5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8
= {
65 static struct nand_ecclayout nand_oob_16
= {
67 .eccpos
= {0, 1, 2, 3, 6, 7},
73 static struct nand_ecclayout nand_oob_64
= {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
84 static struct nand_ecclayout nand_oob_128
= {
87 80, 81, 82, 83, 84, 85, 86, 87,
88 88, 89, 90, 91, 92, 93, 94, 95,
89 96, 97, 98, 99, 100, 101, 102, 103,
90 104, 105, 106, 107, 108, 109, 110, 111,
91 112, 113, 114, 115, 116, 117, 118, 119,
92 120, 121, 122, 123, 124, 125, 126, 127},
98 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
101 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
102 struct mtd_oob_ops
*ops
);
105 * For devices which display every fart in the system on a separate LED. Is
106 * compiled away when LED support is disabled.
108 DEFINE_LED_TRIGGER(nand_led_trigger
);
110 static int check_offs_len(struct mtd_info
*mtd
,
111 loff_t ofs
, uint64_t len
)
113 struct nand_chip
*chip
= mtd
->priv
;
116 /* Start address must align on block boundary */
117 if (ofs
& ((1 << chip
->phys_erase_shift
) - 1)) {
118 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Unaligned address\n", __func__
);
122 /* Length must align on block boundary */
123 if (len
& ((1 << chip
->phys_erase_shift
) - 1)) {
124 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Length not block aligned\n",
129 /* Do not allow past end of device */
130 if (ofs
+ len
> mtd
->size
) {
131 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Past end of device\n",
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
143 * Deselect, release chip lock and wake up anyone waiting on the device
145 static void nand_release_device(struct mtd_info
*mtd
)
147 struct nand_chip
*chip
= mtd
->priv
;
149 /* De-select the NAND device */
150 chip
->select_chip(mtd
, -1);
152 /* Release the controller and the chip */
153 spin_lock(&chip
->controller
->lock
);
154 chip
->controller
->active
= NULL
;
155 chip
->state
= FL_READY
;
156 wake_up(&chip
->controller
->wq
);
157 spin_unlock(&chip
->controller
->lock
);
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd: MTD device structure
164 * Default read function for 8bit buswith
166 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
168 struct nand_chip
*chip
= mtd
->priv
;
169 return readb(chip
->IO_ADDR_R
);
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswith with
177 * endianess conversion
179 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
181 struct nand_chip
*chip
= mtd
->priv
;
182 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd: MTD device structure
189 * Default read function for 16bit buswith without
190 * endianess conversion
192 static u16
nand_read_word(struct mtd_info
*mtd
)
194 struct nand_chip
*chip
= mtd
->priv
;
195 return readw(chip
->IO_ADDR_R
);
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd: MTD device structure
201 * @chipnr: chipnumber to select, -1 for deselect
203 * Default select function for 1 chip devices.
205 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
207 struct nand_chip
*chip
= mtd
->priv
;
211 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd: MTD device structure
225 * @len: number of bytes to write
227 * Default write function for 8bit buswith
229 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
232 struct nand_chip
*chip
= mtd
->priv
;
234 for (i
= 0; i
< len
; i
++)
235 writeb(buf
[i
], chip
->IO_ADDR_W
);
239 * nand_read_buf - [DEFAULT] read chip data into buffer
240 * @mtd: MTD device structure
241 * @buf: buffer to store date
242 * @len: number of bytes to read
244 * Default read function for 8bit buswith
246 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
249 struct nand_chip
*chip
= mtd
->priv
;
251 for (i
= 0; i
< len
; i
++)
252 buf
[i
] = readb(chip
->IO_ADDR_R
);
256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257 * @mtd: MTD device structure
258 * @buf: buffer containing the data to compare
259 * @len: number of bytes to compare
261 * Default verify function for 8bit buswith
263 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
266 struct nand_chip
*chip
= mtd
->priv
;
268 for (i
= 0; i
< len
; i
++)
269 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd: MTD device structure
278 * @len: number of bytes to write
280 * Default write function for 16bit buswith
282 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
285 struct nand_chip
*chip
= mtd
->priv
;
286 u16
*p
= (u16
*) buf
;
289 for (i
= 0; i
< len
; i
++)
290 writew(p
[i
], chip
->IO_ADDR_W
);
295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
296 * @mtd: MTD device structure
297 * @buf: buffer to store date
298 * @len: number of bytes to read
300 * Default read function for 16bit buswith
302 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
305 struct nand_chip
*chip
= mtd
->priv
;
306 u16
*p
= (u16
*) buf
;
309 for (i
= 0; i
< len
; i
++)
310 p
[i
] = readw(chip
->IO_ADDR_R
);
314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315 * @mtd: MTD device structure
316 * @buf: buffer containing the data to compare
317 * @len: number of bytes to compare
319 * Default verify function for 16bit buswith
321 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
324 struct nand_chip
*chip
= mtd
->priv
;
325 u16
*p
= (u16
*) buf
;
328 for (i
= 0; i
< len
; i
++)
329 if (p
[i
] != readw(chip
->IO_ADDR_R
))
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd: MTD device structure
338 * @ofs: offset from device start
339 * @getchip: 0, if the chip is already selected
341 * Check, if the block is bad.
343 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
345 int page
, chipnr
, res
= 0;
346 struct nand_chip
*chip
= mtd
->priv
;
349 if (chip
->options
& NAND_BBT_SCANLASTPAGE
)
350 ofs
+= mtd
->erasesize
- mtd
->writesize
;
352 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
355 chipnr
= (int)(ofs
>> chip
->chip_shift
);
357 nand_get_device(chip
, mtd
, FL_READING
);
359 /* Select the NAND device */
360 chip
->select_chip(mtd
, chipnr
);
363 if (chip
->options
& NAND_BUSWIDTH_16
) {
364 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
366 bad
= cpu_to_le16(chip
->read_word(mtd
));
367 if (chip
->badblockpos
& 0x1)
372 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
373 bad
= chip
->read_byte(mtd
);
376 if (likely(chip
->badblockbits
== 8))
379 res
= hweight8(bad
) < chip
->badblockbits
;
382 nand_release_device(mtd
);
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
395 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
397 struct nand_chip
*chip
= mtd
->priv
;
398 uint8_t buf
[2] = { 0, 0 };
399 int block
, ret
, i
= 0;
401 if (chip
->options
& NAND_BBT_SCANLASTPAGE
)
402 ofs
+= mtd
->erasesize
- mtd
->writesize
;
404 /* Get block number */
405 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
407 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
409 /* Do we have a flash based bad block table ? */
410 if (chip
->options
& NAND_USE_FLASH_BBT
)
411 ret
= nand_update_bbt(mtd
, ofs
);
413 nand_get_device(chip
, mtd
, FL_WRITING
);
415 /* Write to first two pages and to byte 1 and 6 if necessary.
416 * If we write to more than one location, the first error
417 * encountered quits the procedure. We write two bytes per
418 * location, so we dont have to mess with 16 bit access.
421 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
422 chip
->ops
.datbuf
= NULL
;
423 chip
->ops
.oobbuf
= buf
;
424 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
426 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
428 if (!ret
&& (chip
->options
& NAND_BBT_SCANBYTE1AND6
)) {
429 chip
->ops
.ooboffs
= NAND_SMALL_BADBLOCK_POS
431 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
434 ofs
+= mtd
->writesize
;
435 } while (!ret
&& (chip
->options
& NAND_BBT_SCAN2NDPAGE
) &&
438 nand_release_device(mtd
);
441 mtd
->ecc_stats
.badblocks
++;
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd: MTD device structure
449 * Check, if the device is write protected
451 * The function expects, that the device is already selected
453 static int nand_check_wp(struct mtd_info
*mtd
)
455 struct nand_chip
*chip
= mtd
->priv
;
457 /* broken xD cards report WP despite being writable */
458 if (chip
->options
& NAND_BROKEN_XD
)
461 /* Check the WP bit */
462 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
463 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
470 * @getchip: 0, if the chip is already selected
471 * @allowbbt: 1, if its allowed to access the bbt area
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
476 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
479 struct nand_chip
*chip
= mtd
->priv
;
482 return chip
->block_bad(mtd
, ofs
, getchip
);
484 /* Return info from the table */
485 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd: MTD device structure
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
496 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
498 struct nand_chip
*chip
= mtd
->priv
;
501 /* Wait for the device to get ready */
502 for (i
= 0; i
< timeo
; i
++) {
503 if (chip
->dev_ready(mtd
))
505 touch_softlockup_watchdog();
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
514 void nand_wait_ready(struct mtd_info
*mtd
)
516 struct nand_chip
*chip
= mtd
->priv
;
517 unsigned long timeo
= jiffies
+ 2;
520 if (in_interrupt() || oops_in_progress
)
521 return panic_nand_wait_ready(mtd
, 400);
523 led_trigger_event(nand_led_trigger
, LED_FULL
);
524 /* wait until command is processed or timeout occures */
526 if (chip
->dev_ready(mtd
))
528 touch_softlockup_watchdog();
529 } while (time_before(jiffies
, timeo
));
530 led_trigger_event(nand_led_trigger
, LED_OFF
);
532 EXPORT_SYMBOL_GPL(nand_wait_ready
);
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd: MTD device structure
537 * @command: the command to be sent
538 * @column: the column address for this command, -1 if none
539 * @page_addr: the page address for this command, -1 if none
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
544 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
545 int column
, int page_addr
)
547 register struct nand_chip
*chip
= mtd
->priv
;
548 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
551 * Write out the command to the device.
553 if (command
== NAND_CMD_SEQIN
) {
556 if (column
>= mtd
->writesize
) {
558 column
-= mtd
->writesize
;
559 readcmd
= NAND_CMD_READOOB
;
560 } else if (column
< 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd
= NAND_CMD_READ0
;
565 readcmd
= NAND_CMD_READ1
;
567 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
568 ctrl
&= ~NAND_CTRL_CHANGE
;
570 chip
->cmd_ctrl(mtd
, command
, ctrl
);
573 * Address cycle, when necessary
575 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
576 /* Serially input address */
578 /* Adjust columns for 16 bit buswidth */
579 if (chip
->options
& NAND_BUSWIDTH_16
)
581 chip
->cmd_ctrl(mtd
, column
, ctrl
);
582 ctrl
&= ~NAND_CTRL_CHANGE
;
584 if (page_addr
!= -1) {
585 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
586 ctrl
&= ~NAND_CTRL_CHANGE
;
587 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
588 /* One more address cycle for devices > 32MiB */
589 if (chip
->chipsize
> (32 << 20))
590 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
592 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
595 * program and erase have their own busy handlers
596 * status and sequential in needs no delay
600 case NAND_CMD_PAGEPROG
:
601 case NAND_CMD_ERASE1
:
602 case NAND_CMD_ERASE2
:
604 case NAND_CMD_STATUS
:
610 udelay(chip
->chip_delay
);
611 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
612 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
614 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
615 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
618 /* This applies to read commands */
621 * If we don't have access to the busy pin, we apply the given
624 if (!chip
->dev_ready
) {
625 udelay(chip
->chip_delay
);
629 /* Apply this short delay always to ensure that we do wait tWB in
630 * any case on any machine. */
633 nand_wait_ready(mtd
);
637 * nand_command_lp - [DEFAULT] Send command to NAND large page device
638 * @mtd: MTD device structure
639 * @command: the command to be sent
640 * @column: the column address for this command, -1 if none
641 * @page_addr: the page address for this command, -1 if none
643 * Send command to NAND device. This is the version for the new large page
644 * devices We dont have the separate regions as we have in the small page
645 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
647 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
648 int column
, int page_addr
)
650 register struct nand_chip
*chip
= mtd
->priv
;
652 /* Emulate NAND_CMD_READOOB */
653 if (command
== NAND_CMD_READOOB
) {
654 column
+= mtd
->writesize
;
655 command
= NAND_CMD_READ0
;
658 /* Command latch cycle */
659 chip
->cmd_ctrl(mtd
, command
& 0xff,
660 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
662 if (column
!= -1 || page_addr
!= -1) {
663 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
665 /* Serially input address */
667 /* Adjust columns for 16 bit buswidth */
668 if (chip
->options
& NAND_BUSWIDTH_16
)
670 chip
->cmd_ctrl(mtd
, column
, ctrl
);
671 ctrl
&= ~NAND_CTRL_CHANGE
;
672 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
674 if (page_addr
!= -1) {
675 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
676 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
677 NAND_NCE
| NAND_ALE
);
678 /* One more address cycle for devices > 128MiB */
679 if (chip
->chipsize
> (128 << 20))
680 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
681 NAND_NCE
| NAND_ALE
);
684 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
687 * program and erase have their own busy handlers
688 * status, sequential in, and deplete1 need no delay
692 case NAND_CMD_CACHEDPROG
:
693 case NAND_CMD_PAGEPROG
:
694 case NAND_CMD_ERASE1
:
695 case NAND_CMD_ERASE2
:
698 case NAND_CMD_STATUS
:
699 case NAND_CMD_DEPLETE1
:
703 * read error status commands require only a short delay
705 case NAND_CMD_STATUS_ERROR
:
706 case NAND_CMD_STATUS_ERROR0
:
707 case NAND_CMD_STATUS_ERROR1
:
708 case NAND_CMD_STATUS_ERROR2
:
709 case NAND_CMD_STATUS_ERROR3
:
710 udelay(chip
->chip_delay
);
716 udelay(chip
->chip_delay
);
717 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
718 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
719 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
720 NAND_NCE
| NAND_CTRL_CHANGE
);
721 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
724 case NAND_CMD_RNDOUT
:
725 /* No ready / busy check necessary */
726 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
727 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
728 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
729 NAND_NCE
| NAND_CTRL_CHANGE
);
733 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
734 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
735 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
736 NAND_NCE
| NAND_CTRL_CHANGE
);
738 /* This applies to read commands */
741 * If we don't have access to the busy pin, we apply the given
744 if (!chip
->dev_ready
) {
745 udelay(chip
->chip_delay
);
750 /* Apply this short delay always to ensure that we do wait tWB in
751 * any case on any machine. */
754 nand_wait_ready(mtd
);
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip: the nand chip descriptor
760 * @mtd: MTD device structure
761 * @new_state: the state which is requested
763 * Used when in panic, no locks are taken.
765 static void panic_nand_get_device(struct nand_chip
*chip
,
766 struct mtd_info
*mtd
, int new_state
)
768 /* Hardware controller shared among independend devices */
769 chip
->controller
->active
= chip
;
770 chip
->state
= new_state
;
774 * nand_get_device - [GENERIC] Get chip for selected access
775 * @chip: the nand chip descriptor
776 * @mtd: MTD device structure
777 * @new_state: the state which is requested
779 * Get the device and lock it for exclusive access
782 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
784 spinlock_t
*lock
= &chip
->controller
->lock
;
785 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
786 DECLARE_WAITQUEUE(wait
, current
);
790 /* Hardware controller shared among independent devices */
791 if (!chip
->controller
->active
)
792 chip
->controller
->active
= chip
;
794 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
795 chip
->state
= new_state
;
799 if (new_state
== FL_PM_SUSPENDED
) {
800 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
801 chip
->state
= FL_PM_SUSPENDED
;
806 set_current_state(TASK_UNINTERRUPTIBLE
);
807 add_wait_queue(wq
, &wait
);
810 remove_wait_queue(wq
, &wait
);
815 * panic_nand_wait - [GENERIC] wait until the command is done
816 * @mtd: MTD device structure
817 * @chip: NAND chip structure
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops trough mtdoops.
824 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
828 for (i
= 0; i
< timeo
; i
++) {
829 if (chip
->dev_ready
) {
830 if (chip
->dev_ready(mtd
))
833 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
841 * nand_wait - [DEFAULT] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
845 * Wait for command done. This applies to erase and program only
846 * Erase can take up to 400ms and program up to 20ms according to
847 * general NAND and SmartMedia specs
849 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
852 unsigned long timeo
= jiffies
;
853 int status
, state
= chip
->state
;
855 if (state
== FL_ERASING
)
856 timeo
+= (HZ
* 400) / 1000;
858 timeo
+= (HZ
* 20) / 1000;
860 led_trigger_event(nand_led_trigger
, LED_FULL
);
862 /* Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine. */
866 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
867 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
869 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
871 if (in_interrupt() || oops_in_progress
)
872 panic_nand_wait(mtd
, chip
, timeo
);
874 while (time_before(jiffies
, timeo
)) {
875 if (chip
->dev_ready
) {
876 if (chip
->dev_ready(mtd
))
879 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
885 led_trigger_event(nand_led_trigger
, LED_OFF
);
887 status
= (int)chip
->read_byte(mtd
);
892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
895 * @ofs: offset to start unlock from
896 * @len: length to unlock
897 * @invert: when = 0, unlock the range of blocks within the lower and
898 * upper boundary address
899 * when = 1, unlock the range of blocks outside the boundaries
900 * of the lower and upper boundary address
902 * return - unlock status
904 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
905 uint64_t len
, int invert
)
909 struct nand_chip
*chip
= mtd
->priv
;
911 /* Submit address of first page to unlock */
912 page
= ofs
>> chip
->page_shift
;
913 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
915 /* Submit address of last page to unlock */
916 page
= (ofs
+ len
) >> chip
->page_shift
;
917 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
918 (page
| invert
) & chip
->pagemask
);
920 /* Call wait ready function */
921 status
= chip
->waitfunc(mtd
, chip
);
923 /* See if device thinks it succeeded */
925 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Error status = 0x%08x\n",
934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
940 * return - unlock status
942 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
946 struct nand_chip
*chip
= mtd
->priv
;
948 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
949 __func__
, (unsigned long long)ofs
, len
);
951 if (check_offs_len(mtd
, ofs
, len
))
954 /* Align to last block address if size addresses end of the device */
955 if (ofs
+ len
== mtd
->size
)
956 len
-= mtd
->erasesize
;
958 nand_get_device(chip
, mtd
, FL_UNLOCKING
);
960 /* Shift to get chip number */
961 chipnr
= ofs
>> chip
->chip_shift
;
963 chip
->select_chip(mtd
, chipnr
);
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd
)) {
967 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
973 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
976 /* de-select the NAND device */
977 chip
->select_chip(mtd
, -1);
979 nand_release_device(mtd
);
985 * nand_lock - [REPLACEABLE] locks all blocks present in the device
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
991 * return - lock status
993 * This feature is not supported in many NAND parts. 'Micron' NAND parts
994 * do have this feature, but it allows only to lock all blocks, not for
995 * specified range for block.
997 * Implementing 'lock' feature by making use of 'unlock', for now.
999 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1002 int chipnr
, status
, page
;
1003 struct nand_chip
*chip
= mtd
->priv
;
1005 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
1006 __func__
, (unsigned long long)ofs
, len
);
1008 if (check_offs_len(mtd
, ofs
, len
))
1011 nand_get_device(chip
, mtd
, FL_LOCKING
);
1013 /* Shift to get chip number */
1014 chipnr
= ofs
>> chip
->chip_shift
;
1016 chip
->select_chip(mtd
, chipnr
);
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd
)) {
1020 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
1022 status
= MTD_ERASE_FAILED
;
1027 /* Submit address of first page to lock */
1028 page
= ofs
>> chip
->page_shift
;
1029 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1031 /* Call wait ready function */
1032 status
= chip
->waitfunc(mtd
, chip
);
1034 /* See if device thinks it succeeded */
1035 if (status
& 0x01) {
1036 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Error status = 0x%08x\n",
1042 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1045 /* de-select the NAND device */
1046 chip
->select_chip(mtd
, -1);
1048 nand_release_device(mtd
);
1054 * nand_read_page_raw - [Intern] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
1060 * Not for syndrome calculating ecc controllers, which use a special oob layout
1062 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1063 uint8_t *buf
, int page
)
1065 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1066 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1071 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
1075 * @page: page number to read
1077 * We need a special oob layout and handling even when OOB isn't used.
1079 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1080 uint8_t *buf
, int page
)
1082 int eccsize
= chip
->ecc
.size
;
1083 int eccbytes
= chip
->ecc
.bytes
;
1084 uint8_t *oob
= chip
->oob_poi
;
1087 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1088 chip
->read_buf(mtd
, buf
, eccsize
);
1091 if (chip
->ecc
.prepad
) {
1092 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1093 oob
+= chip
->ecc
.prepad
;
1096 chip
->read_buf(mtd
, oob
, eccbytes
);
1099 if (chip
->ecc
.postpad
) {
1100 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1101 oob
+= chip
->ecc
.postpad
;
1105 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1107 chip
->read_buf(mtd
, oob
, size
);
1113 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @buf: buffer to store read data
1117 * @page: page number to read
1119 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1120 uint8_t *buf
, int page
)
1122 int i
, eccsize
= chip
->ecc
.size
;
1123 int eccbytes
= chip
->ecc
.bytes
;
1124 int eccsteps
= chip
->ecc
.steps
;
1126 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1127 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1128 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1130 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
1132 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1133 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1135 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1136 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1138 eccsteps
= chip
->ecc
.steps
;
1141 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1144 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1146 mtd
->ecc_stats
.failed
++;
1148 mtd
->ecc_stats
.corrected
+= stat
;
1154 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155 * @mtd: mtd info structure
1156 * @chip: nand chip info structure
1157 * @data_offs: offset of requested data within the page
1158 * @readlen: data length
1159 * @bufpoi: buffer to store read data
1161 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1163 int start_step
, end_step
, num_steps
;
1164 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1166 int data_col_addr
, i
, gaps
= 0;
1167 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1168 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1170 /* Column address wihin the page aligned to ECC size (256bytes). */
1171 start_step
= data_offs
/ chip
->ecc
.size
;
1172 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1173 num_steps
= end_step
- start_step
+ 1;
1175 /* Data size aligned to ECC ecc.size*/
1176 datafrag_len
= num_steps
* chip
->ecc
.size
;
1177 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1179 data_col_addr
= start_step
* chip
->ecc
.size
;
1180 /* If we read not a page aligned data */
1181 if (data_col_addr
!= 0)
1182 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1184 p
= bufpoi
+ data_col_addr
;
1185 chip
->read_buf(mtd
, p
, datafrag_len
);
1188 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1189 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1191 /* The performance is faster if to position offsets
1192 according to ecc.pos. Let make sure here that
1193 there are no gaps in ecc positions */
1194 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1195 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1196 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1202 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1203 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1205 /* send the command to read the particular ecc bytes */
1206 /* take care about buswidth alignment in read_buf */
1207 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
1208 aligned_len
= eccfrag_len
;
1209 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
1211 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
1214 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
1215 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1218 for (i
= 0; i
< eccfrag_len
; i
++)
1219 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
1221 p
= bufpoi
+ data_col_addr
;
1222 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1225 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1227 mtd
->ecc_stats
.failed
++;
1229 mtd
->ecc_stats
.corrected
+= stat
;
1235 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1236 * @mtd: mtd info structure
1237 * @chip: nand chip info structure
1238 * @buf: buffer to store read data
1239 * @page: page number to read
1241 * Not for syndrome calculating ecc controllers which need a special oob layout
1243 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1244 uint8_t *buf
, int page
)
1246 int i
, eccsize
= chip
->ecc
.size
;
1247 int eccbytes
= chip
->ecc
.bytes
;
1248 int eccsteps
= chip
->ecc
.steps
;
1250 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1251 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1252 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1254 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1255 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1256 chip
->read_buf(mtd
, p
, eccsize
);
1257 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1259 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1261 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1262 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1264 eccsteps
= chip
->ecc
.steps
;
1267 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1270 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1272 mtd
->ecc_stats
.failed
++;
1274 mtd
->ecc_stats
.corrected
+= stat
;
1280 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281 * @mtd: mtd info structure
1282 * @chip: nand chip info structure
1283 * @buf: buffer to store read data
1284 * @page: page number to read
1286 * Hardware ECC for large page chips, require OOB to be read first.
1287 * For this ECC mode, the write_page method is re-used from ECC_HW.
1288 * These methods read/write ECC from the OOB area, unlike the
1289 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290 * "infix ECC" scheme and reads/writes ECC from the data area, by
1291 * overwriting the NAND manufacturer bad block markings.
1293 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1294 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1296 int i
, eccsize
= chip
->ecc
.size
;
1297 int eccbytes
= chip
->ecc
.bytes
;
1298 int eccsteps
= chip
->ecc
.steps
;
1300 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1301 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1302 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1304 /* Read the OOB area first */
1305 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1306 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1307 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1309 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1310 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1312 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1315 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1316 chip
->read_buf(mtd
, p
, eccsize
);
1317 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1319 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1321 mtd
->ecc_stats
.failed
++;
1323 mtd
->ecc_stats
.corrected
+= stat
;
1329 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1330 * @mtd: mtd info structure
1331 * @chip: nand chip info structure
1332 * @buf: buffer to store read data
1333 * @page: page number to read
1335 * The hw generator calculates the error syndrome automatically. Therefor
1336 * we need a special oob layout and handling.
1338 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1339 uint8_t *buf
, int page
)
1341 int i
, eccsize
= chip
->ecc
.size
;
1342 int eccbytes
= chip
->ecc
.bytes
;
1343 int eccsteps
= chip
->ecc
.steps
;
1345 uint8_t *oob
= chip
->oob_poi
;
1347 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1350 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1351 chip
->read_buf(mtd
, p
, eccsize
);
1353 if (chip
->ecc
.prepad
) {
1354 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1355 oob
+= chip
->ecc
.prepad
;
1358 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1359 chip
->read_buf(mtd
, oob
, eccbytes
);
1360 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1363 mtd
->ecc_stats
.failed
++;
1365 mtd
->ecc_stats
.corrected
+= stat
;
1369 if (chip
->ecc
.postpad
) {
1370 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1371 oob
+= chip
->ecc
.postpad
;
1375 /* Calculate remaining oob bytes */
1376 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1378 chip
->read_buf(mtd
, oob
, i
);
1384 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385 * @chip: nand chip structure
1386 * @oob: oob destination address
1387 * @ops: oob ops structure
1388 * @len: size of oob to transfer
1390 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1391 struct mtd_oob_ops
*ops
, size_t len
)
1397 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1400 case MTD_OOB_AUTO
: {
1401 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1402 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1405 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1406 /* Read request not from offset 0 ? */
1407 if (unlikely(roffs
)) {
1408 if (roffs
>= free
->length
) {
1409 roffs
-= free
->length
;
1412 boffs
= free
->offset
+ roffs
;
1413 bytes
= min_t(size_t, len
,
1414 (free
->length
- roffs
));
1417 bytes
= min_t(size_t, len
, free
->length
);
1418 boffs
= free
->offset
;
1420 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1432 * nand_do_read_ops - [Internal] Read data with ECC
1434 * @mtd: MTD device structure
1435 * @from: offset to read from
1436 * @ops: oob ops structure
1438 * Internal function. Called with chip held.
1440 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1441 struct mtd_oob_ops
*ops
)
1443 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1444 struct nand_chip
*chip
= mtd
->priv
;
1445 struct mtd_ecc_stats stats
;
1446 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1449 uint32_t readlen
= ops
->len
;
1450 uint32_t oobreadlen
= ops
->ooblen
;
1451 uint32_t max_oobsize
= ops
->mode
== MTD_OOB_AUTO
?
1452 mtd
->oobavail
: mtd
->oobsize
;
1454 uint8_t *bufpoi
, *oob
, *buf
;
1456 stats
= mtd
->ecc_stats
;
1458 chipnr
= (int)(from
>> chip
->chip_shift
);
1459 chip
->select_chip(mtd
, chipnr
);
1461 realpage
= (int)(from
>> chip
->page_shift
);
1462 page
= realpage
& chip
->pagemask
;
1464 col
= (int)(from
& (mtd
->writesize
- 1));
1470 bytes
= min(mtd
->writesize
- col
, readlen
);
1471 aligned
= (bytes
== mtd
->writesize
);
1473 /* Is the current page in the buffer ? */
1474 if (realpage
!= chip
->pagebuf
|| oob
) {
1475 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1477 if (likely(sndcmd
)) {
1478 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1482 /* Now read the page into the buffer */
1483 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1484 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1486 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1487 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1489 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1494 /* Transfer not aligned data */
1496 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1497 chip
->pagebuf
= realpage
;
1498 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1503 if (unlikely(oob
)) {
1505 int toread
= min(oobreadlen
, max_oobsize
);
1508 oob
= nand_transfer_oob(chip
,
1510 oobreadlen
-= toread
;
1514 if (!(chip
->options
& NAND_NO_READRDY
)) {
1516 * Apply delay or wait for ready/busy pin. Do
1517 * this before the AUTOINCR check, so no
1518 * problems arise if a chip which does auto
1519 * increment is marked as NOAUTOINCR by the
1522 if (!chip
->dev_ready
)
1523 udelay(chip
->chip_delay
);
1525 nand_wait_ready(mtd
);
1528 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1537 /* For subsequent reads align to page boundary. */
1539 /* Increment page address */
1542 page
= realpage
& chip
->pagemask
;
1543 /* Check, if we cross a chip boundary */
1546 chip
->select_chip(mtd
, -1);
1547 chip
->select_chip(mtd
, chipnr
);
1550 /* Check, if the chip supports auto page increment
1551 * or if we have hit a block boundary.
1553 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1557 ops
->retlen
= ops
->len
- (size_t) readlen
;
1559 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1564 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1567 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1571 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1572 * @mtd: MTD device structure
1573 * @from: offset to read from
1574 * @len: number of bytes to read
1575 * @retlen: pointer to variable to store the number of read bytes
1576 * @buf: the databuffer to put data
1578 * Get hold of the chip and call nand_do_read
1580 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1581 size_t *retlen
, uint8_t *buf
)
1583 struct nand_chip
*chip
= mtd
->priv
;
1586 /* Do not allow reads past end of device */
1587 if ((from
+ len
) > mtd
->size
)
1592 nand_get_device(chip
, mtd
, FL_READING
);
1594 chip
->ops
.len
= len
;
1595 chip
->ops
.datbuf
= buf
;
1596 chip
->ops
.oobbuf
= NULL
;
1598 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1600 *retlen
= chip
->ops
.retlen
;
1602 nand_release_device(mtd
);
1608 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @page: page number to read
1612 * @sndcmd: flag whether to issue read command or not
1614 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1615 int page
, int sndcmd
)
1618 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1621 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1626 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1628 * @mtd: mtd info structure
1629 * @chip: nand chip info structure
1630 * @page: page number to read
1631 * @sndcmd: flag whether to issue read command or not
1633 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1634 int page
, int sndcmd
)
1636 uint8_t *buf
= chip
->oob_poi
;
1637 int length
= mtd
->oobsize
;
1638 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1639 int eccsize
= chip
->ecc
.size
;
1640 uint8_t *bufpoi
= buf
;
1641 int i
, toread
, sndrnd
= 0, pos
;
1643 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1644 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1646 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1647 if (mtd
->writesize
> 512)
1648 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1650 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1653 toread
= min_t(int, length
, chunk
);
1654 chip
->read_buf(mtd
, bufpoi
, toread
);
1659 chip
->read_buf(mtd
, bufpoi
, length
);
1665 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @page: page number to write
1670 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1674 const uint8_t *buf
= chip
->oob_poi
;
1675 int length
= mtd
->oobsize
;
1677 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1678 chip
->write_buf(mtd
, buf
, length
);
1679 /* Send command to program the OOB data */
1680 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1682 status
= chip
->waitfunc(mtd
, chip
);
1684 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1688 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1689 * with syndrome - only for large page flash !
1690 * @mtd: mtd info structure
1691 * @chip: nand chip info structure
1692 * @page: page number to write
1694 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1695 struct nand_chip
*chip
, int page
)
1697 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1698 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1699 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1700 const uint8_t *bufpoi
= chip
->oob_poi
;
1703 * data-ecc-data-ecc ... ecc-oob
1705 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1707 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1708 pos
= steps
* (eccsize
+ chunk
);
1713 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1714 for (i
= 0; i
< steps
; i
++) {
1716 if (mtd
->writesize
<= 512) {
1717 uint32_t fill
= 0xFFFFFFFF;
1721 int num
= min_t(int, len
, 4);
1722 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1727 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1728 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1732 len
= min_t(int, length
, chunk
);
1733 chip
->write_buf(mtd
, bufpoi
, len
);
1738 chip
->write_buf(mtd
, bufpoi
, length
);
1740 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1741 status
= chip
->waitfunc(mtd
, chip
);
1743 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1747 * nand_do_read_oob - [Intern] NAND read out-of-band
1748 * @mtd: MTD device structure
1749 * @from: offset to read from
1750 * @ops: oob operations description structure
1752 * NAND read out-of-band data from the spare area
1754 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1755 struct mtd_oob_ops
*ops
)
1757 int page
, realpage
, chipnr
, sndcmd
= 1;
1758 struct nand_chip
*chip
= mtd
->priv
;
1759 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1760 int readlen
= ops
->ooblen
;
1762 uint8_t *buf
= ops
->oobbuf
;
1764 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08Lx, len = %i\n",
1765 __func__
, (unsigned long long)from
, readlen
);
1767 if (ops
->mode
== MTD_OOB_AUTO
)
1768 len
= chip
->ecc
.layout
->oobavail
;
1772 if (unlikely(ops
->ooboffs
>= len
)) {
1773 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start read "
1774 "outside oob\n", __func__
);
1778 /* Do not allow reads past end of device */
1779 if (unlikely(from
>= mtd
->size
||
1780 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1781 (from
>> chip
->page_shift
)) * len
)) {
1782 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read beyond end "
1783 "of device\n", __func__
);
1787 chipnr
= (int)(from
>> chip
->chip_shift
);
1788 chip
->select_chip(mtd
, chipnr
);
1790 /* Shift to get page */
1791 realpage
= (int)(from
>> chip
->page_shift
);
1792 page
= realpage
& chip
->pagemask
;
1795 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1797 len
= min(len
, readlen
);
1798 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1800 if (!(chip
->options
& NAND_NO_READRDY
)) {
1802 * Apply delay or wait for ready/busy pin. Do this
1803 * before the AUTOINCR check, so no problems arise if a
1804 * chip which does auto increment is marked as
1805 * NOAUTOINCR by the board driver.
1807 if (!chip
->dev_ready
)
1808 udelay(chip
->chip_delay
);
1810 nand_wait_ready(mtd
);
1817 /* Increment page address */
1820 page
= realpage
& chip
->pagemask
;
1821 /* Check, if we cross a chip boundary */
1824 chip
->select_chip(mtd
, -1);
1825 chip
->select_chip(mtd
, chipnr
);
1828 /* Check, if the chip supports auto page increment
1829 * or if we have hit a block boundary.
1831 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1835 ops
->oobretlen
= ops
->ooblen
;
1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1841 * @mtd: MTD device structure
1842 * @from: offset to read from
1843 * @ops: oob operation description structure
1845 * NAND read data and/or out-of-band data
1847 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1848 struct mtd_oob_ops
*ops
)
1850 struct nand_chip
*chip
= mtd
->priv
;
1851 int ret
= -ENOTSUPP
;
1855 /* Do not allow reads past end of device */
1856 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1857 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read "
1858 "beyond end of device\n", __func__
);
1862 nand_get_device(chip
, mtd
, FL_READING
);
1875 ret
= nand_do_read_oob(mtd
, from
, ops
);
1877 ret
= nand_do_read_ops(mtd
, from
, ops
);
1880 nand_release_device(mtd
);
1886 * nand_write_page_raw - [Intern] raw page write function
1887 * @mtd: mtd info structure
1888 * @chip: nand chip info structure
1891 * Not for syndrome calculating ecc controllers, which use a special oob layout
1893 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1896 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1897 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1901 * nand_write_page_raw_syndrome - [Intern] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1906 * We need a special oob layout and handling even when ECC isn't checked.
1908 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1911 int eccsize
= chip
->ecc
.size
;
1912 int eccbytes
= chip
->ecc
.bytes
;
1913 uint8_t *oob
= chip
->oob_poi
;
1916 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1917 chip
->write_buf(mtd
, buf
, eccsize
);
1920 if (chip
->ecc
.prepad
) {
1921 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1922 oob
+= chip
->ecc
.prepad
;
1925 chip
->read_buf(mtd
, oob
, eccbytes
);
1928 if (chip
->ecc
.postpad
) {
1929 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1930 oob
+= chip
->ecc
.postpad
;
1934 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1936 chip
->write_buf(mtd
, oob
, size
);
1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1944 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1947 int i
, eccsize
= chip
->ecc
.size
;
1948 int eccbytes
= chip
->ecc
.bytes
;
1949 int eccsteps
= chip
->ecc
.steps
;
1950 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1951 const uint8_t *p
= buf
;
1952 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1954 /* Software ecc calculation */
1955 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1956 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1958 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1959 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1961 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1970 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1973 int i
, eccsize
= chip
->ecc
.size
;
1974 int eccbytes
= chip
->ecc
.bytes
;
1975 int eccsteps
= chip
->ecc
.steps
;
1976 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1977 const uint8_t *p
= buf
;
1978 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1980 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1981 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1982 chip
->write_buf(mtd
, p
, eccsize
);
1983 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1986 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1987 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1989 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2001 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
2002 struct nand_chip
*chip
, const uint8_t *buf
)
2004 int i
, eccsize
= chip
->ecc
.size
;
2005 int eccbytes
= chip
->ecc
.bytes
;
2006 int eccsteps
= chip
->ecc
.steps
;
2007 const uint8_t *p
= buf
;
2008 uint8_t *oob
= chip
->oob_poi
;
2010 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2012 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2013 chip
->write_buf(mtd
, p
, eccsize
);
2015 if (chip
->ecc
.prepad
) {
2016 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2017 oob
+= chip
->ecc
.prepad
;
2020 chip
->ecc
.calculate(mtd
, p
, oob
);
2021 chip
->write_buf(mtd
, oob
, eccbytes
);
2024 if (chip
->ecc
.postpad
) {
2025 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2026 oob
+= chip
->ecc
.postpad
;
2030 /* Calculate remaining oob bytes */
2031 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2033 chip
->write_buf(mtd
, oob
, i
);
2037 * nand_write_page - [REPLACEABLE] write one page
2038 * @mtd: MTD device structure
2039 * @chip: NAND chip descriptor
2040 * @buf: the data to write
2041 * @page: page number to write
2042 * @cached: cached programming
2043 * @raw: use _raw version of write_page
2045 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2046 const uint8_t *buf
, int page
, int cached
, int raw
)
2050 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2053 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
2055 chip
->ecc
.write_page(mtd
, chip
, buf
);
2058 * Cached progamming disabled for now, Not sure if its worth the
2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2063 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
2065 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2066 status
= chip
->waitfunc(mtd
, chip
);
2068 * See if operation failed and additional status checks are
2071 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2072 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2075 if (status
& NAND_STATUS_FAIL
)
2078 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2079 status
= chip
->waitfunc(mtd
, chip
);
2082 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083 /* Send command to read back the data */
2084 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
2086 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip: nand chip structure
2095 * @oob: oob data buffer
2096 * @len: oob data write length
2097 * @ops: oob ops structure
2099 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
, size_t len
,
2100 struct mtd_oob_ops
*ops
)
2106 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2109 case MTD_OOB_AUTO
: {
2110 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2111 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2114 for(; free
->length
&& len
; free
++, len
-= bytes
) {
2115 /* Write request not from offset 0 ? */
2116 if (unlikely(woffs
)) {
2117 if (woffs
>= free
->length
) {
2118 woffs
-= free
->length
;
2121 boffs
= free
->offset
+ woffs
;
2122 bytes
= min_t(size_t, len
,
2123 (free
->length
- woffs
));
2126 bytes
= min_t(size_t, len
, free
->length
);
2127 boffs
= free
->offset
;
2129 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2140 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
2143 * nand_do_write_ops - [Internal] NAND write with ECC
2144 * @mtd: MTD device structure
2145 * @to: offset to write to
2146 * @ops: oob operations description structure
2148 * NAND write with ECC
2150 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2151 struct mtd_oob_ops
*ops
)
2153 int chipnr
, realpage
, page
, blockmask
, column
;
2154 struct nand_chip
*chip
= mtd
->priv
;
2155 uint32_t writelen
= ops
->len
;
2157 uint32_t oobwritelen
= ops
->ooblen
;
2158 uint32_t oobmaxlen
= ops
->mode
== MTD_OOB_AUTO
?
2159 mtd
->oobavail
: mtd
->oobsize
;
2161 uint8_t *oob
= ops
->oobbuf
;
2162 uint8_t *buf
= ops
->datbuf
;
2169 /* reject writes, which are not page aligned */
2170 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2171 printk(KERN_NOTICE
"%s: Attempt to write not "
2172 "page aligned data\n", __func__
);
2176 column
= to
& (mtd
->writesize
- 1);
2177 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
2182 chipnr
= (int)(to
>> chip
->chip_shift
);
2183 chip
->select_chip(mtd
, chipnr
);
2185 /* Check, if it is write protected */
2186 if (nand_check_wp(mtd
))
2189 realpage
= (int)(to
>> chip
->page_shift
);
2190 page
= realpage
& chip
->pagemask
;
2191 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2193 /* Invalidate the page cache, when we write to the cached page */
2194 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2195 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2198 /* If we're not given explicit OOB data, let it be 0xFF */
2200 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2202 /* Don't allow multipage oob writes with offset */
2203 if (ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
))
2207 int bytes
= mtd
->writesize
;
2208 int cached
= writelen
> bytes
&& page
!= blockmask
;
2209 uint8_t *wbuf
= buf
;
2211 /* Partial page write ? */
2212 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2214 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2216 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2217 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2218 wbuf
= chip
->buffers
->databuf
;
2221 if (unlikely(oob
)) {
2222 size_t len
= min(oobwritelen
, oobmaxlen
);
2223 oob
= nand_fill_oob(chip
, oob
, len
, ops
);
2227 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
2228 (ops
->mode
== MTD_OOB_RAW
));
2240 page
= realpage
& chip
->pagemask
;
2241 /* Check, if we cross a chip boundary */
2244 chip
->select_chip(mtd
, -1);
2245 chip
->select_chip(mtd
, chipnr
);
2249 ops
->retlen
= ops
->len
- writelen
;
2251 ops
->oobretlen
= ops
->ooblen
;
2256 * panic_nand_write - [MTD Interface] NAND write with ECC
2257 * @mtd: MTD device structure
2258 * @to: offset to write to
2259 * @len: number of bytes to write
2260 * @retlen: pointer to variable to store the number of written bytes
2261 * @buf: the data to write
2263 * NAND write with ECC. Used when performing writes in interrupt context, this
2264 * may for example be called by mtdoops when writing an oops while in panic.
2266 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2267 size_t *retlen
, const uint8_t *buf
)
2269 struct nand_chip
*chip
= mtd
->priv
;
2272 /* Do not allow reads past end of device */
2273 if ((to
+ len
) > mtd
->size
)
2278 /* Wait for the device to get ready. */
2279 panic_nand_wait(mtd
, chip
, 400);
2281 /* Grab the device. */
2282 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2284 chip
->ops
.len
= len
;
2285 chip
->ops
.datbuf
= (uint8_t *)buf
;
2286 chip
->ops
.oobbuf
= NULL
;
2288 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2290 *retlen
= chip
->ops
.retlen
;
2295 * nand_write - [MTD Interface] NAND write with ECC
2296 * @mtd: MTD device structure
2297 * @to: offset to write to
2298 * @len: number of bytes to write
2299 * @retlen: pointer to variable to store the number of written bytes
2300 * @buf: the data to write
2302 * NAND write with ECC
2304 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2305 size_t *retlen
, const uint8_t *buf
)
2307 struct nand_chip
*chip
= mtd
->priv
;
2310 /* Do not allow reads past end of device */
2311 if ((to
+ len
) > mtd
->size
)
2316 nand_get_device(chip
, mtd
, FL_WRITING
);
2318 chip
->ops
.len
= len
;
2319 chip
->ops
.datbuf
= (uint8_t *)buf
;
2320 chip
->ops
.oobbuf
= NULL
;
2322 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2324 *retlen
= chip
->ops
.retlen
;
2326 nand_release_device(mtd
);
2332 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2333 * @mtd: MTD device structure
2334 * @to: offset to write to
2335 * @ops: oob operation description structure
2337 * NAND write out-of-band
2339 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2340 struct mtd_oob_ops
*ops
)
2342 int chipnr
, page
, status
, len
;
2343 struct nand_chip
*chip
= mtd
->priv
;
2345 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2346 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2348 if (ops
->mode
== MTD_OOB_AUTO
)
2349 len
= chip
->ecc
.layout
->oobavail
;
2353 /* Do not allow write past end of page */
2354 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2355 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to write "
2356 "past end of page\n", __func__
);
2360 if (unlikely(ops
->ooboffs
>= len
)) {
2361 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start "
2362 "write outside oob\n", __func__
);
2366 /* Do not allow reads past end of device */
2367 if (unlikely(to
>= mtd
->size
||
2368 ops
->ooboffs
+ ops
->ooblen
>
2369 ((mtd
->size
>> chip
->page_shift
) -
2370 (to
>> chip
->page_shift
)) * len
)) {
2371 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2372 "end of device\n", __func__
);
2376 chipnr
= (int)(to
>> chip
->chip_shift
);
2377 chip
->select_chip(mtd
, chipnr
);
2379 /* Shift to get page */
2380 page
= (int)(to
>> chip
->page_shift
);
2383 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2384 * of my DiskOnChip 2000 test units) will clear the whole data page too
2385 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2386 * it in the doc2000 driver in August 1999. dwmw2.
2388 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2390 /* Check, if it is write protected */
2391 if (nand_check_wp(mtd
))
2394 /* Invalidate the page cache, if we write to the cached page */
2395 if (page
== chip
->pagebuf
)
2398 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2399 nand_fill_oob(chip
, ops
->oobbuf
, ops
->ooblen
, ops
);
2400 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2401 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2406 ops
->oobretlen
= ops
->ooblen
;
2412 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2413 * @mtd: MTD device structure
2414 * @to: offset to write to
2415 * @ops: oob operation description structure
2417 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2418 struct mtd_oob_ops
*ops
)
2420 struct nand_chip
*chip
= mtd
->priv
;
2421 int ret
= -ENOTSUPP
;
2425 /* Do not allow writes past end of device */
2426 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2427 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2428 "end of device\n", __func__
);
2432 nand_get_device(chip
, mtd
, FL_WRITING
);
2445 ret
= nand_do_write_oob(mtd
, to
, ops
);
2447 ret
= nand_do_write_ops(mtd
, to
, ops
);
2450 nand_release_device(mtd
);
2455 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2456 * @mtd: MTD device structure
2457 * @page: the page address of the block which will be erased
2459 * Standard erase command for NAND chips
2461 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2463 struct nand_chip
*chip
= mtd
->priv
;
2464 /* Send commands to erase a block */
2465 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2466 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2470 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2471 * @mtd: MTD device structure
2472 * @page: the page address of the block which will be erased
2474 * AND multi block erase command function
2475 * Erase 4 consecutive blocks
2477 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2479 struct nand_chip
*chip
= mtd
->priv
;
2480 /* Send commands to erase a block */
2481 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2482 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2483 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2484 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2485 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2489 * nand_erase - [MTD Interface] erase block(s)
2490 * @mtd: MTD device structure
2491 * @instr: erase instruction
2493 * Erase one ore more blocks
2495 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2497 return nand_erase_nand(mtd
, instr
, 0);
2500 #define BBT_PAGE_MASK 0xffffff3f
2502 * nand_erase_nand - [Internal] erase block(s)
2503 * @mtd: MTD device structure
2504 * @instr: erase instruction
2505 * @allowbbt: allow erasing the bbt area
2507 * Erase one ore more blocks
2509 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2512 int page
, status
, pages_per_block
, ret
, chipnr
;
2513 struct nand_chip
*chip
= mtd
->priv
;
2514 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2515 unsigned int bbt_masked_page
= 0xffffffff;
2518 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
2519 __func__
, (unsigned long long)instr
->addr
,
2520 (unsigned long long)instr
->len
);
2522 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2525 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2527 /* Grab the lock and see if the device is available */
2528 nand_get_device(chip
, mtd
, FL_ERASING
);
2530 /* Shift to get first page */
2531 page
= (int)(instr
->addr
>> chip
->page_shift
);
2532 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2534 /* Calculate pages in each block */
2535 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2537 /* Select the NAND device */
2538 chip
->select_chip(mtd
, chipnr
);
2540 /* Check, if it is write protected */
2541 if (nand_check_wp(mtd
)) {
2542 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
2544 instr
->state
= MTD_ERASE_FAILED
;
2549 * If BBT requires refresh, set the BBT page mask to see if the BBT
2550 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2551 * can not be matched. This is also done when the bbt is actually
2552 * erased to avoid recusrsive updates
2554 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2555 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2557 /* Loop through the pages */
2560 instr
->state
= MTD_ERASING
;
2564 * heck if we have a bad block, we do not erase bad blocks !
2566 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2567 chip
->page_shift
, 0, allowbbt
)) {
2568 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2569 "at page 0x%08x\n", __func__
, page
);
2570 instr
->state
= MTD_ERASE_FAILED
;
2575 * Invalidate the page cache, if we erase the block which
2576 * contains the current cached page
2578 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2579 (page
+ pages_per_block
))
2582 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2584 status
= chip
->waitfunc(mtd
, chip
);
2587 * See if operation failed and additional status checks are
2590 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2591 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2594 /* See if block erase succeeded */
2595 if (status
& NAND_STATUS_FAIL
) {
2596 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed erase, "
2597 "page 0x%08x\n", __func__
, page
);
2598 instr
->state
= MTD_ERASE_FAILED
;
2600 ((loff_t
)page
<< chip
->page_shift
);
2605 * If BBT requires refresh, set the BBT rewrite flag to the
2608 if (bbt_masked_page
!= 0xffffffff &&
2609 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2610 rewrite_bbt
[chipnr
] =
2611 ((loff_t
)page
<< chip
->page_shift
);
2613 /* Increment page address and decrement length */
2614 len
-= (1 << chip
->phys_erase_shift
);
2615 page
+= pages_per_block
;
2617 /* Check, if we cross a chip boundary */
2618 if (len
&& !(page
& chip
->pagemask
)) {
2620 chip
->select_chip(mtd
, -1);
2621 chip
->select_chip(mtd
, chipnr
);
2624 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625 * page mask to see if this BBT should be rewritten
2627 if (bbt_masked_page
!= 0xffffffff &&
2628 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2629 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2633 instr
->state
= MTD_ERASE_DONE
;
2637 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2639 /* Deselect and wake up anyone waiting on the device */
2640 nand_release_device(mtd
);
2642 /* Do call back function */
2644 mtd_erase_callback(instr
);
2647 * If BBT requires refresh and erase was successful, rewrite any
2648 * selected bad block tables
2650 if (bbt_masked_page
== 0xffffffff || ret
)
2653 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2654 if (!rewrite_bbt
[chipnr
])
2656 /* update the BBT for chip */
2657 DEBUG(MTD_DEBUG_LEVEL0
, "%s: nand_update_bbt "
2658 "(%d:0x%0llx 0x%0x)\n", __func__
, chipnr
,
2659 rewrite_bbt
[chipnr
], chip
->bbt_td
->pages
[chipnr
]);
2660 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2663 /* Return more or less happy */
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd: MTD device structure
2671 * Sync is actually a wait for chip ready function
2673 static void nand_sync(struct mtd_info
*mtd
)
2675 struct nand_chip
*chip
= mtd
->priv
;
2677 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2679 /* Grab the lock and see if the device is available */
2680 nand_get_device(chip
, mtd
, FL_SYNCING
);
2681 /* Release it and go back */
2682 nand_release_device(mtd
);
2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2687 * @mtd: MTD device structure
2688 * @offs: offset relative to mtd start
2690 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2692 /* Check for invalid offset */
2693 if (offs
> mtd
->size
)
2696 return nand_block_checkbad(mtd
, offs
, 1, 0);
2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2701 * @mtd: MTD device structure
2702 * @ofs: offset relative to mtd start
2704 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2706 struct nand_chip
*chip
= mtd
->priv
;
2709 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2710 /* If it was bad already, return success and do nothing. */
2716 return chip
->block_markbad(mtd
, ofs
);
2720 * nand_suspend - [MTD Interface] Suspend the NAND flash
2721 * @mtd: MTD device structure
2723 static int nand_suspend(struct mtd_info
*mtd
)
2725 struct nand_chip
*chip
= mtd
->priv
;
2727 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2731 * nand_resume - [MTD Interface] Resume the NAND flash
2732 * @mtd: MTD device structure
2734 static void nand_resume(struct mtd_info
*mtd
)
2736 struct nand_chip
*chip
= mtd
->priv
;
2738 if (chip
->state
== FL_PM_SUSPENDED
)
2739 nand_release_device(mtd
);
2741 printk(KERN_ERR
"%s called for a chip which is not "
2742 "in suspended state\n", __func__
);
2746 * Set default functions
2748 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2750 /* check for proper chip_delay setup, set 20us if not */
2751 if (!chip
->chip_delay
)
2752 chip
->chip_delay
= 20;
2754 /* check, if a user supplied command function given */
2755 if (chip
->cmdfunc
== NULL
)
2756 chip
->cmdfunc
= nand_command
;
2758 /* check, if a user supplied wait function given */
2759 if (chip
->waitfunc
== NULL
)
2760 chip
->waitfunc
= nand_wait
;
2762 if (!chip
->select_chip
)
2763 chip
->select_chip
= nand_select_chip
;
2764 if (!chip
->read_byte
)
2765 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2766 if (!chip
->read_word
)
2767 chip
->read_word
= nand_read_word
;
2768 if (!chip
->block_bad
)
2769 chip
->block_bad
= nand_block_bad
;
2770 if (!chip
->block_markbad
)
2771 chip
->block_markbad
= nand_default_block_markbad
;
2772 if (!chip
->write_buf
)
2773 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2774 if (!chip
->read_buf
)
2775 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2776 if (!chip
->verify_buf
)
2777 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2778 if (!chip
->scan_bbt
)
2779 chip
->scan_bbt
= nand_default_bbt
;
2781 if (!chip
->controller
) {
2782 chip
->controller
= &chip
->hwcontrol
;
2783 spin_lock_init(&chip
->controller
->lock
);
2784 init_waitqueue_head(&chip
->controller
->wq
);
2790 * Get the flash and manufacturer id and lookup if the type is supported
2792 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2793 struct nand_chip
*chip
,
2794 int busw
, int *maf_id
,
2795 struct nand_flash_dev
*type
)
2797 int i
, dev_id
, maf_idx
;
2800 /* Select the device */
2801 chip
->select_chip(mtd
, 0);
2804 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2807 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2809 /* Send the command for reading device ID */
2810 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2812 /* Read manufacturer and device IDs */
2813 *maf_id
= chip
->read_byte(mtd
);
2814 dev_id
= chip
->read_byte(mtd
);
2816 /* Try again to make sure, as some systems the bus-hold or other
2817 * interface concerns can cause random data which looks like a
2818 * possibly credible NAND flash to appear. If the two results do
2819 * not match, ignore the device completely.
2822 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2824 /* Read entire ID string */
2826 for (i
= 0; i
< 8; i
++)
2827 id_data
[i
] = chip
->read_byte(mtd
);
2829 if (id_data
[0] != *maf_id
|| id_data
[1] != dev_id
) {
2830 printk(KERN_INFO
"%s: second ID read did not match "
2831 "%02x,%02x against %02x,%02x\n", __func__
,
2832 *maf_id
, dev_id
, id_data
[0], id_data
[1]);
2833 return ERR_PTR(-ENODEV
);
2837 type
= nand_flash_ids
;
2839 for (; type
->name
!= NULL
; type
++)
2840 if (dev_id
== type
->id
)
2844 return ERR_PTR(-ENODEV
);
2847 mtd
->name
= type
->name
;
2849 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2851 /* Newer devices have all the information in additional id bytes */
2852 if (!type
->pagesize
) {
2854 /* The 3rd id byte holds MLC / multichip data */
2855 chip
->cellinfo
= id_data
[2];
2856 /* The 4th id byte is the important one */
2860 * Field definitions are in the following datasheets:
2861 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2862 * New style (6 byte ID): Samsung K9GAG08U0D (p.40)
2864 * Check for wraparound + Samsung ID + nonzero 6th byte
2865 * to decide what to do.
2867 if (id_data
[0] == id_data
[6] && id_data
[1] == id_data
[7] &&
2868 id_data
[0] == NAND_MFR_SAMSUNG
&&
2869 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
2870 id_data
[5] != 0x00) {
2872 mtd
->writesize
= 2048 << (extid
& 0x03);
2875 mtd
->oobsize
= (extid
& 0x03) == 0x01 ? 128 : 218;
2877 /* Calc blocksize */
2878 mtd
->erasesize
= (128 * 1024) <<
2879 (((extid
>> 1) & 0x04) | (extid
& 0x03));
2883 mtd
->writesize
= 1024 << (extid
& 0x03);
2886 mtd
->oobsize
= (8 << (extid
& 0x01)) *
2887 (mtd
->writesize
>> 9);
2889 /* Calc blocksize. Blocksize is multiples of 64KiB */
2890 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2892 /* Get buswidth information */
2893 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2897 * Old devices have chip data hardcoded in the device id table
2899 mtd
->erasesize
= type
->erasesize
;
2900 mtd
->writesize
= type
->pagesize
;
2901 mtd
->oobsize
= mtd
->writesize
/ 32;
2902 busw
= type
->options
& NAND_BUSWIDTH_16
;
2905 /* Try to identify manufacturer */
2906 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2907 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2912 * Check, if buswidth is correct. Hardware drivers should set
2915 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2916 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2917 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2918 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2919 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2920 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2922 return ERR_PTR(-EINVAL
);
2925 /* Calculate the address shift from the page size */
2926 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2927 /* Convert chipsize to number of pages per chip -1. */
2928 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2930 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2931 ffs(mtd
->erasesize
) - 1;
2932 if (chip
->chipsize
& 0xffffffff)
2933 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2935 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2937 /* Set the bad block position */
2938 if (mtd
->writesize
> 512 || (busw
& NAND_BUSWIDTH_16
))
2939 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
2941 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
2943 /* Get chip options, preserve non chip based options */
2944 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2945 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2948 * Set chip as a default. Board drivers can override it, if necessary
2950 chip
->options
|= NAND_NO_AUTOINCR
;
2952 /* Check if chip is a not a samsung device. Do not clear the
2953 * options for chips which are not having an extended id.
2955 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2956 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2959 * Bad block marker is stored in the last page of each block
2960 * on Samsung and Hynix MLC devices; stored in first two pages
2961 * of each block on Micron devices with 2KiB pages and on
2962 * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2965 if ((chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
2966 (*maf_id
== NAND_MFR_SAMSUNG
||
2967 *maf_id
== NAND_MFR_HYNIX
))
2968 chip
->options
|= NAND_BBT_SCANLASTPAGE
;
2969 else if ((!(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
2970 (*maf_id
== NAND_MFR_SAMSUNG
||
2971 *maf_id
== NAND_MFR_HYNIX
||
2972 *maf_id
== NAND_MFR_AMD
)) ||
2973 (mtd
->writesize
== 2048 &&
2974 *maf_id
== NAND_MFR_MICRON
))
2975 chip
->options
|= NAND_BBT_SCAN2NDPAGE
;
2978 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
2980 if (!(busw
& NAND_BUSWIDTH_16
) &&
2981 *maf_id
== NAND_MFR_STMICRO
&&
2982 mtd
->writesize
== 2048) {
2983 chip
->options
|= NAND_BBT_SCANBYTE1AND6
;
2984 chip
->badblockpos
= 0;
2987 /* Check for AND chips with 4 page planes */
2988 if (chip
->options
& NAND_4PAGE_ARRAY
)
2989 chip
->erase_cmd
= multi_erase_cmd
;
2991 chip
->erase_cmd
= single_erase_cmd
;
2993 /* Do not replace user supplied command function ! */
2994 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2995 chip
->cmdfunc
= nand_command_lp
;
2997 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2998 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2999 nand_manuf_ids
[maf_idx
].name
, type
->name
);
3005 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3006 * @mtd: MTD device structure
3007 * @maxchips: Number of chips to scan for
3008 * @table: Alternative NAND ID table
3010 * This is the first phase of the normal nand_scan() function. It
3011 * reads the flash ID and sets up MTD fields accordingly.
3013 * The mtd->owner field must be set to the module of the caller.
3015 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3016 struct nand_flash_dev
*table
)
3018 int i
, busw
, nand_maf_id
;
3019 struct nand_chip
*chip
= mtd
->priv
;
3020 struct nand_flash_dev
*type
;
3022 /* Get buswidth to select the correct functions */
3023 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3024 /* Set the default functions */
3025 nand_set_defaults(chip
, busw
);
3027 /* Read the flash type */
3028 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
, table
);
3031 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3032 printk(KERN_WARNING
"No NAND device found.\n");
3033 chip
->select_chip(mtd
, -1);
3034 return PTR_ERR(type
);
3037 /* Check for a chip array */
3038 for (i
= 1; i
< maxchips
; i
++) {
3039 chip
->select_chip(mtd
, i
);
3040 /* See comment in nand_get_flash_type for reset */
3041 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3042 /* Send the command for reading device ID */
3043 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3044 /* Read manufacturer and device IDs */
3045 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3046 type
->id
!= chip
->read_byte(mtd
))
3050 printk(KERN_INFO
"%d NAND chips detected\n", i
);
3052 /* Store the number of chips and calc total size for mtd */
3054 mtd
->size
= i
* chip
->chipsize
;
3061 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3062 * @mtd: MTD device structure
3064 * This is the second phase of the normal nand_scan() function. It
3065 * fills out all the uninitialized function pointers with the defaults
3066 * and scans for a bad block table if appropriate.
3068 int nand_scan_tail(struct mtd_info
*mtd
)
3071 struct nand_chip
*chip
= mtd
->priv
;
3073 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3074 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3078 /* Set the internal oob buffer location, just after the page data */
3079 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3082 * If no default placement scheme is given, select an appropriate one
3084 if (!chip
->ecc
.layout
) {
3085 switch (mtd
->oobsize
) {
3087 chip
->ecc
.layout
= &nand_oob_8
;
3090 chip
->ecc
.layout
= &nand_oob_16
;
3093 chip
->ecc
.layout
= &nand_oob_64
;
3096 chip
->ecc
.layout
= &nand_oob_128
;
3099 printk(KERN_WARNING
"No oob scheme defined for "
3100 "oobsize %d\n", mtd
->oobsize
);
3105 if (!chip
->write_page
)
3106 chip
->write_page
= nand_write_page
;
3109 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3110 * selected and we have 256 byte pagesize fallback to software ECC
3113 switch (chip
->ecc
.mode
) {
3114 case NAND_ECC_HW_OOB_FIRST
:
3115 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3116 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3118 printk(KERN_WARNING
"No ECC functions supplied; "
3119 "Hardware ECC not possible\n");
3122 if (!chip
->ecc
.read_page
)
3123 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
3126 /* Use standard hwecc read page function ? */
3127 if (!chip
->ecc
.read_page
)
3128 chip
->ecc
.read_page
= nand_read_page_hwecc
;
3129 if (!chip
->ecc
.write_page
)
3130 chip
->ecc
.write_page
= nand_write_page_hwecc
;
3131 if (!chip
->ecc
.read_page_raw
)
3132 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3133 if (!chip
->ecc
.write_page_raw
)
3134 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3135 if (!chip
->ecc
.read_oob
)
3136 chip
->ecc
.read_oob
= nand_read_oob_std
;
3137 if (!chip
->ecc
.write_oob
)
3138 chip
->ecc
.write_oob
= nand_write_oob_std
;
3140 case NAND_ECC_HW_SYNDROME
:
3141 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3142 !chip
->ecc
.hwctl
) &&
3143 (!chip
->ecc
.read_page
||
3144 chip
->ecc
.read_page
== nand_read_page_hwecc
||
3145 !chip
->ecc
.write_page
||
3146 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
3147 printk(KERN_WARNING
"No ECC functions supplied; "
3148 "Hardware ECC not possible\n");
3151 /* Use standard syndrome read/write page function ? */
3152 if (!chip
->ecc
.read_page
)
3153 chip
->ecc
.read_page
= nand_read_page_syndrome
;
3154 if (!chip
->ecc
.write_page
)
3155 chip
->ecc
.write_page
= nand_write_page_syndrome
;
3156 if (!chip
->ecc
.read_page_raw
)
3157 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
3158 if (!chip
->ecc
.write_page_raw
)
3159 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
3160 if (!chip
->ecc
.read_oob
)
3161 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
3162 if (!chip
->ecc
.write_oob
)
3163 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
3165 if (mtd
->writesize
>= chip
->ecc
.size
)
3167 printk(KERN_WARNING
"%d byte HW ECC not possible on "
3168 "%d byte page size, fallback to SW ECC\n",
3169 chip
->ecc
.size
, mtd
->writesize
);
3170 chip
->ecc
.mode
= NAND_ECC_SOFT
;
3173 chip
->ecc
.calculate
= nand_calculate_ecc
;
3174 chip
->ecc
.correct
= nand_correct_data
;
3175 chip
->ecc
.read_page
= nand_read_page_swecc
;
3176 chip
->ecc
.read_subpage
= nand_read_subpage
;
3177 chip
->ecc
.write_page
= nand_write_page_swecc
;
3178 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3179 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3180 chip
->ecc
.read_oob
= nand_read_oob_std
;
3181 chip
->ecc
.write_oob
= nand_write_oob_std
;
3182 if (!chip
->ecc
.size
)
3183 chip
->ecc
.size
= 256;
3184 chip
->ecc
.bytes
= 3;
3188 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
3189 "This is not recommended !!\n");
3190 chip
->ecc
.read_page
= nand_read_page_raw
;
3191 chip
->ecc
.write_page
= nand_write_page_raw
;
3192 chip
->ecc
.read_oob
= nand_read_oob_std
;
3193 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3194 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3195 chip
->ecc
.write_oob
= nand_write_oob_std
;
3196 chip
->ecc
.size
= mtd
->writesize
;
3197 chip
->ecc
.bytes
= 0;
3201 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
3207 * The number of bytes available for a client to place data into
3208 * the out of band area
3210 chip
->ecc
.layout
->oobavail
= 0;
3211 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
3212 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
3213 chip
->ecc
.layout
->oobavail
+=
3214 chip
->ecc
.layout
->oobfree
[i
].length
;
3215 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
3218 * Set the number of read / write steps for one page depending on ECC
3221 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
3222 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
3223 printk(KERN_WARNING
"Invalid ecc parameters\n");
3226 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
3229 * Allow subpage writes up to ecc.steps. Not possible for MLC
3232 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
3233 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3234 switch(chip
->ecc
.steps
) {
3236 mtd
->subpage_sft
= 1;
3241 mtd
->subpage_sft
= 2;
3245 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3247 /* Initialize state */
3248 chip
->state
= FL_READY
;
3250 /* De-select the device */
3251 chip
->select_chip(mtd
, -1);
3253 /* Invalidate the pagebuffer reference */
3256 /* Fill in remaining MTD driver data */
3257 mtd
->type
= MTD_NANDFLASH
;
3258 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3260 mtd
->erase
= nand_erase
;
3262 mtd
->unpoint
= NULL
;
3263 mtd
->read
= nand_read
;
3264 mtd
->write
= nand_write
;
3265 mtd
->panic_write
= panic_nand_write
;
3266 mtd
->read_oob
= nand_read_oob
;
3267 mtd
->write_oob
= nand_write_oob
;
3268 mtd
->sync
= nand_sync
;
3271 mtd
->suspend
= nand_suspend
;
3272 mtd
->resume
= nand_resume
;
3273 mtd
->block_isbad
= nand_block_isbad
;
3274 mtd
->block_markbad
= nand_block_markbad
;
3276 /* propagate ecc.layout to mtd_info */
3277 mtd
->ecclayout
= chip
->ecc
.layout
;
3279 /* Check, if we should skip the bad block table scan */
3280 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3283 /* Build bad block table */
3284 return chip
->scan_bbt(mtd
);
3287 /* is_module_text_address() isn't exported, and it's mostly a pointless
3288 test if this is a module _anyway_ -- they'd have to try _really_ hard
3289 to call us from in-kernel code if the core NAND support is modular. */
3291 #define caller_is_module() (1)
3293 #define caller_is_module() \
3294 is_module_text_address((unsigned long)__builtin_return_address(0))
3298 * nand_scan - [NAND Interface] Scan for the NAND device
3299 * @mtd: MTD device structure
3300 * @maxchips: Number of chips to scan for
3302 * This fills out all the uninitialized function pointers
3303 * with the defaults.
3304 * The flash ID is read and the mtd/chip structures are
3305 * filled with the appropriate values.
3306 * The mtd->owner field must be set to the module of the caller
3309 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3313 /* Many callers got this wrong, so check for it for a while... */
3314 if (!mtd
->owner
&& caller_is_module()) {
3315 printk(KERN_CRIT
"%s called with NULL mtd->owner!\n",
3320 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
3322 ret
= nand_scan_tail(mtd
);
3327 * nand_release - [NAND Interface] Free resources held by the NAND device
3328 * @mtd: MTD device structure
3330 void nand_release(struct mtd_info
*mtd
)
3332 struct nand_chip
*chip
= mtd
->priv
;
3334 #ifdef CONFIG_MTD_PARTITIONS
3335 /* Deregister partitions */
3336 del_mtd_partitions(mtd
);
3338 /* Deregister the device */
3339 del_mtd_device(mtd
);
3341 /* Free bad block table memory */
3343 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3344 kfree(chip
->buffers
);
3346 /* Free bad block descriptor memory */
3347 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
3348 & NAND_BBT_DYNAMICSTRUCT
)
3349 kfree(chip
->badblock_pattern
);
3352 EXPORT_SYMBOL_GPL(nand_lock
);
3353 EXPORT_SYMBOL_GPL(nand_unlock
);
3354 EXPORT_SYMBOL_GPL(nand_scan
);
3355 EXPORT_SYMBOL_GPL(nand_scan_ident
);
3356 EXPORT_SYMBOL_GPL(nand_scan_tail
);
3357 EXPORT_SYMBOL_GPL(nand_release
);
3359 static int __init
nand_base_init(void)
3361 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3365 static void __exit
nand_base_exit(void)
3367 led_trigger_unregister_simple(nand_led_trigger
);
3370 module_init(nand_base_init
);
3371 module_exit(nand_base_exit
);
3373 MODULE_LICENSE("GPL");
3374 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3375 MODULE_DESCRIPTION("Generic NAND flash driver code");