Merge branch 'fwnet' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blobae2727ab0c3ab7695b14f256da0bccdfd3668d81
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_bdev
34 * FIXME: remove all knowledge of the buffer layer from this file
36 #include <linux/buffer_head.h>
39 * New inode.c implementation.
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
45 * Famous last words.
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
79 * A simple spinlock to protect the list manipulations.
81 * NOTE! You also have to own the lock if you change
82 * the i_state of an inode while it is in use..
84 DEFINE_SPINLOCK(inode_lock);
87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88 * icache shrinking path, and the umount path. Without this exclusion,
89 * by the time prune_icache calls iput for the inode whose pages it has
90 * been invalidating, or by the time it calls clear_inode & destroy_inode
91 * from its final dispose_list, the struct super_block they refer to
92 * (for inode->i_sb->s_op) may already have been freed and reused.
94 * We make this an rwsem because the fastpath is icache shrinking. In
95 * some cases a filesystem may be doing a significant amount of work in
96 * its inode reclaim code, so this should improve parallelism.
98 static DECLARE_RWSEM(iprune_sem);
101 * Statistics gathering..
103 struct inodes_stat_t inodes_stat;
105 static struct percpu_counter nr_inodes __cacheline_aligned_in_smp;
106 static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp;
108 static struct kmem_cache *inode_cachep __read_mostly;
110 static inline int get_nr_inodes(void)
112 return percpu_counter_sum_positive(&nr_inodes);
115 static inline int get_nr_inodes_unused(void)
117 return percpu_counter_sum_positive(&nr_inodes_unused);
120 int get_nr_dirty_inodes(void)
122 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
123 return nr_dirty > 0 ? nr_dirty : 0;
128 * Handle nr_inode sysctl
130 #ifdef CONFIG_SYSCTL
131 int proc_nr_inodes(ctl_table *table, int write,
132 void __user *buffer, size_t *lenp, loff_t *ppos)
134 inodes_stat.nr_inodes = get_nr_inodes();
135 inodes_stat.nr_unused = get_nr_inodes_unused();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
140 static void wake_up_inode(struct inode *inode)
143 * Prevent speculative execution through spin_unlock(&inode_lock);
145 smp_mb();
146 wake_up_bit(&inode->i_state, __I_NEW);
150 * inode_init_always - perform inode structure intialisation
151 * @sb: superblock inode belongs to
152 * @inode: inode to initialise
154 * These are initializations that need to be done on every inode
155 * allocation as the fields are not initialised by slab allocation.
157 int inode_init_always(struct super_block *sb, struct inode *inode)
159 static const struct address_space_operations empty_aops;
160 static const struct inode_operations empty_iops;
161 static const struct file_operations empty_fops;
162 struct address_space *const mapping = &inode->i_data;
164 inode->i_sb = sb;
165 inode->i_blkbits = sb->s_blocksize_bits;
166 inode->i_flags = 0;
167 atomic_set(&inode->i_count, 1);
168 inode->i_op = &empty_iops;
169 inode->i_fop = &empty_fops;
170 inode->i_nlink = 1;
171 inode->i_uid = 0;
172 inode->i_gid = 0;
173 atomic_set(&inode->i_writecount, 0);
174 inode->i_size = 0;
175 inode->i_blocks = 0;
176 inode->i_bytes = 0;
177 inode->i_generation = 0;
178 #ifdef CONFIG_QUOTA
179 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
180 #endif
181 inode->i_pipe = NULL;
182 inode->i_bdev = NULL;
183 inode->i_cdev = NULL;
184 inode->i_rdev = 0;
185 inode->dirtied_when = 0;
187 if (security_inode_alloc(inode))
188 goto out;
189 spin_lock_init(&inode->i_lock);
190 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
192 mutex_init(&inode->i_mutex);
193 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
195 init_rwsem(&inode->i_alloc_sem);
196 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
198 mapping->a_ops = &empty_aops;
199 mapping->host = inode;
200 mapping->flags = 0;
201 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
202 mapping->assoc_mapping = NULL;
203 mapping->backing_dev_info = &default_backing_dev_info;
204 mapping->writeback_index = 0;
207 * If the block_device provides a backing_dev_info for client
208 * inodes then use that. Otherwise the inode share the bdev's
209 * backing_dev_info.
211 if (sb->s_bdev) {
212 struct backing_dev_info *bdi;
214 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
215 mapping->backing_dev_info = bdi;
217 inode->i_private = NULL;
218 inode->i_mapping = mapping;
219 #ifdef CONFIG_FS_POSIX_ACL
220 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
221 #endif
223 #ifdef CONFIG_FSNOTIFY
224 inode->i_fsnotify_mask = 0;
225 #endif
227 percpu_counter_inc(&nr_inodes);
229 return 0;
230 out:
231 return -ENOMEM;
233 EXPORT_SYMBOL(inode_init_always);
235 static struct inode *alloc_inode(struct super_block *sb)
237 struct inode *inode;
239 if (sb->s_op->alloc_inode)
240 inode = sb->s_op->alloc_inode(sb);
241 else
242 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
244 if (!inode)
245 return NULL;
247 if (unlikely(inode_init_always(sb, inode))) {
248 if (inode->i_sb->s_op->destroy_inode)
249 inode->i_sb->s_op->destroy_inode(inode);
250 else
251 kmem_cache_free(inode_cachep, inode);
252 return NULL;
255 return inode;
258 void __destroy_inode(struct inode *inode)
260 BUG_ON(inode_has_buffers(inode));
261 security_inode_free(inode);
262 fsnotify_inode_delete(inode);
263 #ifdef CONFIG_FS_POSIX_ACL
264 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
265 posix_acl_release(inode->i_acl);
266 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
267 posix_acl_release(inode->i_default_acl);
268 #endif
269 percpu_counter_dec(&nr_inodes);
271 EXPORT_SYMBOL(__destroy_inode);
273 static void destroy_inode(struct inode *inode)
275 BUG_ON(!list_empty(&inode->i_lru));
276 __destroy_inode(inode);
277 if (inode->i_sb->s_op->destroy_inode)
278 inode->i_sb->s_op->destroy_inode(inode);
279 else
280 kmem_cache_free(inode_cachep, (inode));
284 * These are initializations that only need to be done
285 * once, because the fields are idempotent across use
286 * of the inode, so let the slab aware of that.
288 void inode_init_once(struct inode *inode)
290 memset(inode, 0, sizeof(*inode));
291 INIT_HLIST_NODE(&inode->i_hash);
292 INIT_LIST_HEAD(&inode->i_dentry);
293 INIT_LIST_HEAD(&inode->i_devices);
294 INIT_LIST_HEAD(&inode->i_wb_list);
295 INIT_LIST_HEAD(&inode->i_lru);
296 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
297 spin_lock_init(&inode->i_data.tree_lock);
298 spin_lock_init(&inode->i_data.i_mmap_lock);
299 INIT_LIST_HEAD(&inode->i_data.private_list);
300 spin_lock_init(&inode->i_data.private_lock);
301 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
302 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
303 i_size_ordered_init(inode);
304 #ifdef CONFIG_FSNOTIFY
305 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
306 #endif
308 EXPORT_SYMBOL(inode_init_once);
310 static void init_once(void *foo)
312 struct inode *inode = (struct inode *) foo;
314 inode_init_once(inode);
318 * inode_lock must be held
320 void __iget(struct inode *inode)
322 atomic_inc(&inode->i_count);
326 * get additional reference to inode; caller must already hold one.
328 void ihold(struct inode *inode)
330 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
332 EXPORT_SYMBOL(ihold);
334 static void inode_lru_list_add(struct inode *inode)
336 if (list_empty(&inode->i_lru)) {
337 list_add(&inode->i_lru, &inode_lru);
338 percpu_counter_inc(&nr_inodes_unused);
342 static void inode_lru_list_del(struct inode *inode)
344 if (!list_empty(&inode->i_lru)) {
345 list_del_init(&inode->i_lru);
346 percpu_counter_dec(&nr_inodes_unused);
350 static inline void __inode_sb_list_add(struct inode *inode)
352 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
356 * inode_sb_list_add - add inode to the superblock list of inodes
357 * @inode: inode to add
359 void inode_sb_list_add(struct inode *inode)
361 spin_lock(&inode_lock);
362 __inode_sb_list_add(inode);
363 spin_unlock(&inode_lock);
365 EXPORT_SYMBOL_GPL(inode_sb_list_add);
367 static inline void __inode_sb_list_del(struct inode *inode)
369 list_del_init(&inode->i_sb_list);
372 static unsigned long hash(struct super_block *sb, unsigned long hashval)
374 unsigned long tmp;
376 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
377 L1_CACHE_BYTES;
378 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
379 return tmp & I_HASHMASK;
383 * __insert_inode_hash - hash an inode
384 * @inode: unhashed inode
385 * @hashval: unsigned long value used to locate this object in the
386 * inode_hashtable.
388 * Add an inode to the inode hash for this superblock.
390 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
392 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
394 spin_lock(&inode_lock);
395 hlist_add_head(&inode->i_hash, b);
396 spin_unlock(&inode_lock);
398 EXPORT_SYMBOL(__insert_inode_hash);
401 * __remove_inode_hash - remove an inode from the hash
402 * @inode: inode to unhash
404 * Remove an inode from the superblock.
406 static void __remove_inode_hash(struct inode *inode)
408 hlist_del_init(&inode->i_hash);
412 * remove_inode_hash - remove an inode from the hash
413 * @inode: inode to unhash
415 * Remove an inode from the superblock.
417 void remove_inode_hash(struct inode *inode)
419 spin_lock(&inode_lock);
420 hlist_del_init(&inode->i_hash);
421 spin_unlock(&inode_lock);
423 EXPORT_SYMBOL(remove_inode_hash);
425 void end_writeback(struct inode *inode)
427 might_sleep();
428 BUG_ON(inode->i_data.nrpages);
429 BUG_ON(!list_empty(&inode->i_data.private_list));
430 BUG_ON(!(inode->i_state & I_FREEING));
431 BUG_ON(inode->i_state & I_CLEAR);
432 inode_sync_wait(inode);
433 inode->i_state = I_FREEING | I_CLEAR;
435 EXPORT_SYMBOL(end_writeback);
437 static void evict(struct inode *inode)
439 const struct super_operations *op = inode->i_sb->s_op;
441 if (op->evict_inode) {
442 op->evict_inode(inode);
443 } else {
444 if (inode->i_data.nrpages)
445 truncate_inode_pages(&inode->i_data, 0);
446 end_writeback(inode);
448 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
449 bd_forget(inode);
450 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
451 cd_forget(inode);
455 * dispose_list - dispose of the contents of a local list
456 * @head: the head of the list to free
458 * Dispose-list gets a local list with local inodes in it, so it doesn't
459 * need to worry about list corruption and SMP locks.
461 static void dispose_list(struct list_head *head)
463 while (!list_empty(head)) {
464 struct inode *inode;
466 inode = list_first_entry(head, struct inode, i_lru);
467 list_del_init(&inode->i_lru);
469 evict(inode);
471 spin_lock(&inode_lock);
472 __remove_inode_hash(inode);
473 __inode_sb_list_del(inode);
474 spin_unlock(&inode_lock);
476 wake_up_inode(inode);
477 destroy_inode(inode);
482 * evict_inodes - evict all evictable inodes for a superblock
483 * @sb: superblock to operate on
485 * Make sure that no inodes with zero refcount are retained. This is
486 * called by superblock shutdown after having MS_ACTIVE flag removed,
487 * so any inode reaching zero refcount during or after that call will
488 * be immediately evicted.
490 void evict_inodes(struct super_block *sb)
492 struct inode *inode, *next;
493 LIST_HEAD(dispose);
495 down_write(&iprune_sem);
497 spin_lock(&inode_lock);
498 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
499 if (atomic_read(&inode->i_count))
500 continue;
502 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
503 WARN_ON(1);
504 continue;
507 inode->i_state |= I_FREEING;
510 * Move the inode off the IO lists and LRU once I_FREEING is
511 * set so that it won't get moved back on there if it is dirty.
513 list_move(&inode->i_lru, &dispose);
514 list_del_init(&inode->i_wb_list);
515 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
516 percpu_counter_dec(&nr_inodes_unused);
518 spin_unlock(&inode_lock);
520 dispose_list(&dispose);
521 up_write(&iprune_sem);
525 * invalidate_inodes - attempt to free all inodes on a superblock
526 * @sb: superblock to operate on
528 * Attempts to free all inodes for a given superblock. If there were any
529 * busy inodes return a non-zero value, else zero.
531 int invalidate_inodes(struct super_block *sb)
533 int busy = 0;
534 struct inode *inode, *next;
535 LIST_HEAD(dispose);
537 down_write(&iprune_sem);
539 spin_lock(&inode_lock);
540 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
541 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
542 continue;
543 if (atomic_read(&inode->i_count)) {
544 busy = 1;
545 continue;
548 inode->i_state |= I_FREEING;
551 * Move the inode off the IO lists and LRU once I_FREEING is
552 * set so that it won't get moved back on there if it is dirty.
554 list_move(&inode->i_lru, &dispose);
555 list_del_init(&inode->i_wb_list);
556 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
557 percpu_counter_dec(&nr_inodes_unused);
559 spin_unlock(&inode_lock);
561 dispose_list(&dispose);
562 up_write(&iprune_sem);
564 return busy;
567 static int can_unuse(struct inode *inode)
569 if (inode->i_state & ~I_REFERENCED)
570 return 0;
571 if (inode_has_buffers(inode))
572 return 0;
573 if (atomic_read(&inode->i_count))
574 return 0;
575 if (inode->i_data.nrpages)
576 return 0;
577 return 1;
581 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
582 * temporary list and then are freed outside inode_lock by dispose_list().
584 * Any inodes which are pinned purely because of attached pagecache have their
585 * pagecache removed. If the inode has metadata buffers attached to
586 * mapping->private_list then try to remove them.
588 * If the inode has the I_REFERENCED flag set, then it means that it has been
589 * used recently - the flag is set in iput_final(). When we encounter such an
590 * inode, clear the flag and move it to the back of the LRU so it gets another
591 * pass through the LRU before it gets reclaimed. This is necessary because of
592 * the fact we are doing lazy LRU updates to minimise lock contention so the
593 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
594 * with this flag set because they are the inodes that are out of order.
596 static void prune_icache(int nr_to_scan)
598 LIST_HEAD(freeable);
599 int nr_scanned;
600 unsigned long reap = 0;
602 down_read(&iprune_sem);
603 spin_lock(&inode_lock);
604 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
605 struct inode *inode;
607 if (list_empty(&inode_lru))
608 break;
610 inode = list_entry(inode_lru.prev, struct inode, i_lru);
613 * Referenced or dirty inodes are still in use. Give them
614 * another pass through the LRU as we canot reclaim them now.
616 if (atomic_read(&inode->i_count) ||
617 (inode->i_state & ~I_REFERENCED)) {
618 list_del_init(&inode->i_lru);
619 percpu_counter_dec(&nr_inodes_unused);
620 continue;
623 /* recently referenced inodes get one more pass */
624 if (inode->i_state & I_REFERENCED) {
625 list_move(&inode->i_lru, &inode_lru);
626 inode->i_state &= ~I_REFERENCED;
627 continue;
629 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
630 __iget(inode);
631 spin_unlock(&inode_lock);
632 if (remove_inode_buffers(inode))
633 reap += invalidate_mapping_pages(&inode->i_data,
634 0, -1);
635 iput(inode);
636 spin_lock(&inode_lock);
638 if (inode != list_entry(inode_lru.next,
639 struct inode, i_lru))
640 continue; /* wrong inode or list_empty */
641 if (!can_unuse(inode))
642 continue;
644 WARN_ON(inode->i_state & I_NEW);
645 inode->i_state |= I_FREEING;
648 * Move the inode off the IO lists and LRU once I_FREEING is
649 * set so that it won't get moved back on there if it is dirty.
651 list_move(&inode->i_lru, &freeable);
652 list_del_init(&inode->i_wb_list);
653 percpu_counter_dec(&nr_inodes_unused);
655 if (current_is_kswapd())
656 __count_vm_events(KSWAPD_INODESTEAL, reap);
657 else
658 __count_vm_events(PGINODESTEAL, reap);
659 spin_unlock(&inode_lock);
661 dispose_list(&freeable);
662 up_read(&iprune_sem);
666 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
667 * "unused" means that no dentries are referring to the inodes: the files are
668 * not open and the dcache references to those inodes have already been
669 * reclaimed.
671 * This function is passed the number of inodes to scan, and it returns the
672 * total number of remaining possibly-reclaimable inodes.
674 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
676 if (nr) {
678 * Nasty deadlock avoidance. We may hold various FS locks,
679 * and we don't want to recurse into the FS that called us
680 * in clear_inode() and friends..
682 if (!(gfp_mask & __GFP_FS))
683 return -1;
684 prune_icache(nr);
686 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
689 static struct shrinker icache_shrinker = {
690 .shrink = shrink_icache_memory,
691 .seeks = DEFAULT_SEEKS,
694 static void __wait_on_freeing_inode(struct inode *inode);
696 * Called with the inode lock held.
698 static struct inode *find_inode(struct super_block *sb,
699 struct hlist_head *head,
700 int (*test)(struct inode *, void *),
701 void *data)
703 struct hlist_node *node;
704 struct inode *inode = NULL;
706 repeat:
707 hlist_for_each_entry(inode, node, head, i_hash) {
708 if (inode->i_sb != sb)
709 continue;
710 if (!test(inode, data))
711 continue;
712 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
713 __wait_on_freeing_inode(inode);
714 goto repeat;
716 __iget(inode);
717 return inode;
719 return NULL;
723 * find_inode_fast is the fast path version of find_inode, see the comment at
724 * iget_locked for details.
726 static struct inode *find_inode_fast(struct super_block *sb,
727 struct hlist_head *head, unsigned long ino)
729 struct hlist_node *node;
730 struct inode *inode = NULL;
732 repeat:
733 hlist_for_each_entry(inode, node, head, i_hash) {
734 if (inode->i_ino != ino)
735 continue;
736 if (inode->i_sb != sb)
737 continue;
738 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
739 __wait_on_freeing_inode(inode);
740 goto repeat;
742 __iget(inode);
743 return inode;
745 return NULL;
749 * Each cpu owns a range of LAST_INO_BATCH numbers.
750 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
751 * to renew the exhausted range.
753 * This does not significantly increase overflow rate because every CPU can
754 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
755 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
756 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
757 * overflow rate by 2x, which does not seem too significant.
759 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
760 * error if st_ino won't fit in target struct field. Use 32bit counter
761 * here to attempt to avoid that.
763 #define LAST_INO_BATCH 1024
764 static DEFINE_PER_CPU(unsigned int, last_ino);
766 unsigned int get_next_ino(void)
768 unsigned int *p = &get_cpu_var(last_ino);
769 unsigned int res = *p;
771 #ifdef CONFIG_SMP
772 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
773 static atomic_t shared_last_ino;
774 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
776 res = next - LAST_INO_BATCH;
778 #endif
780 *p = ++res;
781 put_cpu_var(last_ino);
782 return res;
784 EXPORT_SYMBOL(get_next_ino);
787 * new_inode - obtain an inode
788 * @sb: superblock
790 * Allocates a new inode for given superblock. The default gfp_mask
791 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
792 * If HIGHMEM pages are unsuitable or it is known that pages allocated
793 * for the page cache are not reclaimable or migratable,
794 * mapping_set_gfp_mask() must be called with suitable flags on the
795 * newly created inode's mapping
798 struct inode *new_inode(struct super_block *sb)
800 struct inode *inode;
802 spin_lock_prefetch(&inode_lock);
804 inode = alloc_inode(sb);
805 if (inode) {
806 spin_lock(&inode_lock);
807 __inode_sb_list_add(inode);
808 inode->i_state = 0;
809 spin_unlock(&inode_lock);
811 return inode;
813 EXPORT_SYMBOL(new_inode);
815 void unlock_new_inode(struct inode *inode)
817 #ifdef CONFIG_DEBUG_LOCK_ALLOC
818 if (S_ISDIR(inode->i_mode)) {
819 struct file_system_type *type = inode->i_sb->s_type;
821 /* Set new key only if filesystem hasn't already changed it */
822 if (!lockdep_match_class(&inode->i_mutex,
823 &type->i_mutex_key)) {
825 * ensure nobody is actually holding i_mutex
827 mutex_destroy(&inode->i_mutex);
828 mutex_init(&inode->i_mutex);
829 lockdep_set_class(&inode->i_mutex,
830 &type->i_mutex_dir_key);
833 #endif
835 * This is special! We do not need the spinlock when clearing I_NEW,
836 * because we're guaranteed that nobody else tries to do anything about
837 * the state of the inode when it is locked, as we just created it (so
838 * there can be no old holders that haven't tested I_NEW).
839 * However we must emit the memory barrier so that other CPUs reliably
840 * see the clearing of I_NEW after the other inode initialisation has
841 * completed.
843 smp_mb();
844 WARN_ON(!(inode->i_state & I_NEW));
845 inode->i_state &= ~I_NEW;
846 wake_up_inode(inode);
848 EXPORT_SYMBOL(unlock_new_inode);
851 * This is called without the inode lock held.. Be careful.
853 * We no longer cache the sb_flags in i_flags - see fs.h
854 * -- rmk@arm.uk.linux.org
856 static struct inode *get_new_inode(struct super_block *sb,
857 struct hlist_head *head,
858 int (*test)(struct inode *, void *),
859 int (*set)(struct inode *, void *),
860 void *data)
862 struct inode *inode;
864 inode = alloc_inode(sb);
865 if (inode) {
866 struct inode *old;
868 spin_lock(&inode_lock);
869 /* We released the lock, so.. */
870 old = find_inode(sb, head, test, data);
871 if (!old) {
872 if (set(inode, data))
873 goto set_failed;
875 hlist_add_head(&inode->i_hash, head);
876 __inode_sb_list_add(inode);
877 inode->i_state = I_NEW;
878 spin_unlock(&inode_lock);
880 /* Return the locked inode with I_NEW set, the
881 * caller is responsible for filling in the contents
883 return inode;
887 * Uhhuh, somebody else created the same inode under
888 * us. Use the old inode instead of the one we just
889 * allocated.
891 spin_unlock(&inode_lock);
892 destroy_inode(inode);
893 inode = old;
894 wait_on_inode(inode);
896 return inode;
898 set_failed:
899 spin_unlock(&inode_lock);
900 destroy_inode(inode);
901 return NULL;
905 * get_new_inode_fast is the fast path version of get_new_inode, see the
906 * comment at iget_locked for details.
908 static struct inode *get_new_inode_fast(struct super_block *sb,
909 struct hlist_head *head, unsigned long ino)
911 struct inode *inode;
913 inode = alloc_inode(sb);
914 if (inode) {
915 struct inode *old;
917 spin_lock(&inode_lock);
918 /* We released the lock, so.. */
919 old = find_inode_fast(sb, head, ino);
920 if (!old) {
921 inode->i_ino = ino;
922 hlist_add_head(&inode->i_hash, head);
923 __inode_sb_list_add(inode);
924 inode->i_state = I_NEW;
925 spin_unlock(&inode_lock);
927 /* Return the locked inode with I_NEW set, the
928 * caller is responsible for filling in the contents
930 return inode;
934 * Uhhuh, somebody else created the same inode under
935 * us. Use the old inode instead of the one we just
936 * allocated.
938 spin_unlock(&inode_lock);
939 destroy_inode(inode);
940 inode = old;
941 wait_on_inode(inode);
943 return inode;
947 * search the inode cache for a matching inode number.
948 * If we find one, then the inode number we are trying to
949 * allocate is not unique and so we should not use it.
951 * Returns 1 if the inode number is unique, 0 if it is not.
953 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
955 struct hlist_head *b = inode_hashtable + hash(sb, ino);
956 struct hlist_node *node;
957 struct inode *inode;
959 hlist_for_each_entry(inode, node, b, i_hash) {
960 if (inode->i_ino == ino && inode->i_sb == sb)
961 return 0;
964 return 1;
968 * iunique - get a unique inode number
969 * @sb: superblock
970 * @max_reserved: highest reserved inode number
972 * Obtain an inode number that is unique on the system for a given
973 * superblock. This is used by file systems that have no natural
974 * permanent inode numbering system. An inode number is returned that
975 * is higher than the reserved limit but unique.
977 * BUGS:
978 * With a large number of inodes live on the file system this function
979 * currently becomes quite slow.
981 ino_t iunique(struct super_block *sb, ino_t max_reserved)
984 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
985 * error if st_ino won't fit in target struct field. Use 32bit counter
986 * here to attempt to avoid that.
988 static DEFINE_SPINLOCK(iunique_lock);
989 static unsigned int counter;
990 ino_t res;
992 spin_lock(&inode_lock);
993 spin_lock(&iunique_lock);
994 do {
995 if (counter <= max_reserved)
996 counter = max_reserved + 1;
997 res = counter++;
998 } while (!test_inode_iunique(sb, res));
999 spin_unlock(&iunique_lock);
1000 spin_unlock(&inode_lock);
1002 return res;
1004 EXPORT_SYMBOL(iunique);
1006 struct inode *igrab(struct inode *inode)
1008 spin_lock(&inode_lock);
1009 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1010 __iget(inode);
1011 else
1013 * Handle the case where s_op->clear_inode is not been
1014 * called yet, and somebody is calling igrab
1015 * while the inode is getting freed.
1017 inode = NULL;
1018 spin_unlock(&inode_lock);
1019 return inode;
1021 EXPORT_SYMBOL(igrab);
1024 * ifind - internal function, you want ilookup5() or iget5().
1025 * @sb: super block of file system to search
1026 * @head: the head of the list to search
1027 * @test: callback used for comparisons between inodes
1028 * @data: opaque data pointer to pass to @test
1029 * @wait: if true wait for the inode to be unlocked, if false do not
1031 * ifind() searches for the inode specified by @data in the inode
1032 * cache. This is a generalized version of ifind_fast() for file systems where
1033 * the inode number is not sufficient for unique identification of an inode.
1035 * If the inode is in the cache, the inode is returned with an incremented
1036 * reference count.
1038 * Otherwise NULL is returned.
1040 * Note, @test is called with the inode_lock held, so can't sleep.
1042 static struct inode *ifind(struct super_block *sb,
1043 struct hlist_head *head, int (*test)(struct inode *, void *),
1044 void *data, const int wait)
1046 struct inode *inode;
1048 spin_lock(&inode_lock);
1049 inode = find_inode(sb, head, test, data);
1050 if (inode) {
1051 spin_unlock(&inode_lock);
1052 if (likely(wait))
1053 wait_on_inode(inode);
1054 return inode;
1056 spin_unlock(&inode_lock);
1057 return NULL;
1061 * ifind_fast - internal function, you want ilookup() or iget().
1062 * @sb: super block of file system to search
1063 * @head: head of the list to search
1064 * @ino: inode number to search for
1066 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1067 * file systems where the inode number is sufficient for unique identification
1068 * of an inode.
1070 * If the inode is in the cache, the inode is returned with an incremented
1071 * reference count.
1073 * Otherwise NULL is returned.
1075 static struct inode *ifind_fast(struct super_block *sb,
1076 struct hlist_head *head, unsigned long ino)
1078 struct inode *inode;
1080 spin_lock(&inode_lock);
1081 inode = find_inode_fast(sb, head, ino);
1082 if (inode) {
1083 spin_unlock(&inode_lock);
1084 wait_on_inode(inode);
1085 return inode;
1087 spin_unlock(&inode_lock);
1088 return NULL;
1092 * ilookup5_nowait - search for an inode in the inode cache
1093 * @sb: super block of file system to search
1094 * @hashval: hash value (usually inode number) to search for
1095 * @test: callback used for comparisons between inodes
1096 * @data: opaque data pointer to pass to @test
1098 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1099 * @data in the inode cache. This is a generalized version of ilookup() for
1100 * file systems where the inode number is not sufficient for unique
1101 * identification of an inode.
1103 * If the inode is in the cache, the inode is returned with an incremented
1104 * reference count. Note, the inode lock is not waited upon so you have to be
1105 * very careful what you do with the returned inode. You probably should be
1106 * using ilookup5() instead.
1108 * Otherwise NULL is returned.
1110 * Note, @test is called with the inode_lock held, so can't sleep.
1112 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1113 int (*test)(struct inode *, void *), void *data)
1115 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1117 return ifind(sb, head, test, data, 0);
1119 EXPORT_SYMBOL(ilookup5_nowait);
1122 * ilookup5 - search for an inode in the inode cache
1123 * @sb: super block of file system to search
1124 * @hashval: hash value (usually inode number) to search for
1125 * @test: callback used for comparisons between inodes
1126 * @data: opaque data pointer to pass to @test
1128 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1129 * @data in the inode cache. This is a generalized version of ilookup() for
1130 * file systems where the inode number is not sufficient for unique
1131 * identification of an inode.
1133 * If the inode is in the cache, the inode lock is waited upon and the inode is
1134 * returned with an incremented reference count.
1136 * Otherwise NULL is returned.
1138 * Note, @test is called with the inode_lock held, so can't sleep.
1140 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1141 int (*test)(struct inode *, void *), void *data)
1143 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1145 return ifind(sb, head, test, data, 1);
1147 EXPORT_SYMBOL(ilookup5);
1150 * ilookup - search for an inode in the inode cache
1151 * @sb: super block of file system to search
1152 * @ino: inode number to search for
1154 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1155 * This is for file systems where the inode number is sufficient for unique
1156 * identification of an inode.
1158 * If the inode is in the cache, the inode is returned with an incremented
1159 * reference count.
1161 * Otherwise NULL is returned.
1163 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1165 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1167 return ifind_fast(sb, head, ino);
1169 EXPORT_SYMBOL(ilookup);
1172 * iget5_locked - obtain an inode from a mounted file system
1173 * @sb: super block of file system
1174 * @hashval: hash value (usually inode number) to get
1175 * @test: callback used for comparisons between inodes
1176 * @set: callback used to initialize a new struct inode
1177 * @data: opaque data pointer to pass to @test and @set
1179 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1180 * and @data in the inode cache and if present it is returned with an increased
1181 * reference count. This is a generalized version of iget_locked() for file
1182 * systems where the inode number is not sufficient for unique identification
1183 * of an inode.
1185 * If the inode is not in cache, get_new_inode() is called to allocate a new
1186 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1187 * file system gets to fill it in before unlocking it via unlock_new_inode().
1189 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1191 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1192 int (*test)(struct inode *, void *),
1193 int (*set)(struct inode *, void *), void *data)
1195 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1196 struct inode *inode;
1198 inode = ifind(sb, head, test, data, 1);
1199 if (inode)
1200 return inode;
1202 * get_new_inode() will do the right thing, re-trying the search
1203 * in case it had to block at any point.
1205 return get_new_inode(sb, head, test, set, data);
1207 EXPORT_SYMBOL(iget5_locked);
1210 * iget_locked - obtain an inode from a mounted file system
1211 * @sb: super block of file system
1212 * @ino: inode number to get
1214 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1215 * the inode cache and if present it is returned with an increased reference
1216 * count. This is for file systems where the inode number is sufficient for
1217 * unique identification of an inode.
1219 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1220 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1221 * The file system gets to fill it in before unlocking it via
1222 * unlock_new_inode().
1224 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1226 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1227 struct inode *inode;
1229 inode = ifind_fast(sb, head, ino);
1230 if (inode)
1231 return inode;
1233 * get_new_inode_fast() will do the right thing, re-trying the search
1234 * in case it had to block at any point.
1236 return get_new_inode_fast(sb, head, ino);
1238 EXPORT_SYMBOL(iget_locked);
1240 int insert_inode_locked(struct inode *inode)
1242 struct super_block *sb = inode->i_sb;
1243 ino_t ino = inode->i_ino;
1244 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1246 inode->i_state |= I_NEW;
1247 while (1) {
1248 struct hlist_node *node;
1249 struct inode *old = NULL;
1250 spin_lock(&inode_lock);
1251 hlist_for_each_entry(old, node, head, i_hash) {
1252 if (old->i_ino != ino)
1253 continue;
1254 if (old->i_sb != sb)
1255 continue;
1256 if (old->i_state & (I_FREEING|I_WILL_FREE))
1257 continue;
1258 break;
1260 if (likely(!node)) {
1261 hlist_add_head(&inode->i_hash, head);
1262 spin_unlock(&inode_lock);
1263 return 0;
1265 __iget(old);
1266 spin_unlock(&inode_lock);
1267 wait_on_inode(old);
1268 if (unlikely(!inode_unhashed(old))) {
1269 iput(old);
1270 return -EBUSY;
1272 iput(old);
1275 EXPORT_SYMBOL(insert_inode_locked);
1277 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1278 int (*test)(struct inode *, void *), void *data)
1280 struct super_block *sb = inode->i_sb;
1281 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1283 inode->i_state |= I_NEW;
1285 while (1) {
1286 struct hlist_node *node;
1287 struct inode *old = NULL;
1289 spin_lock(&inode_lock);
1290 hlist_for_each_entry(old, node, head, i_hash) {
1291 if (old->i_sb != sb)
1292 continue;
1293 if (!test(old, data))
1294 continue;
1295 if (old->i_state & (I_FREEING|I_WILL_FREE))
1296 continue;
1297 break;
1299 if (likely(!node)) {
1300 hlist_add_head(&inode->i_hash, head);
1301 spin_unlock(&inode_lock);
1302 return 0;
1304 __iget(old);
1305 spin_unlock(&inode_lock);
1306 wait_on_inode(old);
1307 if (unlikely(!inode_unhashed(old))) {
1308 iput(old);
1309 return -EBUSY;
1311 iput(old);
1314 EXPORT_SYMBOL(insert_inode_locked4);
1317 int generic_delete_inode(struct inode *inode)
1319 return 1;
1321 EXPORT_SYMBOL(generic_delete_inode);
1324 * Normal UNIX filesystem behaviour: delete the
1325 * inode when the usage count drops to zero, and
1326 * i_nlink is zero.
1328 int generic_drop_inode(struct inode *inode)
1330 return !inode->i_nlink || inode_unhashed(inode);
1332 EXPORT_SYMBOL_GPL(generic_drop_inode);
1335 * Called when we're dropping the last reference
1336 * to an inode.
1338 * Call the FS "drop_inode()" function, defaulting to
1339 * the legacy UNIX filesystem behaviour. If it tells
1340 * us to evict inode, do so. Otherwise, retain inode
1341 * in cache if fs is alive, sync and evict if fs is
1342 * shutting down.
1344 static void iput_final(struct inode *inode)
1346 struct super_block *sb = inode->i_sb;
1347 const struct super_operations *op = inode->i_sb->s_op;
1348 int drop;
1350 if (op && op->drop_inode)
1351 drop = op->drop_inode(inode);
1352 else
1353 drop = generic_drop_inode(inode);
1355 if (!drop) {
1356 if (sb->s_flags & MS_ACTIVE) {
1357 inode->i_state |= I_REFERENCED;
1358 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1359 inode_lru_list_add(inode);
1361 spin_unlock(&inode_lock);
1362 return;
1364 WARN_ON(inode->i_state & I_NEW);
1365 inode->i_state |= I_WILL_FREE;
1366 spin_unlock(&inode_lock);
1367 write_inode_now(inode, 1);
1368 spin_lock(&inode_lock);
1369 WARN_ON(inode->i_state & I_NEW);
1370 inode->i_state &= ~I_WILL_FREE;
1371 __remove_inode_hash(inode);
1374 WARN_ON(inode->i_state & I_NEW);
1375 inode->i_state |= I_FREEING;
1378 * Move the inode off the IO lists and LRU once I_FREEING is
1379 * set so that it won't get moved back on there if it is dirty.
1381 inode_lru_list_del(inode);
1382 list_del_init(&inode->i_wb_list);
1384 __inode_sb_list_del(inode);
1385 spin_unlock(&inode_lock);
1386 evict(inode);
1387 remove_inode_hash(inode);
1388 wake_up_inode(inode);
1389 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1390 destroy_inode(inode);
1394 * iput - put an inode
1395 * @inode: inode to put
1397 * Puts an inode, dropping its usage count. If the inode use count hits
1398 * zero, the inode is then freed and may also be destroyed.
1400 * Consequently, iput() can sleep.
1402 void iput(struct inode *inode)
1404 if (inode) {
1405 BUG_ON(inode->i_state & I_CLEAR);
1407 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1408 iput_final(inode);
1411 EXPORT_SYMBOL(iput);
1414 * bmap - find a block number in a file
1415 * @inode: inode of file
1416 * @block: block to find
1418 * Returns the block number on the device holding the inode that
1419 * is the disk block number for the block of the file requested.
1420 * That is, asked for block 4 of inode 1 the function will return the
1421 * disk block relative to the disk start that holds that block of the
1422 * file.
1424 sector_t bmap(struct inode *inode, sector_t block)
1426 sector_t res = 0;
1427 if (inode->i_mapping->a_ops->bmap)
1428 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1429 return res;
1431 EXPORT_SYMBOL(bmap);
1434 * With relative atime, only update atime if the previous atime is
1435 * earlier than either the ctime or mtime or if at least a day has
1436 * passed since the last atime update.
1438 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1439 struct timespec now)
1442 if (!(mnt->mnt_flags & MNT_RELATIME))
1443 return 1;
1445 * Is mtime younger than atime? If yes, update atime:
1447 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1448 return 1;
1450 * Is ctime younger than atime? If yes, update atime:
1452 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1453 return 1;
1456 * Is the previous atime value older than a day? If yes,
1457 * update atime:
1459 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1460 return 1;
1462 * Good, we can skip the atime update:
1464 return 0;
1468 * touch_atime - update the access time
1469 * @mnt: mount the inode is accessed on
1470 * @dentry: dentry accessed
1472 * Update the accessed time on an inode and mark it for writeback.
1473 * This function automatically handles read only file systems and media,
1474 * as well as the "noatime" flag and inode specific "noatime" markers.
1476 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1478 struct inode *inode = dentry->d_inode;
1479 struct timespec now;
1481 if (inode->i_flags & S_NOATIME)
1482 return;
1483 if (IS_NOATIME(inode))
1484 return;
1485 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1486 return;
1488 if (mnt->mnt_flags & MNT_NOATIME)
1489 return;
1490 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1491 return;
1493 now = current_fs_time(inode->i_sb);
1495 if (!relatime_need_update(mnt, inode, now))
1496 return;
1498 if (timespec_equal(&inode->i_atime, &now))
1499 return;
1501 if (mnt_want_write(mnt))
1502 return;
1504 inode->i_atime = now;
1505 mark_inode_dirty_sync(inode);
1506 mnt_drop_write(mnt);
1508 EXPORT_SYMBOL(touch_atime);
1511 * file_update_time - update mtime and ctime time
1512 * @file: file accessed
1514 * Update the mtime and ctime members of an inode and mark the inode
1515 * for writeback. Note that this function is meant exclusively for
1516 * usage in the file write path of filesystems, and filesystems may
1517 * choose to explicitly ignore update via this function with the
1518 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1519 * timestamps are handled by the server.
1522 void file_update_time(struct file *file)
1524 struct inode *inode = file->f_path.dentry->d_inode;
1525 struct timespec now;
1526 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1528 /* First try to exhaust all avenues to not sync */
1529 if (IS_NOCMTIME(inode))
1530 return;
1532 now = current_fs_time(inode->i_sb);
1533 if (!timespec_equal(&inode->i_mtime, &now))
1534 sync_it = S_MTIME;
1536 if (!timespec_equal(&inode->i_ctime, &now))
1537 sync_it |= S_CTIME;
1539 if (IS_I_VERSION(inode))
1540 sync_it |= S_VERSION;
1542 if (!sync_it)
1543 return;
1545 /* Finally allowed to write? Takes lock. */
1546 if (mnt_want_write_file(file))
1547 return;
1549 /* Only change inode inside the lock region */
1550 if (sync_it & S_VERSION)
1551 inode_inc_iversion(inode);
1552 if (sync_it & S_CTIME)
1553 inode->i_ctime = now;
1554 if (sync_it & S_MTIME)
1555 inode->i_mtime = now;
1556 mark_inode_dirty_sync(inode);
1557 mnt_drop_write(file->f_path.mnt);
1559 EXPORT_SYMBOL(file_update_time);
1561 int inode_needs_sync(struct inode *inode)
1563 if (IS_SYNC(inode))
1564 return 1;
1565 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1566 return 1;
1567 return 0;
1569 EXPORT_SYMBOL(inode_needs_sync);
1571 int inode_wait(void *word)
1573 schedule();
1574 return 0;
1576 EXPORT_SYMBOL(inode_wait);
1579 * If we try to find an inode in the inode hash while it is being
1580 * deleted, we have to wait until the filesystem completes its
1581 * deletion before reporting that it isn't found. This function waits
1582 * until the deletion _might_ have completed. Callers are responsible
1583 * to recheck inode state.
1585 * It doesn't matter if I_NEW is not set initially, a call to
1586 * wake_up_inode() after removing from the hash list will DTRT.
1588 * This is called with inode_lock held.
1590 static void __wait_on_freeing_inode(struct inode *inode)
1592 wait_queue_head_t *wq;
1593 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1594 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1595 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1596 spin_unlock(&inode_lock);
1597 schedule();
1598 finish_wait(wq, &wait.wait);
1599 spin_lock(&inode_lock);
1602 static __initdata unsigned long ihash_entries;
1603 static int __init set_ihash_entries(char *str)
1605 if (!str)
1606 return 0;
1607 ihash_entries = simple_strtoul(str, &str, 0);
1608 return 1;
1610 __setup("ihash_entries=", set_ihash_entries);
1613 * Initialize the waitqueues and inode hash table.
1615 void __init inode_init_early(void)
1617 int loop;
1619 /* If hashes are distributed across NUMA nodes, defer
1620 * hash allocation until vmalloc space is available.
1622 if (hashdist)
1623 return;
1625 inode_hashtable =
1626 alloc_large_system_hash("Inode-cache",
1627 sizeof(struct hlist_head),
1628 ihash_entries,
1630 HASH_EARLY,
1631 &i_hash_shift,
1632 &i_hash_mask,
1635 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1636 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1639 void __init inode_init(void)
1641 int loop;
1643 /* inode slab cache */
1644 inode_cachep = kmem_cache_create("inode_cache",
1645 sizeof(struct inode),
1647 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1648 SLAB_MEM_SPREAD),
1649 init_once);
1650 register_shrinker(&icache_shrinker);
1651 percpu_counter_init(&nr_inodes, 0);
1652 percpu_counter_init(&nr_inodes_unused, 0);
1654 /* Hash may have been set up in inode_init_early */
1655 if (!hashdist)
1656 return;
1658 inode_hashtable =
1659 alloc_large_system_hash("Inode-cache",
1660 sizeof(struct hlist_head),
1661 ihash_entries,
1664 &i_hash_shift,
1665 &i_hash_mask,
1668 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1669 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1672 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1674 inode->i_mode = mode;
1675 if (S_ISCHR(mode)) {
1676 inode->i_fop = &def_chr_fops;
1677 inode->i_rdev = rdev;
1678 } else if (S_ISBLK(mode)) {
1679 inode->i_fop = &def_blk_fops;
1680 inode->i_rdev = rdev;
1681 } else if (S_ISFIFO(mode))
1682 inode->i_fop = &def_fifo_fops;
1683 else if (S_ISSOCK(mode))
1684 inode->i_fop = &bad_sock_fops;
1685 else
1686 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1687 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1688 inode->i_ino);
1690 EXPORT_SYMBOL(init_special_inode);
1693 * Init uid,gid,mode for new inode according to posix standards
1694 * @inode: New inode
1695 * @dir: Directory inode
1696 * @mode: mode of the new inode
1698 void inode_init_owner(struct inode *inode, const struct inode *dir,
1699 mode_t mode)
1701 inode->i_uid = current_fsuid();
1702 if (dir && dir->i_mode & S_ISGID) {
1703 inode->i_gid = dir->i_gid;
1704 if (S_ISDIR(mode))
1705 mode |= S_ISGID;
1706 } else
1707 inode->i_gid = current_fsgid();
1708 inode->i_mode = mode;
1710 EXPORT_SYMBOL(inode_init_owner);