC resets
1845 if (!EFX_IS10G(efx)) {
1846 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1847 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1848 udelay(1000);
1850 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1851 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1852 udelay(1000);
1853 return;
1854 } else {
1855 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1856 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1858 for (count = 0; count < 10000; count++) {
1859 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1860 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1862 return;
1863 udelay(10);
1866 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1870 /* Mac stats will fail whist the TX fifo is draining */
1871 WARN_ON(nic_data->stats_disable_count == 0);
1873 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1874 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1875 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1877 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1878 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1879 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1880 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1881 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1883 count = 0;
1884 while (1) {
1885 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1886 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1887 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1888 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1889 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1890 count);
1891 break;
1893 if (count > 20) {
1894 EFX_ERR(efx, "MAC reset failed\n");
1895 break;
1897 count++;
1898 udelay(10);
1901 /* Ensure the correct MAC is selected before statistics
1902 * are re-enabled by the caller */
1903 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1906 void falcon_drain_tx_fifo(struct efx_nic *efx)
1908 efx_oword_t reg;
1910 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1911 (efx->loopback_mode != LOOPBACK_NONE))
1912 return;
1914 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1915 /* There is no point in draining more than once */
1916 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1917 return;
1919 falcon_reset_macs(efx);
1922 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1924 efx_oword_t reg;
1926 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1927 return;
1929 /* Isolate the MAC -> RX */
1930 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1931 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1932 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1934 /* Isolate TX -> MAC */
1935 falcon_drain_tx_fifo(efx);
1938 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1940 struct efx_link_state *link_state = &efx->link_state;
1941 efx_oword_t reg;
1942 int link_speed;
1944 switch (link_state->speed) {
1945 case 10000: link_speed = 3; break;
1946 case 1000: link_speed = 2; break;
1947 case 100: link_speed = 1; break;
1948 default: link_speed = 0; break;
1950 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1951 * as advertised. Disable to ensure packets are not
1952 * indefinitely held and TX queue can be flushed at any point
1953 * while the link is down. */
1954 EFX_POPULATE_OWORD_5(reg,
1955 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1956 FRF_AB_MAC_BCAD_ACPT, 1,
1957 FRF_AB_MAC_UC_PROM, efx->promiscuous,
1958 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1959 FRF_AB_MAC_SPEED, link_speed);
1960 /* On B0, MAC backpressure can be disabled and packets get
1961 * discarded. */
1962 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1963 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1964 !link_state->up);
1967 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1969 /* Restore the multicast hash registers. */
1970 falcon_push_multicast_hash(efx);
1972 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1973 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1974 * initialisation but it may read back as 0) */
1975 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1976 /* Unisolate the MAC -> RX */
1977 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1978 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1979 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1982 static void falcon_stats_request(struct efx_nic *efx)
1984 struct falcon_nic_data *nic_data = efx->nic_data;
1985 efx_oword_t reg;
1987 WARN_ON(nic_data->stats_pending);
1988 WARN_ON(nic_data->stats_disable_count);
1990 if (nic_data->stats_dma_done == NULL)
1991 return; /* no mac selected */
1993 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
1994 nic_data->stats_pending = true;
1995 wmb(); /* ensure done flag is clear */
1997 /* Initiate DMA transfer of stats */
1998 EFX_POPULATE_OWORD_2(reg,
1999 FRF_AB_MAC_STAT_DMA_CMD, 1,
2000 FRF_AB_MAC_STAT_DMA_ADR,
2001 efx->stats_buffer.dma_addr);
2002 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2004 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2007 static void falcon_stats_complete(struct efx_nic *efx)
2009 struct falcon_nic_data *nic_data = efx->nic_data;
2011 if (!nic_data->stats_pending)
2012 return;
2014 nic_data->stats_pending = 0;
2015 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2016 rmb(); /* read the done flag before the stats */
2017 efx->mac_op->update_stats(efx);
2018 } else {
2019 EFX_ERR(efx, "timed out waiting for statistics\n");
2023 static void falcon_stats_timer_func(unsigned long context)
2025 struct efx_nic *efx = (struct efx_nic *)context;
2026 struct falcon_nic_data *nic_data = efx->nic_data;
2028 spin_lock(&efx->stats_lock);
2030 falcon_stats_complete(efx);
2031 if (nic_data->stats_disable_count == 0)
2032 falcon_stats_request(efx);
2034 spin_unlock(&efx->stats_lock);
2037 static void falcon_switch_mac(struct efx_nic *efx);
2039 static bool falcon_loopback_link_poll(struct efx_nic *efx)
2041 struct efx_link_state old_state = efx->link_state;
2043 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2044 WARN_ON(!LOOPBACK_INTERNAL(efx));
2046 efx->link_state.fd = true;
2047 efx->link_state.fc = efx->wanted_fc;
2048 efx->link_state.up = true;
2050 if (efx->loopback_mode == LOOPBACK_GMAC)
2051 efx->link_state.speed = 1000;
2052 else
2053 efx->link_state.speed = 10000;
2055 return !efx_link_state_equal(&efx->link_state, &old_state);
2058 static int falcon_reconfigure_port(struct efx_nic *efx)
2060 int rc;
2062 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
2064 /* Poll the PHY link state *before* reconfiguring it. This means we
2065 * will pick up the correct speed (in loopback) to select the correct
2066 * MAC.
2068 if (LOOPBACK_INTERNAL(efx))
2069 falcon_loopback_link_poll(efx);
2070 else
2071 efx->phy_op->poll(efx);
2073 falcon_stop_nic_stats(efx);
2074 falcon_deconfigure_mac_wrapper(efx);
2076 falcon_switch_mac(efx);
2078 efx->phy_op->reconfigure(efx);
2079 rc = efx->mac_op->reconfigure(efx);
2080 BUG_ON(rc);
2082 falcon_start_nic_stats(efx);
2084 /* Synchronise efx->link_state with the kernel */
2085 efx_link_status_changed(efx);
2087 return 0;
2090 /**************************************************************************
2092 * PHY access via GMII
2094 **************************************************************************
2097 /* Wait for GMII access to complete */
2098 static int falcon_gmii_wait(struct efx_nic *efx)
2100 efx_oword_t md_stat;
2101 int count;
2103 /* wait upto 50ms - taken max from datasheet */
2104 for (count = 0; count < 5000; count++) {
2105 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2106 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2107 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2108 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2109 EFX_ERR(efx, "error from GMII access "
2110 EFX_OWORD_FMT"\n",
2111 EFX_OWORD_VAL(md_stat));
2112 return -EIO;
2114 return 0;
2116 udelay(10);
2118 EFX_ERR(efx, "timed out waiting for GMII\n");
2119 return -ETIMEDOUT;
2122 /* Write an MDIO register of a PHY connected to Falcon. */
2123 static int falcon_mdio_write(struct net_device *net_dev,
2124 int prtad, int devad, u16 addr, u16 value)
2126 struct efx_nic *efx = netdev_priv(net_dev);
2127 efx_oword_t reg;
2128 int rc;
2130 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2131 prtad, devad, addr, value);
2133 mutex_lock(&efx->mdio_lock);
2135 /* Check MDIO not currently being accessed */
2136 rc = falcon_gmii_wait(efx);
2137 if (rc)
2138 goto out;
2140 /* Write the address/ID register */
2141 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2142 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2144 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2145 FRF_AB_MD_DEV_ADR, devad);
2146 efx_writeo(efx, &reg, FR_AB_MD_ID);
2148 /* Write data */
2149 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2150 efx_writeo(efx, &reg, FR_AB_MD_TXD);
2152 EFX_POPULATE_OWORD_2(reg,
2153 FRF_AB_MD_WRC, 1,
2154 FRF_AB_MD_GC, 0);
2155 efx_writeo(efx, &reg, FR_AB_MD_CS);
2157 /* Wait for data to be written */
2158 rc = falcon_gmii_wait(efx);
2159 if (rc) {
2160 /* Abort the write operation */
2161 EFX_POPULATE_OWORD_2(reg,
2162 FRF_AB_MD_WRC, 0,
2163 FRF_AB_MD_GC, 1);
2164 efx_writeo(efx, &reg, FR_AB_MD_CS);
2165 udelay(10);
2168 out:
2169 mutex_unlock(&efx->mdio_lock);
2170 return rc;
2173 /* Read an MDIO register of a PHY connected to Falcon. */
2174 static int falcon_mdio_read(struct net_device *net_dev,
2175 int prtad, int devad, u16 addr)
2177 struct efx_nic *efx = netdev_priv(net_dev);
2178 efx_oword_t reg;
2179 int rc;
2181 mutex_lock(&efx->mdio_lock);
2183 /* Check MDIO not currently being accessed */
2184 rc = falcon_gmii_wait(efx);
2185 if (rc)
2186 goto out;
2188 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2189 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2191 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2192 FRF_AB_MD_DEV_ADR, devad);
2193 efx_writeo(efx, &reg, FR_AB_MD_ID);
2195 /* Request data to be read */
2196 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2197 efx_writeo(efx, &reg, FR_AB_MD_CS);
2199 /* Wait for data to become available */
2200 rc = falcon_gmii_wait(efx);
2201 if (rc == 0) {
2202 efx_reado(efx, &reg, FR_AB_MD_RXD);
2203 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2204 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2205 prtad, devad, addr, rc);
2206 } else {
2207 /* Abort the read operation */
2208 EFX_POPULATE_OWORD_2(reg,
2209 FRF_AB_MD_RIC, 0,
2210 FRF_AB_MD_GC, 1);
2211 efx_writeo(efx, &reg, FR_AB_MD_CS);
2213 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2214 prtad, devad, addr, rc);
2217 out:
2218 mutex_unlock(&efx->mdio_lock);
2219 return rc;
2222 static void falcon_clock_mac(struct efx_nic *efx)
2224 unsigned strap_val;
2225 efx_oword_t nic_stat;
2227 /* Configure the NIC generated MAC clock correctly */
2228 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2229 strap_val = EFX_IS10G(efx) ? 5 : 3;
2230 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2231 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2232 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2233 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2234 } else {
2235 /* Falcon A1 does not support 1G/10G speed switching
2236 * and must not be used with a PHY that does. */
2237 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2238 strap_val);
2242 static void falcon_switch_mac(struct efx_nic *efx)
2244 struct efx_mac_operations *old_mac_op = efx->mac_op;
2245 struct falcon_nic_data *nic_data = efx->nic_data;
2246 unsigned int stats_done_offset;
2248 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2249 WARN_ON(nic_data->stats_disable_count == 0);
2251 efx->mac_op = (EFX_IS10G(efx) ?
2252 &falcon_xmac_operations : &falcon_gmac_operations);
2254 if (EFX_IS10G(efx))
2255 stats_done_offset = XgDmaDone_offset;
2256 else
2257 stats_done_offset = GDmaDone_offset;
2258 nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2260 if (old_mac_op == efx->mac_op)
2261 return;
2263 falcon_clock_mac(efx);
2265 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2266 /* Not all macs support a mac-level link state */
2267 efx->xmac_poll_required = false;
2268 falcon_reset_macs(efx);
2271 /* This call is responsible for hooking in the MAC and PHY operations */
2272 static int falcon_probe_port(struct efx_nic *efx)
2274 int rc;
2276 switch (efx->phy_type) {
2277 case PHY_TYPE_SFX7101:
2278 efx->phy_op = &falcon_sfx7101_phy_ops;
2279 break;
2280 case PHY_TYPE_SFT9001A:
2281 case PHY_TYPE_SFT9001B:
2282 efx->phy_op = &falcon_sft9001_phy_ops;
2283 break;
2284 case PHY_TYPE_QT2022C2:
2285 case PHY_TYPE_QT2025C:
2286 efx->phy_op = &falcon_qt202x_phy_ops;
2287 break;
2288 default:
2289 EFX_ERR(efx, "Unknown PHY type %d\n",
2290 efx->phy_type);
2291 return -ENODEV;
2294 /* Fill out MDIO structure and loopback modes */
2295 efx->mdio.mdio_read = falcon_mdio_read;
2296 efx->mdio.mdio_write = falcon_mdio_write;
2297 rc = efx->phy_op->probe(efx);
2298 if (rc != 0)
2299 return rc;
2301 /* Initial assumption */
2302 efx->link_state.speed = 10000;
2303 efx->link_state.fd = true;
2305 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2306 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
2307 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2308 else
2309 efx->wanted_fc = EFX_FC_RX;
2311 /* Allocate buffer for stats */
2312 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
2313 FALCON_MAC_STATS_SIZE);
2314 if (rc)
2315 return rc;
2316 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2317 (u64)efx->stats_buffer.dma_addr,
2318 efx->stats_buffer.addr,
2319 (u64)virt_to_phys(efx->stats_buffer.addr));
2321 return 0;
2324 static void falcon_remove_port(struct efx_nic *efx)
2326 efx_nic_free_buffer(efx, &efx->stats_buffer);
2329 /**************************************************************************
2331 * Falcon test code
2333 **************************************************************************/
2335 static int
2336 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2338 struct falcon_nvconfig *nvconfig;
2339 struct efx_spi_device *spi;
2340 void *region;
2341 int rc, magic_num, struct_ver;
2342 __le16 *word, *limit;
2343 u32 csum;
2345 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2346 if (!spi)
2347 return -EINVAL;
2349 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2350 if (!region)
2351 return -ENOMEM;
2352 nvconfig = region + FALCON_NVCONFIG_OFFSET;
2354 mutex_lock(&efx->spi_lock);
2355 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
2356 mutex_unlock(&efx->spi_lock);
2357 if (rc) {
2358 EFX_ERR(efx, "Failed to read %s\n",
2359 efx->spi_flash ? "flash" : "EEPROM");
2360 rc = -EIO;
2361 goto out;
2364 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2365 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2367 rc = -EINVAL;
2368 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2369 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2370 goto out;
2372 if (struct_ver < 2) {
2373 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2374 goto out;
2375 } else if (struct_ver < 4) {
2376 word = &nvconfig->board_magic_num;
2377 limit = (__le16 *) (nvconfig + 1);
2378 } else {
2379 word = region;
2380 limit = region + FALCON_NVCONFIG_END;
2382 for (csum = 0; word < limit; ++word)
2383 csum += le16_to_cpu(*word);
2385 if (~csum & 0xffff) {
2386 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2387 goto out;
2390 rc = 0;
2391 if (nvconfig_out)
2392 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2394 out:
2395 kfree(region);
2396 return rc;
2399 static int falcon_test_nvram(struct efx_nic *efx)
2401 return falcon_read_nvram(efx, NULL);
2404 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
2405 { FR_AZ_ADR_REGION,
2406 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2407 { FR_AZ_RX_CFG,
2408 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2409 { FR_AZ_TX_CFG,
2410 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2411 { FR_AZ_TX_RESERVED,
2412 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2413 { FR_AB_MAC_CTRL,
2414 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2415 { FR_AZ_SRM_TX_DC_CFG,
2416 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2417 { FR_AZ_RX_DC_CFG,
2418 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2419 { FR_AZ_RX_DC_PF_WM,
2420 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2421 { FR_BZ_DP_CTRL,
2422 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2423 { FR_AB_GM_CFG2,
2424 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2425 { FR_AB_GMF_CFG0,
2426 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2427 { FR_AB_XM_GLB_CFG,
2428 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2429 { FR_AB_XM_TX_CFG,
2430 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2431 { FR_AB_XM_RX_CFG,
2432 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2433 { FR_AB_XM_RX_PARAM,
2434 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2435 { FR_AB_XM_FC,
2436 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2437 { FR_AB_XM_ADR_LO,
2438 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2439 { FR_AB_XX_SD_CTL,
2440 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2443 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2444 const efx_oword_t *mask)
2446 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2447 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2450 int efx_nic_test_registers(struct efx_nic *efx,
2451 const struct efx_nic_register_test *regs,
2452 size_t n_regs)
2454 unsigned address = 0, i, j;
2455 efx_oword_t mask, imask, original, reg, buf;
2457 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2458 WARN_ON(!LOOPBACK_INTERNAL(efx));
2460 for (i = 0; i < n_regs; ++i) {
2461 address = regs[i].address;
2462 mask = imask = regs[i].mask;
2463 EFX_INVERT_OWORD(imask);
2465 efx_reado(efx, &original, address);
2467 /* bit sweep on and off */
2468 for (j = 0; j < 128; j++) {
2469 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2470 continue;
2472 /* Test this testable bit can be set in isolation */
2473 EFX_AND_OWORD(reg, original, mask);
2474 EFX_SET_OWORD32(reg, j, j, 1);
2476 efx_writeo(efx, &reg, address);
2477 efx_reado(efx, &buf, address);
2479 if (efx_masked_compare_oword(&reg, &buf, &mask))
2480 goto fail;
2482 /* Test this testable bit can be cleared in isolation */
2483 EFX_OR_OWORD(reg, original, mask);
2484 EFX_SET_OWORD32(reg, j, j, 0);
2486 efx_writeo(efx, &reg, address);
2487 efx_reado(efx, &buf, address);
2489 if (efx_masked_compare_oword(&reg, &buf, &mask))
2490 goto fail;
2493 efx_writeo(efx, &original, address);
2496 return 0;
2498 fail:
2499 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2500 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2501 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2502 return -EIO;
2505 static int falcon_b0_test_registers(struct efx_nic *efx)
2507 return efx_nic_test_registers(efx, falcon_b0_register_tests,
2508 ARRAY_SIZE(falcon_b0_register_tests));
2511 /**************************************************************************
2513 * Device reset
2515 **************************************************************************
2518 /* Resets NIC to known state. This routine must be called in process
2519 * context and is allowed to sleep. */
2520 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2522 struct falcon_nic_data *nic_data = efx->nic_data;
2523 efx_oword_t glb_ctl_reg_ker;
2524 int rc;
2526 EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2528 /* Initiate device reset */
2529 if (method == RESET_TYPE_WORLD) {
2530 rc = pci_save_state(efx->pci_dev);
2531 if (rc) {
2532 EFX_ERR(efx, "failed to backup PCI state of primary "
2533 "function prior to hardware reset\n");
2534 goto fail1;
2536 if (efx_nic_is_dual_func(efx)) {
2537 rc = pci_save_state(nic_data->pci_dev2);
2538 if (rc) {
2539 EFX_ERR(efx, "failed to backup PCI state of "
2540 "secondary function prior to "
2541 "hardware reset\n");
2542 goto fail2;
2546 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2547 FRF_AB_EXT_PHY_RST_DUR,
2548 FFE_AB_EXT_PHY_RST_DUR_10240US,
2549 FRF_AB_SWRST, 1);
2550 } else {
2551 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2552 /* exclude PHY from "invisible" reset */
2553 FRF_AB_EXT_PHY_RST_CTL,
2554 method == RESET_TYPE_INVISIBLE,
2555 /* exclude EEPROM/flash and PCIe */
2556 FRF_AB_PCIE_CORE_RST_CTL, 1,
2557 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2558 FRF_AB_PCIE_SD_RST_CTL, 1,
2559 FRF_AB_EE_RST_CTL, 1,
2560 FRF_AB_EXT_PHY_RST_DUR,
2561 FFE_AB_EXT_PHY_RST_DUR_10240US,
2562 FRF_AB_SWRST, 1);
2564 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2566 EFX_LOG(efx, "waiting for hardware reset\n");
2567 schedule_timeout_uninterruptible(HZ / 20);
2569 /* Restore PCI configuration if needed */
2570 if (method == RESET_TYPE_WORLD) {
2571 if (efx_nic_is_dual_func(efx)) {
2572 rc = pci_restore_state(nic_data->pci_dev2);
2573 if (rc) {
2574 EFX_ERR(efx, "failed to restore PCI config for "
2575 "the secondary function\n");
2576 goto fail3;
2579 rc = pci_restore_state(efx->pci_dev);
2580 if (rc) {
2581 EFX_ERR(efx, "failed to restore PCI config for the "
2582 "primary function\n");
2583 goto fail4;
2585 EFX_LOG(efx, "successfully restored PCI config\n");
2588 /* Assert that reset complete */
2589 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2590 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2591 rc = -ETIMEDOUT;
2592 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2593 goto fail5;
2595 EFX_LOG(efx, "hardware reset complete\n");
2597 return 0;
2599 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2600 fail2:
2601 fail3:
2602 pci_restore_state(efx->pci_dev);
2603 fail1:
2604 fail4:
2605 fail5:
2606 return rc;
2609 static void falcon_monitor(struct efx_nic *efx)
2611 bool link_changed;
2612 int rc;
2614 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2616 rc = falcon_board(efx)->type->monitor(efx);
2617 if (rc) {
2618 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
2619 (rc == -ERANGE) ? "reported fault" : "failed");
2620 efx->phy_mode |= PHY_MODE_LOW_POWER;
2621 rc = __efx_reconfigure_port(efx);
2622 WARN_ON(rc);
2625 if (LOOPBACK_INTERNAL(efx))
2626 link_changed = falcon_loopback_link_poll(efx);
2627 else
2628 link_changed = efx->phy_op->poll(efx);
2630 if (link_changed) {
2631 falcon_stop_nic_stats(efx);
2632 falcon_deconfigure_mac_wrapper(efx);
2634 falcon_switch_mac(efx);
2635 rc = efx->mac_op->reconfigure(efx);
2636 BUG_ON(rc);
2638 falcon_start_nic_stats(efx);
2640 efx_link_status_changed(efx);
2643 if (EFX_IS10G(efx))
2644 falcon_poll_xmac(efx);
2647 /* Zeroes out the SRAM contents. This routine must be called in
2648 * process context and is allowed to sleep.
2650 static int falcon_reset_sram(struct efx_nic *efx)
2652 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2653 int count;
2655 /* Set the SRAM wake/sleep GPIO appropriately. */
2656 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2657 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2658 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2659 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2661 /* Initiate SRAM reset */
2662 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2663 FRF_AZ_SRM_INIT_EN, 1,
2664 FRF_AZ_SRM_NB_SZ, 0);
2665 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2667 /* Wait for SRAM reset to complete */
2668 count = 0;
2669 do {
2670 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2672 /* SRAM reset is slow; expect around 16ms */
2673 schedule_timeout_uninterruptible(HZ / 50);
2675 /* Check for reset complete */
2676 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2677 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2678 EFX_LOG(efx, "SRAM reset complete\n");
2680 return 0;
2682 } while (++count < 20); /* wait upto 0.4 sec */
2684 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2685 return -ETIMEDOUT;
2688 static int falcon_spi_device_init(struct efx_nic *efx,
2689 struct efx_spi_device **spi_device_ret,
2690 unsigned int device_id, u32 device_type)
2692 struct efx_spi_device *spi_device;
2694 if (device_type != 0) {
2695 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2696 if (!spi_device)
2697 return -ENOMEM;
2698 spi_device->device_id = device_id;
2699 spi_device->size =
2700 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2701 spi_device->addr_len =
2702 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2703 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2704 spi_device->addr_len == 1);
2705 spi_device->erase_command =
2706 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2707 spi_device->erase_size =
2708 1 << SPI_DEV_TYPE_FIELD(device_type,
2709 SPI_DEV_TYPE_ERASE_SIZE);
2710 spi_device->block_size =
2711 1 << SPI_DEV_TYPE_FIELD(device_type,
2712 SPI_DEV_TYPE_BLOCK_SIZE);
2713 } else {
2714 spi_device = NULL;
2717 kfree(*spi_device_ret);
2718 *spi_device_ret = spi_device;
2719 return 0;
2723 static void falcon_remove_spi_devices(struct efx_nic *efx)
2725 kfree(efx->spi_eeprom);
2726 efx->spi_eeprom = NULL;
2727 kfree(efx->spi_flash);
2728 efx->spi_flash = NULL;
2731 /* Extract non-volatile configuration */
2732 static int falcon_probe_nvconfig(struct efx_nic *efx)
2734 struct falcon_nvconfig *nvconfig;
2735 int board_rev;
2736 int rc;
2738 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2739 if (!nvconfig)
2740 return -ENOMEM;
2742 rc = falcon_read_nvram(efx, nvconfig);
2743 if (rc == -EINVAL) {
2744 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2745 efx->phy_type = PHY_TYPE_NONE;
2746 efx->mdio.prtad = MDIO_PRTAD_NONE;
2747 board_rev = 0;
2748 rc = 0;
2749 } else if (rc) {
2750 goto fail1;
2751 } else {
2752 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2753 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2755 efx->phy_type = v2->port0_phy_type;
2756 efx->mdio.prtad = v2->port0_phy_addr;
2757 board_rev = le16_to_cpu(v2->board_revision);
2759 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2760 rc = falcon_spi_device_init(
2761 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2762 le32_to_cpu(v3->spi_device_type
2763 [FFE_AB_SPI_DEVICE_FLASH]));
2764 if (rc)
2765 goto fail2;
2766 rc = falcon_spi_device_init(
2767 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2768 le32_to_cpu(v3->spi_device_type
2769 [FFE_AB_SPI_DEVICE_EEPROM]));
2770 if (rc)
2771 goto fail2;
2775 /* Read the MAC addresses */
2776 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2778 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2780 falcon_probe_board(efx, board_rev);
2782 kfree(nvconfig);
2783 return 0;
2785 fail2:
2786 falcon_remove_spi_devices(efx);
2787 fail1:
2788 kfree(nvconfig);
2789 return rc;
2792 u32 efx_nic_fpga_ver(struct efx_nic *efx)
2794 efx_oword_t altera_build;
2796 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2797 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
2800 /* Probe all SPI devices on the NIC */
2801 static void falcon_probe_spi_devices(struct efx_nic *efx)
2803 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2804 int boot_dev;
2806 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2807 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2808 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2810 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2811 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2812 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2813 EFX_LOG(efx, "Booted from %s\n",
2814 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2815 } else {
2816 /* Disable VPD and set clock dividers to safe
2817 * values for initial programming. */
2818 boot_dev = -1;
2819 EFX_LOG(efx, "Booted from internal ASIC settings;"
2820 " setting SPI config\n");
2821 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2822 /* 125 MHz / 7 ~= 20 MHz */
2823 FRF_AB_EE_SF_CLOCK_DIV, 7,
2824 /* 125 MHz / 63 ~= 2 MHz */
2825 FRF_AB_EE_EE_CLOCK_DIV, 63);
2826 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2829 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2830 falcon_spi_device_init(efx, &efx->spi_flash,
2831 FFE_AB_SPI_DEVICE_FLASH,
2832 default_flash_type);
2833 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2834 falcon_spi_device_init(efx, &efx->spi_eeprom,
2835 FFE_AB_SPI_DEVICE_EEPROM,
2836 large_eeprom_type);
2839 static int falcon_probe_nic(struct efx_nic *efx)
2841 struct falcon_nic_data *nic_data;
2842 struct falcon_board *board;
2843 int rc;
2845 /* Allocate storage for hardware specific data */
2846 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2847 if (!nic_data)
2848 return -ENOMEM;
2849 efx->nic_data = nic_data;
2851 rc = -ENODEV;
2853 if (efx_nic_fpga_ver(efx) != 0) {
2854 EFX_ERR(efx, "Falcon FPGA not supported\n");
2855 goto fail1;
2858 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2859 efx_oword_t nic_stat;
2860 struct pci_dev *dev;
2861 u8 pci_rev = efx->pci_dev->revision;
2863 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2864 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2865 goto fail1;
2867 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2868 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2869 EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
2870 goto fail1;
2872 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2873 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2874 goto fail1;
2877 dev = pci_dev_get(efx->pci_dev);
2878 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2879 dev))) {
2880 if (dev->bus == efx->pci_dev->bus &&
2881 dev->devfn == efx->pci_dev->devfn + 1) {
2882 nic_data->pci_dev2 = dev;
2883 break;
2886 if (!nic_data->pci_dev2) {
2887 EFX_ERR(efx, "failed to find secondary function\n");
2888 rc = -ENODEV;
2889 goto fail2;
2893 /* Now we can reset the NIC */
2894 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2895 if (rc) {
2896 EFX_ERR(efx, "failed to reset NIC\n");
2897 goto fail3;
2900 /* Allocate memory for INT_KER */
2901 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2902 if (rc)
2903 goto fail4;
2904 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2906 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2907 (u64)efx->irq_status.dma_addr,
2908 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2910 falcon_probe_spi_devices(efx);
2912 /* Read in the non-volatile configuration */
2913 rc = falcon_probe_nvconfig(efx);
2914 if (rc)
2915 goto fail5;
2917 /* Initialise I2C adapter */
2918 board = falcon_board(efx);
2919 board->i2c_adap.owner = THIS_MODULE;
2920 board->i2c_data = falcon_i2c_bit_operations;
2921 board->i2c_data.data = efx;
2922 board->i2c_adap.algo_data = &board->i2c_data;
2923 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2924 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2925 sizeof(board->i2c_adap.name));
2926 rc = i2c_bit_add_bus(&board->i2c_adap);
2927 if (rc)
2928 goto fail5;
2930 rc = falcon_board(efx)->type->init(efx);
2931 if (rc) {
2932 EFX_ERR(efx, "failed to initialise board\n");
2933 goto fail6;
2936 nic_data->stats_disable_count = 1;
2937 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2938 (unsigned long)efx);
2940 return 0;
2942 fail6:
2943 BUG_ON(i2c_del_adapter(&board->i2c_adap));
2944 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2945 fail5:
2946 falcon_remove_spi_devices(efx);
2947 efx_nic_free_buffer(efx, &efx->irq_status);
2948 fail4:
2949 fail3:
2950 if (nic_data->pci_dev2) {
2951 pci_dev_put(nic_data->pci_dev2);
2952 nic_data->pci_dev2 = NULL;
2954 fail2:
2955 fail1:
2956 kfree(efx->nic_data);
2957 return rc;
2960 static void falcon_init_rx_cfg(struct efx_nic *efx)
2962 /* Prior to Siena the RX DMA engine will split each frame at
2963 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2964 * be so large that that never happens. */
2965 const unsigned huge_buf_size = (3 * 4096) >> 5;
2966 /* RX control FIFO thresholds (32 entries) */
2967 const unsigned ctrl_xon_thr = 20;
2968 const unsigned ctrl_xoff_thr = 25;
2969 /* RX data FIFO thresholds (256-byte units; size varies) */
2970 int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
2971 int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
2972 efx_oword_t reg;
2974 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2975 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2976 /* Data FIFO size is 5.5K */
2977 if (data_xon_thr < 0)
2978 data_xon_thr = 512 >> 8;
2979 if (data_xoff_thr < 0)
2980 data_xoff_thr = 2048 >> 8;
2981 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2982 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2983 huge_buf_size);
2984 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2985 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2986 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2987 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2988 } else {
2989 /* Data FIFO size is 80K; register fields moved */
2990 if (data_xon_thr < 0)
2991 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2992 if (data_xoff_thr < 0)
2993 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2994 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2995 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2996 huge_buf_size);
2997 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2998 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2999 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
3000 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
3001 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3003 /* Always enable XOFF signal from RX FIFO. We enable
3004 * or disable transmission of pause frames at the MAC. */
3005 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
3006 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3009 void efx_nic_init_common(struct efx_nic *efx)
3011 efx_oword_t temp;
3013 /* Set positions of descriptor caches in SRAM. */
3014 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
3015 efx->type->tx_dc_base / 8);
3016 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3017 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
3018 efx->type->rx_dc_base / 8);
3019 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3021 /* Set TX descriptor cache size. */
3022 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3023 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3024 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3026 /* Set RX descriptor cache size. Set low watermark to size-8, as
3027 * this allows most efficient prefetching.
3029 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3030 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3031 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3032 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3033 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3035 /* Program INT_KER address */
3036 EFX_POPULATE_OWORD_2(temp,
3037 FRF_AZ_NORM_INT_VEC_DIS_KER,
3038 EFX_INT_MODE_USE_MSI(efx),
3039 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
3040 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
3042 /* Enable all the genuinely fatal interrupts. (They are still
3043 * masked by the overall interrupt mask, controlled by
3044 * falcon_interrupts()).
3046 * Note: All other fatal interrupts are enabled
3048 EFX_POPULATE_OWORD_3(temp,
3049 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3050 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3051 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3052 EFX_INVERT_OWORD(temp);
3053 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3055 efx_setup_rss_indir_table(efx);
3057 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3058 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3060 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3061 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3062 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3063 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3064 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3065 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3066 /* Enable SW_EV to inherit in char driver - assume harmless here */
3067 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3068 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3069 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3070 /* Squash TX of packets of 16 bytes or less */
3071 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
3072 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3073 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3076 /* This call performs hardware-specific global initialisation, such as
3077 * defining the descriptor cache sizes and number of RSS channels.
3078 * It does not set up any buffers, descriptor rings or event queues.
3080 static int falcon_init_nic(struct efx_nic *efx)
3082 efx_oword_t temp;
3083 int rc;
3085 /* Use on-chip SRAM */
3086 efx_reado(efx, &temp, FR_AB_NIC_STAT);
3087 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3088 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3090 /* Set the source of the GMAC clock */
3091 if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
3092 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3093 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3094 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3097 /* Select the correct MAC */
3098 falcon_clock_mac(efx);
3100 rc = falcon_reset_sram(efx);
3101 if (rc)
3102 return rc;
3104 /* Clear the parity enables on the TX data fifos as
3105 * they produce false parity errors because of timing issues
3107 if (EFX_WORKAROUND_5129(efx)) {
3108 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3109 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3110 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3113 if (EFX_WORKAROUND_7244(efx)) {
3114 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3115 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3116 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3117 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3118 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3119 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3122 /* XXX This is documented only for Falcon A0/A1 */
3123 /* Setup RX. Wait for descriptor is broken and must
3124 * be disabled. RXDP recovery shouldn't be needed, but is.
3126 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3127 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3128 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3129 if (EFX_WORKAROUND_5583(efx))
3130 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3131 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3133 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3134 * descriptors (which is bad).
3136 efx_reado(efx, &temp, FR_AZ_TX_CFG);
3137 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3138 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3140 falcon_init_rx_cfg(efx);
3142 /* Set destination of both TX and RX Flush events */
3143 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
3144 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3145 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3148 efx_nic_init_common(efx);
3150 return 0;
3153 static void falcon_remove_nic(struct efx_nic *efx)
3155 struct falcon_nic_data *nic_data = efx->nic_data;
3156 struct falcon_board *board = falcon_board(efx);
3157 int rc;
3159 board->type->fini(efx);
3161 /* Remove I2C adapter and clear it in preparation for a retry */
3162 rc = i2c_del_adapter(&board->i2c_adap);
3163 BUG_ON(rc);
3164 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3166 falcon_remove_spi_devices(efx);
3167 efx_nic_free_buffer(efx, &efx->irq_status);
3169 falcon_reset_hw(efx, RESET_TYPE_ALL);
3171 /* Release the second function after the reset */
3172 if (nic_data->pci_dev2) {
3173 pci_dev_put(nic_data->pci_dev2);
3174 nic_data->pci_dev2 = NULL;
3177 /* Tear down the private nic state */
3178 kfree(efx->nic_data);
3179 efx->nic_data = NULL;
3182 static void falcon_update_nic_stats(struct efx_nic *efx)
3184 struct falcon_nic_data *nic_data = efx->nic_data;
3185 efx_oword_t cnt;
3187 if (nic_data->stats_disable_count)
3188 return;
3190 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3191 efx->n_rx_nodesc_drop_cnt +=
3192 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3194 if (nic_data->stats_pending &&
3195 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3196 nic_data->stats_pending = false;
3197 rmb(); /* read the done flag before the stats */
3198 efx->mac_op->update_stats(efx);
3202 void falcon_start_nic_stats(struct efx_nic *efx)
3204 struct falcon_nic_data *nic_data = efx->nic_data;
3206 spin_lock_bh(&efx->stats_lock);
3207 if (--nic_data->stats_disable_count == 0)
3208 falcon_stats_request(efx);
3209 spin_unlock_bh(&efx->stats_lock);
3212 void falcon_stop_nic_stats(struct efx_nic *efx)
3214 struct falcon_nic_data *nic_data = efx->nic_data;
3215 int i;
3217 might_sleep();
3219 spin_lock_bh(&efx->stats_lock);
3220 ++nic_data->stats_disable_count;
3221 spin_unlock_bh(&efx->stats_lock);
3223 del_timer_sync(&nic_data->stats_timer);
3225 /* Wait enough time for the most recent transfer to
3226 * complete. */
3227 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3228 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3229 break;
3230 msleep(1);
3233 spin_lock_bh(&efx->stats_lock);
3234 falcon_stats_complete(efx);
3235 spin_unlock_bh(&efx->stats_lock);
3238 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
3240 falcon_board(efx)->type->set_id_led(efx, mode);
3243 /**************************************************************************
3245 * Wake on LAN
3247 **************************************************************************
3250 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
3252 wol->supported = 0;
3253 wol->wolopts = 0;
3254 memset(&wol->sopass, 0, sizeof(wol->sopass));
3257 static int falcon_set_wol(struct efx_nic *efx, u32 type)
3259 if (type != 0)
3260 return -EINVAL;
3261 return 0;
3264 /**************************************************************************
3266 * Revision-dependent attributes used by efx.c
3268 **************************************************************************
3271 struct efx_nic_type falcon_a1_nic_type = {
3272 .probe = falcon_probe_nic,
3273 .remove = falcon_remove_nic,
3274 .init = falcon_init_nic,
3275 .fini = efx_port_dummy_op_void,
3276 .monitor = falcon_monitor,
3277 .reset = falcon_reset_hw,
3278 .probe_port = falcon_probe_port,
3279 .remove_port = falcon_remove_port,
3280 .prepare_flush = falcon_prepare_flush,
3281 .update_stats = falcon_update_nic_stats,
3282 .start_stats = falcon_start_nic_stats,
3283 .stop_stats = falcon_stop_nic_stats,
3284 .set_id_led = falcon_set_id_led,
3285 .push_irq_moderation = falcon_push_irq_moderation,
3286 .push_multicast_hash = falcon_push_multicast_hash,
3287 .reconfigure_port = falcon_reconfigure_port,
3288 .get_wol = falcon_get_wol,
3289 .set_wol = falcon_set_wol,
3290 .resume_wol = efx_port_dummy_op_void,
3291 .test_nvram = falcon_test_nvram,
3292 .default_mac_ops = &falcon_xmac_operations,
3294 .revision = EFX_REV_FALCON_A1,
3295 .mem_map_size = 0x20000,
3296 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3297 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3298 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3299 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3300 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3301 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3302 .rx_buffer_padding = 0x24,
3303 .max_interrupt_mode = EFX_INT_MODE_MSI,
3304 .phys_addr_channels = 4,
3305 .tx_dc_base = 0x130000,
3306 .rx_dc_base = 0x100000,
3307 .reset_world_flags = ETH_RESET_IRQ,
3310 struct efx_nic_type falcon_b0_nic_type = {
3311 .probe = falcon_probe_nic,
3312 .remove = falcon_remove_nic,
3313 .init = falcon_init_nic,
3314 .fini = efx_port_dummy_op_void,
3315 .monitor = falcon_monitor,
3316 .reset = falcon_reset_hw,
3317 .probe_port = falcon_probe_port,
3318 .remove_port = falcon_remove_port,
3319 .prepare_flush = falcon_prepare_flush,
3320 .update_stats = falcon_update_nic_stats,
3321 .start_stats = falcon_start_nic_stats,
3322 .stop_stats = falcon_stop_nic_stats,
3323 .set_id_led = falcon_set_id_led,
3324 .push_irq_moderation = falcon_push_irq_moderation,
3325 .push_multicast_hash = falcon_push_multicast_hash,
3326 .reconfigure_port = falcon_reconfigure_port,
3327 .get_wol = falcon_get_wol,
3328 .set_wol = falcon_set_wol,
3329 .resume_wol = efx_port_dummy_op_void,
3330 .test_registers = falcon_b0_test_registers,
3331 .test_nvram = falcon_test_nvram,
3332 .default_mac_ops = &falcon_xmac_operations,
3334 .revision = EFX_REV_FALCON_B0,
3335 /* Map everything up to and including the RSS indirection
3336 * table. Don't map MSI-X table, MSI-X PBA since Linux
3337 * requires that they not be mapped. */
3338 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3339 FR_BZ_RX_INDIRECTION_TBL_STEP *
3340 FR_BZ_RX_INDIRECTION_TBL_ROWS),
3341 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3342 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3343 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3344 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3345 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3346 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3347 .rx_buffer_padding = 0,
3348 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3349 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3350 * interrupt handler only supports 32
3351 * channels */
3352 .tx_dc_base = 0x130000,
3353 .rx_dc_base = 0x100000,
3354 .reset_world_flags = ETH_RESET_IRQ,