net: speedup sock_recv_ts_and_drops()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blobcb7c1f6c0d6e62a9c930322b6d780ae7c0913eb9
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/sockios.h>
105 #include <linux/atalk.h>
107 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
108 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
109 unsigned long nr_segs, loff_t pos);
110 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 static int sock_close(struct inode *inode, struct file *file);
115 static unsigned int sock_poll(struct file *file,
116 struct poll_table_struct *wait);
117 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
118 #ifdef CONFIG_COMPAT
119 static long compat_sock_ioctl(struct file *file,
120 unsigned int cmd, unsigned long arg);
121 #endif
122 static int sock_fasync(int fd, struct file *filp, int on);
123 static ssize_t sock_sendpage(struct file *file, struct page *page,
124 int offset, size_t size, loff_t *ppos, int more);
125 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
126 struct pipe_inode_info *pipe, size_t len,
127 unsigned int flags);
130 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
131 * in the operation structures but are done directly via the socketcall() multiplexor.
134 static const struct file_operations socket_file_ops = {
135 .owner = THIS_MODULE,
136 .llseek = no_llseek,
137 .aio_read = sock_aio_read,
138 .aio_write = sock_aio_write,
139 .poll = sock_poll,
140 .unlocked_ioctl = sock_ioctl,
141 #ifdef CONFIG_COMPAT
142 .compat_ioctl = compat_sock_ioctl,
143 #endif
144 .mmap = sock_mmap,
145 .open = sock_no_open, /* special open code to disallow open via /proc */
146 .release = sock_close,
147 .fasync = sock_fasync,
148 .sendpage = sock_sendpage,
149 .splice_write = generic_splice_sendpage,
150 .splice_read = sock_splice_read,
154 * The protocol list. Each protocol is registered in here.
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
161 * Statistics counters of the socket lists
164 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
167 * Support routines.
168 * Move socket addresses back and forth across the kernel/user
169 * divide and look after the messy bits.
172 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
173 16 for IP, 16 for IPX,
174 24 for IPv6,
175 about 80 for AX.25
176 must be at least one bigger than
177 the AF_UNIX size (see net/unix/af_unix.c
178 :unix_mkname()).
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
221 int __user *ulen)
223 int err;
224 int len;
226 err = get_user(len, ulen);
227 if (err)
228 return err;
229 if (len > klen)
230 len = klen;
231 if (len < 0 || len > sizeof(struct sockaddr_storage))
232 return -EINVAL;
233 if (len) {
234 if (audit_sockaddr(klen, kaddr))
235 return -ENOMEM;
236 if (copy_to_user(uaddr, kaddr, len))
237 return -EFAULT;
240 * "fromlen shall refer to the value before truncation.."
241 * 1003.1g
243 return __put_user(klen, ulen);
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 static struct inode *sock_alloc_inode(struct super_block *sb)
250 struct socket_alloc *ei;
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 init_waitqueue_head(&ei->socket.wait);
257 ei->socket.fasync_list = NULL;
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
264 return &ei->vfs_inode;
267 static void sock_destroy_inode(struct inode *inode)
269 kmem_cache_free(sock_inode_cachep,
270 container_of(inode, struct socket_alloc, vfs_inode));
273 static void init_once(void *foo)
275 struct socket_alloc *ei = (struct socket_alloc *)foo;
277 inode_init_once(&ei->vfs_inode);
280 static int init_inodecache(void)
282 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
283 sizeof(struct socket_alloc),
285 (SLAB_HWCACHE_ALIGN |
286 SLAB_RECLAIM_ACCOUNT |
287 SLAB_MEM_SPREAD),
288 init_once);
289 if (sock_inode_cachep == NULL)
290 return -ENOMEM;
291 return 0;
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode =sock_destroy_inode,
297 .statfs = simple_statfs,
300 static int sockfs_get_sb(struct file_system_type *fs_type,
301 int flags, const char *dev_name, void *data,
302 struct vfsmount *mnt)
304 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
305 mnt);
308 static struct vfsmount *sock_mnt __read_mostly;
310 static struct file_system_type sock_fs_type = {
311 .name = "sockfs",
312 .get_sb = sockfs_get_sb,
313 .kill_sb = kill_anon_super,
317 * sockfs_dname() is called from d_path().
319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
321 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 dentry->d_inode->i_ino);
325 static const struct dentry_operations sockfs_dentry_operations = {
326 .d_dname = sockfs_dname,
330 * Obtains the first available file descriptor and sets it up for use.
332 * These functions create file structures and maps them to fd space
333 * of the current process. On success it returns file descriptor
334 * and file struct implicitly stored in sock->file.
335 * Note that another thread may close file descriptor before we return
336 * from this function. We use the fact that now we do not refer
337 * to socket after mapping. If one day we will need it, this
338 * function will increment ref. count on file by 1.
340 * In any case returned fd MAY BE not valid!
341 * This race condition is unavoidable
342 * with shared fd spaces, we cannot solve it inside kernel,
343 * but we take care of internal coherence yet.
346 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
348 struct qstr name = { .name = "" };
349 struct path path;
350 struct file *file;
351 int fd;
353 fd = get_unused_fd_flags(flags);
354 if (unlikely(fd < 0))
355 return fd;
357 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
358 if (unlikely(!path.dentry)) {
359 put_unused_fd(fd);
360 return -ENOMEM;
362 path.mnt = mntget(sock_mnt);
364 path.dentry->d_op = &sockfs_dentry_operations;
365 d_instantiate(path.dentry, SOCK_INODE(sock));
366 SOCK_INODE(sock)->i_fop = &socket_file_ops;
368 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
369 &socket_file_ops);
370 if (unlikely(!file)) {
371 /* drop dentry, keep inode */
372 atomic_inc(&path.dentry->d_inode->i_count);
373 path_put(&path);
374 put_unused_fd(fd);
375 return -ENFILE;
378 sock->file = file;
379 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
380 file->f_pos = 0;
381 file->private_data = sock;
383 *f = file;
384 return fd;
387 int sock_map_fd(struct socket *sock, int flags)
389 struct file *newfile;
390 int fd = sock_alloc_file(sock, &newfile, flags);
392 if (likely(fd >= 0))
393 fd_install(fd, newfile);
395 return fd;
398 static struct socket *sock_from_file(struct file *file, int *err)
400 if (file->f_op == &socket_file_ops)
401 return file->private_data; /* set in sock_map_fd */
403 *err = -ENOTSOCK;
404 return NULL;
408 * sockfd_lookup - Go from a file number to its socket slot
409 * @fd: file handle
410 * @err: pointer to an error code return
412 * The file handle passed in is locked and the socket it is bound
413 * too is returned. If an error occurs the err pointer is overwritten
414 * with a negative errno code and NULL is returned. The function checks
415 * for both invalid handles and passing a handle which is not a socket.
417 * On a success the socket object pointer is returned.
420 struct socket *sockfd_lookup(int fd, int *err)
422 struct file *file;
423 struct socket *sock;
425 file = fget(fd);
426 if (!file) {
427 *err = -EBADF;
428 return NULL;
431 sock = sock_from_file(file, err);
432 if (!sock)
433 fput(file);
434 return sock;
437 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
439 struct file *file;
440 struct socket *sock;
442 *err = -EBADF;
443 file = fget_light(fd, fput_needed);
444 if (file) {
445 sock = sock_from_file(file, err);
446 if (sock)
447 return sock;
448 fput_light(file, *fput_needed);
450 return NULL;
454 * sock_alloc - allocate a socket
456 * Allocate a new inode and socket object. The two are bound together
457 * and initialised. The socket is then returned. If we are out of inodes
458 * NULL is returned.
461 static struct socket *sock_alloc(void)
463 struct inode *inode;
464 struct socket *sock;
466 inode = new_inode(sock_mnt->mnt_sb);
467 if (!inode)
468 return NULL;
470 sock = SOCKET_I(inode);
472 kmemcheck_annotate_bitfield(sock, type);
473 inode->i_mode = S_IFSOCK | S_IRWXUGO;
474 inode->i_uid = current_fsuid();
475 inode->i_gid = current_fsgid();
477 percpu_add(sockets_in_use, 1);
478 return sock;
482 * In theory you can't get an open on this inode, but /proc provides
483 * a back door. Remember to keep it shut otherwise you'll let the
484 * creepy crawlies in.
487 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
489 return -ENXIO;
492 const struct file_operations bad_sock_fops = {
493 .owner = THIS_MODULE,
494 .open = sock_no_open,
498 * sock_release - close a socket
499 * @sock: socket to close
501 * The socket is released from the protocol stack if it has a release
502 * callback, and the inode is then released if the socket is bound to
503 * an inode not a file.
506 void sock_release(struct socket *sock)
508 if (sock->ops) {
509 struct module *owner = sock->ops->owner;
511 sock->ops->release(sock);
512 sock->ops = NULL;
513 module_put(owner);
516 if (sock->fasync_list)
517 printk(KERN_ERR "sock_release: fasync list not empty!\n");
519 percpu_sub(sockets_in_use, 1);
520 if (!sock->file) {
521 iput(SOCK_INODE(sock));
522 return;
524 sock->file = NULL;
527 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
528 union skb_shared_tx *shtx)
530 shtx->flags = 0;
531 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
532 shtx->hardware = 1;
533 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
534 shtx->software = 1;
535 return 0;
537 EXPORT_SYMBOL(sock_tx_timestamp);
539 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
540 struct msghdr *msg, size_t size)
542 struct sock_iocb *si = kiocb_to_siocb(iocb);
543 int err;
545 si->sock = sock;
546 si->scm = NULL;
547 si->msg = msg;
548 si->size = size;
550 err = security_socket_sendmsg(sock, msg, size);
551 if (err)
552 return err;
554 return sock->ops->sendmsg(iocb, sock, msg, size);
557 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
559 struct kiocb iocb;
560 struct sock_iocb siocb;
561 int ret;
563 init_sync_kiocb(&iocb, NULL);
564 iocb.private = &siocb;
565 ret = __sock_sendmsg(&iocb, sock, msg, size);
566 if (-EIOCBQUEUED == ret)
567 ret = wait_on_sync_kiocb(&iocb);
568 return ret;
571 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
572 struct kvec *vec, size_t num, size_t size)
574 mm_segment_t oldfs = get_fs();
575 int result;
577 set_fs(KERNEL_DS);
579 * the following is safe, since for compiler definitions of kvec and
580 * iovec are identical, yielding the same in-core layout and alignment
582 msg->msg_iov = (struct iovec *)vec;
583 msg->msg_iovlen = num;
584 result = sock_sendmsg(sock, msg, size);
585 set_fs(oldfs);
586 return result;
589 static int ktime2ts(ktime_t kt, struct timespec *ts)
591 if (kt.tv64) {
592 *ts = ktime_to_timespec(kt);
593 return 1;
594 } else {
595 return 0;
600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 struct sk_buff *skb)
605 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
606 struct timespec ts[3];
607 int empty = 1;
608 struct skb_shared_hwtstamps *shhwtstamps =
609 skb_hwtstamps(skb);
611 /* Race occurred between timestamp enabling and packet
612 receiving. Fill in the current time for now. */
613 if (need_software_tstamp && skb->tstamp.tv64 == 0)
614 __net_timestamp(skb);
616 if (need_software_tstamp) {
617 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
618 struct timeval tv;
619 skb_get_timestamp(skb, &tv);
620 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
621 sizeof(tv), &tv);
622 } else {
623 skb_get_timestampns(skb, &ts[0]);
624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
625 sizeof(ts[0]), &ts[0]);
630 memset(ts, 0, sizeof(ts));
631 if (skb->tstamp.tv64 &&
632 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
633 skb_get_timestampns(skb, ts + 0);
634 empty = 0;
636 if (shhwtstamps) {
637 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
638 ktime2ts(shhwtstamps->syststamp, ts + 1))
639 empty = 0;
640 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
641 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
642 empty = 0;
644 if (!empty)
645 put_cmsg(msg, SOL_SOCKET,
646 SCM_TIMESTAMPING, sizeof(ts), &ts);
649 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
651 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
653 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
654 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
655 sizeof(__u32), &skb->dropcount);
658 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
659 struct sk_buff *skb)
661 sock_recv_timestamp(msg, sk, skb);
662 sock_recv_drops(msg, sk, skb);
664 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
666 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
667 struct msghdr *msg, size_t size, int flags)
669 struct sock_iocb *si = kiocb_to_siocb(iocb);
671 si->sock = sock;
672 si->scm = NULL;
673 si->msg = msg;
674 si->size = size;
675 si->flags = flags;
677 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
680 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
681 struct msghdr *msg, size_t size, int flags)
683 int err = security_socket_recvmsg(sock, msg, size, flags);
685 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
688 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
689 size_t size, int flags)
691 struct kiocb iocb;
692 struct sock_iocb siocb;
693 int ret;
695 init_sync_kiocb(&iocb, NULL);
696 iocb.private = &siocb;
697 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
698 if (-EIOCBQUEUED == ret)
699 ret = wait_on_sync_kiocb(&iocb);
700 return ret;
703 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
704 size_t size, int flags)
706 struct kiocb iocb;
707 struct sock_iocb siocb;
708 int ret;
710 init_sync_kiocb(&iocb, NULL);
711 iocb.private = &siocb;
712 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
713 if (-EIOCBQUEUED == ret)
714 ret = wait_on_sync_kiocb(&iocb);
715 return ret;
718 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
719 struct kvec *vec, size_t num, size_t size, int flags)
721 mm_segment_t oldfs = get_fs();
722 int result;
724 set_fs(KERNEL_DS);
726 * the following is safe, since for compiler definitions of kvec and
727 * iovec are identical, yielding the same in-core layout and alignment
729 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
730 result = sock_recvmsg(sock, msg, size, flags);
731 set_fs(oldfs);
732 return result;
735 static void sock_aio_dtor(struct kiocb *iocb)
737 kfree(iocb->private);
740 static ssize_t sock_sendpage(struct file *file, struct page *page,
741 int offset, size_t size, loff_t *ppos, int more)
743 struct socket *sock;
744 int flags;
746 sock = file->private_data;
748 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
749 if (more)
750 flags |= MSG_MORE;
752 return kernel_sendpage(sock, page, offset, size, flags);
755 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
756 struct pipe_inode_info *pipe, size_t len,
757 unsigned int flags)
759 struct socket *sock = file->private_data;
761 if (unlikely(!sock->ops->splice_read))
762 return -EINVAL;
764 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
767 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
768 struct sock_iocb *siocb)
770 if (!is_sync_kiocb(iocb)) {
771 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
772 if (!siocb)
773 return NULL;
774 iocb->ki_dtor = sock_aio_dtor;
777 siocb->kiocb = iocb;
778 iocb->private = siocb;
779 return siocb;
782 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
783 struct file *file, const struct iovec *iov,
784 unsigned long nr_segs)
786 struct socket *sock = file->private_data;
787 size_t size = 0;
788 int i;
790 for (i = 0; i < nr_segs; i++)
791 size += iov[i].iov_len;
793 msg->msg_name = NULL;
794 msg->msg_namelen = 0;
795 msg->msg_control = NULL;
796 msg->msg_controllen = 0;
797 msg->msg_iov = (struct iovec *)iov;
798 msg->msg_iovlen = nr_segs;
799 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
801 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
804 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
805 unsigned long nr_segs, loff_t pos)
807 struct sock_iocb siocb, *x;
809 if (pos != 0)
810 return -ESPIPE;
812 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
813 return 0;
816 x = alloc_sock_iocb(iocb, &siocb);
817 if (!x)
818 return -ENOMEM;
819 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
822 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
823 struct file *file, const struct iovec *iov,
824 unsigned long nr_segs)
826 struct socket *sock = file->private_data;
827 size_t size = 0;
828 int i;
830 for (i = 0; i < nr_segs; i++)
831 size += iov[i].iov_len;
833 msg->msg_name = NULL;
834 msg->msg_namelen = 0;
835 msg->msg_control = NULL;
836 msg->msg_controllen = 0;
837 msg->msg_iov = (struct iovec *)iov;
838 msg->msg_iovlen = nr_segs;
839 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
840 if (sock->type == SOCK_SEQPACKET)
841 msg->msg_flags |= MSG_EOR;
843 return __sock_sendmsg(iocb, sock, msg, size);
846 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
847 unsigned long nr_segs, loff_t pos)
849 struct sock_iocb siocb, *x;
851 if (pos != 0)
852 return -ESPIPE;
854 x = alloc_sock_iocb(iocb, &siocb);
855 if (!x)
856 return -ENOMEM;
858 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
862 * Atomic setting of ioctl hooks to avoid race
863 * with module unload.
866 static DEFINE_MUTEX(br_ioctl_mutex);
867 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
869 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871 mutex_lock(&br_ioctl_mutex);
872 br_ioctl_hook = hook;
873 mutex_unlock(&br_ioctl_mutex);
876 EXPORT_SYMBOL(brioctl_set);
878 static DEFINE_MUTEX(vlan_ioctl_mutex);
879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
883 mutex_lock(&vlan_ioctl_mutex);
884 vlan_ioctl_hook = hook;
885 mutex_unlock(&vlan_ioctl_mutex);
888 EXPORT_SYMBOL(vlan_ioctl_set);
890 static DEFINE_MUTEX(dlci_ioctl_mutex);
891 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
893 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
895 mutex_lock(&dlci_ioctl_mutex);
896 dlci_ioctl_hook = hook;
897 mutex_unlock(&dlci_ioctl_mutex);
900 EXPORT_SYMBOL(dlci_ioctl_set);
902 static long sock_do_ioctl(struct net *net, struct socket *sock,
903 unsigned int cmd, unsigned long arg)
905 int err;
906 void __user *argp = (void __user *)arg;
908 err = sock->ops->ioctl(sock, cmd, arg);
911 * If this ioctl is unknown try to hand it down
912 * to the NIC driver.
914 if (err == -ENOIOCTLCMD)
915 err = dev_ioctl(net, cmd, argp);
917 return err;
921 * With an ioctl, arg may well be a user mode pointer, but we don't know
922 * what to do with it - that's up to the protocol still.
925 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
927 struct socket *sock;
928 struct sock *sk;
929 void __user *argp = (void __user *)arg;
930 int pid, err;
931 struct net *net;
933 sock = file->private_data;
934 sk = sock->sk;
935 net = sock_net(sk);
936 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
937 err = dev_ioctl(net, cmd, argp);
938 } else
939 #ifdef CONFIG_WEXT_CORE
940 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
941 err = dev_ioctl(net, cmd, argp);
942 } else
943 #endif
944 switch (cmd) {
945 case FIOSETOWN:
946 case SIOCSPGRP:
947 err = -EFAULT;
948 if (get_user(pid, (int __user *)argp))
949 break;
950 err = f_setown(sock->file, pid, 1);
951 break;
952 case FIOGETOWN:
953 case SIOCGPGRP:
954 err = put_user(f_getown(sock->file),
955 (int __user *)argp);
956 break;
957 case SIOCGIFBR:
958 case SIOCSIFBR:
959 case SIOCBRADDBR:
960 case SIOCBRDELBR:
961 err = -ENOPKG;
962 if (!br_ioctl_hook)
963 request_module("bridge");
965 mutex_lock(&br_ioctl_mutex);
966 if (br_ioctl_hook)
967 err = br_ioctl_hook(net, cmd, argp);
968 mutex_unlock(&br_ioctl_mutex);
969 break;
970 case SIOCGIFVLAN:
971 case SIOCSIFVLAN:
972 err = -ENOPKG;
973 if (!vlan_ioctl_hook)
974 request_module("8021q");
976 mutex_lock(&vlan_ioctl_mutex);
977 if (vlan_ioctl_hook)
978 err = vlan_ioctl_hook(net, argp);
979 mutex_unlock(&vlan_ioctl_mutex);
980 break;
981 case SIOCADDDLCI:
982 case SIOCDELDLCI:
983 err = -ENOPKG;
984 if (!dlci_ioctl_hook)
985 request_module("dlci");
987 mutex_lock(&dlci_ioctl_mutex);
988 if (dlci_ioctl_hook)
989 err = dlci_ioctl_hook(cmd, argp);
990 mutex_unlock(&dlci_ioctl_mutex);
991 break;
992 default:
993 err = sock_do_ioctl(net, sock, cmd, arg);
994 break;
996 return err;
999 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1001 int err;
1002 struct socket *sock = NULL;
1004 err = security_socket_create(family, type, protocol, 1);
1005 if (err)
1006 goto out;
1008 sock = sock_alloc();
1009 if (!sock) {
1010 err = -ENOMEM;
1011 goto out;
1014 sock->type = type;
1015 err = security_socket_post_create(sock, family, type, protocol, 1);
1016 if (err)
1017 goto out_release;
1019 out:
1020 *res = sock;
1021 return err;
1022 out_release:
1023 sock_release(sock);
1024 sock = NULL;
1025 goto out;
1028 /* No kernel lock held - perfect */
1029 static unsigned int sock_poll(struct file *file, poll_table *wait)
1031 struct socket *sock;
1034 * We can't return errors to poll, so it's either yes or no.
1036 sock = file->private_data;
1037 return sock->ops->poll(file, sock, wait);
1040 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1042 struct socket *sock = file->private_data;
1044 return sock->ops->mmap(file, sock, vma);
1047 static int sock_close(struct inode *inode, struct file *filp)
1050 * It was possible the inode is NULL we were
1051 * closing an unfinished socket.
1054 if (!inode) {
1055 printk(KERN_DEBUG "sock_close: NULL inode\n");
1056 return 0;
1058 sock_release(SOCKET_I(inode));
1059 return 0;
1063 * Update the socket async list
1065 * Fasync_list locking strategy.
1067 * 1. fasync_list is modified only under process context socket lock
1068 * i.e. under semaphore.
1069 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1070 * or under socket lock
1073 static int sock_fasync(int fd, struct file *filp, int on)
1075 struct socket *sock = filp->private_data;
1076 struct sock *sk = sock->sk;
1078 if (sk == NULL)
1079 return -EINVAL;
1081 lock_sock(sk);
1083 fasync_helper(fd, filp, on, &sock->fasync_list);
1085 if (!sock->fasync_list)
1086 sock_reset_flag(sk, SOCK_FASYNC);
1087 else
1088 sock_set_flag(sk, SOCK_FASYNC);
1090 release_sock(sk);
1091 return 0;
1094 /* This function may be called only under socket lock or callback_lock */
1096 int sock_wake_async(struct socket *sock, int how, int band)
1098 if (!sock || !sock->fasync_list)
1099 return -1;
1100 switch (how) {
1101 case SOCK_WAKE_WAITD:
1102 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1103 break;
1104 goto call_kill;
1105 case SOCK_WAKE_SPACE:
1106 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1107 break;
1108 /* fall through */
1109 case SOCK_WAKE_IO:
1110 call_kill:
1111 kill_fasync(&sock->fasync_list, SIGIO, band);
1112 break;
1113 case SOCK_WAKE_URG:
1114 kill_fasync(&sock->fasync_list, SIGURG, band);
1116 return 0;
1119 static int __sock_create(struct net *net, int family, int type, int protocol,
1120 struct socket **res, int kern)
1122 int err;
1123 struct socket *sock;
1124 const struct net_proto_family *pf;
1127 * Check protocol is in range
1129 if (family < 0 || family >= NPROTO)
1130 return -EAFNOSUPPORT;
1131 if (type < 0 || type >= SOCK_MAX)
1132 return -EINVAL;
1134 /* Compatibility.
1136 This uglymoron is moved from INET layer to here to avoid
1137 deadlock in module load.
1139 if (family == PF_INET && type == SOCK_PACKET) {
1140 static int warned;
1141 if (!warned) {
1142 warned = 1;
1143 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1144 current->comm);
1146 family = PF_PACKET;
1149 err = security_socket_create(family, type, protocol, kern);
1150 if (err)
1151 return err;
1154 * Allocate the socket and allow the family to set things up. if
1155 * the protocol is 0, the family is instructed to select an appropriate
1156 * default.
1158 sock = sock_alloc();
1159 if (!sock) {
1160 if (net_ratelimit())
1161 printk(KERN_WARNING "socket: no more sockets\n");
1162 return -ENFILE; /* Not exactly a match, but its the
1163 closest posix thing */
1166 sock->type = type;
1168 #ifdef CONFIG_MODULES
1169 /* Attempt to load a protocol module if the find failed.
1171 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1172 * requested real, full-featured networking support upon configuration.
1173 * Otherwise module support will break!
1175 if (net_families[family] == NULL)
1176 request_module("net-pf-%d", family);
1177 #endif
1179 rcu_read_lock();
1180 pf = rcu_dereference(net_families[family]);
1181 err = -EAFNOSUPPORT;
1182 if (!pf)
1183 goto out_release;
1186 * We will call the ->create function, that possibly is in a loadable
1187 * module, so we have to bump that loadable module refcnt first.
1189 if (!try_module_get(pf->owner))
1190 goto out_release;
1192 /* Now protected by module ref count */
1193 rcu_read_unlock();
1195 err = pf->create(net, sock, protocol, kern);
1196 if (err < 0)
1197 goto out_module_put;
1200 * Now to bump the refcnt of the [loadable] module that owns this
1201 * socket at sock_release time we decrement its refcnt.
1203 if (!try_module_get(sock->ops->owner))
1204 goto out_module_busy;
1207 * Now that we're done with the ->create function, the [loadable]
1208 * module can have its refcnt decremented
1210 module_put(pf->owner);
1211 err = security_socket_post_create(sock, family, type, protocol, kern);
1212 if (err)
1213 goto out_sock_release;
1214 *res = sock;
1216 return 0;
1218 out_module_busy:
1219 err = -EAFNOSUPPORT;
1220 out_module_put:
1221 sock->ops = NULL;
1222 module_put(pf->owner);
1223 out_sock_release:
1224 sock_release(sock);
1225 return err;
1227 out_release:
1228 rcu_read_unlock();
1229 goto out_sock_release;
1232 int sock_create(int family, int type, int protocol, struct socket **res)
1234 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1237 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1239 return __sock_create(&init_net, family, type, protocol, res, 1);
1242 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1244 int retval;
1245 struct socket *sock;
1246 int flags;
1248 /* Check the SOCK_* constants for consistency. */
1249 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1250 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1251 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1252 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1254 flags = type & ~SOCK_TYPE_MASK;
1255 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1256 return -EINVAL;
1257 type &= SOCK_TYPE_MASK;
1259 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1260 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1262 retval = sock_create(family, type, protocol, &sock);
1263 if (retval < 0)
1264 goto out;
1266 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1267 if (retval < 0)
1268 goto out_release;
1270 out:
1271 /* It may be already another descriptor 8) Not kernel problem. */
1272 return retval;
1274 out_release:
1275 sock_release(sock);
1276 return retval;
1280 * Create a pair of connected sockets.
1283 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1284 int __user *, usockvec)
1286 struct socket *sock1, *sock2;
1287 int fd1, fd2, err;
1288 struct file *newfile1, *newfile2;
1289 int flags;
1291 flags = type & ~SOCK_TYPE_MASK;
1292 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1293 return -EINVAL;
1294 type &= SOCK_TYPE_MASK;
1296 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1297 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1300 * Obtain the first socket and check if the underlying protocol
1301 * supports the socketpair call.
1304 err = sock_create(family, type, protocol, &sock1);
1305 if (err < 0)
1306 goto out;
1308 err = sock_create(family, type, protocol, &sock2);
1309 if (err < 0)
1310 goto out_release_1;
1312 err = sock1->ops->socketpair(sock1, sock2);
1313 if (err < 0)
1314 goto out_release_both;
1316 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1317 if (unlikely(fd1 < 0)) {
1318 err = fd1;
1319 goto out_release_both;
1322 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1323 if (unlikely(fd2 < 0)) {
1324 err = fd2;
1325 fput(newfile1);
1326 put_unused_fd(fd1);
1327 sock_release(sock2);
1328 goto out;
1331 audit_fd_pair(fd1, fd2);
1332 fd_install(fd1, newfile1);
1333 fd_install(fd2, newfile2);
1334 /* fd1 and fd2 may be already another descriptors.
1335 * Not kernel problem.
1338 err = put_user(fd1, &usockvec[0]);
1339 if (!err)
1340 err = put_user(fd2, &usockvec[1]);
1341 if (!err)
1342 return 0;
1344 sys_close(fd2);
1345 sys_close(fd1);
1346 return err;
1348 out_release_both:
1349 sock_release(sock2);
1350 out_release_1:
1351 sock_release(sock1);
1352 out:
1353 return err;
1357 * Bind a name to a socket. Nothing much to do here since it's
1358 * the protocol's responsibility to handle the local address.
1360 * We move the socket address to kernel space before we call
1361 * the protocol layer (having also checked the address is ok).
1364 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1366 struct socket *sock;
1367 struct sockaddr_storage address;
1368 int err, fput_needed;
1370 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1371 if (sock) {
1372 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1373 if (err >= 0) {
1374 err = security_socket_bind(sock,
1375 (struct sockaddr *)&address,
1376 addrlen);
1377 if (!err)
1378 err = sock->ops->bind(sock,
1379 (struct sockaddr *)
1380 &address, addrlen);
1382 fput_light(sock->file, fput_needed);
1384 return err;
1388 * Perform a listen. Basically, we allow the protocol to do anything
1389 * necessary for a listen, and if that works, we mark the socket as
1390 * ready for listening.
1393 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1395 struct socket *sock;
1396 int err, fput_needed;
1397 int somaxconn;
1399 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1400 if (sock) {
1401 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1402 if ((unsigned)backlog > somaxconn)
1403 backlog = somaxconn;
1405 err = security_socket_listen(sock, backlog);
1406 if (!err)
1407 err = sock->ops->listen(sock, backlog);
1409 fput_light(sock->file, fput_needed);
1411 return err;
1415 * For accept, we attempt to create a new socket, set up the link
1416 * with the client, wake up the client, then return the new
1417 * connected fd. We collect the address of the connector in kernel
1418 * space and move it to user at the very end. This is unclean because
1419 * we open the socket then return an error.
1421 * 1003.1g adds the ability to recvmsg() to query connection pending
1422 * status to recvmsg. We need to add that support in a way thats
1423 * clean when we restucture accept also.
1426 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1427 int __user *, upeer_addrlen, int, flags)
1429 struct socket *sock, *newsock;
1430 struct file *newfile;
1431 int err, len, newfd, fput_needed;
1432 struct sockaddr_storage address;
1434 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1435 return -EINVAL;
1437 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1438 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1440 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1441 if (!sock)
1442 goto out;
1444 err = -ENFILE;
1445 if (!(newsock = sock_alloc()))
1446 goto out_put;
1448 newsock->type = sock->type;
1449 newsock->ops = sock->ops;
1452 * We don't need try_module_get here, as the listening socket (sock)
1453 * has the protocol module (sock->ops->owner) held.
1455 __module_get(newsock->ops->owner);
1457 newfd = sock_alloc_file(newsock, &newfile, flags);
1458 if (unlikely(newfd < 0)) {
1459 err = newfd;
1460 sock_release(newsock);
1461 goto out_put;
1464 err = security_socket_accept(sock, newsock);
1465 if (err)
1466 goto out_fd;
1468 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1469 if (err < 0)
1470 goto out_fd;
1472 if (upeer_sockaddr) {
1473 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1474 &len, 2) < 0) {
1475 err = -ECONNABORTED;
1476 goto out_fd;
1478 err = move_addr_to_user((struct sockaddr *)&address,
1479 len, upeer_sockaddr, upeer_addrlen);
1480 if (err < 0)
1481 goto out_fd;
1484 /* File flags are not inherited via accept() unlike another OSes. */
1486 fd_install(newfd, newfile);
1487 err = newfd;
1489 out_put:
1490 fput_light(sock->file, fput_needed);
1491 out:
1492 return err;
1493 out_fd:
1494 fput(newfile);
1495 put_unused_fd(newfd);
1496 goto out_put;
1499 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1500 int __user *, upeer_addrlen)
1502 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1506 * Attempt to connect to a socket with the server address. The address
1507 * is in user space so we verify it is OK and move it to kernel space.
1509 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1510 * break bindings
1512 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1513 * other SEQPACKET protocols that take time to connect() as it doesn't
1514 * include the -EINPROGRESS status for such sockets.
1517 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1518 int, addrlen)
1520 struct socket *sock;
1521 struct sockaddr_storage address;
1522 int err, fput_needed;
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1528 if (err < 0)
1529 goto out_put;
1531 err =
1532 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1533 if (err)
1534 goto out_put;
1536 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1537 sock->file->f_flags);
1538 out_put:
1539 fput_light(sock->file, fput_needed);
1540 out:
1541 return err;
1545 * Get the local address ('name') of a socket object. Move the obtained
1546 * name to user space.
1549 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1550 int __user *, usockaddr_len)
1552 struct socket *sock;
1553 struct sockaddr_storage address;
1554 int len, err, fput_needed;
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1560 err = security_socket_getsockname(sock);
1561 if (err)
1562 goto out_put;
1564 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1565 if (err)
1566 goto out_put;
1567 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1569 out_put:
1570 fput_light(sock->file, fput_needed);
1571 out:
1572 return err;
1576 * Get the remote address ('name') of a socket object. Move the obtained
1577 * name to user space.
1580 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1581 int __user *, usockaddr_len)
1583 struct socket *sock;
1584 struct sockaddr_storage address;
1585 int len, err, fput_needed;
1587 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 if (sock != NULL) {
1589 err = security_socket_getpeername(sock);
1590 if (err) {
1591 fput_light(sock->file, fput_needed);
1592 return err;
1595 err =
1596 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1598 if (!err)
1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1600 usockaddr_len);
1601 fput_light(sock->file, fput_needed);
1603 return err;
1607 * Send a datagram to a given address. We move the address into kernel
1608 * space and check the user space data area is readable before invoking
1609 * the protocol.
1612 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1613 unsigned, flags, struct sockaddr __user *, addr,
1614 int, addr_len)
1616 struct socket *sock;
1617 struct sockaddr_storage address;
1618 int err;
1619 struct msghdr msg;
1620 struct iovec iov;
1621 int fput_needed;
1623 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1624 if (!sock)
1625 goto out;
1627 iov.iov_base = buff;
1628 iov.iov_len = len;
1629 msg.msg_name = NULL;
1630 msg.msg_iov = &iov;
1631 msg.msg_iovlen = 1;
1632 msg.msg_control = NULL;
1633 msg.msg_controllen = 0;
1634 msg.msg_namelen = 0;
1635 if (addr) {
1636 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1637 if (err < 0)
1638 goto out_put;
1639 msg.msg_name = (struct sockaddr *)&address;
1640 msg.msg_namelen = addr_len;
1642 if (sock->file->f_flags & O_NONBLOCK)
1643 flags |= MSG_DONTWAIT;
1644 msg.msg_flags = flags;
1645 err = sock_sendmsg(sock, &msg, len);
1647 out_put:
1648 fput_light(sock->file, fput_needed);
1649 out:
1650 return err;
1654 * Send a datagram down a socket.
1657 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1658 unsigned, flags)
1660 return sys_sendto(fd, buff, len, flags, NULL, 0);
1664 * Receive a frame from the socket and optionally record the address of the
1665 * sender. We verify the buffers are writable and if needed move the
1666 * sender address from kernel to user space.
1669 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1670 unsigned, flags, struct sockaddr __user *, addr,
1671 int __user *, addr_len)
1673 struct socket *sock;
1674 struct iovec iov;
1675 struct msghdr msg;
1676 struct sockaddr_storage address;
1677 int err, err2;
1678 int fput_needed;
1680 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1681 if (!sock)
1682 goto out;
1684 msg.msg_control = NULL;
1685 msg.msg_controllen = 0;
1686 msg.msg_iovlen = 1;
1687 msg.msg_iov = &iov;
1688 iov.iov_len = size;
1689 iov.iov_base = ubuf;
1690 msg.msg_name = (struct sockaddr *)&address;
1691 msg.msg_namelen = sizeof(address);
1692 if (sock->file->f_flags & O_NONBLOCK)
1693 flags |= MSG_DONTWAIT;
1694 err = sock_recvmsg(sock, &msg, size, flags);
1696 if (err >= 0 && addr != NULL) {
1697 err2 = move_addr_to_user((struct sockaddr *)&address,
1698 msg.msg_namelen, addr, addr_len);
1699 if (err2 < 0)
1700 err = err2;
1703 fput_light(sock->file, fput_needed);
1704 out:
1705 return err;
1709 * Receive a datagram from a socket.
1712 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1713 unsigned flags)
1715 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1719 * Set a socket option. Because we don't know the option lengths we have
1720 * to pass the user mode parameter for the protocols to sort out.
1723 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1724 char __user *, optval, int, optlen)
1726 int err, fput_needed;
1727 struct socket *sock;
1729 if (optlen < 0)
1730 return -EINVAL;
1732 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733 if (sock != NULL) {
1734 err = security_socket_setsockopt(sock, level, optname);
1735 if (err)
1736 goto out_put;
1738 if (level == SOL_SOCKET)
1739 err =
1740 sock_setsockopt(sock, level, optname, optval,
1741 optlen);
1742 else
1743 err =
1744 sock->ops->setsockopt(sock, level, optname, optval,
1745 optlen);
1746 out_put:
1747 fput_light(sock->file, fput_needed);
1749 return err;
1753 * Get a socket option. Because we don't know the option lengths we have
1754 * to pass a user mode parameter for the protocols to sort out.
1757 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1758 char __user *, optval, int __user *, optlen)
1760 int err, fput_needed;
1761 struct socket *sock;
1763 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764 if (sock != NULL) {
1765 err = security_socket_getsockopt(sock, level, optname);
1766 if (err)
1767 goto out_put;
1769 if (level == SOL_SOCKET)
1770 err =
1771 sock_getsockopt(sock, level, optname, optval,
1772 optlen);
1773 else
1774 err =
1775 sock->ops->getsockopt(sock, level, optname, optval,
1776 optlen);
1777 out_put:
1778 fput_light(sock->file, fput_needed);
1780 return err;
1784 * Shutdown a socket.
1787 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1789 int err, fput_needed;
1790 struct socket *sock;
1792 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1793 if (sock != NULL) {
1794 err = security_socket_shutdown(sock, how);
1795 if (!err)
1796 err = sock->ops->shutdown(sock, how);
1797 fput_light(sock->file, fput_needed);
1799 return err;
1802 /* A couple of helpful macros for getting the address of the 32/64 bit
1803 * fields which are the same type (int / unsigned) on our platforms.
1805 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1806 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1807 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1810 * BSD sendmsg interface
1813 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1815 struct compat_msghdr __user *msg_compat =
1816 (struct compat_msghdr __user *)msg;
1817 struct socket *sock;
1818 struct sockaddr_storage address;
1819 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1820 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1821 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1822 /* 20 is size of ipv6_pktinfo */
1823 unsigned char *ctl_buf = ctl;
1824 struct msghdr msg_sys;
1825 int err, ctl_len, iov_size, total_len;
1826 int fput_needed;
1828 err = -EFAULT;
1829 if (MSG_CMSG_COMPAT & flags) {
1830 if (get_compat_msghdr(&msg_sys, msg_compat))
1831 return -EFAULT;
1833 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1834 return -EFAULT;
1836 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837 if (!sock)
1838 goto out;
1840 /* do not move before msg_sys is valid */
1841 err = -EMSGSIZE;
1842 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1843 goto out_put;
1845 /* Check whether to allocate the iovec area */
1846 err = -ENOMEM;
1847 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1848 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1849 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1850 if (!iov)
1851 goto out_put;
1854 /* This will also move the address data into kernel space */
1855 if (MSG_CMSG_COMPAT & flags) {
1856 err = verify_compat_iovec(&msg_sys, iov,
1857 (struct sockaddr *)&address,
1858 VERIFY_READ);
1859 } else
1860 err = verify_iovec(&msg_sys, iov,
1861 (struct sockaddr *)&address,
1862 VERIFY_READ);
1863 if (err < 0)
1864 goto out_freeiov;
1865 total_len = err;
1867 err = -ENOBUFS;
1869 if (msg_sys.msg_controllen > INT_MAX)
1870 goto out_freeiov;
1871 ctl_len = msg_sys.msg_controllen;
1872 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1873 err =
1874 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1875 sizeof(ctl));
1876 if (err)
1877 goto out_freeiov;
1878 ctl_buf = msg_sys.msg_control;
1879 ctl_len = msg_sys.msg_controllen;
1880 } else if (ctl_len) {
1881 if (ctl_len > sizeof(ctl)) {
1882 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1883 if (ctl_buf == NULL)
1884 goto out_freeiov;
1886 err = -EFAULT;
1888 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1889 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1890 * checking falls down on this.
1892 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1893 ctl_len))
1894 goto out_freectl;
1895 msg_sys.msg_control = ctl_buf;
1897 msg_sys.msg_flags = flags;
1899 if (sock->file->f_flags & O_NONBLOCK)
1900 msg_sys.msg_flags |= MSG_DONTWAIT;
1901 err = sock_sendmsg(sock, &msg_sys, total_len);
1903 out_freectl:
1904 if (ctl_buf != ctl)
1905 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1906 out_freeiov:
1907 if (iov != iovstack)
1908 sock_kfree_s(sock->sk, iov, iov_size);
1909 out_put:
1910 fput_light(sock->file, fput_needed);
1911 out:
1912 return err;
1915 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1916 struct msghdr *msg_sys, unsigned flags, int nosec)
1918 struct compat_msghdr __user *msg_compat =
1919 (struct compat_msghdr __user *)msg;
1920 struct iovec iovstack[UIO_FASTIOV];
1921 struct iovec *iov = iovstack;
1922 unsigned long cmsg_ptr;
1923 int err, iov_size, total_len, len;
1925 /* kernel mode address */
1926 struct sockaddr_storage addr;
1928 /* user mode address pointers */
1929 struct sockaddr __user *uaddr;
1930 int __user *uaddr_len;
1932 if (MSG_CMSG_COMPAT & flags) {
1933 if (get_compat_msghdr(msg_sys, msg_compat))
1934 return -EFAULT;
1936 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1937 return -EFAULT;
1939 err = -EMSGSIZE;
1940 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1941 goto out;
1943 /* Check whether to allocate the iovec area */
1944 err = -ENOMEM;
1945 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1946 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1947 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1948 if (!iov)
1949 goto out;
1953 * Save the user-mode address (verify_iovec will change the
1954 * kernel msghdr to use the kernel address space)
1957 uaddr = (__force void __user *)msg_sys->msg_name;
1958 uaddr_len = COMPAT_NAMELEN(msg);
1959 if (MSG_CMSG_COMPAT & flags) {
1960 err = verify_compat_iovec(msg_sys, iov,
1961 (struct sockaddr *)&addr,
1962 VERIFY_WRITE);
1963 } else
1964 err = verify_iovec(msg_sys, iov,
1965 (struct sockaddr *)&addr,
1966 VERIFY_WRITE);
1967 if (err < 0)
1968 goto out_freeiov;
1969 total_len = err;
1971 cmsg_ptr = (unsigned long)msg_sys->msg_control;
1972 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1974 if (sock->file->f_flags & O_NONBLOCK)
1975 flags |= MSG_DONTWAIT;
1976 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
1977 total_len, flags);
1978 if (err < 0)
1979 goto out_freeiov;
1980 len = err;
1982 if (uaddr != NULL) {
1983 err = move_addr_to_user((struct sockaddr *)&addr,
1984 msg_sys->msg_namelen, uaddr,
1985 uaddr_len);
1986 if (err < 0)
1987 goto out_freeiov;
1989 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
1990 COMPAT_FLAGS(msg));
1991 if (err)
1992 goto out_freeiov;
1993 if (MSG_CMSG_COMPAT & flags)
1994 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
1995 &msg_compat->msg_controllen);
1996 else
1997 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
1998 &msg->msg_controllen);
1999 if (err)
2000 goto out_freeiov;
2001 err = len;
2003 out_freeiov:
2004 if (iov != iovstack)
2005 sock_kfree_s(sock->sk, iov, iov_size);
2006 out:
2007 return err;
2011 * BSD recvmsg interface
2014 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2015 unsigned int, flags)
2017 int fput_needed, err;
2018 struct msghdr msg_sys;
2019 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021 if (!sock)
2022 goto out;
2024 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2026 fput_light(sock->file, fput_needed);
2027 out:
2028 return err;
2032 * Linux recvmmsg interface
2035 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036 unsigned int flags, struct timespec *timeout)
2038 int fput_needed, err, datagrams;
2039 struct socket *sock;
2040 struct mmsghdr __user *entry;
2041 struct compat_mmsghdr __user *compat_entry;
2042 struct msghdr msg_sys;
2043 struct timespec end_time;
2045 if (timeout &&
2046 poll_select_set_timeout(&end_time, timeout->tv_sec,
2047 timeout->tv_nsec))
2048 return -EINVAL;
2050 datagrams = 0;
2052 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 if (!sock)
2054 return err;
2056 err = sock_error(sock->sk);
2057 if (err)
2058 goto out_put;
2060 entry = mmsg;
2061 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2063 while (datagrams < vlen) {
2065 * No need to ask LSM for more than the first datagram.
2067 if (MSG_CMSG_COMPAT & flags) {
2068 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2069 &msg_sys, flags, datagrams);
2070 if (err < 0)
2071 break;
2072 err = __put_user(err, &compat_entry->msg_len);
2073 ++compat_entry;
2074 } else {
2075 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2076 &msg_sys, flags, datagrams);
2077 if (err < 0)
2078 break;
2079 err = put_user(err, &entry->msg_len);
2080 ++entry;
2083 if (err)
2084 break;
2085 ++datagrams;
2087 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2088 if (flags & MSG_WAITFORONE)
2089 flags |= MSG_DONTWAIT;
2091 if (timeout) {
2092 ktime_get_ts(timeout);
2093 *timeout = timespec_sub(end_time, *timeout);
2094 if (timeout->tv_sec < 0) {
2095 timeout->tv_sec = timeout->tv_nsec = 0;
2096 break;
2099 /* Timeout, return less than vlen datagrams */
2100 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2101 break;
2104 /* Out of band data, return right away */
2105 if (msg_sys.msg_flags & MSG_OOB)
2106 break;
2109 out_put:
2110 fput_light(sock->file, fput_needed);
2112 if (err == 0)
2113 return datagrams;
2115 if (datagrams != 0) {
2117 * We may return less entries than requested (vlen) if the
2118 * sock is non block and there aren't enough datagrams...
2120 if (err != -EAGAIN) {
2122 * ... or if recvmsg returns an error after we
2123 * received some datagrams, where we record the
2124 * error to return on the next call or if the
2125 * app asks about it using getsockopt(SO_ERROR).
2127 sock->sk->sk_err = -err;
2130 return datagrams;
2133 return err;
2136 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2137 unsigned int, vlen, unsigned int, flags,
2138 struct timespec __user *, timeout)
2140 int datagrams;
2141 struct timespec timeout_sys;
2143 if (!timeout)
2144 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2146 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2147 return -EFAULT;
2149 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2151 if (datagrams > 0 &&
2152 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2153 datagrams = -EFAULT;
2155 return datagrams;
2158 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2159 /* Argument list sizes for sys_socketcall */
2160 #define AL(x) ((x) * sizeof(unsigned long))
2161 static const unsigned char nargs[20] = {
2162 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2163 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2164 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2165 AL(4),AL(5)
2168 #undef AL
2171 * System call vectors.
2173 * Argument checking cleaned up. Saved 20% in size.
2174 * This function doesn't need to set the kernel lock because
2175 * it is set by the callees.
2178 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2180 unsigned long a[6];
2181 unsigned long a0, a1;
2182 int err;
2183 unsigned int len;
2185 if (call < 1 || call > SYS_RECVMMSG)
2186 return -EINVAL;
2188 len = nargs[call];
2189 if (len > sizeof(a))
2190 return -EINVAL;
2192 /* copy_from_user should be SMP safe. */
2193 if (copy_from_user(a, args, len))
2194 return -EFAULT;
2196 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2198 a0 = a[0];
2199 a1 = a[1];
2201 switch (call) {
2202 case SYS_SOCKET:
2203 err = sys_socket(a0, a1, a[2]);
2204 break;
2205 case SYS_BIND:
2206 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2207 break;
2208 case SYS_CONNECT:
2209 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2210 break;
2211 case SYS_LISTEN:
2212 err = sys_listen(a0, a1);
2213 break;
2214 case SYS_ACCEPT:
2215 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2216 (int __user *)a[2], 0);
2217 break;
2218 case SYS_GETSOCKNAME:
2219 err =
2220 sys_getsockname(a0, (struct sockaddr __user *)a1,
2221 (int __user *)a[2]);
2222 break;
2223 case SYS_GETPEERNAME:
2224 err =
2225 sys_getpeername(a0, (struct sockaddr __user *)a1,
2226 (int __user *)a[2]);
2227 break;
2228 case SYS_SOCKETPAIR:
2229 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2230 break;
2231 case SYS_SEND:
2232 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2233 break;
2234 case SYS_SENDTO:
2235 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2236 (struct sockaddr __user *)a[4], a[5]);
2237 break;
2238 case SYS_RECV:
2239 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2240 break;
2241 case SYS_RECVFROM:
2242 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2243 (struct sockaddr __user *)a[4],
2244 (int __user *)a[5]);
2245 break;
2246 case SYS_SHUTDOWN:
2247 err = sys_shutdown(a0, a1);
2248 break;
2249 case SYS_SETSOCKOPT:
2250 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2251 break;
2252 case SYS_GETSOCKOPT:
2253 err =
2254 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2255 (int __user *)a[4]);
2256 break;
2257 case SYS_SENDMSG:
2258 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2259 break;
2260 case SYS_RECVMSG:
2261 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2262 break;
2263 case SYS_RECVMMSG:
2264 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2265 (struct timespec __user *)a[4]);
2266 break;
2267 case SYS_ACCEPT4:
2268 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2269 (int __user *)a[2], a[3]);
2270 break;
2271 default:
2272 err = -EINVAL;
2273 break;
2275 return err;
2278 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2281 * sock_register - add a socket protocol handler
2282 * @ops: description of protocol
2284 * This function is called by a protocol handler that wants to
2285 * advertise its address family, and have it linked into the
2286 * socket interface. The value ops->family coresponds to the
2287 * socket system call protocol family.
2289 int sock_register(const struct net_proto_family *ops)
2291 int err;
2293 if (ops->family >= NPROTO) {
2294 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2295 NPROTO);
2296 return -ENOBUFS;
2299 spin_lock(&net_family_lock);
2300 if (net_families[ops->family])
2301 err = -EEXIST;
2302 else {
2303 net_families[ops->family] = ops;
2304 err = 0;
2306 spin_unlock(&net_family_lock);
2308 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2309 return err;
2313 * sock_unregister - remove a protocol handler
2314 * @family: protocol family to remove
2316 * This function is called by a protocol handler that wants to
2317 * remove its address family, and have it unlinked from the
2318 * new socket creation.
2320 * If protocol handler is a module, then it can use module reference
2321 * counts to protect against new references. If protocol handler is not
2322 * a module then it needs to provide its own protection in
2323 * the ops->create routine.
2325 void sock_unregister(int family)
2327 BUG_ON(family < 0 || family >= NPROTO);
2329 spin_lock(&net_family_lock);
2330 net_families[family] = NULL;
2331 spin_unlock(&net_family_lock);
2333 synchronize_rcu();
2335 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2338 static int __init sock_init(void)
2341 * Initialize sock SLAB cache.
2344 sk_init();
2347 * Initialize skbuff SLAB cache
2349 skb_init();
2352 * Initialize the protocols module.
2355 init_inodecache();
2356 register_filesystem(&sock_fs_type);
2357 sock_mnt = kern_mount(&sock_fs_type);
2359 /* The real protocol initialization is performed in later initcalls.
2362 #ifdef CONFIG_NETFILTER
2363 netfilter_init();
2364 #endif
2366 return 0;
2369 core_initcall(sock_init); /* early initcall */
2371 #ifdef CONFIG_PROC_FS
2372 void socket_seq_show(struct seq_file *seq)
2374 int cpu;
2375 int counter = 0;
2377 for_each_possible_cpu(cpu)
2378 counter += per_cpu(sockets_in_use, cpu);
2380 /* It can be negative, by the way. 8) */
2381 if (counter < 0)
2382 counter = 0;
2384 seq_printf(seq, "sockets: used %d\n", counter);
2386 #endif /* CONFIG_PROC_FS */
2388 #ifdef CONFIG_COMPAT
2389 static int do_siocgstamp(struct net *net, struct socket *sock,
2390 unsigned int cmd, struct compat_timeval __user *up)
2392 mm_segment_t old_fs = get_fs();
2393 struct timeval ktv;
2394 int err;
2396 set_fs(KERNEL_DS);
2397 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2398 set_fs(old_fs);
2399 if (!err) {
2400 err = put_user(ktv.tv_sec, &up->tv_sec);
2401 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2403 return err;
2406 static int do_siocgstampns(struct net *net, struct socket *sock,
2407 unsigned int cmd, struct compat_timespec __user *up)
2409 mm_segment_t old_fs = get_fs();
2410 struct timespec kts;
2411 int err;
2413 set_fs(KERNEL_DS);
2414 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2415 set_fs(old_fs);
2416 if (!err) {
2417 err = put_user(kts.tv_sec, &up->tv_sec);
2418 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2420 return err;
2423 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2425 struct ifreq __user *uifr;
2426 int err;
2428 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2429 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2430 return -EFAULT;
2432 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2433 if (err)
2434 return err;
2436 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2437 return -EFAULT;
2439 return 0;
2442 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2444 struct compat_ifconf ifc32;
2445 struct ifconf ifc;
2446 struct ifconf __user *uifc;
2447 struct compat_ifreq __user *ifr32;
2448 struct ifreq __user *ifr;
2449 unsigned int i, j;
2450 int err;
2452 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2453 return -EFAULT;
2455 if (ifc32.ifcbuf == 0) {
2456 ifc32.ifc_len = 0;
2457 ifc.ifc_len = 0;
2458 ifc.ifc_req = NULL;
2459 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2460 } else {
2461 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2462 sizeof (struct ifreq);
2463 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2464 ifc.ifc_len = len;
2465 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2466 ifr32 = compat_ptr(ifc32.ifcbuf);
2467 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2468 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2469 return -EFAULT;
2470 ifr++;
2471 ifr32++;
2474 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2475 return -EFAULT;
2477 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2478 if (err)
2479 return err;
2481 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2482 return -EFAULT;
2484 ifr = ifc.ifc_req;
2485 ifr32 = compat_ptr(ifc32.ifcbuf);
2486 for (i = 0, j = 0;
2487 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2488 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2489 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2490 return -EFAULT;
2491 ifr32++;
2492 ifr++;
2495 if (ifc32.ifcbuf == 0) {
2496 /* Translate from 64-bit structure multiple to
2497 * a 32-bit one.
2499 i = ifc.ifc_len;
2500 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2501 ifc32.ifc_len = i;
2502 } else {
2503 ifc32.ifc_len = i;
2505 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2506 return -EFAULT;
2508 return 0;
2511 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2513 struct ifreq __user *ifr;
2514 u32 data;
2515 void __user *datap;
2517 ifr = compat_alloc_user_space(sizeof(*ifr));
2519 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2520 return -EFAULT;
2522 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2523 return -EFAULT;
2525 datap = compat_ptr(data);
2526 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2527 return -EFAULT;
2529 return dev_ioctl(net, SIOCETHTOOL, ifr);
2532 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2534 void __user *uptr;
2535 compat_uptr_t uptr32;
2536 struct ifreq __user *uifr;
2538 uifr = compat_alloc_user_space(sizeof (*uifr));
2539 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2540 return -EFAULT;
2542 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2543 return -EFAULT;
2545 uptr = compat_ptr(uptr32);
2547 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2548 return -EFAULT;
2550 return dev_ioctl(net, SIOCWANDEV, uifr);
2553 static int bond_ioctl(struct net *net, unsigned int cmd,
2554 struct compat_ifreq __user *ifr32)
2556 struct ifreq kifr;
2557 struct ifreq __user *uifr;
2558 mm_segment_t old_fs;
2559 int err;
2560 u32 data;
2561 void __user *datap;
2563 switch (cmd) {
2564 case SIOCBONDENSLAVE:
2565 case SIOCBONDRELEASE:
2566 case SIOCBONDSETHWADDR:
2567 case SIOCBONDCHANGEACTIVE:
2568 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2569 return -EFAULT;
2571 old_fs = get_fs();
2572 set_fs (KERNEL_DS);
2573 err = dev_ioctl(net, cmd, &kifr);
2574 set_fs (old_fs);
2576 return err;
2577 case SIOCBONDSLAVEINFOQUERY:
2578 case SIOCBONDINFOQUERY:
2579 uifr = compat_alloc_user_space(sizeof(*uifr));
2580 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2581 return -EFAULT;
2583 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2584 return -EFAULT;
2586 datap = compat_ptr(data);
2587 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2588 return -EFAULT;
2590 return dev_ioctl(net, cmd, uifr);
2591 default:
2592 return -EINVAL;
2596 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2597 struct compat_ifreq __user *u_ifreq32)
2599 struct ifreq __user *u_ifreq64;
2600 char tmp_buf[IFNAMSIZ];
2601 void __user *data64;
2602 u32 data32;
2604 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2605 IFNAMSIZ))
2606 return -EFAULT;
2607 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2608 return -EFAULT;
2609 data64 = compat_ptr(data32);
2611 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2613 /* Don't check these user accesses, just let that get trapped
2614 * in the ioctl handler instead.
2616 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2617 IFNAMSIZ))
2618 return -EFAULT;
2619 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2620 return -EFAULT;
2622 return dev_ioctl(net, cmd, u_ifreq64);
2625 static int dev_ifsioc(struct net *net, struct socket *sock,
2626 unsigned int cmd, struct compat_ifreq __user *uifr32)
2628 struct ifreq __user *uifr;
2629 int err;
2631 uifr = compat_alloc_user_space(sizeof(*uifr));
2632 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2633 return -EFAULT;
2635 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2637 if (!err) {
2638 switch (cmd) {
2639 case SIOCGIFFLAGS:
2640 case SIOCGIFMETRIC:
2641 case SIOCGIFMTU:
2642 case SIOCGIFMEM:
2643 case SIOCGIFHWADDR:
2644 case SIOCGIFINDEX:
2645 case SIOCGIFADDR:
2646 case SIOCGIFBRDADDR:
2647 case SIOCGIFDSTADDR:
2648 case SIOCGIFNETMASK:
2649 case SIOCGIFPFLAGS:
2650 case SIOCGIFTXQLEN:
2651 case SIOCGMIIPHY:
2652 case SIOCGMIIREG:
2653 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2654 err = -EFAULT;
2655 break;
2658 return err;
2661 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2662 struct compat_ifreq __user *uifr32)
2664 struct ifreq ifr;
2665 struct compat_ifmap __user *uifmap32;
2666 mm_segment_t old_fs;
2667 int err;
2669 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2670 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2671 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2672 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2673 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2674 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2675 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2676 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2677 if (err)
2678 return -EFAULT;
2680 old_fs = get_fs();
2681 set_fs (KERNEL_DS);
2682 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2683 set_fs (old_fs);
2685 if (cmd == SIOCGIFMAP && !err) {
2686 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2687 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2688 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2689 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2690 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2691 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2692 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2693 if (err)
2694 err = -EFAULT;
2696 return err;
2699 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2701 void __user *uptr;
2702 compat_uptr_t uptr32;
2703 struct ifreq __user *uifr;
2705 uifr = compat_alloc_user_space(sizeof (*uifr));
2706 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2707 return -EFAULT;
2709 if (get_user(uptr32, &uifr32->ifr_data))
2710 return -EFAULT;
2712 uptr = compat_ptr(uptr32);
2714 if (put_user(uptr, &uifr->ifr_data))
2715 return -EFAULT;
2717 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2720 struct rtentry32 {
2721 u32 rt_pad1;
2722 struct sockaddr rt_dst; /* target address */
2723 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2724 struct sockaddr rt_genmask; /* target network mask (IP) */
2725 unsigned short rt_flags;
2726 short rt_pad2;
2727 u32 rt_pad3;
2728 unsigned char rt_tos;
2729 unsigned char rt_class;
2730 short rt_pad4;
2731 short rt_metric; /* +1 for binary compatibility! */
2732 /* char * */ u32 rt_dev; /* forcing the device at add */
2733 u32 rt_mtu; /* per route MTU/Window */
2734 u32 rt_window; /* Window clamping */
2735 unsigned short rt_irtt; /* Initial RTT */
2738 struct in6_rtmsg32 {
2739 struct in6_addr rtmsg_dst;
2740 struct in6_addr rtmsg_src;
2741 struct in6_addr rtmsg_gateway;
2742 u32 rtmsg_type;
2743 u16 rtmsg_dst_len;
2744 u16 rtmsg_src_len;
2745 u32 rtmsg_metric;
2746 u32 rtmsg_info;
2747 u32 rtmsg_flags;
2748 s32 rtmsg_ifindex;
2751 static int routing_ioctl(struct net *net, struct socket *sock,
2752 unsigned int cmd, void __user *argp)
2754 int ret;
2755 void *r = NULL;
2756 struct in6_rtmsg r6;
2757 struct rtentry r4;
2758 char devname[16];
2759 u32 rtdev;
2760 mm_segment_t old_fs = get_fs();
2762 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2763 struct in6_rtmsg32 __user *ur6 = argp;
2764 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2765 3 * sizeof(struct in6_addr));
2766 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2767 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2768 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2769 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2770 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2771 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2772 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2774 r = (void *) &r6;
2775 } else { /* ipv4 */
2776 struct rtentry32 __user *ur4 = argp;
2777 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2778 3 * sizeof(struct sockaddr));
2779 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2780 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2781 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2782 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2783 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2784 ret |= __get_user (rtdev, &(ur4->rt_dev));
2785 if (rtdev) {
2786 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2787 r4.rt_dev = devname; devname[15] = 0;
2788 } else
2789 r4.rt_dev = NULL;
2791 r = (void *) &r4;
2794 if (ret) {
2795 ret = -EFAULT;
2796 goto out;
2799 set_fs (KERNEL_DS);
2800 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2801 set_fs (old_fs);
2803 out:
2804 return ret;
2807 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2808 * for some operations; this forces use of the newer bridge-utils that
2809 * use compatiable ioctls
2811 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2813 compat_ulong_t tmp;
2815 if (get_user(tmp, argp))
2816 return -EFAULT;
2817 if (tmp == BRCTL_GET_VERSION)
2818 return BRCTL_VERSION + 1;
2819 return -EINVAL;
2822 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2823 unsigned int cmd, unsigned long arg)
2825 void __user *argp = compat_ptr(arg);
2826 struct sock *sk = sock->sk;
2827 struct net *net = sock_net(sk);
2829 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2830 return siocdevprivate_ioctl(net, cmd, argp);
2832 switch (cmd) {
2833 case SIOCSIFBR:
2834 case SIOCGIFBR:
2835 return old_bridge_ioctl(argp);
2836 case SIOCGIFNAME:
2837 return dev_ifname32(net, argp);
2838 case SIOCGIFCONF:
2839 return dev_ifconf(net, argp);
2840 case SIOCETHTOOL:
2841 return ethtool_ioctl(net, argp);
2842 case SIOCWANDEV:
2843 return compat_siocwandev(net, argp);
2844 case SIOCGIFMAP:
2845 case SIOCSIFMAP:
2846 return compat_sioc_ifmap(net, cmd, argp);
2847 case SIOCBONDENSLAVE:
2848 case SIOCBONDRELEASE:
2849 case SIOCBONDSETHWADDR:
2850 case SIOCBONDSLAVEINFOQUERY:
2851 case SIOCBONDINFOQUERY:
2852 case SIOCBONDCHANGEACTIVE:
2853 return bond_ioctl(net, cmd, argp);
2854 case SIOCADDRT:
2855 case SIOCDELRT:
2856 return routing_ioctl(net, sock, cmd, argp);
2857 case SIOCGSTAMP:
2858 return do_siocgstamp(net, sock, cmd, argp);
2859 case SIOCGSTAMPNS:
2860 return do_siocgstampns(net, sock, cmd, argp);
2861 case SIOCSHWTSTAMP:
2862 return compat_siocshwtstamp(net, argp);
2864 case FIOSETOWN:
2865 case SIOCSPGRP:
2866 case FIOGETOWN:
2867 case SIOCGPGRP:
2868 case SIOCBRADDBR:
2869 case SIOCBRDELBR:
2870 case SIOCGIFVLAN:
2871 case SIOCSIFVLAN:
2872 case SIOCADDDLCI:
2873 case SIOCDELDLCI:
2874 return sock_ioctl(file, cmd, arg);
2876 case SIOCGIFFLAGS:
2877 case SIOCSIFFLAGS:
2878 case SIOCGIFMETRIC:
2879 case SIOCSIFMETRIC:
2880 case SIOCGIFMTU:
2881 case SIOCSIFMTU:
2882 case SIOCGIFMEM:
2883 case SIOCSIFMEM:
2884 case SIOCGIFHWADDR:
2885 case SIOCSIFHWADDR:
2886 case SIOCADDMULTI:
2887 case SIOCDELMULTI:
2888 case SIOCGIFINDEX:
2889 case SIOCGIFADDR:
2890 case SIOCSIFADDR:
2891 case SIOCSIFHWBROADCAST:
2892 case SIOCDIFADDR:
2893 case SIOCGIFBRDADDR:
2894 case SIOCSIFBRDADDR:
2895 case SIOCGIFDSTADDR:
2896 case SIOCSIFDSTADDR:
2897 case SIOCGIFNETMASK:
2898 case SIOCSIFNETMASK:
2899 case SIOCSIFPFLAGS:
2900 case SIOCGIFPFLAGS:
2901 case SIOCGIFTXQLEN:
2902 case SIOCSIFTXQLEN:
2903 case SIOCBRADDIF:
2904 case SIOCBRDELIF:
2905 case SIOCSIFNAME:
2906 case SIOCGMIIPHY:
2907 case SIOCGMIIREG:
2908 case SIOCSMIIREG:
2909 return dev_ifsioc(net, sock, cmd, argp);
2911 case SIOCSARP:
2912 case SIOCGARP:
2913 case SIOCDARP:
2914 case SIOCATMARK:
2915 return sock_do_ioctl(net, sock, cmd, arg);
2918 /* Prevent warning from compat_sys_ioctl, these always
2919 * result in -EINVAL in the native case anyway. */
2920 switch (cmd) {
2921 case SIOCRTMSG:
2922 case SIOCGIFCOUNT:
2923 case SIOCSRARP:
2924 case SIOCGRARP:
2925 case SIOCDRARP:
2926 case SIOCSIFLINK:
2927 case SIOCGIFSLAVE:
2928 case SIOCSIFSLAVE:
2929 return -EINVAL;
2932 return -ENOIOCTLCMD;
2935 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2936 unsigned long arg)
2938 struct socket *sock = file->private_data;
2939 int ret = -ENOIOCTLCMD;
2940 struct sock *sk;
2941 struct net *net;
2943 sk = sock->sk;
2944 net = sock_net(sk);
2946 if (sock->ops->compat_ioctl)
2947 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2949 if (ret == -ENOIOCTLCMD &&
2950 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2951 ret = compat_wext_handle_ioctl(net, cmd, arg);
2953 if (ret == -ENOIOCTLCMD)
2954 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2956 return ret;
2958 #endif
2960 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2962 return sock->ops->bind(sock, addr, addrlen);
2965 int kernel_listen(struct socket *sock, int backlog)
2967 return sock->ops->listen(sock, backlog);
2970 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2972 struct sock *sk = sock->sk;
2973 int err;
2975 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2976 newsock);
2977 if (err < 0)
2978 goto done;
2980 err = sock->ops->accept(sock, *newsock, flags);
2981 if (err < 0) {
2982 sock_release(*newsock);
2983 *newsock = NULL;
2984 goto done;
2987 (*newsock)->ops = sock->ops;
2988 __module_get((*newsock)->ops->owner);
2990 done:
2991 return err;
2994 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2995 int flags)
2997 return sock->ops->connect(sock, addr, addrlen, flags);
3000 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3001 int *addrlen)
3003 return sock->ops->getname(sock, addr, addrlen, 0);
3006 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3007 int *addrlen)
3009 return sock->ops->getname(sock, addr, addrlen, 1);
3012 int kernel_getsockopt(struct socket *sock, int level, int optname,
3013 char *optval, int *optlen)
3015 mm_segment_t oldfs = get_fs();
3016 int err;
3018 set_fs(KERNEL_DS);
3019 if (level == SOL_SOCKET)
3020 err = sock_getsockopt(sock, level, optname, optval, optlen);
3021 else
3022 err = sock->ops->getsockopt(sock, level, optname, optval,
3023 optlen);
3024 set_fs(oldfs);
3025 return err;
3028 int kernel_setsockopt(struct socket *sock, int level, int optname,
3029 char *optval, unsigned int optlen)
3031 mm_segment_t oldfs = get_fs();
3032 int err;
3034 set_fs(KERNEL_DS);
3035 if (level == SOL_SOCKET)
3036 err = sock_setsockopt(sock, level, optname, optval, optlen);
3037 else
3038 err = sock->ops->setsockopt(sock, level, optname, optval,
3039 optlen);
3040 set_fs(oldfs);
3041 return err;
3044 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3045 size_t size, int flags)
3047 if (sock->ops->sendpage)
3048 return sock->ops->sendpage(sock, page, offset, size, flags);
3050 return sock_no_sendpage(sock, page, offset, size, flags);
3053 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3055 mm_segment_t oldfs = get_fs();
3056 int err;
3058 set_fs(KERNEL_DS);
3059 err = sock->ops->ioctl(sock, cmd, arg);
3060 set_fs(oldfs);
3062 return err;
3065 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3067 return sock->ops->shutdown(sock, how);
3070 EXPORT_SYMBOL(sock_create);
3071 EXPORT_SYMBOL(sock_create_kern);
3072 EXPORT_SYMBOL(sock_create_lite);
3073 EXPORT_SYMBOL(sock_map_fd);
3074 EXPORT_SYMBOL(sock_recvmsg);
3075 EXPORT_SYMBOL(sock_register);
3076 EXPORT_SYMBOL(sock_release);
3077 EXPORT_SYMBOL(sock_sendmsg);
3078 EXPORT_SYMBOL(sock_unregister);
3079 EXPORT_SYMBOL(sock_wake_async);
3080 EXPORT_SYMBOL(sockfd_lookup);
3081 EXPORT_SYMBOL(kernel_sendmsg);
3082 EXPORT_SYMBOL(kernel_recvmsg);
3083 EXPORT_SYMBOL(kernel_bind);
3084 EXPORT_SYMBOL(kernel_listen);
3085 EXPORT_SYMBOL(kernel_accept);
3086 EXPORT_SYMBOL(kernel_connect);
3087 EXPORT_SYMBOL(kernel_getsockname);
3088 EXPORT_SYMBOL(kernel_getpeername);
3089 EXPORT_SYMBOL(kernel_getsockopt);
3090 EXPORT_SYMBOL(kernel_setsockopt);
3091 EXPORT_SYMBOL(kernel_sendpage);
3092 EXPORT_SYMBOL(kernel_sock_ioctl);
3093 EXPORT_SYMBOL(kernel_sock_shutdown);