net: speedup sock_recv_ts_and_drops()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / net / sock.h
blobe1777db5b9ab07a9bf1b07453fa39941cc390018
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static void inline int __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 #endif
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
102 struct sock;
103 struct proto;
104 struct net;
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_node: main hash linkage for various protocol lookup tables
109 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 * @skc_refcnt: reference count
111 * @skc_tx_queue_mapping: tx queue number for this connection
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
123 * This is the minimal network layer representation of sockets, the header
124 * for struct sock and struct inet_timewait_sock.
126 struct sock_common {
128 * first fields are not copied in sock_copy()
130 union {
131 struct hlist_node skc_node;
132 struct hlist_nulls_node skc_nulls_node;
134 atomic_t skc_refcnt;
135 int skc_tx_queue_mapping;
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
156 * struct sock - network layer representation of sockets
157 * @__sk_common: shared layout with inet_timewait_sock
158 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160 * @sk_lock: synchronizer
161 * @sk_rcvbuf: size of receive buffer in bytes
162 * @sk_sleep: sock wait queue
163 * @sk_dst_cache: destination cache
164 * @sk_dst_lock: destination cache lock
165 * @sk_policy: flow policy
166 * @sk_rmem_alloc: receive queue bytes committed
167 * @sk_receive_queue: incoming packets
168 * @sk_wmem_alloc: transmit queue bytes committed
169 * @sk_write_queue: Packet sending queue
170 * @sk_async_wait_queue: DMA copied packets
171 * @sk_omem_alloc: "o" is "option" or "other"
172 * @sk_wmem_queued: persistent queue size
173 * @sk_forward_alloc: space allocated forward
174 * @sk_allocation: allocation mode
175 * @sk_sndbuf: size of send buffer in bytes
176 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
181 * @sk_gso_max_size: Maximum GSO segment size to build
182 * @sk_lingertime: %SO_LINGER l_linger setting
183 * @sk_backlog: always used with the per-socket spinlock held
184 * @sk_callback_lock: used with the callbacks in the end of this struct
185 * @sk_error_queue: rarely used
186 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
187 * IPV6_ADDRFORM for instance)
188 * @sk_err: last error
189 * @sk_err_soft: errors that don't cause failure but are the cause of a
190 * persistent failure not just 'timed out'
191 * @sk_drops: raw/udp drops counter
192 * @sk_ack_backlog: current listen backlog
193 * @sk_max_ack_backlog: listen backlog set in listen()
194 * @sk_priority: %SO_PRIORITY setting
195 * @sk_type: socket type (%SOCK_STREAM, etc)
196 * @sk_protocol: which protocol this socket belongs in this network family
197 * @sk_peercred: %SO_PEERCRED setting
198 * @sk_rcvlowat: %SO_RCVLOWAT setting
199 * @sk_rcvtimeo: %SO_RCVTIMEO setting
200 * @sk_sndtimeo: %SO_SNDTIMEO setting
201 * @sk_rxhash: flow hash received from netif layer
202 * @sk_filter: socket filtering instructions
203 * @sk_protinfo: private area, net family specific, when not using slab
204 * @sk_timer: sock cleanup timer
205 * @sk_stamp: time stamp of last packet received
206 * @sk_socket: Identd and reporting IO signals
207 * @sk_user_data: RPC layer private data
208 * @sk_sndmsg_page: cached page for sendmsg
209 * @sk_sndmsg_off: cached offset for sendmsg
210 * @sk_send_head: front of stuff to transmit
211 * @sk_security: used by security modules
212 * @sk_mark: generic packet mark
213 * @sk_write_pending: a write to stream socket waits to start
214 * @sk_state_change: callback to indicate change in the state of the sock
215 * @sk_data_ready: callback to indicate there is data to be processed
216 * @sk_write_space: callback to indicate there is bf sending space available
217 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
218 * @sk_backlog_rcv: callback to process the backlog
219 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
221 struct sock {
223 * Now struct inet_timewait_sock also uses sock_common, so please just
224 * don't add nothing before this first member (__sk_common) --acme
226 struct sock_common __sk_common;
227 #define sk_node __sk_common.skc_node
228 #define sk_nulls_node __sk_common.skc_nulls_node
229 #define sk_refcnt __sk_common.skc_refcnt
230 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
232 #define sk_copy_start __sk_common.skc_hash
233 #define sk_hash __sk_common.skc_hash
234 #define sk_family __sk_common.skc_family
235 #define sk_state __sk_common.skc_state
236 #define sk_reuse __sk_common.skc_reuse
237 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
238 #define sk_bind_node __sk_common.skc_bind_node
239 #define sk_prot __sk_common.skc_prot
240 #define sk_net __sk_common.skc_net
241 kmemcheck_bitfield_begin(flags);
242 unsigned int sk_shutdown : 2,
243 sk_no_check : 2,
244 sk_userlocks : 4,
245 sk_protocol : 8,
246 sk_type : 16;
247 kmemcheck_bitfield_end(flags);
248 int sk_rcvbuf;
249 socket_lock_t sk_lock;
251 * The backlog queue is special, it is always used with
252 * the per-socket spinlock held and requires low latency
253 * access. Therefore we special case it's implementation.
255 struct {
256 struct sk_buff *head;
257 struct sk_buff *tail;
258 int len;
259 } sk_backlog;
260 wait_queue_head_t *sk_sleep;
261 struct dst_entry *sk_dst_cache;
262 #ifdef CONFIG_XFRM
263 struct xfrm_policy *sk_policy[2];
264 #endif
265 spinlock_t sk_dst_lock;
266 atomic_t sk_rmem_alloc;
267 atomic_t sk_wmem_alloc;
268 atomic_t sk_omem_alloc;
269 int sk_sndbuf;
270 struct sk_buff_head sk_receive_queue;
271 struct sk_buff_head sk_write_queue;
272 #ifdef CONFIG_NET_DMA
273 struct sk_buff_head sk_async_wait_queue;
274 #endif
275 int sk_wmem_queued;
276 int sk_forward_alloc;
277 gfp_t sk_allocation;
278 int sk_route_caps;
279 int sk_gso_type;
280 unsigned int sk_gso_max_size;
281 int sk_rcvlowat;
282 #ifdef CONFIG_RPS
283 __u32 sk_rxhash;
284 #endif
285 unsigned long sk_flags;
286 unsigned long sk_lingertime;
287 struct sk_buff_head sk_error_queue;
288 struct proto *sk_prot_creator;
289 rwlock_t sk_callback_lock;
290 int sk_err,
291 sk_err_soft;
292 atomic_t sk_drops;
293 unsigned short sk_ack_backlog;
294 unsigned short sk_max_ack_backlog;
295 __u32 sk_priority;
296 struct ucred sk_peercred;
297 long sk_rcvtimeo;
298 long sk_sndtimeo;
299 struct sk_filter *sk_filter;
300 void *sk_protinfo;
301 struct timer_list sk_timer;
302 ktime_t sk_stamp;
303 struct socket *sk_socket;
304 void *sk_user_data;
305 struct page *sk_sndmsg_page;
306 struct sk_buff *sk_send_head;
307 __u32 sk_sndmsg_off;
308 int sk_write_pending;
309 #ifdef CONFIG_SECURITY
310 void *sk_security;
311 #endif
312 __u32 sk_mark;
313 /* XXX 4 bytes hole on 64 bit */
314 void (*sk_state_change)(struct sock *sk);
315 void (*sk_data_ready)(struct sock *sk, int bytes);
316 void (*sk_write_space)(struct sock *sk);
317 void (*sk_error_report)(struct sock *sk);
318 int (*sk_backlog_rcv)(struct sock *sk,
319 struct sk_buff *skb);
320 void (*sk_destruct)(struct sock *sk);
324 * Hashed lists helper routines
326 static inline struct sock *sk_entry(const struct hlist_node *node)
328 return hlist_entry(node, struct sock, sk_node);
331 static inline struct sock *__sk_head(const struct hlist_head *head)
333 return hlist_entry(head->first, struct sock, sk_node);
336 static inline struct sock *sk_head(const struct hlist_head *head)
338 return hlist_empty(head) ? NULL : __sk_head(head);
341 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
343 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
346 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
348 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
351 static inline struct sock *sk_next(const struct sock *sk)
353 return sk->sk_node.next ?
354 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
357 static inline struct sock *sk_nulls_next(const struct sock *sk)
359 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
360 hlist_nulls_entry(sk->sk_nulls_node.next,
361 struct sock, sk_nulls_node) :
362 NULL;
365 static inline int sk_unhashed(const struct sock *sk)
367 return hlist_unhashed(&sk->sk_node);
370 static inline int sk_hashed(const struct sock *sk)
372 return !sk_unhashed(sk);
375 static __inline__ void sk_node_init(struct hlist_node *node)
377 node->pprev = NULL;
380 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
382 node->pprev = NULL;
385 static __inline__ void __sk_del_node(struct sock *sk)
387 __hlist_del(&sk->sk_node);
390 /* NB: equivalent to hlist_del_init_rcu */
391 static __inline__ int __sk_del_node_init(struct sock *sk)
393 if (sk_hashed(sk)) {
394 __sk_del_node(sk);
395 sk_node_init(&sk->sk_node);
396 return 1;
398 return 0;
401 /* Grab socket reference count. This operation is valid only
402 when sk is ALREADY grabbed f.e. it is found in hash table
403 or a list and the lookup is made under lock preventing hash table
404 modifications.
407 static inline void sock_hold(struct sock *sk)
409 atomic_inc(&sk->sk_refcnt);
412 /* Ungrab socket in the context, which assumes that socket refcnt
413 cannot hit zero, f.e. it is true in context of any socketcall.
415 static inline void __sock_put(struct sock *sk)
417 atomic_dec(&sk->sk_refcnt);
420 static __inline__ int sk_del_node_init(struct sock *sk)
422 int rc = __sk_del_node_init(sk);
424 if (rc) {
425 /* paranoid for a while -acme */
426 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
427 __sock_put(sk);
429 return rc;
431 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
433 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
435 if (sk_hashed(sk)) {
436 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
437 return 1;
439 return 0;
442 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
444 int rc = __sk_nulls_del_node_init_rcu(sk);
446 if (rc) {
447 /* paranoid for a while -acme */
448 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
449 __sock_put(sk);
451 return rc;
454 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
456 hlist_add_head(&sk->sk_node, list);
459 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
461 sock_hold(sk);
462 __sk_add_node(sk, list);
465 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
467 sock_hold(sk);
468 hlist_add_head_rcu(&sk->sk_node, list);
471 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
473 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
476 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
478 sock_hold(sk);
479 __sk_nulls_add_node_rcu(sk, list);
482 static __inline__ void __sk_del_bind_node(struct sock *sk)
484 __hlist_del(&sk->sk_bind_node);
487 static __inline__ void sk_add_bind_node(struct sock *sk,
488 struct hlist_head *list)
490 hlist_add_head(&sk->sk_bind_node, list);
493 #define sk_for_each(__sk, node, list) \
494 hlist_for_each_entry(__sk, node, list, sk_node)
495 #define sk_for_each_rcu(__sk, node, list) \
496 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
497 #define sk_nulls_for_each(__sk, node, list) \
498 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
499 #define sk_nulls_for_each_rcu(__sk, node, list) \
500 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
501 #define sk_for_each_from(__sk, node) \
502 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
503 hlist_for_each_entry_from(__sk, node, sk_node)
504 #define sk_nulls_for_each_from(__sk, node) \
505 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
506 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
507 #define sk_for_each_continue(__sk, node) \
508 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
509 hlist_for_each_entry_continue(__sk, node, sk_node)
510 #define sk_for_each_safe(__sk, node, tmp, list) \
511 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
512 #define sk_for_each_bound(__sk, node, list) \
513 hlist_for_each_entry(__sk, node, list, sk_bind_node)
515 /* Sock flags */
516 enum sock_flags {
517 SOCK_DEAD,
518 SOCK_DONE,
519 SOCK_URGINLINE,
520 SOCK_KEEPOPEN,
521 SOCK_LINGER,
522 SOCK_DESTROY,
523 SOCK_BROADCAST,
524 SOCK_TIMESTAMP,
525 SOCK_ZAPPED,
526 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
527 SOCK_DBG, /* %SO_DEBUG setting */
528 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
529 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
530 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
531 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
532 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
533 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
534 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
535 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
536 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
537 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
538 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
539 SOCK_FASYNC, /* fasync() active */
540 SOCK_RXQ_OVFL,
543 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
545 nsk->sk_flags = osk->sk_flags;
548 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
550 __set_bit(flag, &sk->sk_flags);
553 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
555 __clear_bit(flag, &sk->sk_flags);
558 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
560 return test_bit(flag, &sk->sk_flags);
563 static inline void sk_acceptq_removed(struct sock *sk)
565 sk->sk_ack_backlog--;
568 static inline void sk_acceptq_added(struct sock *sk)
570 sk->sk_ack_backlog++;
573 static inline int sk_acceptq_is_full(struct sock *sk)
575 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
579 * Compute minimal free write space needed to queue new packets.
581 static inline int sk_stream_min_wspace(struct sock *sk)
583 return sk->sk_wmem_queued >> 1;
586 static inline int sk_stream_wspace(struct sock *sk)
588 return sk->sk_sndbuf - sk->sk_wmem_queued;
591 extern void sk_stream_write_space(struct sock *sk);
593 static inline int sk_stream_memory_free(struct sock *sk)
595 return sk->sk_wmem_queued < sk->sk_sndbuf;
598 /* OOB backlog add */
599 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
601 if (!sk->sk_backlog.tail) {
602 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
603 } else {
604 sk->sk_backlog.tail->next = skb;
605 sk->sk_backlog.tail = skb;
607 skb->next = NULL;
611 * Take into account size of receive queue and backlog queue
613 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
615 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
617 return qsize + skb->truesize > sk->sk_rcvbuf;
620 /* The per-socket spinlock must be held here. */
621 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
623 if (sk_rcvqueues_full(sk, skb))
624 return -ENOBUFS;
626 __sk_add_backlog(sk, skb);
627 sk->sk_backlog.len += skb->truesize;
628 return 0;
631 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
633 return sk->sk_backlog_rcv(sk, skb);
636 static inline void sock_rps_record_flow(const struct sock *sk)
638 #ifdef CONFIG_RPS
639 struct rps_sock_flow_table *sock_flow_table;
641 rcu_read_lock();
642 sock_flow_table = rcu_dereference(rps_sock_flow_table);
643 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
644 rcu_read_unlock();
645 #endif
648 static inline void sock_rps_reset_flow(const struct sock *sk)
650 #ifdef CONFIG_RPS
651 struct rps_sock_flow_table *sock_flow_table;
653 rcu_read_lock();
654 sock_flow_table = rcu_dereference(rps_sock_flow_table);
655 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
656 rcu_read_unlock();
657 #endif
660 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
662 #ifdef CONFIG_RPS
663 if (unlikely(sk->sk_rxhash != rxhash)) {
664 sock_rps_reset_flow(sk);
665 sk->sk_rxhash = rxhash;
667 #endif
670 #define sk_wait_event(__sk, __timeo, __condition) \
671 ({ int __rc; \
672 release_sock(__sk); \
673 __rc = __condition; \
674 if (!__rc) { \
675 *(__timeo) = schedule_timeout(*(__timeo)); \
677 lock_sock(__sk); \
678 __rc = __condition; \
679 __rc; \
682 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
683 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
684 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
685 extern int sk_stream_error(struct sock *sk, int flags, int err);
686 extern void sk_stream_kill_queues(struct sock *sk);
688 extern int sk_wait_data(struct sock *sk, long *timeo);
690 struct request_sock_ops;
691 struct timewait_sock_ops;
692 struct inet_hashinfo;
693 struct raw_hashinfo;
695 /* Networking protocol blocks we attach to sockets.
696 * socket layer -> transport layer interface
697 * transport -> network interface is defined by struct inet_proto
699 struct proto {
700 void (*close)(struct sock *sk,
701 long timeout);
702 int (*connect)(struct sock *sk,
703 struct sockaddr *uaddr,
704 int addr_len);
705 int (*disconnect)(struct sock *sk, int flags);
707 struct sock * (*accept) (struct sock *sk, int flags, int *err);
709 int (*ioctl)(struct sock *sk, int cmd,
710 unsigned long arg);
711 int (*init)(struct sock *sk);
712 void (*destroy)(struct sock *sk);
713 void (*shutdown)(struct sock *sk, int how);
714 int (*setsockopt)(struct sock *sk, int level,
715 int optname, char __user *optval,
716 unsigned int optlen);
717 int (*getsockopt)(struct sock *sk, int level,
718 int optname, char __user *optval,
719 int __user *option);
720 #ifdef CONFIG_COMPAT
721 int (*compat_setsockopt)(struct sock *sk,
722 int level,
723 int optname, char __user *optval,
724 unsigned int optlen);
725 int (*compat_getsockopt)(struct sock *sk,
726 int level,
727 int optname, char __user *optval,
728 int __user *option);
729 #endif
730 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
731 struct msghdr *msg, size_t len);
732 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
733 struct msghdr *msg,
734 size_t len, int noblock, int flags,
735 int *addr_len);
736 int (*sendpage)(struct sock *sk, struct page *page,
737 int offset, size_t size, int flags);
738 int (*bind)(struct sock *sk,
739 struct sockaddr *uaddr, int addr_len);
741 int (*backlog_rcv) (struct sock *sk,
742 struct sk_buff *skb);
744 /* Keeping track of sk's, looking them up, and port selection methods. */
745 void (*hash)(struct sock *sk);
746 void (*unhash)(struct sock *sk);
747 int (*get_port)(struct sock *sk, unsigned short snum);
749 /* Keeping track of sockets in use */
750 #ifdef CONFIG_PROC_FS
751 unsigned int inuse_idx;
752 #endif
754 /* Memory pressure */
755 void (*enter_memory_pressure)(struct sock *sk);
756 atomic_t *memory_allocated; /* Current allocated memory. */
757 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
759 * Pressure flag: try to collapse.
760 * Technical note: it is used by multiple contexts non atomically.
761 * All the __sk_mem_schedule() is of this nature: accounting
762 * is strict, actions are advisory and have some latency.
764 int *memory_pressure;
765 int *sysctl_mem;
766 int *sysctl_wmem;
767 int *sysctl_rmem;
768 int max_header;
770 struct kmem_cache *slab;
771 unsigned int obj_size;
772 int slab_flags;
774 struct percpu_counter *orphan_count;
776 struct request_sock_ops *rsk_prot;
777 struct timewait_sock_ops *twsk_prot;
779 union {
780 struct inet_hashinfo *hashinfo;
781 struct udp_table *udp_table;
782 struct raw_hashinfo *raw_hash;
783 } h;
785 struct module *owner;
787 char name[32];
789 struct list_head node;
790 #ifdef SOCK_REFCNT_DEBUG
791 atomic_t socks;
792 #endif
795 extern int proto_register(struct proto *prot, int alloc_slab);
796 extern void proto_unregister(struct proto *prot);
798 #ifdef SOCK_REFCNT_DEBUG
799 static inline void sk_refcnt_debug_inc(struct sock *sk)
801 atomic_inc(&sk->sk_prot->socks);
804 static inline void sk_refcnt_debug_dec(struct sock *sk)
806 atomic_dec(&sk->sk_prot->socks);
807 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
808 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
811 static inline void sk_refcnt_debug_release(const struct sock *sk)
813 if (atomic_read(&sk->sk_refcnt) != 1)
814 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
815 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
817 #else /* SOCK_REFCNT_DEBUG */
818 #define sk_refcnt_debug_inc(sk) do { } while (0)
819 #define sk_refcnt_debug_dec(sk) do { } while (0)
820 #define sk_refcnt_debug_release(sk) do { } while (0)
821 #endif /* SOCK_REFCNT_DEBUG */
824 #ifdef CONFIG_PROC_FS
825 /* Called with local bh disabled */
826 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
827 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
828 #else
829 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
830 int inc)
833 #endif
836 /* With per-bucket locks this operation is not-atomic, so that
837 * this version is not worse.
839 static inline void __sk_prot_rehash(struct sock *sk)
841 sk->sk_prot->unhash(sk);
842 sk->sk_prot->hash(sk);
845 /* About 10 seconds */
846 #define SOCK_DESTROY_TIME (10*HZ)
848 /* Sockets 0-1023 can't be bound to unless you are superuser */
849 #define PROT_SOCK 1024
851 #define SHUTDOWN_MASK 3
852 #define RCV_SHUTDOWN 1
853 #define SEND_SHUTDOWN 2
855 #define SOCK_SNDBUF_LOCK 1
856 #define SOCK_RCVBUF_LOCK 2
857 #define SOCK_BINDADDR_LOCK 4
858 #define SOCK_BINDPORT_LOCK 8
860 /* sock_iocb: used to kick off async processing of socket ios */
861 struct sock_iocb {
862 struct list_head list;
864 int flags;
865 int size;
866 struct socket *sock;
867 struct sock *sk;
868 struct scm_cookie *scm;
869 struct msghdr *msg, async_msg;
870 struct kiocb *kiocb;
873 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
875 return (struct sock_iocb *)iocb->private;
878 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
880 return si->kiocb;
883 struct socket_alloc {
884 struct socket socket;
885 struct inode vfs_inode;
888 static inline struct socket *SOCKET_I(struct inode *inode)
890 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
893 static inline struct inode *SOCK_INODE(struct socket *socket)
895 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
899 * Functions for memory accounting
901 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
902 extern void __sk_mem_reclaim(struct sock *sk);
904 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
905 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
906 #define SK_MEM_SEND 0
907 #define SK_MEM_RECV 1
909 static inline int sk_mem_pages(int amt)
911 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
914 static inline int sk_has_account(struct sock *sk)
916 /* return true if protocol supports memory accounting */
917 return !!sk->sk_prot->memory_allocated;
920 static inline int sk_wmem_schedule(struct sock *sk, int size)
922 if (!sk_has_account(sk))
923 return 1;
924 return size <= sk->sk_forward_alloc ||
925 __sk_mem_schedule(sk, size, SK_MEM_SEND);
928 static inline int sk_rmem_schedule(struct sock *sk, int size)
930 if (!sk_has_account(sk))
931 return 1;
932 return size <= sk->sk_forward_alloc ||
933 __sk_mem_schedule(sk, size, SK_MEM_RECV);
936 static inline void sk_mem_reclaim(struct sock *sk)
938 if (!sk_has_account(sk))
939 return;
940 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
941 __sk_mem_reclaim(sk);
944 static inline void sk_mem_reclaim_partial(struct sock *sk)
946 if (!sk_has_account(sk))
947 return;
948 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
949 __sk_mem_reclaim(sk);
952 static inline void sk_mem_charge(struct sock *sk, int size)
954 if (!sk_has_account(sk))
955 return;
956 sk->sk_forward_alloc -= size;
959 static inline void sk_mem_uncharge(struct sock *sk, int size)
961 if (!sk_has_account(sk))
962 return;
963 sk->sk_forward_alloc += size;
966 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
968 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
969 sk->sk_wmem_queued -= skb->truesize;
970 sk_mem_uncharge(sk, skb->truesize);
971 __kfree_skb(skb);
974 /* Used by processes to "lock" a socket state, so that
975 * interrupts and bottom half handlers won't change it
976 * from under us. It essentially blocks any incoming
977 * packets, so that we won't get any new data or any
978 * packets that change the state of the socket.
980 * While locked, BH processing will add new packets to
981 * the backlog queue. This queue is processed by the
982 * owner of the socket lock right before it is released.
984 * Since ~2.3.5 it is also exclusive sleep lock serializing
985 * accesses from user process context.
987 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
990 * Macro so as to not evaluate some arguments when
991 * lockdep is not enabled.
993 * Mark both the sk_lock and the sk_lock.slock as a
994 * per-address-family lock class.
996 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
997 do { \
998 sk->sk_lock.owned = 0; \
999 init_waitqueue_head(&sk->sk_lock.wq); \
1000 spin_lock_init(&(sk)->sk_lock.slock); \
1001 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1002 sizeof((sk)->sk_lock)); \
1003 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1004 (skey), (sname)); \
1005 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1006 } while (0)
1008 extern void lock_sock_nested(struct sock *sk, int subclass);
1010 static inline void lock_sock(struct sock *sk)
1012 lock_sock_nested(sk, 0);
1015 extern void release_sock(struct sock *sk);
1017 /* BH context may only use the following locking interface. */
1018 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1019 #define bh_lock_sock_nested(__sk) \
1020 spin_lock_nested(&((__sk)->sk_lock.slock), \
1021 SINGLE_DEPTH_NESTING)
1022 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1024 static inline void lock_sock_bh(struct sock *sk)
1026 spin_lock_bh(&sk->sk_lock.slock);
1029 static inline void unlock_sock_bh(struct sock *sk)
1031 spin_unlock_bh(&sk->sk_lock.slock);
1034 extern struct sock *sk_alloc(struct net *net, int family,
1035 gfp_t priority,
1036 struct proto *prot);
1037 extern void sk_free(struct sock *sk);
1038 extern void sk_release_kernel(struct sock *sk);
1039 extern struct sock *sk_clone(const struct sock *sk,
1040 const gfp_t priority);
1042 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1043 unsigned long size, int force,
1044 gfp_t priority);
1045 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1046 unsigned long size, int force,
1047 gfp_t priority);
1048 extern void sock_wfree(struct sk_buff *skb);
1049 extern void sock_rfree(struct sk_buff *skb);
1051 extern int sock_setsockopt(struct socket *sock, int level,
1052 int op, char __user *optval,
1053 unsigned int optlen);
1055 extern int sock_getsockopt(struct socket *sock, int level,
1056 int op, char __user *optval,
1057 int __user *optlen);
1058 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1059 unsigned long size,
1060 int noblock,
1061 int *errcode);
1062 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1063 unsigned long header_len,
1064 unsigned long data_len,
1065 int noblock,
1066 int *errcode);
1067 extern void *sock_kmalloc(struct sock *sk, int size,
1068 gfp_t priority);
1069 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1070 extern void sk_send_sigurg(struct sock *sk);
1073 * Functions to fill in entries in struct proto_ops when a protocol
1074 * does not implement a particular function.
1076 extern int sock_no_bind(struct socket *,
1077 struct sockaddr *, int);
1078 extern int sock_no_connect(struct socket *,
1079 struct sockaddr *, int, int);
1080 extern int sock_no_socketpair(struct socket *,
1081 struct socket *);
1082 extern int sock_no_accept(struct socket *,
1083 struct socket *, int);
1084 extern int sock_no_getname(struct socket *,
1085 struct sockaddr *, int *, int);
1086 extern unsigned int sock_no_poll(struct file *, struct socket *,
1087 struct poll_table_struct *);
1088 extern int sock_no_ioctl(struct socket *, unsigned int,
1089 unsigned long);
1090 extern int sock_no_listen(struct socket *, int);
1091 extern int sock_no_shutdown(struct socket *, int);
1092 extern int sock_no_getsockopt(struct socket *, int , int,
1093 char __user *, int __user *);
1094 extern int sock_no_setsockopt(struct socket *, int, int,
1095 char __user *, unsigned int);
1096 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1097 struct msghdr *, size_t);
1098 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1099 struct msghdr *, size_t, int);
1100 extern int sock_no_mmap(struct file *file,
1101 struct socket *sock,
1102 struct vm_area_struct *vma);
1103 extern ssize_t sock_no_sendpage(struct socket *sock,
1104 struct page *page,
1105 int offset, size_t size,
1106 int flags);
1109 * Functions to fill in entries in struct proto_ops when a protocol
1110 * uses the inet style.
1112 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1113 char __user *optval, int __user *optlen);
1114 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1115 struct msghdr *msg, size_t size, int flags);
1116 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1117 char __user *optval, unsigned int optlen);
1118 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1119 int optname, char __user *optval, int __user *optlen);
1120 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1121 int optname, char __user *optval, unsigned int optlen);
1123 extern void sk_common_release(struct sock *sk);
1126 * Default socket callbacks and setup code
1129 /* Initialise core socket variables */
1130 extern void sock_init_data(struct socket *sock, struct sock *sk);
1133 * sk_filter_release - release a socket filter
1134 * @fp: filter to remove
1136 * Remove a filter from a socket and release its resources.
1139 static inline void sk_filter_release(struct sk_filter *fp)
1141 if (atomic_dec_and_test(&fp->refcnt))
1142 kfree(fp);
1145 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1147 unsigned int size = sk_filter_len(fp);
1149 atomic_sub(size, &sk->sk_omem_alloc);
1150 sk_filter_release(fp);
1153 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1155 atomic_inc(&fp->refcnt);
1156 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1160 * Socket reference counting postulates.
1162 * * Each user of socket SHOULD hold a reference count.
1163 * * Each access point to socket (an hash table bucket, reference from a list,
1164 * running timer, skb in flight MUST hold a reference count.
1165 * * When reference count hits 0, it means it will never increase back.
1166 * * When reference count hits 0, it means that no references from
1167 * outside exist to this socket and current process on current CPU
1168 * is last user and may/should destroy this socket.
1169 * * sk_free is called from any context: process, BH, IRQ. When
1170 * it is called, socket has no references from outside -> sk_free
1171 * may release descendant resources allocated by the socket, but
1172 * to the time when it is called, socket is NOT referenced by any
1173 * hash tables, lists etc.
1174 * * Packets, delivered from outside (from network or from another process)
1175 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1176 * when they sit in queue. Otherwise, packets will leak to hole, when
1177 * socket is looked up by one cpu and unhasing is made by another CPU.
1178 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1179 * (leak to backlog). Packet socket does all the processing inside
1180 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1181 * use separate SMP lock, so that they are prone too.
1184 /* Ungrab socket and destroy it, if it was the last reference. */
1185 static inline void sock_put(struct sock *sk)
1187 if (atomic_dec_and_test(&sk->sk_refcnt))
1188 sk_free(sk);
1191 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1192 const int nested);
1194 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1196 sk->sk_tx_queue_mapping = tx_queue;
1199 static inline void sk_tx_queue_clear(struct sock *sk)
1201 sk->sk_tx_queue_mapping = -1;
1204 static inline int sk_tx_queue_get(const struct sock *sk)
1206 return sk->sk_tx_queue_mapping;
1209 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1211 return (sk && sk->sk_tx_queue_mapping >= 0);
1214 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1216 sk_tx_queue_clear(sk);
1217 sk->sk_socket = sock;
1220 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1222 return sk->sk_sleep;
1224 /* Detach socket from process context.
1225 * Announce socket dead, detach it from wait queue and inode.
1226 * Note that parent inode held reference count on this struct sock,
1227 * we do not release it in this function, because protocol
1228 * probably wants some additional cleanups or even continuing
1229 * to work with this socket (TCP).
1231 static inline void sock_orphan(struct sock *sk)
1233 write_lock_bh(&sk->sk_callback_lock);
1234 sock_set_flag(sk, SOCK_DEAD);
1235 sk_set_socket(sk, NULL);
1236 sk->sk_sleep = NULL;
1237 write_unlock_bh(&sk->sk_callback_lock);
1240 static inline void sock_graft(struct sock *sk, struct socket *parent)
1242 write_lock_bh(&sk->sk_callback_lock);
1243 sk->sk_sleep = &parent->wait;
1244 parent->sk = sk;
1245 sk_set_socket(sk, parent);
1246 security_sock_graft(sk, parent);
1247 write_unlock_bh(&sk->sk_callback_lock);
1250 extern int sock_i_uid(struct sock *sk);
1251 extern unsigned long sock_i_ino(struct sock *sk);
1253 static inline struct dst_entry *
1254 __sk_dst_get(struct sock *sk)
1256 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1257 sock_owned_by_user(sk) ||
1258 lockdep_is_held(&sk->sk_lock.slock));
1261 static inline struct dst_entry *
1262 sk_dst_get(struct sock *sk)
1264 struct dst_entry *dst;
1266 rcu_read_lock();
1267 dst = rcu_dereference(sk->sk_dst_cache);
1268 if (dst)
1269 dst_hold(dst);
1270 rcu_read_unlock();
1271 return dst;
1274 extern void sk_reset_txq(struct sock *sk);
1276 static inline void dst_negative_advice(struct sock *sk)
1278 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1280 if (dst && dst->ops->negative_advice) {
1281 ndst = dst->ops->negative_advice(dst);
1283 if (ndst != dst) {
1284 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1285 sk_reset_txq(sk);
1290 static inline void
1291 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1293 struct dst_entry *old_dst;
1295 sk_tx_queue_clear(sk);
1297 * This can be called while sk is owned by the caller only,
1298 * with no state that can be checked in a rcu_dereference_check() cond
1300 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1301 rcu_assign_pointer(sk->sk_dst_cache, dst);
1302 dst_release(old_dst);
1305 static inline void
1306 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1308 spin_lock(&sk->sk_dst_lock);
1309 __sk_dst_set(sk, dst);
1310 spin_unlock(&sk->sk_dst_lock);
1313 static inline void
1314 __sk_dst_reset(struct sock *sk)
1316 __sk_dst_set(sk, NULL);
1319 static inline void
1320 sk_dst_reset(struct sock *sk)
1322 spin_lock(&sk->sk_dst_lock);
1323 __sk_dst_reset(sk);
1324 spin_unlock(&sk->sk_dst_lock);
1327 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1329 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1331 static inline int sk_can_gso(const struct sock *sk)
1333 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1336 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1338 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1339 struct sk_buff *skb, struct page *page,
1340 int off, int copy)
1342 if (skb->ip_summed == CHECKSUM_NONE) {
1343 int err = 0;
1344 __wsum csum = csum_and_copy_from_user(from,
1345 page_address(page) + off,
1346 copy, 0, &err);
1347 if (err)
1348 return err;
1349 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1350 } else if (copy_from_user(page_address(page) + off, from, copy))
1351 return -EFAULT;
1353 skb->len += copy;
1354 skb->data_len += copy;
1355 skb->truesize += copy;
1356 sk->sk_wmem_queued += copy;
1357 sk_mem_charge(sk, copy);
1358 return 0;
1362 * sk_wmem_alloc_get - returns write allocations
1363 * @sk: socket
1365 * Returns sk_wmem_alloc minus initial offset of one
1367 static inline int sk_wmem_alloc_get(const struct sock *sk)
1369 return atomic_read(&sk->sk_wmem_alloc) - 1;
1373 * sk_rmem_alloc_get - returns read allocations
1374 * @sk: socket
1376 * Returns sk_rmem_alloc
1378 static inline int sk_rmem_alloc_get(const struct sock *sk)
1380 return atomic_read(&sk->sk_rmem_alloc);
1384 * sk_has_allocations - check if allocations are outstanding
1385 * @sk: socket
1387 * Returns true if socket has write or read allocations
1389 static inline int sk_has_allocations(const struct sock *sk)
1391 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1395 * sk_has_sleeper - check if there are any waiting processes
1396 * @sk: socket
1398 * Returns true if socket has waiting processes
1400 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1401 * barrier call. They were added due to the race found within the tcp code.
1403 * Consider following tcp code paths:
1405 * CPU1 CPU2
1407 * sys_select receive packet
1408 * ... ...
1409 * __add_wait_queue update tp->rcv_nxt
1410 * ... ...
1411 * tp->rcv_nxt check sock_def_readable
1412 * ... {
1413 * schedule ...
1414 * if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
1415 * wake_up_interruptible(sk_sleep(sk))
1416 * ...
1419 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1420 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1421 * could then endup calling schedule and sleep forever if there are no more
1422 * data on the socket.
1424 * The sk_has_sleeper is always called right after a call to read_lock, so we
1425 * can use smp_mb__after_lock barrier.
1427 static inline int sk_has_sleeper(struct sock *sk)
1430 * We need to be sure we are in sync with the
1431 * add_wait_queue modifications to the wait queue.
1433 * This memory barrier is paired in the sock_poll_wait.
1435 smp_mb__after_lock();
1436 return sk_sleep(sk) && waitqueue_active(sk_sleep(sk));
1440 * sock_poll_wait - place memory barrier behind the poll_wait call.
1441 * @filp: file
1442 * @wait_address: socket wait queue
1443 * @p: poll_table
1445 * See the comments in the sk_has_sleeper function.
1447 static inline void sock_poll_wait(struct file *filp,
1448 wait_queue_head_t *wait_address, poll_table *p)
1450 if (p && wait_address) {
1451 poll_wait(filp, wait_address, p);
1453 * We need to be sure we are in sync with the
1454 * socket flags modification.
1456 * This memory barrier is paired in the sk_has_sleeper.
1458 smp_mb();
1463 * Queue a received datagram if it will fit. Stream and sequenced
1464 * protocols can't normally use this as they need to fit buffers in
1465 * and play with them.
1467 * Inlined as it's very short and called for pretty much every
1468 * packet ever received.
1471 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1473 skb_orphan(skb);
1474 skb->sk = sk;
1475 skb->destructor = sock_wfree;
1477 * We used to take a refcount on sk, but following operation
1478 * is enough to guarantee sk_free() wont free this sock until
1479 * all in-flight packets are completed
1481 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1484 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1486 skb_orphan(skb);
1487 skb->sk = sk;
1488 skb->destructor = sock_rfree;
1489 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1490 sk_mem_charge(sk, skb->truesize);
1493 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1494 unsigned long expires);
1496 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1498 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1500 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1502 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1503 number of warnings when compiling with -W --ANK
1505 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1506 (unsigned)sk->sk_rcvbuf)
1507 return -ENOMEM;
1508 skb_set_owner_r(skb, sk);
1509 skb_queue_tail(&sk->sk_error_queue, skb);
1510 if (!sock_flag(sk, SOCK_DEAD))
1511 sk->sk_data_ready(sk, skb->len);
1512 return 0;
1516 * Recover an error report and clear atomically
1519 static inline int sock_error(struct sock *sk)
1521 int err;
1522 if (likely(!sk->sk_err))
1523 return 0;
1524 err = xchg(&sk->sk_err, 0);
1525 return -err;
1528 static inline unsigned long sock_wspace(struct sock *sk)
1530 int amt = 0;
1532 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1533 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1534 if (amt < 0)
1535 amt = 0;
1537 return amt;
1540 static inline void sk_wake_async(struct sock *sk, int how, int band)
1542 if (sock_flag(sk, SOCK_FASYNC))
1543 sock_wake_async(sk->sk_socket, how, band);
1546 #define SOCK_MIN_SNDBUF 2048
1547 #define SOCK_MIN_RCVBUF 256
1549 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1551 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1552 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1553 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1557 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1559 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1561 struct page *page = NULL;
1563 page = alloc_pages(sk->sk_allocation, 0);
1564 if (!page) {
1565 sk->sk_prot->enter_memory_pressure(sk);
1566 sk_stream_moderate_sndbuf(sk);
1568 return page;
1572 * Default write policy as shown to user space via poll/select/SIGIO
1574 static inline int sock_writeable(const struct sock *sk)
1576 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1579 static inline gfp_t gfp_any(void)
1581 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1584 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1586 return noblock ? 0 : sk->sk_rcvtimeo;
1589 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1591 return noblock ? 0 : sk->sk_sndtimeo;
1594 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1596 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1599 /* Alas, with timeout socket operations are not restartable.
1600 * Compare this to poll().
1602 static inline int sock_intr_errno(long timeo)
1604 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1607 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1608 struct sk_buff *skb);
1610 static __inline__ void
1611 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1613 ktime_t kt = skb->tstamp;
1614 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1617 * generate control messages if
1618 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1619 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1620 * - software time stamp available and wanted
1621 * (SOCK_TIMESTAMPING_SOFTWARE)
1622 * - hardware time stamps available and wanted
1623 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1624 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1626 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1627 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1628 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1629 (hwtstamps->hwtstamp.tv64 &&
1630 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1631 (hwtstamps->syststamp.tv64 &&
1632 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1633 __sock_recv_timestamp(msg, sk, skb);
1634 else
1635 sk->sk_stamp = kt;
1638 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1639 struct sk_buff *skb);
1641 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1642 struct sk_buff *skb)
1644 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1645 (1UL << SOCK_RCVTSTAMP) | \
1646 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1647 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1648 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1649 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1651 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1652 __sock_recv_ts_and_drops(msg, sk, skb);
1653 else
1654 sk->sk_stamp = skb->tstamp;
1658 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1659 * @msg: outgoing packet
1660 * @sk: socket sending this packet
1661 * @shtx: filled with instructions for time stamping
1663 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1664 * parameters are invalid.
1666 extern int sock_tx_timestamp(struct msghdr *msg,
1667 struct sock *sk,
1668 union skb_shared_tx *shtx);
1672 * sk_eat_skb - Release a skb if it is no longer needed
1673 * @sk: socket to eat this skb from
1674 * @skb: socket buffer to eat
1675 * @copied_early: flag indicating whether DMA operations copied this data early
1677 * This routine must be called with interrupts disabled or with the socket
1678 * locked so that the sk_buff queue operation is ok.
1680 #ifdef CONFIG_NET_DMA
1681 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1683 __skb_unlink(skb, &sk->sk_receive_queue);
1684 if (!copied_early)
1685 __kfree_skb(skb);
1686 else
1687 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1689 #else
1690 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1692 __skb_unlink(skb, &sk->sk_receive_queue);
1693 __kfree_skb(skb);
1695 #endif
1697 static inline
1698 struct net *sock_net(const struct sock *sk)
1700 #ifdef CONFIG_NET_NS
1701 return sk->sk_net;
1702 #else
1703 return &init_net;
1704 #endif
1707 static inline
1708 void sock_net_set(struct sock *sk, struct net *net)
1710 #ifdef CONFIG_NET_NS
1711 sk->sk_net = net;
1712 #endif
1716 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1717 * They should not hold a referrence to a namespace in order to allow
1718 * to stop it.
1719 * Sockets after sk_change_net should be released using sk_release_kernel
1721 static inline void sk_change_net(struct sock *sk, struct net *net)
1723 put_net(sock_net(sk));
1724 sock_net_set(sk, hold_net(net));
1727 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1729 if (unlikely(skb->sk)) {
1730 struct sock *sk = skb->sk;
1732 skb->destructor = NULL;
1733 skb->sk = NULL;
1734 return sk;
1736 return NULL;
1739 extern void sock_enable_timestamp(struct sock *sk, int flag);
1740 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1741 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1744 * Enable debug/info messages
1746 extern int net_msg_warn;
1747 #define NETDEBUG(fmt, args...) \
1748 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1750 #define LIMIT_NETDEBUG(fmt, args...) \
1751 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1753 extern __u32 sysctl_wmem_max;
1754 extern __u32 sysctl_rmem_max;
1756 extern void sk_init(void);
1758 extern int sysctl_optmem_max;
1760 extern __u32 sysctl_wmem_default;
1761 extern __u32 sysctl_rmem_default;
1763 #endif /* _SOCK_H */