2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(journal_start
);
44 EXPORT_SYMBOL(journal_restart
);
45 EXPORT_SYMBOL(journal_extend
);
46 EXPORT_SYMBOL(journal_stop
);
47 EXPORT_SYMBOL(journal_lock_updates
);
48 EXPORT_SYMBOL(journal_unlock_updates
);
49 EXPORT_SYMBOL(journal_get_write_access
);
50 EXPORT_SYMBOL(journal_get_create_access
);
51 EXPORT_SYMBOL(journal_get_undo_access
);
52 EXPORT_SYMBOL(journal_dirty_data
);
53 EXPORT_SYMBOL(journal_dirty_metadata
);
54 EXPORT_SYMBOL(journal_release_buffer
);
55 EXPORT_SYMBOL(journal_forget
);
57 EXPORT_SYMBOL(journal_sync_buffer
);
59 EXPORT_SYMBOL(journal_flush
);
60 EXPORT_SYMBOL(journal_revoke
);
62 EXPORT_SYMBOL(journal_init_dev
);
63 EXPORT_SYMBOL(journal_init_inode
);
64 EXPORT_SYMBOL(journal_update_format
);
65 EXPORT_SYMBOL(journal_check_used_features
);
66 EXPORT_SYMBOL(journal_check_available_features
);
67 EXPORT_SYMBOL(journal_set_features
);
68 EXPORT_SYMBOL(journal_create
);
69 EXPORT_SYMBOL(journal_load
);
70 EXPORT_SYMBOL(journal_destroy
);
71 EXPORT_SYMBOL(journal_abort
);
72 EXPORT_SYMBOL(journal_errno
);
73 EXPORT_SYMBOL(journal_ack_err
);
74 EXPORT_SYMBOL(journal_clear_err
);
75 EXPORT_SYMBOL(log_wait_commit
);
76 EXPORT_SYMBOL(log_start_commit
);
77 EXPORT_SYMBOL(journal_start_commit
);
78 EXPORT_SYMBOL(journal_force_commit_nested
);
79 EXPORT_SYMBOL(journal_wipe
);
80 EXPORT_SYMBOL(journal_blocks_per_page
);
81 EXPORT_SYMBOL(journal_invalidatepage
);
82 EXPORT_SYMBOL(journal_try_to_free_buffers
);
83 EXPORT_SYMBOL(journal_force_commit
);
85 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
86 static void __journal_abort_soft (journal_t
*journal
, int errno
);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data
)
94 struct task_struct
* p
= (struct task_struct
*) __data
;
100 * kjournald: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald(void *arg
)
117 journal_t
*journal
= arg
;
118 transaction_t
*transaction
;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
125 (unsigned long)current
);
127 /* Record that the journal thread is running */
128 journal
->j_task
= current
;
129 wake_up(&journal
->j_wait_done_commit
);
131 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
132 journal
->j_commit_interval
/ HZ
);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal
->j_state_lock
);
140 if (journal
->j_flags
& JFS_UNMOUNT
)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal
->j_commit_sequence
, journal
->j_commit_request
);
146 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal
->j_state_lock
);
149 del_timer_sync(&journal
->j_commit_timer
);
150 journal_commit_transaction(journal
);
151 spin_lock(&journal
->j_state_lock
);
155 wake_up(&journal
->j_wait_done_commit
);
156 if (freezing(current
)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal
->j_state_lock
);
165 spin_lock(&journal
->j_state_lock
);
168 * We assume on resume that commits are already there,
172 int should_sleep
= 1;
174 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
176 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
178 transaction
= journal
->j_running_transaction
;
179 if (transaction
&& time_after_eq(jiffies
,
180 transaction
->t_expires
))
182 if (journal
->j_flags
& JFS_UNMOUNT
)
185 spin_unlock(&journal
->j_state_lock
);
187 spin_lock(&journal
->j_state_lock
);
189 finish_wait(&journal
->j_wait_commit
, &wait
);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction
= journal
->j_running_transaction
;
198 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
199 journal
->j_commit_request
= transaction
->t_tid
;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal
->j_state_lock
);
206 del_timer_sync(&journal
->j_commit_timer
);
207 journal
->j_task
= NULL
;
208 wake_up(&journal
->j_wait_done_commit
);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static int journal_start_thread(journal_t
*journal
)
215 struct task_struct
*t
;
217 t
= kthread_run(kjournald
, journal
, "kjournald");
221 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
225 static void journal_kill_thread(journal_t
*journal
)
227 spin_lock(&journal
->j_state_lock
);
228 journal
->j_flags
|= JFS_UNMOUNT
;
230 while (journal
->j_task
) {
231 wake_up(&journal
->j_wait_commit
);
232 spin_unlock(&journal
->j_state_lock
);
233 wait_event(journal
->j_wait_done_commit
,
234 journal
->j_task
== NULL
);
235 spin_lock(&journal
->j_state_lock
);
237 spin_unlock(&journal
->j_state_lock
);
241 * journal_write_metadata_buffer: write a metadata buffer to the journal.
243 * Writes a metadata buffer to a given disk block. The actual IO is not
244 * performed but a new buffer_head is constructed which labels the data
245 * to be written with the correct destination disk block.
247 * Any magic-number escaping which needs to be done will cause a
248 * copy-out here. If the buffer happens to start with the
249 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
250 * magic number is only written to the log for descripter blocks. In
251 * this case, we copy the data and replace the first word with 0, and we
252 * return a result code which indicates that this buffer needs to be
253 * marked as an escaped buffer in the corresponding log descriptor
254 * block. The missing word can then be restored when the block is read
257 * If the source buffer has already been modified by a new transaction
258 * since we took the last commit snapshot, we use the frozen copy of
259 * that data for IO. If we end up using the existing buffer_head's data
260 * for the write, then we *have* to lock the buffer to prevent anyone
261 * else from using and possibly modifying it while the IO is in
264 * The function returns a pointer to the buffer_heads to be used for IO.
266 * We assume that the journal has already been locked in this function.
273 * Bit 0 set == escape performed on the data
274 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
277 int journal_write_metadata_buffer(transaction_t
*transaction
,
278 struct journal_head
*jh_in
,
279 struct journal_head
**jh_out
,
280 unsigned int blocknr
)
282 int need_copy_out
= 0;
283 int done_copy_out
= 0;
286 struct buffer_head
*new_bh
;
287 struct journal_head
*new_jh
;
288 struct page
*new_page
;
289 unsigned int new_offset
;
290 struct buffer_head
*bh_in
= jh2bh(jh_in
);
291 journal_t
*journal
= transaction
->t_journal
;
294 * The buffer really shouldn't be locked: only the current committing
295 * transaction is allowed to write it, so nobody else is allowed
298 * akpm: except if we're journalling data, and write() output is
299 * also part of a shared mapping, and another thread has
300 * decided to launch a writepage() against this buffer.
302 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
304 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
305 /* keep subsequent assertions sane */
307 init_buffer(new_bh
, NULL
, NULL
);
308 atomic_set(&new_bh
->b_count
, 1);
309 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
312 * If a new transaction has already done a buffer copy-out, then
313 * we use that version of the data for the commit.
315 jbd_lock_bh_state(bh_in
);
317 if (jh_in
->b_frozen_data
) {
319 new_page
= virt_to_page(jh_in
->b_frozen_data
);
320 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
322 new_page
= jh2bh(jh_in
)->b_page
;
323 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
326 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
330 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
331 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
335 kunmap_atomic(mapped_data
, KM_USER0
);
338 * Do we need to do a data copy?
340 if (need_copy_out
&& !done_copy_out
) {
343 jbd_unlock_bh_state(bh_in
);
344 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
345 jbd_lock_bh_state(bh_in
);
346 if (jh_in
->b_frozen_data
) {
347 jbd_free(tmp
, bh_in
->b_size
);
351 jh_in
->b_frozen_data
= tmp
;
352 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
353 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
354 kunmap_atomic(mapped_data
, KM_USER0
);
356 new_page
= virt_to_page(tmp
);
357 new_offset
= offset_in_page(tmp
);
362 * Did we need to do an escaping? Now we've done all the
363 * copying, we can finally do so.
366 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
367 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
368 kunmap_atomic(mapped_data
, KM_USER0
);
371 set_bh_page(new_bh
, new_page
, new_offset
);
372 new_jh
->b_transaction
= NULL
;
373 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
374 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
375 new_bh
->b_blocknr
= blocknr
;
376 set_buffer_mapped(new_bh
);
377 set_buffer_dirty(new_bh
);
382 * The to-be-written buffer needs to get moved to the io queue,
383 * and the original buffer whose contents we are shadowing or
384 * copying is moved to the transaction's shadow queue.
386 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
387 spin_lock(&journal
->j_list_lock
);
388 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
389 spin_unlock(&journal
->j_list_lock
);
390 jbd_unlock_bh_state(bh_in
);
392 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
393 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
395 return do_escape
| (done_copy_out
<< 1);
399 * Allocation code for the journal file. Manage the space left in the
400 * journal, so that we can begin checkpointing when appropriate.
404 * __log_space_left: Return the number of free blocks left in the journal.
406 * Called with the journal already locked.
408 * Called under j_state_lock
411 int __log_space_left(journal_t
*journal
)
413 int left
= journal
->j_free
;
415 assert_spin_locked(&journal
->j_state_lock
);
418 * Be pessimistic here about the number of those free blocks which
419 * might be required for log descriptor control blocks.
422 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
424 left
-= MIN_LOG_RESERVED_BLOCKS
;
433 * Called under j_state_lock. Returns true if a transaction commit was started.
435 int __log_start_commit(journal_t
*journal
, tid_t target
)
438 * Are we already doing a recent enough commit?
440 if (!tid_geq(journal
->j_commit_request
, target
)) {
442 * We want a new commit: OK, mark the request and wakup the
443 * commit thread. We do _not_ do the commit ourselves.
446 journal
->j_commit_request
= target
;
447 jbd_debug(1, "JBD: requesting commit %d/%d\n",
448 journal
->j_commit_request
,
449 journal
->j_commit_sequence
);
450 wake_up(&journal
->j_wait_commit
);
456 int log_start_commit(journal_t
*journal
, tid_t tid
)
460 spin_lock(&journal
->j_state_lock
);
461 ret
= __log_start_commit(journal
, tid
);
462 spin_unlock(&journal
->j_state_lock
);
467 * Force and wait upon a commit if the calling process is not within
468 * transaction. This is used for forcing out undo-protected data which contains
469 * bitmaps, when the fs is running out of space.
471 * We can only force the running transaction if we don't have an active handle;
472 * otherwise, we will deadlock.
474 * Returns true if a transaction was started.
476 int journal_force_commit_nested(journal_t
*journal
)
478 transaction_t
*transaction
= NULL
;
481 spin_lock(&journal
->j_state_lock
);
482 if (journal
->j_running_transaction
&& !current
->journal_info
) {
483 transaction
= journal
->j_running_transaction
;
484 __log_start_commit(journal
, transaction
->t_tid
);
485 } else if (journal
->j_committing_transaction
)
486 transaction
= journal
->j_committing_transaction
;
489 spin_unlock(&journal
->j_state_lock
);
490 return 0; /* Nothing to retry */
493 tid
= transaction
->t_tid
;
494 spin_unlock(&journal
->j_state_lock
);
495 log_wait_commit(journal
, tid
);
500 * Start a commit of the current running transaction (if any). Returns true
501 * if a transaction is going to be committed (or is currently already
502 * committing), and fills its tid in at *ptid
504 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
508 spin_lock(&journal
->j_state_lock
);
509 if (journal
->j_running_transaction
) {
510 tid_t tid
= journal
->j_running_transaction
->t_tid
;
512 __log_start_commit(journal
, tid
);
513 /* There's a running transaction and we've just made sure
514 * it's commit has been scheduled. */
518 } else if (journal
->j_committing_transaction
) {
520 * If ext3_write_super() recently started a commit, then we
521 * have to wait for completion of that transaction
524 *ptid
= journal
->j_committing_transaction
->t_tid
;
527 spin_unlock(&journal
->j_state_lock
);
532 * Wait for a specified commit to complete.
533 * The caller may not hold the journal lock.
535 int log_wait_commit(journal_t
*journal
, tid_t tid
)
539 #ifdef CONFIG_JBD_DEBUG
540 spin_lock(&journal
->j_state_lock
);
541 if (!tid_geq(journal
->j_commit_request
, tid
)) {
543 "%s: error: j_commit_request=%d, tid=%d\n",
544 __func__
, journal
->j_commit_request
, tid
);
546 spin_unlock(&journal
->j_state_lock
);
548 spin_lock(&journal
->j_state_lock
);
549 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
550 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
551 tid
, journal
->j_commit_sequence
);
552 wake_up(&journal
->j_wait_commit
);
553 spin_unlock(&journal
->j_state_lock
);
554 wait_event(journal
->j_wait_done_commit
,
555 !tid_gt(tid
, journal
->j_commit_sequence
));
556 spin_lock(&journal
->j_state_lock
);
558 spin_unlock(&journal
->j_state_lock
);
560 if (unlikely(is_journal_aborted(journal
))) {
561 printk(KERN_EMERG
"journal commit I/O error\n");
568 * Return 1 if a given transaction has not yet sent barrier request
569 * connected with a transaction commit. If 0 is returned, transaction
570 * may or may not have sent the barrier. Used to avoid sending barrier
571 * twice in common cases.
573 int journal_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
576 transaction_t
*commit_trans
;
578 if (!(journal
->j_flags
& JFS_BARRIER
))
580 spin_lock(&journal
->j_state_lock
);
581 /* Transaction already committed? */
582 if (tid_geq(journal
->j_commit_sequence
, tid
))
585 * Transaction is being committed and we already proceeded to
586 * writing commit record?
588 commit_trans
= journal
->j_committing_transaction
;
589 if (commit_trans
&& commit_trans
->t_tid
== tid
&&
590 commit_trans
->t_state
>= T_COMMIT_RECORD
)
594 spin_unlock(&journal
->j_state_lock
);
597 EXPORT_SYMBOL(journal_trans_will_send_data_barrier
);
600 * Log buffer allocation routines:
603 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
605 unsigned int blocknr
;
607 spin_lock(&journal
->j_state_lock
);
608 J_ASSERT(journal
->j_free
> 1);
610 blocknr
= journal
->j_head
;
613 if (journal
->j_head
== journal
->j_last
)
614 journal
->j_head
= journal
->j_first
;
615 spin_unlock(&journal
->j_state_lock
);
616 return journal_bmap(journal
, blocknr
, retp
);
620 * Conversion of logical to physical block numbers for the journal
622 * On external journals the journal blocks are identity-mapped, so
623 * this is a no-op. If needed, we can use j_blk_offset - everything is
626 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
632 if (journal
->j_inode
) {
633 ret
= bmap(journal
->j_inode
, blocknr
);
637 char b
[BDEVNAME_SIZE
];
639 printk(KERN_ALERT
"%s: journal block not found "
640 "at offset %u on %s\n",
643 bdevname(journal
->j_dev
, b
));
645 __journal_abort_soft(journal
, err
);
648 *retp
= blocknr
; /* +journal->j_blk_offset */
654 * We play buffer_head aliasing tricks to write data/metadata blocks to
655 * the journal without copying their contents, but for journal
656 * descriptor blocks we do need to generate bona fide buffers.
658 * After the caller of journal_get_descriptor_buffer() has finished modifying
659 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
660 * But we don't bother doing that, so there will be coherency problems with
661 * mmaps of blockdevs which hold live JBD-controlled filesystems.
663 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
665 struct buffer_head
*bh
;
666 unsigned int blocknr
;
669 err
= journal_next_log_block(journal
, &blocknr
);
674 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
678 memset(bh
->b_data
, 0, journal
->j_blocksize
);
679 set_buffer_uptodate(bh
);
681 BUFFER_TRACE(bh
, "return this buffer");
682 return journal_add_journal_head(bh
);
686 * Management for journal control blocks: functions to create and
687 * destroy journal_t structures, and to initialise and read existing
688 * journal blocks from disk. */
690 /* First: create and setup a journal_t object in memory. We initialise
691 * very few fields yet: that has to wait until we have created the
692 * journal structures from from scratch, or loaded them from disk. */
694 static journal_t
* journal_init_common (void)
699 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
703 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
704 init_waitqueue_head(&journal
->j_wait_logspace
);
705 init_waitqueue_head(&journal
->j_wait_done_commit
);
706 init_waitqueue_head(&journal
->j_wait_checkpoint
);
707 init_waitqueue_head(&journal
->j_wait_commit
);
708 init_waitqueue_head(&journal
->j_wait_updates
);
709 mutex_init(&journal
->j_barrier
);
710 mutex_init(&journal
->j_checkpoint_mutex
);
711 spin_lock_init(&journal
->j_revoke_lock
);
712 spin_lock_init(&journal
->j_list_lock
);
713 spin_lock_init(&journal
->j_state_lock
);
715 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
717 /* The journal is marked for error until we succeed with recovery! */
718 journal
->j_flags
= JFS_ABORT
;
720 /* Set up a default-sized revoke table for the new mount. */
721 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
731 /* journal_init_dev and journal_init_inode:
733 * Create a journal structure assigned some fixed set of disk blocks to
734 * the journal. We don't actually touch those disk blocks yet, but we
735 * need to set up all of the mapping information to tell the journaling
736 * system where the journal blocks are.
741 * journal_t * journal_init_dev() - creates and initialises a journal structure
742 * @bdev: Block device on which to create the journal
743 * @fs_dev: Device which hold journalled filesystem for this journal.
744 * @start: Block nr Start of journal.
745 * @len: Length of the journal in blocks.
746 * @blocksize: blocksize of journalling device
748 * Returns: a newly created journal_t *
750 * journal_init_dev creates a journal which maps a fixed contiguous
751 * range of blocks on an arbitrary block device.
754 journal_t
* journal_init_dev(struct block_device
*bdev
,
755 struct block_device
*fs_dev
,
756 int start
, int len
, int blocksize
)
758 journal_t
*journal
= journal_init_common();
759 struct buffer_head
*bh
;
765 /* journal descriptor can store up to n blocks -bzzz */
766 journal
->j_blocksize
= blocksize
;
767 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
768 journal
->j_wbufsize
= n
;
769 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
770 if (!journal
->j_wbuf
) {
771 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
775 journal
->j_dev
= bdev
;
776 journal
->j_fs_dev
= fs_dev
;
777 journal
->j_blk_offset
= start
;
778 journal
->j_maxlen
= len
;
780 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
783 "%s: Cannot get buffer for journal superblock\n",
787 journal
->j_sb_buffer
= bh
;
788 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
792 kfree(journal
->j_wbuf
);
798 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
799 * @inode: An inode to create the journal in
801 * journal_init_inode creates a journal which maps an on-disk inode as
802 * the journal. The inode must exist already, must support bmap() and
803 * must have all data blocks preallocated.
805 journal_t
* journal_init_inode (struct inode
*inode
)
807 struct buffer_head
*bh
;
808 journal_t
*journal
= journal_init_common();
811 unsigned int blocknr
;
816 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
817 journal
->j_inode
= inode
;
819 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
820 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
821 (long long) inode
->i_size
,
822 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
824 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
825 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
827 /* journal descriptor can store up to n blocks -bzzz */
828 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
829 journal
->j_wbufsize
= n
;
830 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
831 if (!journal
->j_wbuf
) {
832 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
837 err
= journal_bmap(journal
, 0, &blocknr
);
838 /* If that failed, give up */
840 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
845 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
848 "%s: Cannot get buffer for journal superblock\n",
852 journal
->j_sb_buffer
= bh
;
853 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
857 kfree(journal
->j_wbuf
);
863 * If the journal init or create aborts, we need to mark the journal
864 * superblock as being NULL to prevent the journal destroy from writing
865 * back a bogus superblock.
867 static void journal_fail_superblock (journal_t
*journal
)
869 struct buffer_head
*bh
= journal
->j_sb_buffer
;
871 journal
->j_sb_buffer
= NULL
;
875 * Given a journal_t structure, initialise the various fields for
876 * startup of a new journaling session. We use this both when creating
877 * a journal, and after recovering an old journal to reset it for
881 static int journal_reset(journal_t
*journal
)
883 journal_superblock_t
*sb
= journal
->j_superblock
;
884 unsigned int first
, last
;
886 first
= be32_to_cpu(sb
->s_first
);
887 last
= be32_to_cpu(sb
->s_maxlen
);
888 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
889 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
891 journal_fail_superblock(journal
);
895 journal
->j_first
= first
;
896 journal
->j_last
= last
;
898 journal
->j_head
= first
;
899 journal
->j_tail
= first
;
900 journal
->j_free
= last
- first
;
902 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
903 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
904 journal
->j_commit_request
= journal
->j_commit_sequence
;
906 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
908 /* Add the dynamic fields and write it to disk. */
909 journal_update_superblock(journal
, 1);
910 return journal_start_thread(journal
);
914 * int journal_create() - Initialise the new journal file
915 * @journal: Journal to create. This structure must have been initialised
917 * Given a journal_t structure which tells us which disk blocks we can
918 * use, create a new journal superblock and initialise all of the
919 * journal fields from scratch.
921 int journal_create(journal_t
*journal
)
923 unsigned int blocknr
;
924 struct buffer_head
*bh
;
925 journal_superblock_t
*sb
;
928 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
929 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
931 journal_fail_superblock(journal
);
935 if (journal
->j_inode
== NULL
) {
937 * We don't know what block to start at!
940 "%s: creation of journal on external device!\n",
945 /* Zero out the entire journal on disk. We cannot afford to
946 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
947 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
948 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
949 err
= journal_bmap(journal
, i
, &blocknr
);
952 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
954 memset (bh
->b_data
, 0, journal
->j_blocksize
);
955 BUFFER_TRACE(bh
, "marking dirty");
956 mark_buffer_dirty(bh
);
957 BUFFER_TRACE(bh
, "marking uptodate");
958 set_buffer_uptodate(bh
);
963 sync_blockdev(journal
->j_dev
);
964 jbd_debug(1, "JBD: journal cleared.\n");
966 /* OK, fill in the initial static fields in the new superblock */
967 sb
= journal
->j_superblock
;
969 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
970 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
972 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
973 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
974 sb
->s_first
= cpu_to_be32(1);
976 journal
->j_transaction_sequence
= 1;
978 journal
->j_flags
&= ~JFS_ABORT
;
979 journal
->j_format_version
= 2;
981 return journal_reset(journal
);
985 * void journal_update_superblock() - Update journal sb on disk.
986 * @journal: The journal to update.
987 * @wait: Set to '0' if you don't want to wait for IO completion.
989 * Update a journal's dynamic superblock fields and write it to disk,
990 * optionally waiting for the IO to complete.
992 void journal_update_superblock(journal_t
*journal
, int wait
)
994 journal_superblock_t
*sb
= journal
->j_superblock
;
995 struct buffer_head
*bh
= journal
->j_sb_buffer
;
998 * As a special case, if the on-disk copy is already marked as needing
999 * no recovery (s_start == 0) and there are no outstanding transactions
1000 * in the filesystem, then we can safely defer the superblock update
1001 * until the next commit by setting JFS_FLUSHED. This avoids
1002 * attempting a write to a potential-readonly device.
1004 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
1005 journal
->j_transaction_sequence
) {
1006 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1007 "(start %u, seq %d, errno %d)\n",
1008 journal
->j_tail
, journal
->j_tail_sequence
,
1013 spin_lock(&journal
->j_state_lock
);
1014 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1015 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
1017 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1018 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
1019 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1020 spin_unlock(&journal
->j_state_lock
);
1022 BUFFER_TRACE(bh
, "marking dirty");
1023 mark_buffer_dirty(bh
);
1025 sync_dirty_buffer(bh
);
1027 write_dirty_buffer(bh
, WRITE
);
1030 /* If we have just flushed the log (by marking s_start==0), then
1031 * any future commit will have to be careful to update the
1032 * superblock again to re-record the true start of the log. */
1034 spin_lock(&journal
->j_state_lock
);
1036 journal
->j_flags
&= ~JFS_FLUSHED
;
1038 journal
->j_flags
|= JFS_FLUSHED
;
1039 spin_unlock(&journal
->j_state_lock
);
1043 * Read the superblock for a given journal, performing initial
1044 * validation of the format.
1047 static int journal_get_superblock(journal_t
*journal
)
1049 struct buffer_head
*bh
;
1050 journal_superblock_t
*sb
;
1053 bh
= journal
->j_sb_buffer
;
1055 J_ASSERT(bh
!= NULL
);
1056 if (!buffer_uptodate(bh
)) {
1057 ll_rw_block(READ
, 1, &bh
);
1059 if (!buffer_uptodate(bh
)) {
1061 "JBD: IO error reading journal superblock\n");
1066 sb
= journal
->j_superblock
;
1070 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1071 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1072 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1076 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1077 case JFS_SUPERBLOCK_V1
:
1078 journal
->j_format_version
= 1;
1080 case JFS_SUPERBLOCK_V2
:
1081 journal
->j_format_version
= 2;
1084 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1088 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1089 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1090 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1091 printk (KERN_WARNING
"JBD: journal file too short\n");
1098 journal_fail_superblock(journal
);
1103 * Load the on-disk journal superblock and read the key fields into the
1107 static int load_superblock(journal_t
*journal
)
1110 journal_superblock_t
*sb
;
1112 err
= journal_get_superblock(journal
);
1116 sb
= journal
->j_superblock
;
1118 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1119 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1120 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1121 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1122 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1129 * int journal_load() - Read journal from disk.
1130 * @journal: Journal to act on.
1132 * Given a journal_t structure which tells us which disk blocks contain
1133 * a journal, read the journal from disk to initialise the in-memory
1136 int journal_load(journal_t
*journal
)
1139 journal_superblock_t
*sb
;
1141 err
= load_superblock(journal
);
1145 sb
= journal
->j_superblock
;
1146 /* If this is a V2 superblock, then we have to check the
1147 * features flags on it. */
1149 if (journal
->j_format_version
>= 2) {
1150 if ((sb
->s_feature_ro_compat
&
1151 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1152 (sb
->s_feature_incompat
&
1153 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1154 printk (KERN_WARNING
1155 "JBD: Unrecognised features on journal\n");
1160 /* Let the recovery code check whether it needs to recover any
1161 * data from the journal. */
1162 if (journal_recover(journal
))
1163 goto recovery_error
;
1165 /* OK, we've finished with the dynamic journal bits:
1166 * reinitialise the dynamic contents of the superblock in memory
1167 * and reset them on disk. */
1168 if (journal_reset(journal
))
1169 goto recovery_error
;
1171 journal
->j_flags
&= ~JFS_ABORT
;
1172 journal
->j_flags
|= JFS_LOADED
;
1176 printk (KERN_WARNING
"JBD: recovery failed\n");
1181 * void journal_destroy() - Release a journal_t structure.
1182 * @journal: Journal to act on.
1184 * Release a journal_t structure once it is no longer in use by the
1186 * Return <0 if we couldn't clean up the journal.
1188 int journal_destroy(journal_t
*journal
)
1193 /* Wait for the commit thread to wake up and die. */
1194 journal_kill_thread(journal
);
1196 /* Force a final log commit */
1197 if (journal
->j_running_transaction
)
1198 journal_commit_transaction(journal
);
1200 /* Force any old transactions to disk */
1202 /* Totally anal locking here... */
1203 spin_lock(&journal
->j_list_lock
);
1204 while (journal
->j_checkpoint_transactions
!= NULL
) {
1205 spin_unlock(&journal
->j_list_lock
);
1206 log_do_checkpoint(journal
);
1207 spin_lock(&journal
->j_list_lock
);
1210 J_ASSERT(journal
->j_running_transaction
== NULL
);
1211 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1212 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1213 spin_unlock(&journal
->j_list_lock
);
1215 if (journal
->j_sb_buffer
) {
1216 if (!is_journal_aborted(journal
)) {
1217 /* We can now mark the journal as empty. */
1218 journal
->j_tail
= 0;
1219 journal
->j_tail_sequence
=
1220 ++journal
->j_transaction_sequence
;
1221 journal_update_superblock(journal
, 1);
1225 brelse(journal
->j_sb_buffer
);
1228 if (journal
->j_inode
)
1229 iput(journal
->j_inode
);
1230 if (journal
->j_revoke
)
1231 journal_destroy_revoke(journal
);
1232 kfree(journal
->j_wbuf
);
1240 *int journal_check_used_features () - Check if features specified are used.
1241 * @journal: Journal to check.
1242 * @compat: bitmask of compatible features
1243 * @ro: bitmask of features that force read-only mount
1244 * @incompat: bitmask of incompatible features
1246 * Check whether the journal uses all of a given set of
1247 * features. Return true (non-zero) if it does.
1250 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1251 unsigned long ro
, unsigned long incompat
)
1253 journal_superblock_t
*sb
;
1255 if (!compat
&& !ro
&& !incompat
)
1257 if (journal
->j_format_version
== 1)
1260 sb
= journal
->j_superblock
;
1262 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1263 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1264 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1271 * int journal_check_available_features() - Check feature set in journalling layer
1272 * @journal: Journal to check.
1273 * @compat: bitmask of compatible features
1274 * @ro: bitmask of features that force read-only mount
1275 * @incompat: bitmask of incompatible features
1277 * Check whether the journaling code supports the use of
1278 * all of a given set of features on this journal. Return true
1279 * (non-zero) if it can. */
1281 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1282 unsigned long ro
, unsigned long incompat
)
1284 if (!compat
&& !ro
&& !incompat
)
1287 /* We can support any known requested features iff the
1288 * superblock is in version 2. Otherwise we fail to support any
1289 * extended sb features. */
1291 if (journal
->j_format_version
!= 2)
1294 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1295 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1296 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1303 * int journal_set_features () - Mark a given journal feature in the superblock
1304 * @journal: Journal to act on.
1305 * @compat: bitmask of compatible features
1306 * @ro: bitmask of features that force read-only mount
1307 * @incompat: bitmask of incompatible features
1309 * Mark a given journal feature as present on the
1310 * superblock. Returns true if the requested features could be set.
1314 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1315 unsigned long ro
, unsigned long incompat
)
1317 journal_superblock_t
*sb
;
1319 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1322 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1325 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1326 compat
, ro
, incompat
);
1328 sb
= journal
->j_superblock
;
1330 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1331 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1332 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1339 * int journal_update_format () - Update on-disk journal structure.
1340 * @journal: Journal to act on.
1342 * Given an initialised but unloaded journal struct, poke about in the
1343 * on-disk structure to update it to the most recent supported version.
1345 int journal_update_format (journal_t
*journal
)
1347 journal_superblock_t
*sb
;
1350 err
= journal_get_superblock(journal
);
1354 sb
= journal
->j_superblock
;
1356 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1357 case JFS_SUPERBLOCK_V2
:
1359 case JFS_SUPERBLOCK_V1
:
1360 return journal_convert_superblock_v1(journal
, sb
);
1367 static int journal_convert_superblock_v1(journal_t
*journal
,
1368 journal_superblock_t
*sb
)
1370 int offset
, blocksize
;
1371 struct buffer_head
*bh
;
1374 "JBD: Converting superblock from version 1 to 2.\n");
1376 /* Pre-initialise new fields to zero */
1377 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1378 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1379 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1381 sb
->s_nr_users
= cpu_to_be32(1);
1382 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1383 journal
->j_format_version
= 2;
1385 bh
= journal
->j_sb_buffer
;
1386 BUFFER_TRACE(bh
, "marking dirty");
1387 mark_buffer_dirty(bh
);
1388 sync_dirty_buffer(bh
);
1394 * int journal_flush () - Flush journal
1395 * @journal: Journal to act on.
1397 * Flush all data for a given journal to disk and empty the journal.
1398 * Filesystems can use this when remounting readonly to ensure that
1399 * recovery does not need to happen on remount.
1402 int journal_flush(journal_t
*journal
)
1405 transaction_t
*transaction
= NULL
;
1406 unsigned int old_tail
;
1408 spin_lock(&journal
->j_state_lock
);
1410 /* Force everything buffered to the log... */
1411 if (journal
->j_running_transaction
) {
1412 transaction
= journal
->j_running_transaction
;
1413 __log_start_commit(journal
, transaction
->t_tid
);
1414 } else if (journal
->j_committing_transaction
)
1415 transaction
= journal
->j_committing_transaction
;
1417 /* Wait for the log commit to complete... */
1419 tid_t tid
= transaction
->t_tid
;
1421 spin_unlock(&journal
->j_state_lock
);
1422 log_wait_commit(journal
, tid
);
1424 spin_unlock(&journal
->j_state_lock
);
1427 /* ...and flush everything in the log out to disk. */
1428 spin_lock(&journal
->j_list_lock
);
1429 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1430 spin_unlock(&journal
->j_list_lock
);
1431 mutex_lock(&journal
->j_checkpoint_mutex
);
1432 err
= log_do_checkpoint(journal
);
1433 mutex_unlock(&journal
->j_checkpoint_mutex
);
1434 spin_lock(&journal
->j_list_lock
);
1436 spin_unlock(&journal
->j_list_lock
);
1438 if (is_journal_aborted(journal
))
1441 cleanup_journal_tail(journal
);
1443 /* Finally, mark the journal as really needing no recovery.
1444 * This sets s_start==0 in the underlying superblock, which is
1445 * the magic code for a fully-recovered superblock. Any future
1446 * commits of data to the journal will restore the current
1448 spin_lock(&journal
->j_state_lock
);
1449 old_tail
= journal
->j_tail
;
1450 journal
->j_tail
= 0;
1451 spin_unlock(&journal
->j_state_lock
);
1452 journal_update_superblock(journal
, 1);
1453 spin_lock(&journal
->j_state_lock
);
1454 journal
->j_tail
= old_tail
;
1456 J_ASSERT(!journal
->j_running_transaction
);
1457 J_ASSERT(!journal
->j_committing_transaction
);
1458 J_ASSERT(!journal
->j_checkpoint_transactions
);
1459 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1460 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1461 spin_unlock(&journal
->j_state_lock
);
1466 * int journal_wipe() - Wipe journal contents
1467 * @journal: Journal to act on.
1468 * @write: flag (see below)
1470 * Wipe out all of the contents of a journal, safely. This will produce
1471 * a warning if the journal contains any valid recovery information.
1472 * Must be called between journal_init_*() and journal_load().
1474 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1475 * we merely suppress recovery.
1478 int journal_wipe(journal_t
*journal
, int write
)
1482 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1484 err
= load_superblock(journal
);
1488 if (!journal
->j_tail
)
1491 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1492 write
? "Clearing" : "Ignoring");
1494 err
= journal_skip_recovery(journal
);
1496 journal_update_superblock(journal
, 1);
1503 * journal_dev_name: format a character string to describe on what
1504 * device this journal is present.
1507 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1509 struct block_device
*bdev
;
1511 if (journal
->j_inode
)
1512 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1514 bdev
= journal
->j_dev
;
1516 return bdevname(bdev
, buffer
);
1520 * Journal abort has very specific semantics, which we describe
1521 * for journal abort.
1523 * Two internal function, which provide abort to te jbd layer
1528 * Quick version for internal journal use (doesn't lock the journal).
1529 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1530 * and don't attempt to make any other journal updates.
1532 static void __journal_abort_hard(journal_t
*journal
)
1534 transaction_t
*transaction
;
1535 char b
[BDEVNAME_SIZE
];
1537 if (journal
->j_flags
& JFS_ABORT
)
1540 printk(KERN_ERR
"Aborting journal on device %s.\n",
1541 journal_dev_name(journal
, b
));
1543 spin_lock(&journal
->j_state_lock
);
1544 journal
->j_flags
|= JFS_ABORT
;
1545 transaction
= journal
->j_running_transaction
;
1547 __log_start_commit(journal
, transaction
->t_tid
);
1548 spin_unlock(&journal
->j_state_lock
);
1551 /* Soft abort: record the abort error status in the journal superblock,
1552 * but don't do any other IO. */
1553 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1555 if (journal
->j_flags
& JFS_ABORT
)
1558 if (!journal
->j_errno
)
1559 journal
->j_errno
= errno
;
1561 __journal_abort_hard(journal
);
1564 journal_update_superblock(journal
, 1);
1568 * void journal_abort () - Shutdown the journal immediately.
1569 * @journal: the journal to shutdown.
1570 * @errno: an error number to record in the journal indicating
1571 * the reason for the shutdown.
1573 * Perform a complete, immediate shutdown of the ENTIRE
1574 * journal (not of a single transaction). This operation cannot be
1575 * undone without closing and reopening the journal.
1577 * The journal_abort function is intended to support higher level error
1578 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1581 * Journal abort has very specific semantics. Any existing dirty,
1582 * unjournaled buffers in the main filesystem will still be written to
1583 * disk by bdflush, but the journaling mechanism will be suspended
1584 * immediately and no further transaction commits will be honoured.
1586 * Any dirty, journaled buffers will be written back to disk without
1587 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1588 * filesystem, but we _do_ attempt to leave as much data as possible
1589 * behind for fsck to use for cleanup.
1591 * Any attempt to get a new transaction handle on a journal which is in
1592 * ABORT state will just result in an -EROFS error return. A
1593 * journal_stop on an existing handle will return -EIO if we have
1594 * entered abort state during the update.
1596 * Recursive transactions are not disturbed by journal abort until the
1597 * final journal_stop, which will receive the -EIO error.
1599 * Finally, the journal_abort call allows the caller to supply an errno
1600 * which will be recorded (if possible) in the journal superblock. This
1601 * allows a client to record failure conditions in the middle of a
1602 * transaction without having to complete the transaction to record the
1603 * failure to disk. ext3_error, for example, now uses this
1606 * Errors which originate from within the journaling layer will NOT
1607 * supply an errno; a null errno implies that absolutely no further
1608 * writes are done to the journal (unless there are any already in
1613 void journal_abort(journal_t
*journal
, int errno
)
1615 __journal_abort_soft(journal
, errno
);
1619 * int journal_errno () - returns the journal's error state.
1620 * @journal: journal to examine.
1622 * This is the errno numbet set with journal_abort(), the last
1623 * time the journal was mounted - if the journal was stopped
1624 * without calling abort this will be 0.
1626 * If the journal has been aborted on this mount time -EROFS will
1629 int journal_errno(journal_t
*journal
)
1633 spin_lock(&journal
->j_state_lock
);
1634 if (journal
->j_flags
& JFS_ABORT
)
1637 err
= journal
->j_errno
;
1638 spin_unlock(&journal
->j_state_lock
);
1643 * int journal_clear_err () - clears the journal's error state
1644 * @journal: journal to act on.
1646 * An error must be cleared or Acked to take a FS out of readonly
1649 int journal_clear_err(journal_t
*journal
)
1653 spin_lock(&journal
->j_state_lock
);
1654 if (journal
->j_flags
& JFS_ABORT
)
1657 journal
->j_errno
= 0;
1658 spin_unlock(&journal
->j_state_lock
);
1663 * void journal_ack_err() - Ack journal err.
1664 * @journal: journal to act on.
1666 * An error must be cleared or Acked to take a FS out of readonly
1669 void journal_ack_err(journal_t
*journal
)
1671 spin_lock(&journal
->j_state_lock
);
1672 if (journal
->j_errno
)
1673 journal
->j_flags
|= JFS_ACK_ERR
;
1674 spin_unlock(&journal
->j_state_lock
);
1677 int journal_blocks_per_page(struct inode
*inode
)
1679 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1683 * Journal_head storage management
1685 static struct kmem_cache
*journal_head_cache
;
1686 #ifdef CONFIG_JBD_DEBUG
1687 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1690 static int journal_init_journal_head_cache(void)
1694 J_ASSERT(journal_head_cache
== NULL
);
1695 journal_head_cache
= kmem_cache_create("journal_head",
1696 sizeof(struct journal_head
),
1698 SLAB_TEMPORARY
, /* flags */
1701 if (!journal_head_cache
) {
1703 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1708 static void journal_destroy_journal_head_cache(void)
1710 if (journal_head_cache
) {
1711 kmem_cache_destroy(journal_head_cache
);
1712 journal_head_cache
= NULL
;
1717 * journal_head splicing and dicing
1719 static struct journal_head
*journal_alloc_journal_head(void)
1721 struct journal_head
*ret
;
1722 static unsigned long last_warning
;
1724 #ifdef CONFIG_JBD_DEBUG
1725 atomic_inc(&nr_journal_heads
);
1727 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1729 jbd_debug(1, "out of memory for journal_head\n");
1730 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1731 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1733 last_warning
= jiffies
;
1735 while (ret
== NULL
) {
1737 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1743 static void journal_free_journal_head(struct journal_head
*jh
)
1745 #ifdef CONFIG_JBD_DEBUG
1746 atomic_dec(&nr_journal_heads
);
1747 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1749 kmem_cache_free(journal_head_cache
, jh
);
1753 * A journal_head is attached to a buffer_head whenever JBD has an
1754 * interest in the buffer.
1756 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1757 * is set. This bit is tested in core kernel code where we need to take
1758 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1761 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1763 * When a buffer has its BH_JBD bit set it is immune from being released by
1764 * core kernel code, mainly via ->b_count.
1766 * A journal_head may be detached from its buffer_head when the journal_head's
1767 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1768 * Various places in JBD call journal_remove_journal_head() to indicate that the
1769 * journal_head can be dropped if needed.
1771 * Various places in the kernel want to attach a journal_head to a buffer_head
1772 * _before_ attaching the journal_head to a transaction. To protect the
1773 * journal_head in this situation, journal_add_journal_head elevates the
1774 * journal_head's b_jcount refcount by one. The caller must call
1775 * journal_put_journal_head() to undo this.
1777 * So the typical usage would be:
1779 * (Attach a journal_head if needed. Increments b_jcount)
1780 * struct journal_head *jh = journal_add_journal_head(bh);
1782 * jh->b_transaction = xxx;
1783 * journal_put_journal_head(jh);
1785 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1786 * because it has a non-zero b_transaction.
1790 * Give a buffer_head a journal_head.
1792 * Doesn't need the journal lock.
1795 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1797 struct journal_head
*jh
;
1798 struct journal_head
*new_jh
= NULL
;
1801 if (!buffer_jbd(bh
)) {
1802 new_jh
= journal_alloc_journal_head();
1803 memset(new_jh
, 0, sizeof(*new_jh
));
1806 jbd_lock_bh_journal_head(bh
);
1807 if (buffer_jbd(bh
)) {
1811 (atomic_read(&bh
->b_count
) > 0) ||
1812 (bh
->b_page
&& bh
->b_page
->mapping
));
1815 jbd_unlock_bh_journal_head(bh
);
1820 new_jh
= NULL
; /* We consumed it */
1825 BUFFER_TRACE(bh
, "added journal_head");
1828 jbd_unlock_bh_journal_head(bh
);
1830 journal_free_journal_head(new_jh
);
1831 return bh
->b_private
;
1835 * Grab a ref against this buffer_head's journal_head. If it ended up not
1836 * having a journal_head, return NULL
1838 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1840 struct journal_head
*jh
= NULL
;
1842 jbd_lock_bh_journal_head(bh
);
1843 if (buffer_jbd(bh
)) {
1847 jbd_unlock_bh_journal_head(bh
);
1851 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1853 struct journal_head
*jh
= bh2jh(bh
);
1855 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1858 if (jh
->b_jcount
== 0) {
1859 if (jh
->b_transaction
== NULL
&&
1860 jh
->b_next_transaction
== NULL
&&
1861 jh
->b_cp_transaction
== NULL
) {
1862 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1863 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1864 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1865 BUFFER_TRACE(bh
, "remove journal_head");
1866 if (jh
->b_frozen_data
) {
1867 printk(KERN_WARNING
"%s: freeing "
1870 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1872 if (jh
->b_committed_data
) {
1873 printk(KERN_WARNING
"%s: freeing "
1874 "b_committed_data\n",
1876 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1878 bh
->b_private
= NULL
;
1879 jh
->b_bh
= NULL
; /* debug, really */
1880 clear_buffer_jbd(bh
);
1882 journal_free_journal_head(jh
);
1884 BUFFER_TRACE(bh
, "journal_head was locked");
1890 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1891 * and has a zero b_jcount then remove and release its journal_head. If we did
1892 * see that the buffer is not used by any transaction we also "logically"
1893 * decrement ->b_count.
1895 * We in fact take an additional increment on ->b_count as a convenience,
1896 * because the caller usually wants to do additional things with the bh
1897 * after calling here.
1898 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1899 * time. Once the caller has run __brelse(), the buffer is eligible for
1900 * reaping by try_to_free_buffers().
1902 void journal_remove_journal_head(struct buffer_head
*bh
)
1904 jbd_lock_bh_journal_head(bh
);
1905 __journal_remove_journal_head(bh
);
1906 jbd_unlock_bh_journal_head(bh
);
1910 * Drop a reference on the passed journal_head. If it fell to zero then try to
1911 * release the journal_head from the buffer_head.
1913 void journal_put_journal_head(struct journal_head
*jh
)
1915 struct buffer_head
*bh
= jh2bh(jh
);
1917 jbd_lock_bh_journal_head(bh
);
1918 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1920 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1921 __journal_remove_journal_head(bh
);
1924 jbd_unlock_bh_journal_head(bh
);
1930 #ifdef CONFIG_JBD_DEBUG
1932 u8 journal_enable_debug __read_mostly
;
1933 EXPORT_SYMBOL(journal_enable_debug
);
1935 static struct dentry
*jbd_debugfs_dir
;
1936 static struct dentry
*jbd_debug
;
1938 static void __init
jbd_create_debugfs_entry(void)
1940 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
1941 if (jbd_debugfs_dir
)
1942 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
1944 &journal_enable_debug
);
1947 static void __exit
jbd_remove_debugfs_entry(void)
1949 debugfs_remove(jbd_debug
);
1950 debugfs_remove(jbd_debugfs_dir
);
1955 static inline void jbd_create_debugfs_entry(void)
1959 static inline void jbd_remove_debugfs_entry(void)
1965 struct kmem_cache
*jbd_handle_cache
;
1967 static int __init
journal_init_handle_cache(void)
1969 jbd_handle_cache
= kmem_cache_create("journal_handle",
1972 SLAB_TEMPORARY
, /* flags */
1974 if (jbd_handle_cache
== NULL
) {
1975 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1981 static void journal_destroy_handle_cache(void)
1983 if (jbd_handle_cache
)
1984 kmem_cache_destroy(jbd_handle_cache
);
1988 * Module startup and shutdown
1991 static int __init
journal_init_caches(void)
1995 ret
= journal_init_revoke_caches();
1997 ret
= journal_init_journal_head_cache();
1999 ret
= journal_init_handle_cache();
2003 static void journal_destroy_caches(void)
2005 journal_destroy_revoke_caches();
2006 journal_destroy_journal_head_cache();
2007 journal_destroy_handle_cache();
2010 static int __init
journal_init(void)
2014 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2016 ret
= journal_init_caches();
2018 journal_destroy_caches();
2019 jbd_create_debugfs_entry();
2023 static void __exit
journal_exit(void)
2025 #ifdef CONFIG_JBD_DEBUG
2026 int n
= atomic_read(&nr_journal_heads
);
2028 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2030 jbd_remove_debugfs_entry();
2031 journal_destroy_caches();
2034 MODULE_LICENSE("GPL");
2035 module_init(journal_init
);
2036 module_exit(journal_exit
);