drm/i915: kill mappable/fenceable disdinction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / reiserfs / inode.c
blob41656d40dc5c87fc8bcfd9ec5aea4bc635ebc092
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <asm/uaccess.h>
16 #include <asm/unaligned.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mpage.h>
19 #include <linux/writeback.h>
20 #include <linux/quotaops.h>
21 #include <linux/swap.h>
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
26 void reiserfs_evict_inode(struct inode *inode)
28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 int jbegin_count =
30 JOURNAL_PER_BALANCE_CNT * 2 +
31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 struct reiserfs_transaction_handle th;
33 int depth;
34 int err;
36 if (!inode->i_nlink && !is_bad_inode(inode))
37 dquot_initialize(inode);
39 truncate_inode_pages(&inode->i_data, 0);
40 if (inode->i_nlink)
41 goto no_delete;
43 depth = reiserfs_write_lock_once(inode->i_sb);
45 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
47 reiserfs_delete_xattrs(inode);
49 if (journal_begin(&th, inode->i_sb, jbegin_count))
50 goto out;
51 reiserfs_update_inode_transaction(inode);
53 reiserfs_discard_prealloc(&th, inode);
55 err = reiserfs_delete_object(&th, inode);
57 /* Do quota update inside a transaction for journaled quotas. We must do that
58 * after delete_object so that quota updates go into the same transaction as
59 * stat data deletion */
60 if (!err)
61 dquot_free_inode(inode);
63 if (journal_end(&th, inode->i_sb, jbegin_count))
64 goto out;
66 /* check return value from reiserfs_delete_object after
67 * ending the transaction
69 if (err)
70 goto out;
72 /* all items of file are deleted, so we can remove "save" link */
73 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
74 * about an error here */
75 } else {
76 /* no object items are in the tree */
79 out:
80 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */
81 dquot_drop(inode);
82 inode->i_blocks = 0;
83 reiserfs_write_unlock_once(inode->i_sb, depth);
84 return;
86 no_delete:
87 end_writeback(inode);
88 dquot_drop(inode);
91 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
92 __u32 objectid, loff_t offset, int type, int length)
94 key->version = version;
96 key->on_disk_key.k_dir_id = dirid;
97 key->on_disk_key.k_objectid = objectid;
98 set_cpu_key_k_offset(key, offset);
99 set_cpu_key_k_type(key, type);
100 key->key_length = length;
103 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
104 offset and type of key */
105 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
106 int type, int length)
108 _make_cpu_key(key, get_inode_item_key_version(inode),
109 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
110 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
111 length);
115 // when key is 0, do not set version and short key
117 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
118 int version,
119 loff_t offset, int type, int length,
120 int entry_count /*or ih_free_space */ )
122 if (key) {
123 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
124 ih->ih_key.k_objectid =
125 cpu_to_le32(key->on_disk_key.k_objectid);
127 put_ih_version(ih, version);
128 set_le_ih_k_offset(ih, offset);
129 set_le_ih_k_type(ih, type);
130 put_ih_item_len(ih, length);
131 /* set_ih_free_space (ih, 0); */
132 // for directory items it is entry count, for directs and stat
133 // datas - 0xffff, for indirects - 0
134 put_ih_entry_count(ih, entry_count);
138 // FIXME: we might cache recently accessed indirect item
140 // Ugh. Not too eager for that....
141 // I cut the code until such time as I see a convincing argument (benchmark).
142 // I don't want a bloated inode struct..., and I don't like code complexity....
144 /* cutting the code is fine, since it really isn't in use yet and is easy
145 ** to add back in. But, Vladimir has a really good idea here. Think
146 ** about what happens for reading a file. For each page,
147 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
148 ** an indirect item. This indirect item has X number of pointers, where
149 ** X is a big number if we've done the block allocation right. But,
150 ** we only use one or two of these pointers during each call to readpage,
151 ** needlessly researching again later on.
153 ** The size of the cache could be dynamic based on the size of the file.
155 ** I'd also like to see us cache the location the stat data item, since
156 ** we are needlessly researching for that frequently.
158 ** --chris
161 /* If this page has a file tail in it, and
162 ** it was read in by get_block_create_0, the page data is valid,
163 ** but tail is still sitting in a direct item, and we can't write to
164 ** it. So, look through this page, and check all the mapped buffers
165 ** to make sure they have valid block numbers. Any that don't need
166 ** to be unmapped, so that __block_write_begin will correctly call
167 ** reiserfs_get_block to convert the tail into an unformatted node
169 static inline void fix_tail_page_for_writing(struct page *page)
171 struct buffer_head *head, *next, *bh;
173 if (page && page_has_buffers(page)) {
174 head = page_buffers(page);
175 bh = head;
176 do {
177 next = bh->b_this_page;
178 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
179 reiserfs_unmap_buffer(bh);
181 bh = next;
182 } while (bh != head);
186 /* reiserfs_get_block does not need to allocate a block only if it has been
187 done already or non-hole position has been found in the indirect item */
188 static inline int allocation_needed(int retval, b_blocknr_t allocated,
189 struct item_head *ih,
190 __le32 * item, int pos_in_item)
192 if (allocated)
193 return 0;
194 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
195 get_block_num(item, pos_in_item))
196 return 0;
197 return 1;
200 static inline int indirect_item_found(int retval, struct item_head *ih)
202 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
205 static inline void set_block_dev_mapped(struct buffer_head *bh,
206 b_blocknr_t block, struct inode *inode)
208 map_bh(bh, inode->i_sb, block);
212 // files which were created in the earlier version can not be longer,
213 // than 2 gb
215 static int file_capable(struct inode *inode, sector_t block)
217 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
218 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
219 return 1;
221 return 0;
224 static int restart_transaction(struct reiserfs_transaction_handle *th,
225 struct inode *inode, struct treepath *path)
227 struct super_block *s = th->t_super;
228 int len = th->t_blocks_allocated;
229 int err;
231 BUG_ON(!th->t_trans_id);
232 BUG_ON(!th->t_refcount);
234 pathrelse(path);
236 /* we cannot restart while nested */
237 if (th->t_refcount > 1) {
238 return 0;
240 reiserfs_update_sd(th, inode);
241 err = journal_end(th, s, len);
242 if (!err) {
243 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
244 if (!err)
245 reiserfs_update_inode_transaction(inode);
247 return err;
250 // it is called by get_block when create == 0. Returns block number
251 // for 'block'-th logical block of file. When it hits direct item it
252 // returns 0 (being called from bmap) or read direct item into piece
253 // of page (bh_result)
255 // Please improve the english/clarity in the comment above, as it is
256 // hard to understand.
258 static int _get_block_create_0(struct inode *inode, sector_t block,
259 struct buffer_head *bh_result, int args)
261 INITIALIZE_PATH(path);
262 struct cpu_key key;
263 struct buffer_head *bh;
264 struct item_head *ih, tmp_ih;
265 b_blocknr_t blocknr;
266 char *p = NULL;
267 int chars;
268 int ret;
269 int result;
270 int done = 0;
271 unsigned long offset;
273 // prepare the key to look for the 'block'-th block of file
274 make_cpu_key(&key, inode,
275 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
278 result = search_for_position_by_key(inode->i_sb, &key, &path);
279 if (result != POSITION_FOUND) {
280 pathrelse(&path);
281 if (p)
282 kunmap(bh_result->b_page);
283 if (result == IO_ERROR)
284 return -EIO;
285 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
286 // That there is some MMAPED data associated with it that is yet to be written to disk.
287 if ((args & GET_BLOCK_NO_HOLE)
288 && !PageUptodate(bh_result->b_page)) {
289 return -ENOENT;
291 return 0;
294 bh = get_last_bh(&path);
295 ih = get_ih(&path);
296 if (is_indirect_le_ih(ih)) {
297 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
299 /* FIXME: here we could cache indirect item or part of it in
300 the inode to avoid search_by_key in case of subsequent
301 access to file */
302 blocknr = get_block_num(ind_item, path.pos_in_item);
303 ret = 0;
304 if (blocknr) {
305 map_bh(bh_result, inode->i_sb, blocknr);
306 if (path.pos_in_item ==
307 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
308 set_buffer_boundary(bh_result);
310 } else
311 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
312 // That there is some MMAPED data associated with it that is yet to be written to disk.
313 if ((args & GET_BLOCK_NO_HOLE)
314 && !PageUptodate(bh_result->b_page)) {
315 ret = -ENOENT;
318 pathrelse(&path);
319 if (p)
320 kunmap(bh_result->b_page);
321 return ret;
323 // requested data are in direct item(s)
324 if (!(args & GET_BLOCK_READ_DIRECT)) {
325 // we are called by bmap. FIXME: we can not map block of file
326 // when it is stored in direct item(s)
327 pathrelse(&path);
328 if (p)
329 kunmap(bh_result->b_page);
330 return -ENOENT;
333 /* if we've got a direct item, and the buffer or page was uptodate,
334 ** we don't want to pull data off disk again. skip to the
335 ** end, where we map the buffer and return
337 if (buffer_uptodate(bh_result)) {
338 goto finished;
339 } else
341 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
342 ** pages without any buffers. If the page is up to date, we don't want
343 ** read old data off disk. Set the up to date bit on the buffer instead
344 ** and jump to the end
346 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
347 set_buffer_uptodate(bh_result);
348 goto finished;
350 // read file tail into part of page
351 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
352 copy_item_head(&tmp_ih, ih);
354 /* we only want to kmap if we are reading the tail into the page.
355 ** this is not the common case, so we don't kmap until we are
356 ** sure we need to. But, this means the item might move if
357 ** kmap schedules
359 if (!p)
360 p = (char *)kmap(bh_result->b_page);
362 p += offset;
363 memset(p, 0, inode->i_sb->s_blocksize);
364 do {
365 if (!is_direct_le_ih(ih)) {
366 BUG();
368 /* make sure we don't read more bytes than actually exist in
369 ** the file. This can happen in odd cases where i_size isn't
370 ** correct, and when direct item padding results in a few
371 ** extra bytes at the end of the direct item
373 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
374 break;
375 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
376 chars =
377 inode->i_size - (le_ih_k_offset(ih) - 1) -
378 path.pos_in_item;
379 done = 1;
380 } else {
381 chars = ih_item_len(ih) - path.pos_in_item;
383 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
385 if (done)
386 break;
388 p += chars;
390 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
391 // we done, if read direct item is not the last item of
392 // node FIXME: we could try to check right delimiting key
393 // to see whether direct item continues in the right
394 // neighbor or rely on i_size
395 break;
397 // update key to look for the next piece
398 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
399 result = search_for_position_by_key(inode->i_sb, &key, &path);
400 if (result != POSITION_FOUND)
401 // i/o error most likely
402 break;
403 bh = get_last_bh(&path);
404 ih = get_ih(&path);
405 } while (1);
407 flush_dcache_page(bh_result->b_page);
408 kunmap(bh_result->b_page);
410 finished:
411 pathrelse(&path);
413 if (result == IO_ERROR)
414 return -EIO;
416 /* this buffer has valid data, but isn't valid for io. mapping it to
417 * block #0 tells the rest of reiserfs it just has a tail in it
419 map_bh(bh_result, inode->i_sb, 0);
420 set_buffer_uptodate(bh_result);
421 return 0;
424 // this is called to create file map. So, _get_block_create_0 will not
425 // read direct item
426 static int reiserfs_bmap(struct inode *inode, sector_t block,
427 struct buffer_head *bh_result, int create)
429 if (!file_capable(inode, block))
430 return -EFBIG;
432 reiserfs_write_lock(inode->i_sb);
433 /* do not read the direct item */
434 _get_block_create_0(inode, block, bh_result, 0);
435 reiserfs_write_unlock(inode->i_sb);
436 return 0;
439 /* special version of get_block that is only used by grab_tail_page right
440 ** now. It is sent to __block_write_begin, and when you try to get a
441 ** block past the end of the file (or a block from a hole) it returns
442 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
443 ** be able to do i/o on the buffers returned, unless an error value
444 ** is also returned.
446 ** So, this allows __block_write_begin to be used for reading a single block
447 ** in a page. Where it does not produce a valid page for holes, or past the
448 ** end of the file. This turns out to be exactly what we need for reading
449 ** tails for conversion.
451 ** The point of the wrapper is forcing a certain value for create, even
452 ** though the VFS layer is calling this function with create==1. If you
453 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
454 ** don't use this function.
456 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
457 struct buffer_head *bh_result,
458 int create)
460 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
463 /* This is special helper for reiserfs_get_block in case we are executing
464 direct_IO request. */
465 static int reiserfs_get_blocks_direct_io(struct inode *inode,
466 sector_t iblock,
467 struct buffer_head *bh_result,
468 int create)
470 int ret;
472 bh_result->b_page = NULL;
474 /* We set the b_size before reiserfs_get_block call since it is
475 referenced in convert_tail_for_hole() that may be called from
476 reiserfs_get_block() */
477 bh_result->b_size = (1 << inode->i_blkbits);
479 ret = reiserfs_get_block(inode, iblock, bh_result,
480 create | GET_BLOCK_NO_DANGLE);
481 if (ret)
482 goto out;
484 /* don't allow direct io onto tail pages */
485 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
486 /* make sure future calls to the direct io funcs for this offset
487 ** in the file fail by unmapping the buffer
489 clear_buffer_mapped(bh_result);
490 ret = -EINVAL;
492 /* Possible unpacked tail. Flush the data before pages have
493 disappeared */
494 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
495 int err;
497 reiserfs_write_lock(inode->i_sb);
499 err = reiserfs_commit_for_inode(inode);
500 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
502 reiserfs_write_unlock(inode->i_sb);
504 if (err < 0)
505 ret = err;
507 out:
508 return ret;
512 ** helper function for when reiserfs_get_block is called for a hole
513 ** but the file tail is still in a direct item
514 ** bh_result is the buffer head for the hole
515 ** tail_offset is the offset of the start of the tail in the file
517 ** This calls prepare_write, which will start a new transaction
518 ** you should not be in a transaction, or have any paths held when you
519 ** call this.
521 static int convert_tail_for_hole(struct inode *inode,
522 struct buffer_head *bh_result,
523 loff_t tail_offset)
525 unsigned long index;
526 unsigned long tail_end;
527 unsigned long tail_start;
528 struct page *tail_page;
529 struct page *hole_page = bh_result->b_page;
530 int retval = 0;
532 if ((tail_offset & (bh_result->b_size - 1)) != 1)
533 return -EIO;
535 /* always try to read until the end of the block */
536 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
537 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
539 index = tail_offset >> PAGE_CACHE_SHIFT;
540 /* hole_page can be zero in case of direct_io, we are sure
541 that we cannot get here if we write with O_DIRECT into
542 tail page */
543 if (!hole_page || index != hole_page->index) {
544 tail_page = grab_cache_page(inode->i_mapping, index);
545 retval = -ENOMEM;
546 if (!tail_page) {
547 goto out;
549 } else {
550 tail_page = hole_page;
553 /* we don't have to make sure the conversion did not happen while
554 ** we were locking the page because anyone that could convert
555 ** must first take i_mutex.
557 ** We must fix the tail page for writing because it might have buffers
558 ** that are mapped, but have a block number of 0. This indicates tail
559 ** data that has been read directly into the page, and
560 ** __block_write_begin won't trigger a get_block in this case.
562 fix_tail_page_for_writing(tail_page);
563 retval = __reiserfs_write_begin(tail_page, tail_start,
564 tail_end - tail_start);
565 if (retval)
566 goto unlock;
568 /* tail conversion might change the data in the page */
569 flush_dcache_page(tail_page);
571 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
573 unlock:
574 if (tail_page != hole_page) {
575 unlock_page(tail_page);
576 page_cache_release(tail_page);
578 out:
579 return retval;
582 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
583 sector_t block,
584 struct inode *inode,
585 b_blocknr_t * allocated_block_nr,
586 struct treepath *path, int flags)
588 BUG_ON(!th->t_trans_id);
590 #ifdef REISERFS_PREALLOCATE
591 if (!(flags & GET_BLOCK_NO_IMUX)) {
592 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
593 path, block);
595 #endif
596 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
597 block);
600 int reiserfs_get_block(struct inode *inode, sector_t block,
601 struct buffer_head *bh_result, int create)
603 int repeat, retval = 0;
604 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
605 INITIALIZE_PATH(path);
606 int pos_in_item;
607 struct cpu_key key;
608 struct buffer_head *bh, *unbh = NULL;
609 struct item_head *ih, tmp_ih;
610 __le32 *item;
611 int done;
612 int fs_gen;
613 int lock_depth;
614 struct reiserfs_transaction_handle *th = NULL;
615 /* space reserved in transaction batch:
616 . 3 balancings in direct->indirect conversion
617 . 1 block involved into reiserfs_update_sd()
618 XXX in practically impossible worst case direct2indirect()
619 can incur (much) more than 3 balancings.
620 quota update for user, group */
621 int jbegin_count =
622 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
623 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
624 int version;
625 int dangle = 1;
626 loff_t new_offset =
627 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
629 lock_depth = reiserfs_write_lock_once(inode->i_sb);
630 version = get_inode_item_key_version(inode);
632 if (!file_capable(inode, block)) {
633 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
634 return -EFBIG;
637 /* if !create, we aren't changing the FS, so we don't need to
638 ** log anything, so we don't need to start a transaction
640 if (!(create & GET_BLOCK_CREATE)) {
641 int ret;
642 /* find number of block-th logical block of the file */
643 ret = _get_block_create_0(inode, block, bh_result,
644 create | GET_BLOCK_READ_DIRECT);
645 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
646 return ret;
649 * if we're already in a transaction, make sure to close
650 * any new transactions we start in this func
652 if ((create & GET_BLOCK_NO_DANGLE) ||
653 reiserfs_transaction_running(inode->i_sb))
654 dangle = 0;
656 /* If file is of such a size, that it might have a tail and tails are enabled
657 ** we should mark it as possibly needing tail packing on close
659 if ((have_large_tails(inode->i_sb)
660 && inode->i_size < i_block_size(inode) * 4)
661 || (have_small_tails(inode->i_sb)
662 && inode->i_size < i_block_size(inode)))
663 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
665 /* set the key of the first byte in the 'block'-th block of file */
666 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
667 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
668 start_trans:
669 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
670 if (!th) {
671 retval = -ENOMEM;
672 goto failure;
674 reiserfs_update_inode_transaction(inode);
676 research:
678 retval = search_for_position_by_key(inode->i_sb, &key, &path);
679 if (retval == IO_ERROR) {
680 retval = -EIO;
681 goto failure;
684 bh = get_last_bh(&path);
685 ih = get_ih(&path);
686 item = get_item(&path);
687 pos_in_item = path.pos_in_item;
689 fs_gen = get_generation(inode->i_sb);
690 copy_item_head(&tmp_ih, ih);
692 if (allocation_needed
693 (retval, allocated_block_nr, ih, item, pos_in_item)) {
694 /* we have to allocate block for the unformatted node */
695 if (!th) {
696 pathrelse(&path);
697 goto start_trans;
700 repeat =
701 _allocate_block(th, block, inode, &allocated_block_nr,
702 &path, create);
704 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
705 /* restart the transaction to give the journal a chance to free
706 ** some blocks. releases the path, so we have to go back to
707 ** research if we succeed on the second try
709 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
710 retval = restart_transaction(th, inode, &path);
711 if (retval)
712 goto failure;
713 repeat =
714 _allocate_block(th, block, inode,
715 &allocated_block_nr, NULL, create);
717 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
718 goto research;
720 if (repeat == QUOTA_EXCEEDED)
721 retval = -EDQUOT;
722 else
723 retval = -ENOSPC;
724 goto failure;
727 if (fs_changed(fs_gen, inode->i_sb)
728 && item_moved(&tmp_ih, &path)) {
729 goto research;
733 if (indirect_item_found(retval, ih)) {
734 b_blocknr_t unfm_ptr;
735 /* 'block'-th block is in the file already (there is
736 corresponding cell in some indirect item). But it may be
737 zero unformatted node pointer (hole) */
738 unfm_ptr = get_block_num(item, pos_in_item);
739 if (unfm_ptr == 0) {
740 /* use allocated block to plug the hole */
741 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
742 if (fs_changed(fs_gen, inode->i_sb)
743 && item_moved(&tmp_ih, &path)) {
744 reiserfs_restore_prepared_buffer(inode->i_sb,
745 bh);
746 goto research;
748 set_buffer_new(bh_result);
749 if (buffer_dirty(bh_result)
750 && reiserfs_data_ordered(inode->i_sb))
751 reiserfs_add_ordered_list(inode, bh_result);
752 put_block_num(item, pos_in_item, allocated_block_nr);
753 unfm_ptr = allocated_block_nr;
754 journal_mark_dirty(th, inode->i_sb, bh);
755 reiserfs_update_sd(th, inode);
757 set_block_dev_mapped(bh_result, unfm_ptr, inode);
758 pathrelse(&path);
759 retval = 0;
760 if (!dangle && th)
761 retval = reiserfs_end_persistent_transaction(th);
763 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
765 /* the item was found, so new blocks were not added to the file
766 ** there is no need to make sure the inode is updated with this
767 ** transaction
769 return retval;
772 if (!th) {
773 pathrelse(&path);
774 goto start_trans;
777 /* desired position is not found or is in the direct item. We have
778 to append file with holes up to 'block'-th block converting
779 direct items to indirect one if necessary */
780 done = 0;
781 do {
782 if (is_statdata_le_ih(ih)) {
783 __le32 unp = 0;
784 struct cpu_key tmp_key;
786 /* indirect item has to be inserted */
787 make_le_item_head(&tmp_ih, &key, version, 1,
788 TYPE_INDIRECT, UNFM_P_SIZE,
789 0 /* free_space */ );
791 if (cpu_key_k_offset(&key) == 1) {
792 /* we are going to add 'block'-th block to the file. Use
793 allocated block for that */
794 unp = cpu_to_le32(allocated_block_nr);
795 set_block_dev_mapped(bh_result,
796 allocated_block_nr, inode);
797 set_buffer_new(bh_result);
798 done = 1;
800 tmp_key = key; // ;)
801 set_cpu_key_k_offset(&tmp_key, 1);
802 PATH_LAST_POSITION(&path)++;
804 retval =
805 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
806 inode, (char *)&unp);
807 if (retval) {
808 reiserfs_free_block(th, inode,
809 allocated_block_nr, 1);
810 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
812 //mark_tail_converted (inode);
813 } else if (is_direct_le_ih(ih)) {
814 /* direct item has to be converted */
815 loff_t tail_offset;
817 tail_offset =
818 ((le_ih_k_offset(ih) -
819 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
820 if (tail_offset == cpu_key_k_offset(&key)) {
821 /* direct item we just found fits into block we have
822 to map. Convert it into unformatted node: use
823 bh_result for the conversion */
824 set_block_dev_mapped(bh_result,
825 allocated_block_nr, inode);
826 unbh = bh_result;
827 done = 1;
828 } else {
829 /* we have to padd file tail stored in direct item(s)
830 up to block size and convert it to unformatted
831 node. FIXME: this should also get into page cache */
833 pathrelse(&path);
835 * ugly, but we can only end the transaction if
836 * we aren't nested
838 BUG_ON(!th->t_refcount);
839 if (th->t_refcount == 1) {
840 retval =
841 reiserfs_end_persistent_transaction
842 (th);
843 th = NULL;
844 if (retval)
845 goto failure;
848 retval =
849 convert_tail_for_hole(inode, bh_result,
850 tail_offset);
851 if (retval) {
852 if (retval != -ENOSPC)
853 reiserfs_error(inode->i_sb,
854 "clm-6004",
855 "convert tail failed "
856 "inode %lu, error %d",
857 inode->i_ino,
858 retval);
859 if (allocated_block_nr) {
860 /* the bitmap, the super, and the stat data == 3 */
861 if (!th)
862 th = reiserfs_persistent_transaction(inode->i_sb, 3);
863 if (th)
864 reiserfs_free_block(th,
865 inode,
866 allocated_block_nr,
869 goto failure;
871 goto research;
873 retval =
874 direct2indirect(th, inode, &path, unbh,
875 tail_offset);
876 if (retval) {
877 reiserfs_unmap_buffer(unbh);
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
880 goto failure;
882 /* it is important the set_buffer_uptodate is done after
883 ** the direct2indirect. The buffer might contain valid
884 ** data newer than the data on disk (read by readpage, changed,
885 ** and then sent here by writepage). direct2indirect needs
886 ** to know if unbh was already up to date, so it can decide
887 ** if the data in unbh needs to be replaced with data from
888 ** the disk
890 set_buffer_uptodate(unbh);
892 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
893 buffer will disappear shortly, so it should not be added to
895 if (unbh->b_page) {
896 /* we've converted the tail, so we must
897 ** flush unbh before the transaction commits
899 reiserfs_add_tail_list(inode, unbh);
901 /* mark it dirty now to prevent commit_write from adding
902 ** this buffer to the inode's dirty buffer list
905 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
906 * It's still atomic, but it sets the page dirty too,
907 * which makes it eligible for writeback at any time by the
908 * VM (which was also the case with __mark_buffer_dirty())
910 mark_buffer_dirty(unbh);
912 } else {
913 /* append indirect item with holes if needed, when appending
914 pointer to 'block'-th block use block, which is already
915 allocated */
916 struct cpu_key tmp_key;
917 unp_t unf_single = 0; // We use this in case we need to allocate only
918 // one block which is a fastpath
919 unp_t *un;
920 __u64 max_to_insert =
921 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
922 UNFM_P_SIZE;
923 __u64 blocks_needed;
925 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
926 "vs-804: invalid position for append");
927 /* indirect item has to be appended, set up key of that position */
928 make_cpu_key(&tmp_key, inode,
929 le_key_k_offset(version,
930 &(ih->ih_key)) +
931 op_bytes_number(ih,
932 inode->i_sb->s_blocksize),
933 //pos_in_item * inode->i_sb->s_blocksize,
934 TYPE_INDIRECT, 3); // key type is unimportant
936 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
937 "green-805: invalid offset");
938 blocks_needed =
940 ((cpu_key_k_offset(&key) -
941 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
942 s_blocksize_bits);
944 if (blocks_needed == 1) {
945 un = &unf_single;
946 } else {
947 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
948 if (!un) {
949 un = &unf_single;
950 blocks_needed = 1;
951 max_to_insert = 0;
954 if (blocks_needed <= max_to_insert) {
955 /* we are going to add target block to the file. Use allocated
956 block for that */
957 un[blocks_needed - 1] =
958 cpu_to_le32(allocated_block_nr);
959 set_block_dev_mapped(bh_result,
960 allocated_block_nr, inode);
961 set_buffer_new(bh_result);
962 done = 1;
963 } else {
964 /* paste hole to the indirect item */
965 /* If kmalloc failed, max_to_insert becomes zero and it means we
966 only have space for one block */
967 blocks_needed =
968 max_to_insert ? max_to_insert : 1;
970 retval =
971 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
972 (char *)un,
973 UNFM_P_SIZE *
974 blocks_needed);
976 if (blocks_needed != 1)
977 kfree(un);
979 if (retval) {
980 reiserfs_free_block(th, inode,
981 allocated_block_nr, 1);
982 goto failure;
984 if (!done) {
985 /* We need to mark new file size in case this function will be
986 interrupted/aborted later on. And we may do this only for
987 holes. */
988 inode->i_size +=
989 inode->i_sb->s_blocksize * blocks_needed;
993 if (done == 1)
994 break;
996 /* this loop could log more blocks than we had originally asked
997 ** for. So, we have to allow the transaction to end if it is
998 ** too big or too full. Update the inode so things are
999 ** consistent if we crash before the function returns
1001 ** release the path so that anybody waiting on the path before
1002 ** ending their transaction will be able to continue.
1004 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1005 retval = restart_transaction(th, inode, &path);
1006 if (retval)
1007 goto failure;
1010 * inserting indirect pointers for a hole can take a
1011 * long time. reschedule if needed and also release the write
1012 * lock for others.
1014 if (need_resched()) {
1015 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1016 schedule();
1017 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1020 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1021 if (retval == IO_ERROR) {
1022 retval = -EIO;
1023 goto failure;
1025 if (retval == POSITION_FOUND) {
1026 reiserfs_warning(inode->i_sb, "vs-825",
1027 "%K should not be found", &key);
1028 retval = -EEXIST;
1029 if (allocated_block_nr)
1030 reiserfs_free_block(th, inode,
1031 allocated_block_nr, 1);
1032 pathrelse(&path);
1033 goto failure;
1035 bh = get_last_bh(&path);
1036 ih = get_ih(&path);
1037 item = get_item(&path);
1038 pos_in_item = path.pos_in_item;
1039 } while (1);
1041 retval = 0;
1043 failure:
1044 if (th && (!dangle || (retval && !th->t_trans_id))) {
1045 int err;
1046 if (th->t_trans_id)
1047 reiserfs_update_sd(th, inode);
1048 err = reiserfs_end_persistent_transaction(th);
1049 if (err)
1050 retval = err;
1053 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1054 reiserfs_check_path(&path);
1055 return retval;
1058 static int
1059 reiserfs_readpages(struct file *file, struct address_space *mapping,
1060 struct list_head *pages, unsigned nr_pages)
1062 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1065 /* Compute real number of used bytes by file
1066 * Following three functions can go away when we'll have enough space in stat item
1068 static int real_space_diff(struct inode *inode, int sd_size)
1070 int bytes;
1071 loff_t blocksize = inode->i_sb->s_blocksize;
1073 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1074 return sd_size;
1076 /* End of file is also in full block with indirect reference, so round
1077 ** up to the next block.
1079 ** there is just no way to know if the tail is actually packed
1080 ** on the file, so we have to assume it isn't. When we pack the
1081 ** tail, we add 4 bytes to pretend there really is an unformatted
1082 ** node pointer
1084 bytes =
1085 ((inode->i_size +
1086 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1087 sd_size;
1088 return bytes;
1091 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1092 int sd_size)
1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 return inode->i_size +
1096 (loff_t) (real_space_diff(inode, sd_size));
1098 return ((loff_t) real_space_diff(inode, sd_size)) +
1099 (((loff_t) blocks) << 9);
1102 /* Compute number of blocks used by file in ReiserFS counting */
1103 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1105 loff_t bytes = inode_get_bytes(inode);
1106 loff_t real_space = real_space_diff(inode, sd_size);
1108 /* keeps fsck and non-quota versions of reiserfs happy */
1109 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1110 bytes += (loff_t) 511;
1113 /* files from before the quota patch might i_blocks such that
1114 ** bytes < real_space. Deal with that here to prevent it from
1115 ** going negative.
1117 if (bytes < real_space)
1118 return 0;
1119 return (bytes - real_space) >> 9;
1123 // BAD: new directories have stat data of new type and all other items
1124 // of old type. Version stored in the inode says about body items, so
1125 // in update_stat_data we can not rely on inode, but have to check
1126 // item version directly
1129 // called by read_locked_inode
1130 static void init_inode(struct inode *inode, struct treepath *path)
1132 struct buffer_head *bh;
1133 struct item_head *ih;
1134 __u32 rdev;
1135 //int version = ITEM_VERSION_1;
1137 bh = PATH_PLAST_BUFFER(path);
1138 ih = PATH_PITEM_HEAD(path);
1140 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1142 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1143 REISERFS_I(inode)->i_flags = 0;
1144 REISERFS_I(inode)->i_prealloc_block = 0;
1145 REISERFS_I(inode)->i_prealloc_count = 0;
1146 REISERFS_I(inode)->i_trans_id = 0;
1147 REISERFS_I(inode)->i_jl = NULL;
1148 reiserfs_init_xattr_rwsem(inode);
1150 if (stat_data_v1(ih)) {
1151 struct stat_data_v1 *sd =
1152 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1153 unsigned long blocks;
1155 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1156 set_inode_sd_version(inode, STAT_DATA_V1);
1157 inode->i_mode = sd_v1_mode(sd);
1158 inode->i_nlink = sd_v1_nlink(sd);
1159 inode->i_uid = sd_v1_uid(sd);
1160 inode->i_gid = sd_v1_gid(sd);
1161 inode->i_size = sd_v1_size(sd);
1162 inode->i_atime.tv_sec = sd_v1_atime(sd);
1163 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1164 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1165 inode->i_atime.tv_nsec = 0;
1166 inode->i_ctime.tv_nsec = 0;
1167 inode->i_mtime.tv_nsec = 0;
1169 inode->i_blocks = sd_v1_blocks(sd);
1170 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1171 blocks = (inode->i_size + 511) >> 9;
1172 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1173 if (inode->i_blocks > blocks) {
1174 // there was a bug in <=3.5.23 when i_blocks could take negative
1175 // values. Starting from 3.5.17 this value could even be stored in
1176 // stat data. For such files we set i_blocks based on file
1177 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1178 // only updated if file's inode will ever change
1179 inode->i_blocks = blocks;
1182 rdev = sd_v1_rdev(sd);
1183 REISERFS_I(inode)->i_first_direct_byte =
1184 sd_v1_first_direct_byte(sd);
1185 /* an early bug in the quota code can give us an odd number for the
1186 ** block count. This is incorrect, fix it here.
1188 if (inode->i_blocks & 1) {
1189 inode->i_blocks++;
1191 inode_set_bytes(inode,
1192 to_real_used_space(inode, inode->i_blocks,
1193 SD_V1_SIZE));
1194 /* nopack is initially zero for v1 objects. For v2 objects,
1195 nopack is initialised from sd_attrs */
1196 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1197 } else {
1198 // new stat data found, but object may have old items
1199 // (directories and symlinks)
1200 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1202 inode->i_mode = sd_v2_mode(sd);
1203 inode->i_nlink = sd_v2_nlink(sd);
1204 inode->i_uid = sd_v2_uid(sd);
1205 inode->i_size = sd_v2_size(sd);
1206 inode->i_gid = sd_v2_gid(sd);
1207 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1208 inode->i_atime.tv_sec = sd_v2_atime(sd);
1209 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1210 inode->i_ctime.tv_nsec = 0;
1211 inode->i_mtime.tv_nsec = 0;
1212 inode->i_atime.tv_nsec = 0;
1213 inode->i_blocks = sd_v2_blocks(sd);
1214 rdev = sd_v2_rdev(sd);
1215 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1216 inode->i_generation =
1217 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1218 else
1219 inode->i_generation = sd_v2_generation(sd);
1221 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1223 else
1224 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1225 REISERFS_I(inode)->i_first_direct_byte = 0;
1226 set_inode_sd_version(inode, STAT_DATA_V2);
1227 inode_set_bytes(inode,
1228 to_real_used_space(inode, inode->i_blocks,
1229 SD_V2_SIZE));
1230 /* read persistent inode attributes from sd and initialise
1231 generic inode flags from them */
1232 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1233 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1236 pathrelse(path);
1237 if (S_ISREG(inode->i_mode)) {
1238 inode->i_op = &reiserfs_file_inode_operations;
1239 inode->i_fop = &reiserfs_file_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else if (S_ISDIR(inode->i_mode)) {
1242 inode->i_op = &reiserfs_dir_inode_operations;
1243 inode->i_fop = &reiserfs_dir_operations;
1244 } else if (S_ISLNK(inode->i_mode)) {
1245 inode->i_op = &reiserfs_symlink_inode_operations;
1246 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1247 } else {
1248 inode->i_blocks = 0;
1249 inode->i_op = &reiserfs_special_inode_operations;
1250 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1254 // update new stat data with inode fields
1255 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1257 struct stat_data *sd_v2 = (struct stat_data *)sd;
1258 __u16 flags;
1260 set_sd_v2_mode(sd_v2, inode->i_mode);
1261 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1262 set_sd_v2_uid(sd_v2, inode->i_uid);
1263 set_sd_v2_size(sd_v2, size);
1264 set_sd_v2_gid(sd_v2, inode->i_gid);
1265 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1266 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1267 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1268 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1270 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1271 else
1272 set_sd_v2_generation(sd_v2, inode->i_generation);
1273 flags = REISERFS_I(inode)->i_attrs;
1274 i_attrs_to_sd_attrs(inode, &flags);
1275 set_sd_v2_attrs(sd_v2, flags);
1278 // used to copy inode's fields to old stat data
1279 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1281 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1283 set_sd_v1_mode(sd_v1, inode->i_mode);
1284 set_sd_v1_uid(sd_v1, inode->i_uid);
1285 set_sd_v1_gid(sd_v1, inode->i_gid);
1286 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1287 set_sd_v1_size(sd_v1, size);
1288 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1289 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1290 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1292 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1293 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1294 else
1295 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1297 // Sigh. i_first_direct_byte is back
1298 set_sd_v1_first_direct_byte(sd_v1,
1299 REISERFS_I(inode)->i_first_direct_byte);
1302 /* NOTE, you must prepare the buffer head before sending it here,
1303 ** and then log it after the call
1305 static void update_stat_data(struct treepath *path, struct inode *inode,
1306 loff_t size)
1308 struct buffer_head *bh;
1309 struct item_head *ih;
1311 bh = PATH_PLAST_BUFFER(path);
1312 ih = PATH_PITEM_HEAD(path);
1314 if (!is_statdata_le_ih(ih))
1315 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1316 INODE_PKEY(inode), ih);
1318 if (stat_data_v1(ih)) {
1319 // path points to old stat data
1320 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1321 } else {
1322 inode2sd(B_I_PITEM(bh, ih), inode, size);
1325 return;
1328 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1329 struct inode *inode, loff_t size)
1331 struct cpu_key key;
1332 INITIALIZE_PATH(path);
1333 struct buffer_head *bh;
1334 int fs_gen;
1335 struct item_head *ih, tmp_ih;
1336 int retval;
1338 BUG_ON(!th->t_trans_id);
1340 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1342 for (;;) {
1343 int pos;
1344 /* look for the object's stat data */
1345 retval = search_item(inode->i_sb, &key, &path);
1346 if (retval == IO_ERROR) {
1347 reiserfs_error(inode->i_sb, "vs-13050",
1348 "i/o failure occurred trying to "
1349 "update %K stat data", &key);
1350 return;
1352 if (retval == ITEM_NOT_FOUND) {
1353 pos = PATH_LAST_POSITION(&path);
1354 pathrelse(&path);
1355 if (inode->i_nlink == 0) {
1356 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1357 return;
1359 reiserfs_warning(inode->i_sb, "vs-13060",
1360 "stat data of object %k (nlink == %d) "
1361 "not found (pos %d)",
1362 INODE_PKEY(inode), inode->i_nlink,
1363 pos);
1364 reiserfs_check_path(&path);
1365 return;
1368 /* sigh, prepare_for_journal might schedule. When it schedules the
1369 ** FS might change. We have to detect that, and loop back to the
1370 ** search if the stat data item has moved
1372 bh = get_last_bh(&path);
1373 ih = get_ih(&path);
1374 copy_item_head(&tmp_ih, ih);
1375 fs_gen = get_generation(inode->i_sb);
1376 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1377 if (fs_changed(fs_gen, inode->i_sb)
1378 && item_moved(&tmp_ih, &path)) {
1379 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1380 continue; /* Stat_data item has been moved after scheduling. */
1382 break;
1384 update_stat_data(&path, inode, size);
1385 journal_mark_dirty(th, th->t_super, bh);
1386 pathrelse(&path);
1387 return;
1390 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1391 ** does a make_bad_inode when things go wrong. But, we need to make sure
1392 ** and clear the key in the private portion of the inode, otherwise a
1393 ** corresponding iput might try to delete whatever object the inode last
1394 ** represented.
1396 static void reiserfs_make_bad_inode(struct inode *inode)
1398 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1399 make_bad_inode(inode);
1403 // initially this function was derived from minix or ext2's analog and
1404 // evolved as the prototype did
1407 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1409 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1410 inode->i_ino = args->objectid;
1411 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1412 return 0;
1415 /* looks for stat data in the tree, and fills up the fields of in-core
1416 inode stat data fields */
1417 void reiserfs_read_locked_inode(struct inode *inode,
1418 struct reiserfs_iget_args *args)
1420 INITIALIZE_PATH(path_to_sd);
1421 struct cpu_key key;
1422 unsigned long dirino;
1423 int retval;
1425 dirino = args->dirid;
1427 /* set version 1, version 2 could be used too, because stat data
1428 key is the same in both versions */
1429 key.version = KEY_FORMAT_3_5;
1430 key.on_disk_key.k_dir_id = dirino;
1431 key.on_disk_key.k_objectid = inode->i_ino;
1432 key.on_disk_key.k_offset = 0;
1433 key.on_disk_key.k_type = 0;
1435 /* look for the object's stat data */
1436 retval = search_item(inode->i_sb, &key, &path_to_sd);
1437 if (retval == IO_ERROR) {
1438 reiserfs_error(inode->i_sb, "vs-13070",
1439 "i/o failure occurred trying to find "
1440 "stat data of %K", &key);
1441 reiserfs_make_bad_inode(inode);
1442 return;
1444 if (retval != ITEM_FOUND) {
1445 /* a stale NFS handle can trigger this without it being an error */
1446 pathrelse(&path_to_sd);
1447 reiserfs_make_bad_inode(inode);
1448 inode->i_nlink = 0;
1449 return;
1452 init_inode(inode, &path_to_sd);
1454 /* It is possible that knfsd is trying to access inode of a file
1455 that is being removed from the disk by some other thread. As we
1456 update sd on unlink all that is required is to check for nlink
1457 here. This bug was first found by Sizif when debugging
1458 SquidNG/Butterfly, forgotten, and found again after Philippe
1459 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1461 More logical fix would require changes in fs/inode.c:iput() to
1462 remove inode from hash-table _after_ fs cleaned disk stuff up and
1463 in iget() to return NULL if I_FREEING inode is found in
1464 hash-table. */
1465 /* Currently there is one place where it's ok to meet inode with
1466 nlink==0: processing of open-unlinked and half-truncated files
1467 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1468 if ((inode->i_nlink == 0) &&
1469 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1470 reiserfs_warning(inode->i_sb, "vs-13075",
1471 "dead inode read from disk %K. "
1472 "This is likely to be race with knfsd. Ignore",
1473 &key);
1474 reiserfs_make_bad_inode(inode);
1477 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1482 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1484 * @inode: inode from hash table to check
1485 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1487 * This function is called by iget5_locked() to distinguish reiserfs inodes
1488 * having the same inode numbers. Such inodes can only exist due to some
1489 * error condition. One of them should be bad. Inodes with identical
1490 * inode numbers (objectids) are distinguished by parent directory ids.
1493 int reiserfs_find_actor(struct inode *inode, void *opaque)
1495 struct reiserfs_iget_args *args;
1497 args = opaque;
1498 /* args is already in CPU order */
1499 return (inode->i_ino == args->objectid) &&
1500 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1503 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1505 struct inode *inode;
1506 struct reiserfs_iget_args args;
1508 args.objectid = key->on_disk_key.k_objectid;
1509 args.dirid = key->on_disk_key.k_dir_id;
1510 reiserfs_write_unlock(s);
1511 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1512 reiserfs_find_actor, reiserfs_init_locked_inode,
1513 (void *)(&args));
1514 reiserfs_write_lock(s);
1515 if (!inode)
1516 return ERR_PTR(-ENOMEM);
1518 if (inode->i_state & I_NEW) {
1519 reiserfs_read_locked_inode(inode, &args);
1520 unlock_new_inode(inode);
1523 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1524 /* either due to i/o error or a stale NFS handle */
1525 iput(inode);
1526 inode = NULL;
1528 return inode;
1531 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1532 u32 objectid, u32 dir_id, u32 generation)
1535 struct cpu_key key;
1536 struct inode *inode;
1538 key.on_disk_key.k_objectid = objectid;
1539 key.on_disk_key.k_dir_id = dir_id;
1540 reiserfs_write_lock(sb);
1541 inode = reiserfs_iget(sb, &key);
1542 if (inode && !IS_ERR(inode) && generation != 0 &&
1543 generation != inode->i_generation) {
1544 iput(inode);
1545 inode = NULL;
1547 reiserfs_write_unlock(sb);
1549 return d_obtain_alias(inode);
1552 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1553 int fh_len, int fh_type)
1555 /* fhtype happens to reflect the number of u32s encoded.
1556 * due to a bug in earlier code, fhtype might indicate there
1557 * are more u32s then actually fitted.
1558 * so if fhtype seems to be more than len, reduce fhtype.
1559 * Valid types are:
1560 * 2 - objectid + dir_id - legacy support
1561 * 3 - objectid + dir_id + generation
1562 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1563 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1564 * 6 - as above plus generation of directory
1565 * 6 does not fit in NFSv2 handles
1567 if (fh_type > fh_len) {
1568 if (fh_type != 6 || fh_len != 5)
1569 reiserfs_warning(sb, "reiserfs-13077",
1570 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1571 fh_type, fh_len);
1572 fh_type = 5;
1575 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1576 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1579 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1580 int fh_len, int fh_type)
1582 if (fh_type < 4)
1583 return NULL;
1585 return reiserfs_get_dentry(sb,
1586 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1587 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1588 (fh_type == 6) ? fid->raw[5] : 0);
1591 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1592 int need_parent)
1594 struct inode *inode = dentry->d_inode;
1595 int maxlen = *lenp;
1597 if (maxlen < 3)
1598 return 255;
1600 data[0] = inode->i_ino;
1601 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1602 data[2] = inode->i_generation;
1603 *lenp = 3;
1604 /* no room for directory info? return what we've stored so far */
1605 if (maxlen < 5 || !need_parent)
1606 return 3;
1608 spin_lock(&dentry->d_lock);
1609 inode = dentry->d_parent->d_inode;
1610 data[3] = inode->i_ino;
1611 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1612 *lenp = 5;
1613 if (maxlen >= 6) {
1614 data[5] = inode->i_generation;
1615 *lenp = 6;
1617 spin_unlock(&dentry->d_lock);
1618 return *lenp;
1621 /* looks for stat data, then copies fields to it, marks the buffer
1622 containing stat data as dirty */
1623 /* reiserfs inodes are never really dirty, since the dirty inode call
1624 ** always logs them. This call allows the VFS inode marking routines
1625 ** to properly mark inodes for datasync and such, but only actually
1626 ** does something when called for a synchronous update.
1628 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1630 struct reiserfs_transaction_handle th;
1631 int jbegin_count = 1;
1633 if (inode->i_sb->s_flags & MS_RDONLY)
1634 return -EROFS;
1635 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1636 ** these cases are just when the system needs ram, not when the
1637 ** inode needs to reach disk for safety, and they can safely be
1638 ** ignored because the altered inode has already been logged.
1640 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1641 reiserfs_write_lock(inode->i_sb);
1642 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1643 reiserfs_update_sd(&th, inode);
1644 journal_end_sync(&th, inode->i_sb, jbegin_count);
1646 reiserfs_write_unlock(inode->i_sb);
1648 return 0;
1651 /* stat data of new object is inserted already, this inserts the item
1652 containing "." and ".." entries */
1653 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1654 struct inode *inode,
1655 struct item_head *ih, struct treepath *path,
1656 struct inode *dir)
1658 struct super_block *sb = th->t_super;
1659 char empty_dir[EMPTY_DIR_SIZE];
1660 char *body = empty_dir;
1661 struct cpu_key key;
1662 int retval;
1664 BUG_ON(!th->t_trans_id);
1666 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1667 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1668 TYPE_DIRENTRY, 3 /*key length */ );
1670 /* compose item head for new item. Directories consist of items of
1671 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1672 is done by reiserfs_new_inode */
1673 if (old_format_only(sb)) {
1674 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1675 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1677 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1678 ih->ih_key.k_objectid,
1679 INODE_PKEY(dir)->k_dir_id,
1680 INODE_PKEY(dir)->k_objectid);
1681 } else {
1682 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1683 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1685 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1686 ih->ih_key.k_objectid,
1687 INODE_PKEY(dir)->k_dir_id,
1688 INODE_PKEY(dir)->k_objectid);
1691 /* look for place in the tree for new item */
1692 retval = search_item(sb, &key, path);
1693 if (retval == IO_ERROR) {
1694 reiserfs_error(sb, "vs-13080",
1695 "i/o failure occurred creating new directory");
1696 return -EIO;
1698 if (retval == ITEM_FOUND) {
1699 pathrelse(path);
1700 reiserfs_warning(sb, "vs-13070",
1701 "object with this key exists (%k)",
1702 &(ih->ih_key));
1703 return -EEXIST;
1706 /* insert item, that is empty directory item */
1707 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1710 /* stat data of object has been inserted, this inserts the item
1711 containing the body of symlink */
1712 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1713 struct item_head *ih,
1714 struct treepath *path, const char *symname,
1715 int item_len)
1717 struct super_block *sb = th->t_super;
1718 struct cpu_key key;
1719 int retval;
1721 BUG_ON(!th->t_trans_id);
1723 _make_cpu_key(&key, KEY_FORMAT_3_5,
1724 le32_to_cpu(ih->ih_key.k_dir_id),
1725 le32_to_cpu(ih->ih_key.k_objectid),
1726 1, TYPE_DIRECT, 3 /*key length */ );
1728 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1729 0 /*free_space */ );
1731 /* look for place in the tree for new item */
1732 retval = search_item(sb, &key, path);
1733 if (retval == IO_ERROR) {
1734 reiserfs_error(sb, "vs-13080",
1735 "i/o failure occurred creating new symlink");
1736 return -EIO;
1738 if (retval == ITEM_FOUND) {
1739 pathrelse(path);
1740 reiserfs_warning(sb, "vs-13080",
1741 "object with this key exists (%k)",
1742 &(ih->ih_key));
1743 return -EEXIST;
1746 /* insert item, that is body of symlink */
1747 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1750 /* inserts the stat data into the tree, and then calls
1751 reiserfs_new_directory (to insert ".", ".." item if new object is
1752 directory) or reiserfs_new_symlink (to insert symlink body if new
1753 object is symlink) or nothing (if new object is regular file)
1755 NOTE! uid and gid must already be set in the inode. If we return
1756 non-zero due to an error, we have to drop the quota previously allocated
1757 for the fresh inode. This can only be done outside a transaction, so
1758 if we return non-zero, we also end the transaction. */
1759 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1760 struct inode *dir, int mode, const char *symname,
1761 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1762 strlen (symname) for symlinks) */
1763 loff_t i_size, struct dentry *dentry,
1764 struct inode *inode,
1765 struct reiserfs_security_handle *security)
1767 struct super_block *sb;
1768 struct reiserfs_iget_args args;
1769 INITIALIZE_PATH(path_to_key);
1770 struct cpu_key key;
1771 struct item_head ih;
1772 struct stat_data sd;
1773 int retval;
1774 int err;
1776 BUG_ON(!th->t_trans_id);
1778 dquot_initialize(inode);
1779 err = dquot_alloc_inode(inode);
1780 if (err)
1781 goto out_end_trans;
1782 if (!dir->i_nlink) {
1783 err = -EPERM;
1784 goto out_bad_inode;
1787 sb = dir->i_sb;
1789 /* item head of new item */
1790 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1791 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1792 if (!ih.ih_key.k_objectid) {
1793 err = -ENOMEM;
1794 goto out_bad_inode;
1796 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1797 if (old_format_only(sb))
1798 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1799 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1800 else
1801 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1802 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1803 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1804 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1805 if (insert_inode_locked4(inode, args.objectid,
1806 reiserfs_find_actor, &args) < 0) {
1807 err = -EINVAL;
1808 goto out_bad_inode;
1810 if (old_format_only(sb))
1811 /* not a perfect generation count, as object ids can be reused, but
1812 ** this is as good as reiserfs can do right now.
1813 ** note that the private part of inode isn't filled in yet, we have
1814 ** to use the directory.
1816 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1817 else
1818 #if defined( USE_INODE_GENERATION_COUNTER )
1819 inode->i_generation =
1820 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1821 #else
1822 inode->i_generation = ++event;
1823 #endif
1825 /* fill stat data */
1826 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1828 /* uid and gid must already be set by the caller for quota init */
1830 /* symlink cannot be immutable or append only, right? */
1831 if (S_ISLNK(inode->i_mode))
1832 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1834 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1835 inode->i_size = i_size;
1836 inode->i_blocks = 0;
1837 inode->i_bytes = 0;
1838 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1839 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1841 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1842 REISERFS_I(inode)->i_flags = 0;
1843 REISERFS_I(inode)->i_prealloc_block = 0;
1844 REISERFS_I(inode)->i_prealloc_count = 0;
1845 REISERFS_I(inode)->i_trans_id = 0;
1846 REISERFS_I(inode)->i_jl = NULL;
1847 REISERFS_I(inode)->i_attrs =
1848 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1849 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1850 reiserfs_init_xattr_rwsem(inode);
1852 /* key to search for correct place for new stat data */
1853 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1854 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1855 TYPE_STAT_DATA, 3 /*key length */ );
1857 /* find proper place for inserting of stat data */
1858 retval = search_item(sb, &key, &path_to_key);
1859 if (retval == IO_ERROR) {
1860 err = -EIO;
1861 goto out_bad_inode;
1863 if (retval == ITEM_FOUND) {
1864 pathrelse(&path_to_key);
1865 err = -EEXIST;
1866 goto out_bad_inode;
1868 if (old_format_only(sb)) {
1869 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1870 pathrelse(&path_to_key);
1871 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1872 err = -EINVAL;
1873 goto out_bad_inode;
1875 inode2sd_v1(&sd, inode, inode->i_size);
1876 } else {
1877 inode2sd(&sd, inode, inode->i_size);
1879 // store in in-core inode the key of stat data and version all
1880 // object items will have (directory items will have old offset
1881 // format, other new objects will consist of new items)
1882 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1883 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1884 else
1885 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1886 if (old_format_only(sb))
1887 set_inode_sd_version(inode, STAT_DATA_V1);
1888 else
1889 set_inode_sd_version(inode, STAT_DATA_V2);
1891 /* insert the stat data into the tree */
1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1893 if (REISERFS_I(dir)->new_packing_locality)
1894 th->displace_new_blocks = 1;
1895 #endif
1896 retval =
1897 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1898 (char *)(&sd));
1899 if (retval) {
1900 err = retval;
1901 reiserfs_check_path(&path_to_key);
1902 goto out_bad_inode;
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 if (!th->displace_new_blocks)
1906 REISERFS_I(dir)->new_packing_locality = 0;
1907 #endif
1908 if (S_ISDIR(mode)) {
1909 /* insert item with "." and ".." */
1910 retval =
1911 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1914 if (S_ISLNK(mode)) {
1915 /* insert body of symlink */
1916 if (!old_format_only(sb))
1917 i_size = ROUND_UP(i_size);
1918 retval =
1919 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1920 i_size);
1922 if (retval) {
1923 err = retval;
1924 reiserfs_check_path(&path_to_key);
1925 journal_end(th, th->t_super, th->t_blocks_allocated);
1926 goto out_inserted_sd;
1929 if (reiserfs_posixacl(inode->i_sb)) {
1930 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1931 if (retval) {
1932 err = retval;
1933 reiserfs_check_path(&path_to_key);
1934 journal_end(th, th->t_super, th->t_blocks_allocated);
1935 goto out_inserted_sd;
1937 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1938 reiserfs_warning(inode->i_sb, "jdm-13090",
1939 "ACLs aren't enabled in the fs, "
1940 "but vfs thinks they are!");
1941 } else if (IS_PRIVATE(dir))
1942 inode->i_flags |= S_PRIVATE;
1944 if (security->name) {
1945 retval = reiserfs_security_write(th, inode, security);
1946 if (retval) {
1947 err = retval;
1948 reiserfs_check_path(&path_to_key);
1949 retval = journal_end(th, th->t_super,
1950 th->t_blocks_allocated);
1951 if (retval)
1952 err = retval;
1953 goto out_inserted_sd;
1957 reiserfs_update_sd(th, inode);
1958 reiserfs_check_path(&path_to_key);
1960 return 0;
1962 /* it looks like you can easily compress these two goto targets into
1963 * one. Keeping it like this doesn't actually hurt anything, and they
1964 * are place holders for what the quota code actually needs.
1966 out_bad_inode:
1967 /* Invalidate the object, nothing was inserted yet */
1968 INODE_PKEY(inode)->k_objectid = 0;
1970 /* Quota change must be inside a transaction for journaling */
1971 dquot_free_inode(inode);
1973 out_end_trans:
1974 journal_end(th, th->t_super, th->t_blocks_allocated);
1975 /* Drop can be outside and it needs more credits so it's better to have it outside */
1976 dquot_drop(inode);
1977 inode->i_flags |= S_NOQUOTA;
1978 make_bad_inode(inode);
1980 out_inserted_sd:
1981 inode->i_nlink = 0;
1982 th->t_trans_id = 0; /* so the caller can't use this handle later */
1983 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1984 iput(inode);
1985 return err;
1989 ** finds the tail page in the page cache,
1990 ** reads the last block in.
1992 ** On success, page_result is set to a locked, pinned page, and bh_result
1993 ** is set to an up to date buffer for the last block in the file. returns 0.
1995 ** tail conversion is not done, so bh_result might not be valid for writing
1996 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1997 ** trying to write the block.
1999 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2001 static int grab_tail_page(struct inode *inode,
2002 struct page **page_result,
2003 struct buffer_head **bh_result)
2006 /* we want the page with the last byte in the file,
2007 ** not the page that will hold the next byte for appending
2009 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2010 unsigned long pos = 0;
2011 unsigned long start = 0;
2012 unsigned long blocksize = inode->i_sb->s_blocksize;
2013 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2014 struct buffer_head *bh;
2015 struct buffer_head *head;
2016 struct page *page;
2017 int error;
2019 /* we know that we are only called with inode->i_size > 0.
2020 ** we also know that a file tail can never be as big as a block
2021 ** If i_size % blocksize == 0, our file is currently block aligned
2022 ** and it won't need converting or zeroing after a truncate.
2024 if ((offset & (blocksize - 1)) == 0) {
2025 return -ENOENT;
2027 page = grab_cache_page(inode->i_mapping, index);
2028 error = -ENOMEM;
2029 if (!page) {
2030 goto out;
2032 /* start within the page of the last block in the file */
2033 start = (offset / blocksize) * blocksize;
2035 error = __block_write_begin(page, start, offset - start,
2036 reiserfs_get_block_create_0);
2037 if (error)
2038 goto unlock;
2040 head = page_buffers(page);
2041 bh = head;
2042 do {
2043 if (pos >= start) {
2044 break;
2046 bh = bh->b_this_page;
2047 pos += blocksize;
2048 } while (bh != head);
2050 if (!buffer_uptodate(bh)) {
2051 /* note, this should never happen, prepare_write should
2052 ** be taking care of this for us. If the buffer isn't up to date,
2053 ** I've screwed up the code to find the buffer, or the code to
2054 ** call prepare_write
2056 reiserfs_error(inode->i_sb, "clm-6000",
2057 "error reading block %lu", bh->b_blocknr);
2058 error = -EIO;
2059 goto unlock;
2061 *bh_result = bh;
2062 *page_result = page;
2064 out:
2065 return error;
2067 unlock:
2068 unlock_page(page);
2069 page_cache_release(page);
2070 return error;
2074 ** vfs version of truncate file. Must NOT be called with
2075 ** a transaction already started.
2077 ** some code taken from block_truncate_page
2079 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2081 struct reiserfs_transaction_handle th;
2082 /* we want the offset for the first byte after the end of the file */
2083 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2084 unsigned blocksize = inode->i_sb->s_blocksize;
2085 unsigned length;
2086 struct page *page = NULL;
2087 int error;
2088 struct buffer_head *bh = NULL;
2089 int err2;
2090 int lock_depth;
2092 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2094 if (inode->i_size > 0) {
2095 error = grab_tail_page(inode, &page, &bh);
2096 if (error) {
2097 // -ENOENT means we truncated past the end of the file,
2098 // and get_block_create_0 could not find a block to read in,
2099 // which is ok.
2100 if (error != -ENOENT)
2101 reiserfs_error(inode->i_sb, "clm-6001",
2102 "grab_tail_page failed %d",
2103 error);
2104 page = NULL;
2105 bh = NULL;
2109 /* so, if page != NULL, we have a buffer head for the offset at
2110 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2111 ** then we have an unformatted node. Otherwise, we have a direct item,
2112 ** and no zeroing is required on disk. We zero after the truncate,
2113 ** because the truncate might pack the item anyway
2114 ** (it will unmap bh if it packs).
2116 /* it is enough to reserve space in transaction for 2 balancings:
2117 one for "save" link adding and another for the first
2118 cut_from_item. 1 is for update_sd */
2119 error = journal_begin(&th, inode->i_sb,
2120 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2121 if (error)
2122 goto out;
2123 reiserfs_update_inode_transaction(inode);
2124 if (update_timestamps)
2125 /* we are doing real truncate: if the system crashes before the last
2126 transaction of truncating gets committed - on reboot the file
2127 either appears truncated properly or not truncated at all */
2128 add_save_link(&th, inode, 1);
2129 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2130 error =
2131 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2132 if (error)
2133 goto out;
2135 /* check reiserfs_do_truncate after ending the transaction */
2136 if (err2) {
2137 error = err2;
2138 goto out;
2141 if (update_timestamps) {
2142 error = remove_save_link(inode, 1 /* truncate */);
2143 if (error)
2144 goto out;
2147 if (page) {
2148 length = offset & (blocksize - 1);
2149 /* if we are not on a block boundary */
2150 if (length) {
2151 length = blocksize - length;
2152 zero_user(page, offset, length);
2153 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2154 mark_buffer_dirty(bh);
2157 unlock_page(page);
2158 page_cache_release(page);
2161 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2163 return 0;
2164 out:
2165 if (page) {
2166 unlock_page(page);
2167 page_cache_release(page);
2170 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2172 return error;
2175 static int map_block_for_writepage(struct inode *inode,
2176 struct buffer_head *bh_result,
2177 unsigned long block)
2179 struct reiserfs_transaction_handle th;
2180 int fs_gen;
2181 struct item_head tmp_ih;
2182 struct item_head *ih;
2183 struct buffer_head *bh;
2184 __le32 *item;
2185 struct cpu_key key;
2186 INITIALIZE_PATH(path);
2187 int pos_in_item;
2188 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2189 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2190 int retval;
2191 int use_get_block = 0;
2192 int bytes_copied = 0;
2193 int copy_size;
2194 int trans_running = 0;
2196 /* catch places below that try to log something without starting a trans */
2197 th.t_trans_id = 0;
2199 if (!buffer_uptodate(bh_result)) {
2200 return -EIO;
2203 kmap(bh_result->b_page);
2204 start_over:
2205 reiserfs_write_lock(inode->i_sb);
2206 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2208 research:
2209 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2210 if (retval != POSITION_FOUND) {
2211 use_get_block = 1;
2212 goto out;
2215 bh = get_last_bh(&path);
2216 ih = get_ih(&path);
2217 item = get_item(&path);
2218 pos_in_item = path.pos_in_item;
2220 /* we've found an unformatted node */
2221 if (indirect_item_found(retval, ih)) {
2222 if (bytes_copied > 0) {
2223 reiserfs_warning(inode->i_sb, "clm-6002",
2224 "bytes_copied %d", bytes_copied);
2226 if (!get_block_num(item, pos_in_item)) {
2227 /* crap, we are writing to a hole */
2228 use_get_block = 1;
2229 goto out;
2231 set_block_dev_mapped(bh_result,
2232 get_block_num(item, pos_in_item), inode);
2233 } else if (is_direct_le_ih(ih)) {
2234 char *p;
2235 p = page_address(bh_result->b_page);
2236 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2237 copy_size = ih_item_len(ih) - pos_in_item;
2239 fs_gen = get_generation(inode->i_sb);
2240 copy_item_head(&tmp_ih, ih);
2242 if (!trans_running) {
2243 /* vs-3050 is gone, no need to drop the path */
2244 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2245 if (retval)
2246 goto out;
2247 reiserfs_update_inode_transaction(inode);
2248 trans_running = 1;
2249 if (fs_changed(fs_gen, inode->i_sb)
2250 && item_moved(&tmp_ih, &path)) {
2251 reiserfs_restore_prepared_buffer(inode->i_sb,
2252 bh);
2253 goto research;
2257 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2259 if (fs_changed(fs_gen, inode->i_sb)
2260 && item_moved(&tmp_ih, &path)) {
2261 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2262 goto research;
2265 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2266 copy_size);
2268 journal_mark_dirty(&th, inode->i_sb, bh);
2269 bytes_copied += copy_size;
2270 set_block_dev_mapped(bh_result, 0, inode);
2272 /* are there still bytes left? */
2273 if (bytes_copied < bh_result->b_size &&
2274 (byte_offset + bytes_copied) < inode->i_size) {
2275 set_cpu_key_k_offset(&key,
2276 cpu_key_k_offset(&key) +
2277 copy_size);
2278 goto research;
2280 } else {
2281 reiserfs_warning(inode->i_sb, "clm-6003",
2282 "bad item inode %lu", inode->i_ino);
2283 retval = -EIO;
2284 goto out;
2286 retval = 0;
2288 out:
2289 pathrelse(&path);
2290 if (trans_running) {
2291 int err = journal_end(&th, inode->i_sb, jbegin_count);
2292 if (err)
2293 retval = err;
2294 trans_running = 0;
2296 reiserfs_write_unlock(inode->i_sb);
2298 /* this is where we fill in holes in the file. */
2299 if (use_get_block) {
2300 retval = reiserfs_get_block(inode, block, bh_result,
2301 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2302 | GET_BLOCK_NO_DANGLE);
2303 if (!retval) {
2304 if (!buffer_mapped(bh_result)
2305 || bh_result->b_blocknr == 0) {
2306 /* get_block failed to find a mapped unformatted node. */
2307 use_get_block = 0;
2308 goto start_over;
2312 kunmap(bh_result->b_page);
2314 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2315 /* we've copied data from the page into the direct item, so the
2316 * buffer in the page is now clean, mark it to reflect that.
2318 lock_buffer(bh_result);
2319 clear_buffer_dirty(bh_result);
2320 unlock_buffer(bh_result);
2322 return retval;
2326 * mason@suse.com: updated in 2.5.54 to follow the same general io
2327 * start/recovery path as __block_write_full_page, along with special
2328 * code to handle reiserfs tails.
2330 static int reiserfs_write_full_page(struct page *page,
2331 struct writeback_control *wbc)
2333 struct inode *inode = page->mapping->host;
2334 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2335 int error = 0;
2336 unsigned long block;
2337 sector_t last_block;
2338 struct buffer_head *head, *bh;
2339 int partial = 0;
2340 int nr = 0;
2341 int checked = PageChecked(page);
2342 struct reiserfs_transaction_handle th;
2343 struct super_block *s = inode->i_sb;
2344 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2345 th.t_trans_id = 0;
2347 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2348 if (checked && (current->flags & PF_MEMALLOC)) {
2349 redirty_page_for_writepage(wbc, page);
2350 unlock_page(page);
2351 return 0;
2354 /* The page dirty bit is cleared before writepage is called, which
2355 * means we have to tell create_empty_buffers to make dirty buffers
2356 * The page really should be up to date at this point, so tossing
2357 * in the BH_Uptodate is just a sanity check.
2359 if (!page_has_buffers(page)) {
2360 create_empty_buffers(page, s->s_blocksize,
2361 (1 << BH_Dirty) | (1 << BH_Uptodate));
2363 head = page_buffers(page);
2365 /* last page in the file, zero out any contents past the
2366 ** last byte in the file
2368 if (page->index >= end_index) {
2369 unsigned last_offset;
2371 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2372 /* no file contents in this page */
2373 if (page->index >= end_index + 1 || !last_offset) {
2374 unlock_page(page);
2375 return 0;
2377 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2379 bh = head;
2380 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2381 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2382 /* first map all the buffers, logging any direct items we find */
2383 do {
2384 if (block > last_block) {
2386 * This can happen when the block size is less than
2387 * the page size. The corresponding bytes in the page
2388 * were zero filled above
2390 clear_buffer_dirty(bh);
2391 set_buffer_uptodate(bh);
2392 } else if ((checked || buffer_dirty(bh)) &&
2393 (!buffer_mapped(bh) || (buffer_mapped(bh)
2394 && bh->b_blocknr ==
2395 0))) {
2396 /* not mapped yet, or it points to a direct item, search
2397 * the btree for the mapping info, and log any direct
2398 * items found
2400 if ((error = map_block_for_writepage(inode, bh, block))) {
2401 goto fail;
2404 bh = bh->b_this_page;
2405 block++;
2406 } while (bh != head);
2409 * we start the transaction after map_block_for_writepage,
2410 * because it can create holes in the file (an unbounded operation).
2411 * starting it here, we can make a reliable estimate for how many
2412 * blocks we're going to log
2414 if (checked) {
2415 ClearPageChecked(page);
2416 reiserfs_write_lock(s);
2417 error = journal_begin(&th, s, bh_per_page + 1);
2418 if (error) {
2419 reiserfs_write_unlock(s);
2420 goto fail;
2422 reiserfs_update_inode_transaction(inode);
2424 /* now go through and lock any dirty buffers on the page */
2425 do {
2426 get_bh(bh);
2427 if (!buffer_mapped(bh))
2428 continue;
2429 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2430 continue;
2432 if (checked) {
2433 reiserfs_prepare_for_journal(s, bh, 1);
2434 journal_mark_dirty(&th, s, bh);
2435 continue;
2437 /* from this point on, we know the buffer is mapped to a
2438 * real block and not a direct item
2440 if (wbc->sync_mode != WB_SYNC_NONE) {
2441 lock_buffer(bh);
2442 } else {
2443 if (!trylock_buffer(bh)) {
2444 redirty_page_for_writepage(wbc, page);
2445 continue;
2448 if (test_clear_buffer_dirty(bh)) {
2449 mark_buffer_async_write(bh);
2450 } else {
2451 unlock_buffer(bh);
2453 } while ((bh = bh->b_this_page) != head);
2455 if (checked) {
2456 error = journal_end(&th, s, bh_per_page + 1);
2457 reiserfs_write_unlock(s);
2458 if (error)
2459 goto fail;
2461 BUG_ON(PageWriteback(page));
2462 set_page_writeback(page);
2463 unlock_page(page);
2466 * since any buffer might be the only dirty buffer on the page,
2467 * the first submit_bh can bring the page out of writeback.
2468 * be careful with the buffers.
2470 do {
2471 struct buffer_head *next = bh->b_this_page;
2472 if (buffer_async_write(bh)) {
2473 submit_bh(WRITE, bh);
2474 nr++;
2476 put_bh(bh);
2477 bh = next;
2478 } while (bh != head);
2480 error = 0;
2481 done:
2482 if (nr == 0) {
2484 * if this page only had a direct item, it is very possible for
2485 * no io to be required without there being an error. Or,
2486 * someone else could have locked them and sent them down the
2487 * pipe without locking the page
2489 bh = head;
2490 do {
2491 if (!buffer_uptodate(bh)) {
2492 partial = 1;
2493 break;
2495 bh = bh->b_this_page;
2496 } while (bh != head);
2497 if (!partial)
2498 SetPageUptodate(page);
2499 end_page_writeback(page);
2501 return error;
2503 fail:
2504 /* catches various errors, we need to make sure any valid dirty blocks
2505 * get to the media. The page is currently locked and not marked for
2506 * writeback
2508 ClearPageUptodate(page);
2509 bh = head;
2510 do {
2511 get_bh(bh);
2512 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2513 lock_buffer(bh);
2514 mark_buffer_async_write(bh);
2515 } else {
2517 * clear any dirty bits that might have come from getting
2518 * attached to a dirty page
2520 clear_buffer_dirty(bh);
2522 bh = bh->b_this_page;
2523 } while (bh != head);
2524 SetPageError(page);
2525 BUG_ON(PageWriteback(page));
2526 set_page_writeback(page);
2527 unlock_page(page);
2528 do {
2529 struct buffer_head *next = bh->b_this_page;
2530 if (buffer_async_write(bh)) {
2531 clear_buffer_dirty(bh);
2532 submit_bh(WRITE, bh);
2533 nr++;
2535 put_bh(bh);
2536 bh = next;
2537 } while (bh != head);
2538 goto done;
2541 static int reiserfs_readpage(struct file *f, struct page *page)
2543 return block_read_full_page(page, reiserfs_get_block);
2546 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2548 struct inode *inode = page->mapping->host;
2549 reiserfs_wait_on_write_block(inode->i_sb);
2550 return reiserfs_write_full_page(page, wbc);
2553 static void reiserfs_truncate_failed_write(struct inode *inode)
2555 truncate_inode_pages(inode->i_mapping, inode->i_size);
2556 reiserfs_truncate_file(inode, 0);
2559 static int reiserfs_write_begin(struct file *file,
2560 struct address_space *mapping,
2561 loff_t pos, unsigned len, unsigned flags,
2562 struct page **pagep, void **fsdata)
2564 struct inode *inode;
2565 struct page *page;
2566 pgoff_t index;
2567 int ret;
2568 int old_ref = 0;
2570 inode = mapping->host;
2571 *fsdata = 0;
2572 if (flags & AOP_FLAG_CONT_EXPAND &&
2573 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2574 pos ++;
2575 *fsdata = (void *)(unsigned long)flags;
2578 index = pos >> PAGE_CACHE_SHIFT;
2579 page = grab_cache_page_write_begin(mapping, index, flags);
2580 if (!page)
2581 return -ENOMEM;
2582 *pagep = page;
2584 reiserfs_wait_on_write_block(inode->i_sb);
2585 fix_tail_page_for_writing(page);
2586 if (reiserfs_transaction_running(inode->i_sb)) {
2587 struct reiserfs_transaction_handle *th;
2588 th = (struct reiserfs_transaction_handle *)current->
2589 journal_info;
2590 BUG_ON(!th->t_refcount);
2591 BUG_ON(!th->t_trans_id);
2592 old_ref = th->t_refcount;
2593 th->t_refcount++;
2595 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2596 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2597 struct reiserfs_transaction_handle *th = current->journal_info;
2598 /* this gets a little ugly. If reiserfs_get_block returned an
2599 * error and left a transacstion running, we've got to close it,
2600 * and we've got to free handle if it was a persistent transaction.
2602 * But, if we had nested into an existing transaction, we need
2603 * to just drop the ref count on the handle.
2605 * If old_ref == 0, the transaction is from reiserfs_get_block,
2606 * and it was a persistent trans. Otherwise, it was nested above.
2608 if (th->t_refcount > old_ref) {
2609 if (old_ref)
2610 th->t_refcount--;
2611 else {
2612 int err;
2613 reiserfs_write_lock(inode->i_sb);
2614 err = reiserfs_end_persistent_transaction(th);
2615 reiserfs_write_unlock(inode->i_sb);
2616 if (err)
2617 ret = err;
2621 if (ret) {
2622 unlock_page(page);
2623 page_cache_release(page);
2624 /* Truncate allocated blocks */
2625 reiserfs_truncate_failed_write(inode);
2627 return ret;
2630 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2632 struct inode *inode = page->mapping->host;
2633 int ret;
2634 int old_ref = 0;
2636 reiserfs_write_unlock(inode->i_sb);
2637 reiserfs_wait_on_write_block(inode->i_sb);
2638 reiserfs_write_lock(inode->i_sb);
2640 fix_tail_page_for_writing(page);
2641 if (reiserfs_transaction_running(inode->i_sb)) {
2642 struct reiserfs_transaction_handle *th;
2643 th = (struct reiserfs_transaction_handle *)current->
2644 journal_info;
2645 BUG_ON(!th->t_refcount);
2646 BUG_ON(!th->t_trans_id);
2647 old_ref = th->t_refcount;
2648 th->t_refcount++;
2651 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2652 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2653 struct reiserfs_transaction_handle *th = current->journal_info;
2654 /* this gets a little ugly. If reiserfs_get_block returned an
2655 * error and left a transacstion running, we've got to close it,
2656 * and we've got to free handle if it was a persistent transaction.
2658 * But, if we had nested into an existing transaction, we need
2659 * to just drop the ref count on the handle.
2661 * If old_ref == 0, the transaction is from reiserfs_get_block,
2662 * and it was a persistent trans. Otherwise, it was nested above.
2664 if (th->t_refcount > old_ref) {
2665 if (old_ref)
2666 th->t_refcount--;
2667 else {
2668 int err;
2669 reiserfs_write_lock(inode->i_sb);
2670 err = reiserfs_end_persistent_transaction(th);
2671 reiserfs_write_unlock(inode->i_sb);
2672 if (err)
2673 ret = err;
2677 return ret;
2681 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2683 return generic_block_bmap(as, block, reiserfs_bmap);
2686 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2687 loff_t pos, unsigned len, unsigned copied,
2688 struct page *page, void *fsdata)
2690 struct inode *inode = page->mapping->host;
2691 int ret = 0;
2692 int update_sd = 0;
2693 struct reiserfs_transaction_handle *th;
2694 unsigned start;
2695 int lock_depth = 0;
2696 bool locked = false;
2698 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2699 pos ++;
2701 reiserfs_wait_on_write_block(inode->i_sb);
2702 if (reiserfs_transaction_running(inode->i_sb))
2703 th = current->journal_info;
2704 else
2705 th = NULL;
2707 start = pos & (PAGE_CACHE_SIZE - 1);
2708 if (unlikely(copied < len)) {
2709 if (!PageUptodate(page))
2710 copied = 0;
2712 page_zero_new_buffers(page, start + copied, start + len);
2714 flush_dcache_page(page);
2716 reiserfs_commit_page(inode, page, start, start + copied);
2718 /* generic_commit_write does this for us, but does not update the
2719 ** transaction tracking stuff when the size changes. So, we have
2720 ** to do the i_size updates here.
2722 if (pos + copied > inode->i_size) {
2723 struct reiserfs_transaction_handle myth;
2724 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2725 locked = true;
2726 /* If the file have grown beyond the border where it
2727 can have a tail, unmark it as needing a tail
2728 packing */
2729 if ((have_large_tails(inode->i_sb)
2730 && inode->i_size > i_block_size(inode) * 4)
2731 || (have_small_tails(inode->i_sb)
2732 && inode->i_size > i_block_size(inode)))
2733 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2735 ret = journal_begin(&myth, inode->i_sb, 1);
2736 if (ret)
2737 goto journal_error;
2739 reiserfs_update_inode_transaction(inode);
2740 inode->i_size = pos + copied;
2742 * this will just nest into our transaction. It's important
2743 * to use mark_inode_dirty so the inode gets pushed around on the
2744 * dirty lists, and so that O_SYNC works as expected
2746 mark_inode_dirty(inode);
2747 reiserfs_update_sd(&myth, inode);
2748 update_sd = 1;
2749 ret = journal_end(&myth, inode->i_sb, 1);
2750 if (ret)
2751 goto journal_error;
2753 if (th) {
2754 if (!locked) {
2755 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2756 locked = true;
2758 if (!update_sd)
2759 mark_inode_dirty(inode);
2760 ret = reiserfs_end_persistent_transaction(th);
2761 if (ret)
2762 goto out;
2765 out:
2766 if (locked)
2767 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2768 unlock_page(page);
2769 page_cache_release(page);
2771 if (pos + len > inode->i_size)
2772 reiserfs_truncate_failed_write(inode);
2774 return ret == 0 ? copied : ret;
2776 journal_error:
2777 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2778 locked = false;
2779 if (th) {
2780 if (!update_sd)
2781 reiserfs_update_sd(th, inode);
2782 ret = reiserfs_end_persistent_transaction(th);
2784 goto out;
2787 int reiserfs_commit_write(struct file *f, struct page *page,
2788 unsigned from, unsigned to)
2790 struct inode *inode = page->mapping->host;
2791 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2792 int ret = 0;
2793 int update_sd = 0;
2794 struct reiserfs_transaction_handle *th = NULL;
2796 reiserfs_write_unlock(inode->i_sb);
2797 reiserfs_wait_on_write_block(inode->i_sb);
2798 reiserfs_write_lock(inode->i_sb);
2800 if (reiserfs_transaction_running(inode->i_sb)) {
2801 th = current->journal_info;
2803 reiserfs_commit_page(inode, page, from, to);
2805 /* generic_commit_write does this for us, but does not update the
2806 ** transaction tracking stuff when the size changes. So, we have
2807 ** to do the i_size updates here.
2809 if (pos > inode->i_size) {
2810 struct reiserfs_transaction_handle myth;
2811 /* If the file have grown beyond the border where it
2812 can have a tail, unmark it as needing a tail
2813 packing */
2814 if ((have_large_tails(inode->i_sb)
2815 && inode->i_size > i_block_size(inode) * 4)
2816 || (have_small_tails(inode->i_sb)
2817 && inode->i_size > i_block_size(inode)))
2818 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2820 ret = journal_begin(&myth, inode->i_sb, 1);
2821 if (ret)
2822 goto journal_error;
2824 reiserfs_update_inode_transaction(inode);
2825 inode->i_size = pos;
2827 * this will just nest into our transaction. It's important
2828 * to use mark_inode_dirty so the inode gets pushed around on the
2829 * dirty lists, and so that O_SYNC works as expected
2831 mark_inode_dirty(inode);
2832 reiserfs_update_sd(&myth, inode);
2833 update_sd = 1;
2834 ret = journal_end(&myth, inode->i_sb, 1);
2835 if (ret)
2836 goto journal_error;
2838 if (th) {
2839 if (!update_sd)
2840 mark_inode_dirty(inode);
2841 ret = reiserfs_end_persistent_transaction(th);
2842 if (ret)
2843 goto out;
2846 out:
2847 return ret;
2849 journal_error:
2850 if (th) {
2851 if (!update_sd)
2852 reiserfs_update_sd(th, inode);
2853 ret = reiserfs_end_persistent_transaction(th);
2856 return ret;
2859 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2861 if (reiserfs_attrs(inode->i_sb)) {
2862 if (sd_attrs & REISERFS_SYNC_FL)
2863 inode->i_flags |= S_SYNC;
2864 else
2865 inode->i_flags &= ~S_SYNC;
2866 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2867 inode->i_flags |= S_IMMUTABLE;
2868 else
2869 inode->i_flags &= ~S_IMMUTABLE;
2870 if (sd_attrs & REISERFS_APPEND_FL)
2871 inode->i_flags |= S_APPEND;
2872 else
2873 inode->i_flags &= ~S_APPEND;
2874 if (sd_attrs & REISERFS_NOATIME_FL)
2875 inode->i_flags |= S_NOATIME;
2876 else
2877 inode->i_flags &= ~S_NOATIME;
2878 if (sd_attrs & REISERFS_NOTAIL_FL)
2879 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2880 else
2881 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2885 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2887 if (reiserfs_attrs(inode->i_sb)) {
2888 if (inode->i_flags & S_IMMUTABLE)
2889 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2890 else
2891 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2892 if (inode->i_flags & S_SYNC)
2893 *sd_attrs |= REISERFS_SYNC_FL;
2894 else
2895 *sd_attrs &= ~REISERFS_SYNC_FL;
2896 if (inode->i_flags & S_NOATIME)
2897 *sd_attrs |= REISERFS_NOATIME_FL;
2898 else
2899 *sd_attrs &= ~REISERFS_NOATIME_FL;
2900 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2901 *sd_attrs |= REISERFS_NOTAIL_FL;
2902 else
2903 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2907 /* decide if this buffer needs to stay around for data logging or ordered
2908 ** write purposes
2910 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2912 int ret = 1;
2913 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2915 lock_buffer(bh);
2916 spin_lock(&j->j_dirty_buffers_lock);
2917 if (!buffer_mapped(bh)) {
2918 goto free_jh;
2920 /* the page is locked, and the only places that log a data buffer
2921 * also lock the page.
2923 if (reiserfs_file_data_log(inode)) {
2925 * very conservative, leave the buffer pinned if
2926 * anyone might need it.
2928 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2929 ret = 0;
2931 } else if (buffer_dirty(bh)) {
2932 struct reiserfs_journal_list *jl;
2933 struct reiserfs_jh *jh = bh->b_private;
2935 /* why is this safe?
2936 * reiserfs_setattr updates i_size in the on disk
2937 * stat data before allowing vmtruncate to be called.
2939 * If buffer was put onto the ordered list for this
2940 * transaction, we know for sure either this transaction
2941 * or an older one already has updated i_size on disk,
2942 * and this ordered data won't be referenced in the file
2943 * if we crash.
2945 * if the buffer was put onto the ordered list for an older
2946 * transaction, we need to leave it around
2948 if (jh && (jl = jh->jl)
2949 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2950 ret = 0;
2952 free_jh:
2953 if (ret && bh->b_private) {
2954 reiserfs_free_jh(bh);
2956 spin_unlock(&j->j_dirty_buffers_lock);
2957 unlock_buffer(bh);
2958 return ret;
2961 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2962 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2964 struct buffer_head *head, *bh, *next;
2965 struct inode *inode = page->mapping->host;
2966 unsigned int curr_off = 0;
2967 int ret = 1;
2969 BUG_ON(!PageLocked(page));
2971 if (offset == 0)
2972 ClearPageChecked(page);
2974 if (!page_has_buffers(page))
2975 goto out;
2977 head = page_buffers(page);
2978 bh = head;
2979 do {
2980 unsigned int next_off = curr_off + bh->b_size;
2981 next = bh->b_this_page;
2984 * is this block fully invalidated?
2986 if (offset <= curr_off) {
2987 if (invalidatepage_can_drop(inode, bh))
2988 reiserfs_unmap_buffer(bh);
2989 else
2990 ret = 0;
2992 curr_off = next_off;
2993 bh = next;
2994 } while (bh != head);
2997 * We release buffers only if the entire page is being invalidated.
2998 * The get_block cached value has been unconditionally invalidated,
2999 * so real IO is not possible anymore.
3001 if (!offset && ret) {
3002 ret = try_to_release_page(page, 0);
3003 /* maybe should BUG_ON(!ret); - neilb */
3005 out:
3006 return;
3009 static int reiserfs_set_page_dirty(struct page *page)
3011 struct inode *inode = page->mapping->host;
3012 if (reiserfs_file_data_log(inode)) {
3013 SetPageChecked(page);
3014 return __set_page_dirty_nobuffers(page);
3016 return __set_page_dirty_buffers(page);
3020 * Returns 1 if the page's buffers were dropped. The page is locked.
3022 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3023 * in the buffers at page_buffers(page).
3025 * even in -o notail mode, we can't be sure an old mount without -o notail
3026 * didn't create files with tails.
3028 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3030 struct inode *inode = page->mapping->host;
3031 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3032 struct buffer_head *head;
3033 struct buffer_head *bh;
3034 int ret = 1;
3036 WARN_ON(PageChecked(page));
3037 spin_lock(&j->j_dirty_buffers_lock);
3038 head = page_buffers(page);
3039 bh = head;
3040 do {
3041 if (bh->b_private) {
3042 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3043 reiserfs_free_jh(bh);
3044 } else {
3045 ret = 0;
3046 break;
3049 bh = bh->b_this_page;
3050 } while (bh != head);
3051 if (ret)
3052 ret = try_to_free_buffers(page);
3053 spin_unlock(&j->j_dirty_buffers_lock);
3054 return ret;
3057 /* We thank Mingming Cao for helping us understand in great detail what
3058 to do in this section of the code. */
3059 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3060 const struct iovec *iov, loff_t offset,
3061 unsigned long nr_segs)
3063 struct file *file = iocb->ki_filp;
3064 struct inode *inode = file->f_mapping->host;
3065 ssize_t ret;
3067 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3068 offset, nr_segs,
3069 reiserfs_get_blocks_direct_io, NULL);
3072 * In case of error extending write may have instantiated a few
3073 * blocks outside i_size. Trim these off again.
3075 if (unlikely((rw & WRITE) && ret < 0)) {
3076 loff_t isize = i_size_read(inode);
3077 loff_t end = offset + iov_length(iov, nr_segs);
3079 if (end > isize)
3080 vmtruncate(inode, isize);
3083 return ret;
3086 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3088 struct inode *inode = dentry->d_inode;
3089 unsigned int ia_valid;
3090 int depth;
3091 int error;
3093 error = inode_change_ok(inode, attr);
3094 if (error)
3095 return error;
3097 /* must be turned off for recursive notify_change calls */
3098 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3100 depth = reiserfs_write_lock_once(inode->i_sb);
3101 if (is_quota_modification(inode, attr))
3102 dquot_initialize(inode);
3104 if (attr->ia_valid & ATTR_SIZE) {
3105 /* version 2 items will be caught by the s_maxbytes check
3106 ** done for us in vmtruncate
3108 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3109 attr->ia_size > MAX_NON_LFS) {
3110 error = -EFBIG;
3111 goto out;
3113 /* fill in hole pointers in the expanding truncate case. */
3114 if (attr->ia_size > inode->i_size) {
3115 error = generic_cont_expand_simple(inode, attr->ia_size);
3116 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3117 int err;
3118 struct reiserfs_transaction_handle th;
3119 /* we're changing at most 2 bitmaps, inode + super */
3120 err = journal_begin(&th, inode->i_sb, 4);
3121 if (!err) {
3122 reiserfs_discard_prealloc(&th, inode);
3123 err = journal_end(&th, inode->i_sb, 4);
3125 if (err)
3126 error = err;
3128 if (error)
3129 goto out;
3131 * file size is changed, ctime and mtime are
3132 * to be updated
3134 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3138 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3139 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3140 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3141 /* stat data of format v3.5 has 16 bit uid and gid */
3142 error = -EINVAL;
3143 goto out;
3146 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3147 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3148 struct reiserfs_transaction_handle th;
3149 int jbegin_count =
3151 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3152 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3155 error = reiserfs_chown_xattrs(inode, attr);
3157 if (error)
3158 return error;
3160 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3161 error = journal_begin(&th, inode->i_sb, jbegin_count);
3162 if (error)
3163 goto out;
3164 error = dquot_transfer(inode, attr);
3165 if (error) {
3166 journal_end(&th, inode->i_sb, jbegin_count);
3167 goto out;
3170 /* Update corresponding info in inode so that everything is in
3171 * one transaction */
3172 if (attr->ia_valid & ATTR_UID)
3173 inode->i_uid = attr->ia_uid;
3174 if (attr->ia_valid & ATTR_GID)
3175 inode->i_gid = attr->ia_gid;
3176 mark_inode_dirty(inode);
3177 error = journal_end(&th, inode->i_sb, jbegin_count);
3178 if (error)
3179 goto out;
3183 * Relax the lock here, as it might truncate the
3184 * inode pages and wait for inode pages locks.
3185 * To release such page lock, the owner needs the
3186 * reiserfs lock
3188 reiserfs_write_unlock_once(inode->i_sb, depth);
3189 if ((attr->ia_valid & ATTR_SIZE) &&
3190 attr->ia_size != i_size_read(inode))
3191 error = vmtruncate(inode, attr->ia_size);
3193 if (!error) {
3194 setattr_copy(inode, attr);
3195 mark_inode_dirty(inode);
3197 depth = reiserfs_write_lock_once(inode->i_sb);
3199 if (!error && reiserfs_posixacl(inode->i_sb)) {
3200 if (attr->ia_valid & ATTR_MODE)
3201 error = reiserfs_acl_chmod(inode);
3204 out:
3205 reiserfs_write_unlock_once(inode->i_sb, depth);
3207 return error;
3210 const struct address_space_operations reiserfs_address_space_operations = {
3211 .writepage = reiserfs_writepage,
3212 .readpage = reiserfs_readpage,
3213 .readpages = reiserfs_readpages,
3214 .releasepage = reiserfs_releasepage,
3215 .invalidatepage = reiserfs_invalidatepage,
3216 .sync_page = block_sync_page,
3217 .write_begin = reiserfs_write_begin,
3218 .write_end = reiserfs_write_end,
3219 .bmap = reiserfs_aop_bmap,
3220 .direct_IO = reiserfs_direct_IO,
3221 .set_page_dirty = reiserfs_set_page_dirty,