p54: Move firmware code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / elevator.c
blob6f2375339a996a794c17c96d0f32aa724fd1fae2
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if (bio_discard(bio) != bio_discard(rq->bio))
83 return 0;
86 * different data direction or already started, don't merge
88 if (bio_data_dir(bio) != rq_data_dir(rq))
89 return 0;
92 * must be same device and not a special request
94 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 return 0;
98 * only merge integrity protected bio into ditto rq
100 if (bio_integrity(bio) != blk_integrity_rq(rq))
101 return 0;
104 * Don't merge if failfast settings don't match
106 if (bio_failfast_dev(bio) != blk_failfast_dev(rq) ||
107 bio_failfast_transport(bio) != blk_failfast_transport(rq) ||
108 bio_failfast_driver(bio) != blk_failfast_driver(rq))
109 return 0;
111 if (!elv_iosched_allow_merge(rq, bio))
112 return 0;
114 return 1;
116 EXPORT_SYMBOL(elv_rq_merge_ok);
118 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
120 int ret = ELEVATOR_NO_MERGE;
123 * we can merge and sequence is ok, check if it's possible
125 if (elv_rq_merge_ok(__rq, bio)) {
126 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
127 ret = ELEVATOR_BACK_MERGE;
128 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
129 ret = ELEVATOR_FRONT_MERGE;
132 return ret;
135 static struct elevator_type *elevator_find(const char *name)
137 struct elevator_type *e;
139 list_for_each_entry(e, &elv_list, list) {
140 if (!strcmp(e->elevator_name, name))
141 return e;
144 return NULL;
147 static void elevator_put(struct elevator_type *e)
149 module_put(e->elevator_owner);
152 static struct elevator_type *elevator_get(const char *name)
154 struct elevator_type *e;
156 spin_lock(&elv_list_lock);
158 e = elevator_find(name);
159 if (!e) {
160 char elv[ELV_NAME_MAX + strlen("-iosched")];
162 spin_unlock(&elv_list_lock);
164 if (!strcmp(name, "anticipatory"))
165 sprintf(elv, "as-iosched");
166 else
167 sprintf(elv, "%s-iosched", name);
169 request_module("%s", elv);
170 spin_lock(&elv_list_lock);
171 e = elevator_find(name);
174 if (e && !try_module_get(e->elevator_owner))
175 e = NULL;
177 spin_unlock(&elv_list_lock);
179 return e;
182 static void *elevator_init_queue(struct request_queue *q,
183 struct elevator_queue *eq)
185 return eq->ops->elevator_init_fn(q);
188 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
189 void *data)
191 q->elevator = eq;
192 eq->elevator_data = data;
195 static char chosen_elevator[16];
197 static int __init elevator_setup(char *str)
200 * Be backwards-compatible with previous kernels, so users
201 * won't get the wrong elevator.
203 if (!strcmp(str, "as"))
204 strcpy(chosen_elevator, "anticipatory");
205 else
206 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
207 return 1;
210 __setup("elevator=", elevator_setup);
212 static struct kobj_type elv_ktype;
214 static struct elevator_queue *elevator_alloc(struct request_queue *q,
215 struct elevator_type *e)
217 struct elevator_queue *eq;
218 int i;
220 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
221 if (unlikely(!eq))
222 goto err;
224 eq->ops = &e->ops;
225 eq->elevator_type = e;
226 kobject_init(&eq->kobj, &elv_ktype);
227 mutex_init(&eq->sysfs_lock);
229 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
230 GFP_KERNEL, q->node);
231 if (!eq->hash)
232 goto err;
234 for (i = 0; i < ELV_HASH_ENTRIES; i++)
235 INIT_HLIST_HEAD(&eq->hash[i]);
237 return eq;
238 err:
239 kfree(eq);
240 elevator_put(e);
241 return NULL;
244 static void elevator_release(struct kobject *kobj)
246 struct elevator_queue *e;
248 e = container_of(kobj, struct elevator_queue, kobj);
249 elevator_put(e->elevator_type);
250 kfree(e->hash);
251 kfree(e);
254 int elevator_init(struct request_queue *q, char *name)
256 struct elevator_type *e = NULL;
257 struct elevator_queue *eq;
258 int ret = 0;
259 void *data;
261 INIT_LIST_HEAD(&q->queue_head);
262 q->last_merge = NULL;
263 q->end_sector = 0;
264 q->boundary_rq = NULL;
266 if (name) {
267 e = elevator_get(name);
268 if (!e)
269 return -EINVAL;
272 if (!e && *chosen_elevator) {
273 e = elevator_get(chosen_elevator);
274 if (!e)
275 printk(KERN_ERR "I/O scheduler %s not found\n",
276 chosen_elevator);
279 if (!e) {
280 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
281 if (!e) {
282 printk(KERN_ERR
283 "Default I/O scheduler not found. " \
284 "Using noop.\n");
285 e = elevator_get("noop");
289 eq = elevator_alloc(q, e);
290 if (!eq)
291 return -ENOMEM;
293 data = elevator_init_queue(q, eq);
294 if (!data) {
295 kobject_put(&eq->kobj);
296 return -ENOMEM;
299 elevator_attach(q, eq, data);
300 return ret;
302 EXPORT_SYMBOL(elevator_init);
304 void elevator_exit(struct elevator_queue *e)
306 mutex_lock(&e->sysfs_lock);
307 if (e->ops->elevator_exit_fn)
308 e->ops->elevator_exit_fn(e);
309 e->ops = NULL;
310 mutex_unlock(&e->sysfs_lock);
312 kobject_put(&e->kobj);
314 EXPORT_SYMBOL(elevator_exit);
316 static inline void __elv_rqhash_del(struct request *rq)
318 hlist_del_init(&rq->hash);
321 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
323 if (ELV_ON_HASH(rq))
324 __elv_rqhash_del(rq);
327 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
329 struct elevator_queue *e = q->elevator;
331 BUG_ON(ELV_ON_HASH(rq));
332 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
335 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
337 __elv_rqhash_del(rq);
338 elv_rqhash_add(q, rq);
341 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
343 struct elevator_queue *e = q->elevator;
344 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
345 struct hlist_node *entry, *next;
346 struct request *rq;
348 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
349 BUG_ON(!ELV_ON_HASH(rq));
351 if (unlikely(!rq_mergeable(rq))) {
352 __elv_rqhash_del(rq);
353 continue;
356 if (rq_hash_key(rq) == offset)
357 return rq;
360 return NULL;
364 * RB-tree support functions for inserting/lookup/removal of requests
365 * in a sorted RB tree.
367 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
369 struct rb_node **p = &root->rb_node;
370 struct rb_node *parent = NULL;
371 struct request *__rq;
373 while (*p) {
374 parent = *p;
375 __rq = rb_entry(parent, struct request, rb_node);
377 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
378 p = &(*p)->rb_left;
379 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
380 p = &(*p)->rb_right;
381 else
382 return __rq;
385 rb_link_node(&rq->rb_node, parent, p);
386 rb_insert_color(&rq->rb_node, root);
387 return NULL;
389 EXPORT_SYMBOL(elv_rb_add);
391 void elv_rb_del(struct rb_root *root, struct request *rq)
393 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
394 rb_erase(&rq->rb_node, root);
395 RB_CLEAR_NODE(&rq->rb_node);
397 EXPORT_SYMBOL(elv_rb_del);
399 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
401 struct rb_node *n = root->rb_node;
402 struct request *rq;
404 while (n) {
405 rq = rb_entry(n, struct request, rb_node);
407 if (sector < blk_rq_pos(rq))
408 n = n->rb_left;
409 else if (sector > blk_rq_pos(rq))
410 n = n->rb_right;
411 else
412 return rq;
415 return NULL;
417 EXPORT_SYMBOL(elv_rb_find);
420 * Insert rq into dispatch queue of q. Queue lock must be held on
421 * entry. rq is sort instead into the dispatch queue. To be used by
422 * specific elevators.
424 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
426 sector_t boundary;
427 struct list_head *entry;
428 int stop_flags;
430 if (q->last_merge == rq)
431 q->last_merge = NULL;
433 elv_rqhash_del(q, rq);
435 q->nr_sorted--;
437 boundary = q->end_sector;
438 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
439 list_for_each_prev(entry, &q->queue_head) {
440 struct request *pos = list_entry_rq(entry);
442 if (blk_discard_rq(rq) != blk_discard_rq(pos))
443 break;
444 if (rq_data_dir(rq) != rq_data_dir(pos))
445 break;
446 if (pos->cmd_flags & stop_flags)
447 break;
448 if (blk_rq_pos(rq) >= boundary) {
449 if (blk_rq_pos(pos) < boundary)
450 continue;
451 } else {
452 if (blk_rq_pos(pos) >= boundary)
453 break;
455 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
456 break;
459 list_add(&rq->queuelist, entry);
461 EXPORT_SYMBOL(elv_dispatch_sort);
464 * Insert rq into dispatch queue of q. Queue lock must be held on
465 * entry. rq is added to the back of the dispatch queue. To be used by
466 * specific elevators.
468 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
470 if (q->last_merge == rq)
471 q->last_merge = NULL;
473 elv_rqhash_del(q, rq);
475 q->nr_sorted--;
477 q->end_sector = rq_end_sector(rq);
478 q->boundary_rq = rq;
479 list_add_tail(&rq->queuelist, &q->queue_head);
481 EXPORT_SYMBOL(elv_dispatch_add_tail);
483 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
485 struct elevator_queue *e = q->elevator;
486 struct request *__rq;
487 int ret;
490 * First try one-hit cache.
492 if (q->last_merge) {
493 ret = elv_try_merge(q->last_merge, bio);
494 if (ret != ELEVATOR_NO_MERGE) {
495 *req = q->last_merge;
496 return ret;
500 if (blk_queue_nomerges(q))
501 return ELEVATOR_NO_MERGE;
504 * See if our hash lookup can find a potential backmerge.
506 __rq = elv_rqhash_find(q, bio->bi_sector);
507 if (__rq && elv_rq_merge_ok(__rq, bio)) {
508 *req = __rq;
509 return ELEVATOR_BACK_MERGE;
512 if (e->ops->elevator_merge_fn)
513 return e->ops->elevator_merge_fn(q, req, bio);
515 return ELEVATOR_NO_MERGE;
518 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
520 struct elevator_queue *e = q->elevator;
522 if (e->ops->elevator_merged_fn)
523 e->ops->elevator_merged_fn(q, rq, type);
525 if (type == ELEVATOR_BACK_MERGE)
526 elv_rqhash_reposition(q, rq);
528 q->last_merge = rq;
531 void elv_merge_requests(struct request_queue *q, struct request *rq,
532 struct request *next)
534 struct elevator_queue *e = q->elevator;
536 if (e->ops->elevator_merge_req_fn)
537 e->ops->elevator_merge_req_fn(q, rq, next);
539 elv_rqhash_reposition(q, rq);
540 elv_rqhash_del(q, next);
542 q->nr_sorted--;
543 q->last_merge = rq;
546 void elv_requeue_request(struct request_queue *q, struct request *rq)
549 * it already went through dequeue, we need to decrement the
550 * in_flight count again
552 if (blk_account_rq(rq)) {
553 q->in_flight[rq_is_sync(rq)]--;
554 if (blk_sorted_rq(rq))
555 elv_deactivate_rq(q, rq);
558 rq->cmd_flags &= ~REQ_STARTED;
560 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
563 void elv_drain_elevator(struct request_queue *q)
565 static int printed;
566 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
568 if (q->nr_sorted == 0)
569 return;
570 if (printed++ < 10) {
571 printk(KERN_ERR "%s: forced dispatching is broken "
572 "(nr_sorted=%u), please report this\n",
573 q->elevator->elevator_type->elevator_name, q->nr_sorted);
578 * Call with queue lock held, interrupts disabled
580 void elv_quiesce_start(struct request_queue *q)
582 if (!q->elevator)
583 return;
585 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
588 * make sure we don't have any requests in flight
590 elv_drain_elevator(q);
591 while (q->rq.elvpriv) {
592 __blk_run_queue(q);
593 spin_unlock_irq(q->queue_lock);
594 msleep(10);
595 spin_lock_irq(q->queue_lock);
596 elv_drain_elevator(q);
600 void elv_quiesce_end(struct request_queue *q)
602 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
605 void elv_insert(struct request_queue *q, struct request *rq, int where)
607 struct list_head *pos;
608 unsigned ordseq;
609 int unplug_it = 1;
611 trace_block_rq_insert(q, rq);
613 rq->q = q;
615 switch (where) {
616 case ELEVATOR_INSERT_FRONT:
617 rq->cmd_flags |= REQ_SOFTBARRIER;
619 list_add(&rq->queuelist, &q->queue_head);
620 break;
622 case ELEVATOR_INSERT_BACK:
623 rq->cmd_flags |= REQ_SOFTBARRIER;
624 elv_drain_elevator(q);
625 list_add_tail(&rq->queuelist, &q->queue_head);
627 * We kick the queue here for the following reasons.
628 * - The elevator might have returned NULL previously
629 * to delay requests and returned them now. As the
630 * queue wasn't empty before this request, ll_rw_blk
631 * won't run the queue on return, resulting in hang.
632 * - Usually, back inserted requests won't be merged
633 * with anything. There's no point in delaying queue
634 * processing.
636 __blk_run_queue(q);
637 break;
639 case ELEVATOR_INSERT_SORT:
640 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
641 rq->cmd_flags |= REQ_SORTED;
642 q->nr_sorted++;
643 if (rq_mergeable(rq)) {
644 elv_rqhash_add(q, rq);
645 if (!q->last_merge)
646 q->last_merge = rq;
650 * Some ioscheds (cfq) run q->request_fn directly, so
651 * rq cannot be accessed after calling
652 * elevator_add_req_fn.
654 q->elevator->ops->elevator_add_req_fn(q, rq);
655 break;
657 case ELEVATOR_INSERT_REQUEUE:
659 * If ordered flush isn't in progress, we do front
660 * insertion; otherwise, requests should be requeued
661 * in ordseq order.
663 rq->cmd_flags |= REQ_SOFTBARRIER;
666 * Most requeues happen because of a busy condition,
667 * don't force unplug of the queue for that case.
669 unplug_it = 0;
671 if (q->ordseq == 0) {
672 list_add(&rq->queuelist, &q->queue_head);
673 break;
676 ordseq = blk_ordered_req_seq(rq);
678 list_for_each(pos, &q->queue_head) {
679 struct request *pos_rq = list_entry_rq(pos);
680 if (ordseq <= blk_ordered_req_seq(pos_rq))
681 break;
684 list_add_tail(&rq->queuelist, pos);
685 break;
687 default:
688 printk(KERN_ERR "%s: bad insertion point %d\n",
689 __func__, where);
690 BUG();
693 if (unplug_it && blk_queue_plugged(q)) {
694 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
695 - queue_in_flight(q);
697 if (nrq >= q->unplug_thresh)
698 __generic_unplug_device(q);
702 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
703 int plug)
705 if (q->ordcolor)
706 rq->cmd_flags |= REQ_ORDERED_COLOR;
708 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
710 * toggle ordered color
712 if (blk_barrier_rq(rq))
713 q->ordcolor ^= 1;
716 * barriers implicitly indicate back insertion
718 if (where == ELEVATOR_INSERT_SORT)
719 where = ELEVATOR_INSERT_BACK;
722 * this request is scheduling boundary, update
723 * end_sector
725 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
726 q->end_sector = rq_end_sector(rq);
727 q->boundary_rq = rq;
729 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
730 where == ELEVATOR_INSERT_SORT)
731 where = ELEVATOR_INSERT_BACK;
733 if (plug)
734 blk_plug_device(q);
736 elv_insert(q, rq, where);
738 EXPORT_SYMBOL(__elv_add_request);
740 void elv_add_request(struct request_queue *q, struct request *rq, int where,
741 int plug)
743 unsigned long flags;
745 spin_lock_irqsave(q->queue_lock, flags);
746 __elv_add_request(q, rq, where, plug);
747 spin_unlock_irqrestore(q->queue_lock, flags);
749 EXPORT_SYMBOL(elv_add_request);
751 int elv_queue_empty(struct request_queue *q)
753 struct elevator_queue *e = q->elevator;
755 if (!list_empty(&q->queue_head))
756 return 0;
758 if (e->ops->elevator_queue_empty_fn)
759 return e->ops->elevator_queue_empty_fn(q);
761 return 1;
763 EXPORT_SYMBOL(elv_queue_empty);
765 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
767 struct elevator_queue *e = q->elevator;
769 if (e->ops->elevator_latter_req_fn)
770 return e->ops->elevator_latter_req_fn(q, rq);
771 return NULL;
774 struct request *elv_former_request(struct request_queue *q, struct request *rq)
776 struct elevator_queue *e = q->elevator;
778 if (e->ops->elevator_former_req_fn)
779 return e->ops->elevator_former_req_fn(q, rq);
780 return NULL;
783 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
785 struct elevator_queue *e = q->elevator;
787 if (e->ops->elevator_set_req_fn)
788 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
790 rq->elevator_private = NULL;
791 return 0;
794 void elv_put_request(struct request_queue *q, struct request *rq)
796 struct elevator_queue *e = q->elevator;
798 if (e->ops->elevator_put_req_fn)
799 e->ops->elevator_put_req_fn(rq);
802 int elv_may_queue(struct request_queue *q, int rw)
804 struct elevator_queue *e = q->elevator;
806 if (e->ops->elevator_may_queue_fn)
807 return e->ops->elevator_may_queue_fn(q, rw);
809 return ELV_MQUEUE_MAY;
812 void elv_abort_queue(struct request_queue *q)
814 struct request *rq;
816 while (!list_empty(&q->queue_head)) {
817 rq = list_entry_rq(q->queue_head.next);
818 rq->cmd_flags |= REQ_QUIET;
819 trace_block_rq_abort(q, rq);
821 * Mark this request as started so we don't trigger
822 * any debug logic in the end I/O path.
824 blk_start_request(rq);
825 __blk_end_request_all(rq, -EIO);
828 EXPORT_SYMBOL(elv_abort_queue);
830 void elv_completed_request(struct request_queue *q, struct request *rq)
832 struct elevator_queue *e = q->elevator;
835 * request is released from the driver, io must be done
837 if (blk_account_rq(rq)) {
838 q->in_flight[rq_is_sync(rq)]--;
839 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
840 e->ops->elevator_completed_req_fn(q, rq);
844 * Check if the queue is waiting for fs requests to be
845 * drained for flush sequence.
847 if (unlikely(q->ordseq)) {
848 struct request *next = NULL;
850 if (!list_empty(&q->queue_head))
851 next = list_entry_rq(q->queue_head.next);
853 if (!queue_in_flight(q) &&
854 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
855 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
856 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
857 __blk_run_queue(q);
862 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
864 static ssize_t
865 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
867 struct elv_fs_entry *entry = to_elv(attr);
868 struct elevator_queue *e;
869 ssize_t error;
871 if (!entry->show)
872 return -EIO;
874 e = container_of(kobj, struct elevator_queue, kobj);
875 mutex_lock(&e->sysfs_lock);
876 error = e->ops ? entry->show(e, page) : -ENOENT;
877 mutex_unlock(&e->sysfs_lock);
878 return error;
881 static ssize_t
882 elv_attr_store(struct kobject *kobj, struct attribute *attr,
883 const char *page, size_t length)
885 struct elv_fs_entry *entry = to_elv(attr);
886 struct elevator_queue *e;
887 ssize_t error;
889 if (!entry->store)
890 return -EIO;
892 e = container_of(kobj, struct elevator_queue, kobj);
893 mutex_lock(&e->sysfs_lock);
894 error = e->ops ? entry->store(e, page, length) : -ENOENT;
895 mutex_unlock(&e->sysfs_lock);
896 return error;
899 static struct sysfs_ops elv_sysfs_ops = {
900 .show = elv_attr_show,
901 .store = elv_attr_store,
904 static struct kobj_type elv_ktype = {
905 .sysfs_ops = &elv_sysfs_ops,
906 .release = elevator_release,
909 int elv_register_queue(struct request_queue *q)
911 struct elevator_queue *e = q->elevator;
912 int error;
914 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
915 if (!error) {
916 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
917 if (attr) {
918 while (attr->attr.name) {
919 if (sysfs_create_file(&e->kobj, &attr->attr))
920 break;
921 attr++;
924 kobject_uevent(&e->kobj, KOBJ_ADD);
926 return error;
929 static void __elv_unregister_queue(struct elevator_queue *e)
931 kobject_uevent(&e->kobj, KOBJ_REMOVE);
932 kobject_del(&e->kobj);
935 void elv_unregister_queue(struct request_queue *q)
937 if (q)
938 __elv_unregister_queue(q->elevator);
941 void elv_register(struct elevator_type *e)
943 char *def = "";
945 spin_lock(&elv_list_lock);
946 BUG_ON(elevator_find(e->elevator_name));
947 list_add_tail(&e->list, &elv_list);
948 spin_unlock(&elv_list_lock);
950 if (!strcmp(e->elevator_name, chosen_elevator) ||
951 (!*chosen_elevator &&
952 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
953 def = " (default)";
955 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
956 def);
958 EXPORT_SYMBOL_GPL(elv_register);
960 void elv_unregister(struct elevator_type *e)
962 struct task_struct *g, *p;
965 * Iterate every thread in the process to remove the io contexts.
967 if (e->ops.trim) {
968 read_lock(&tasklist_lock);
969 do_each_thread(g, p) {
970 task_lock(p);
971 if (p->io_context)
972 e->ops.trim(p->io_context);
973 task_unlock(p);
974 } while_each_thread(g, p);
975 read_unlock(&tasklist_lock);
978 spin_lock(&elv_list_lock);
979 list_del_init(&e->list);
980 spin_unlock(&elv_list_lock);
982 EXPORT_SYMBOL_GPL(elv_unregister);
985 * switch to new_e io scheduler. be careful not to introduce deadlocks -
986 * we don't free the old io scheduler, before we have allocated what we
987 * need for the new one. this way we have a chance of going back to the old
988 * one, if the new one fails init for some reason.
990 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
992 struct elevator_queue *old_elevator, *e;
993 void *data;
996 * Allocate new elevator
998 e = elevator_alloc(q, new_e);
999 if (!e)
1000 return 0;
1002 data = elevator_init_queue(q, e);
1003 if (!data) {
1004 kobject_put(&e->kobj);
1005 return 0;
1009 * Turn on BYPASS and drain all requests w/ elevator private data
1011 spin_lock_irq(q->queue_lock);
1012 elv_quiesce_start(q);
1015 * Remember old elevator.
1017 old_elevator = q->elevator;
1020 * attach and start new elevator
1022 elevator_attach(q, e, data);
1024 spin_unlock_irq(q->queue_lock);
1026 __elv_unregister_queue(old_elevator);
1028 if (elv_register_queue(q))
1029 goto fail_register;
1032 * finally exit old elevator and turn off BYPASS.
1034 elevator_exit(old_elevator);
1035 spin_lock_irq(q->queue_lock);
1036 elv_quiesce_end(q);
1037 spin_unlock_irq(q->queue_lock);
1039 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1041 return 1;
1043 fail_register:
1045 * switch failed, exit the new io scheduler and reattach the old
1046 * one again (along with re-adding the sysfs dir)
1048 elevator_exit(e);
1049 q->elevator = old_elevator;
1050 elv_register_queue(q);
1052 spin_lock_irq(q->queue_lock);
1053 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1054 spin_unlock_irq(q->queue_lock);
1056 return 0;
1059 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1060 size_t count)
1062 char elevator_name[ELV_NAME_MAX];
1063 struct elevator_type *e;
1065 if (!q->elevator)
1066 return count;
1068 strlcpy(elevator_name, name, sizeof(elevator_name));
1069 strstrip(elevator_name);
1071 e = elevator_get(elevator_name);
1072 if (!e) {
1073 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1074 return -EINVAL;
1077 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1078 elevator_put(e);
1079 return count;
1082 if (!elevator_switch(q, e))
1083 printk(KERN_ERR "elevator: switch to %s failed\n",
1084 elevator_name);
1085 return count;
1088 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1090 struct elevator_queue *e = q->elevator;
1091 struct elevator_type *elv;
1092 struct elevator_type *__e;
1093 int len = 0;
1095 if (!q->elevator)
1096 return sprintf(name, "none\n");
1098 elv = e->elevator_type;
1100 spin_lock(&elv_list_lock);
1101 list_for_each_entry(__e, &elv_list, list) {
1102 if (!strcmp(elv->elevator_name, __e->elevator_name))
1103 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1104 else
1105 len += sprintf(name+len, "%s ", __e->elevator_name);
1107 spin_unlock(&elv_list_lock);
1109 len += sprintf(len+name, "\n");
1110 return len;
1113 struct request *elv_rb_former_request(struct request_queue *q,
1114 struct request *rq)
1116 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1118 if (rbprev)
1119 return rb_entry_rq(rbprev);
1121 return NULL;
1123 EXPORT_SYMBOL(elv_rb_former_request);
1125 struct request *elv_rb_latter_request(struct request_queue *q,
1126 struct request *rq)
1128 struct rb_node *rbnext = rb_next(&rq->rb_node);
1130 if (rbnext)
1131 return rb_entry_rq(rbnext);
1133 return NULL;
1135 EXPORT_SYMBOL(elv_rb_latter_request);