drm/i915: kill mappable/fenceable disdinction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / nand_base.c
blobd551ddd9537a34d17fe3c13b7604855fc5c06f5b
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
84 static struct nand_ecclayout nand_oob_128 = {
85 .eccbytes = 48,
86 .eccpos = {
87 80, 81, 82, 83, 84, 85, 86, 87,
88 88, 89, 90, 91, 92, 93, 94, 95,
89 96, 97, 98, 99, 100, 101, 102, 103,
90 104, 105, 106, 107, 108, 109, 110, 111,
91 112, 113, 114, 115, 116, 117, 118, 119,
92 120, 121, 122, 123, 124, 125, 126, 127},
93 .oobfree = {
94 {.offset = 2,
95 .length = 78}}
98 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99 int new_state);
101 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102 struct mtd_oob_ops *ops);
105 * For devices which display every fart in the system on a separate LED. Is
106 * compiled away when LED support is disabled.
108 DEFINE_LED_TRIGGER(nand_led_trigger);
110 static int check_offs_len(struct mtd_info *mtd,
111 loff_t ofs, uint64_t len)
113 struct nand_chip *chip = mtd->priv;
114 int ret = 0;
116 /* Start address must align on block boundary */
117 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119 ret = -EINVAL;
122 /* Length must align on block boundary */
123 if (len & ((1 << chip->phys_erase_shift) - 1)) {
124 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125 __func__);
126 ret = -EINVAL;
129 /* Do not allow past end of device */
130 if (ofs + len > mtd->size) {
131 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132 __func__);
133 ret = -EINVAL;
136 return ret;
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
143 * Deselect, release chip lock and wake up anyone waiting on the device
145 static void nand_release_device(struct mtd_info *mtd)
147 struct nand_chip *chip = mtd->priv;
149 /* De-select the NAND device */
150 chip->select_chip(mtd, -1);
152 /* Release the controller and the chip */
153 spin_lock(&chip->controller->lock);
154 chip->controller->active = NULL;
155 chip->state = FL_READY;
156 wake_up(&chip->controller->wq);
157 spin_unlock(&chip->controller->lock);
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd: MTD device structure
164 * Default read function for 8bit buswith
166 static uint8_t nand_read_byte(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 return readb(chip->IO_ADDR_R);
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswith with
177 * endianess conversion
179 static uint8_t nand_read_byte16(struct mtd_info *mtd)
181 struct nand_chip *chip = mtd->priv;
182 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd: MTD device structure
189 * Default read function for 16bit buswith without
190 * endianess conversion
192 static u16 nand_read_word(struct mtd_info *mtd)
194 struct nand_chip *chip = mtd->priv;
195 return readw(chip->IO_ADDR_R);
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd: MTD device structure
201 * @chipnr: chipnumber to select, -1 for deselect
203 * Default select function for 1 chip devices.
205 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207 struct nand_chip *chip = mtd->priv;
209 switch (chipnr) {
210 case -1:
211 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212 break;
213 case 0:
214 break;
216 default:
217 BUG();
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd: MTD device structure
224 * @buf: data buffer
225 * @len: number of bytes to write
227 * Default write function for 8bit buswith
229 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231 int i;
232 struct nand_chip *chip = mtd->priv;
234 for (i = 0; i < len; i++)
235 writeb(buf[i], chip->IO_ADDR_W);
239 * nand_read_buf - [DEFAULT] read chip data into buffer
240 * @mtd: MTD device structure
241 * @buf: buffer to store date
242 * @len: number of bytes to read
244 * Default read function for 8bit buswith
246 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248 int i;
249 struct nand_chip *chip = mtd->priv;
251 for (i = 0; i < len; i++)
252 buf[i] = readb(chip->IO_ADDR_R);
256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257 * @mtd: MTD device structure
258 * @buf: buffer containing the data to compare
259 * @len: number of bytes to compare
261 * Default verify function for 8bit buswith
263 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265 int i;
266 struct nand_chip *chip = mtd->priv;
268 for (i = 0; i < len; i++)
269 if (buf[i] != readb(chip->IO_ADDR_R))
270 return -EFAULT;
271 return 0;
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd: MTD device structure
277 * @buf: data buffer
278 * @len: number of bytes to write
280 * Default write function for 16bit buswith
282 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284 int i;
285 struct nand_chip *chip = mtd->priv;
286 u16 *p = (u16 *) buf;
287 len >>= 1;
289 for (i = 0; i < len; i++)
290 writew(p[i], chip->IO_ADDR_W);
295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
296 * @mtd: MTD device structure
297 * @buf: buffer to store date
298 * @len: number of bytes to read
300 * Default read function for 16bit buswith
302 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304 int i;
305 struct nand_chip *chip = mtd->priv;
306 u16 *p = (u16 *) buf;
307 len >>= 1;
309 for (i = 0; i < len; i++)
310 p[i] = readw(chip->IO_ADDR_R);
314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315 * @mtd: MTD device structure
316 * @buf: buffer containing the data to compare
317 * @len: number of bytes to compare
319 * Default verify function for 16bit buswith
321 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 int i;
324 struct nand_chip *chip = mtd->priv;
325 u16 *p = (u16 *) buf;
326 len >>= 1;
328 for (i = 0; i < len; i++)
329 if (p[i] != readw(chip->IO_ADDR_R))
330 return -EFAULT;
332 return 0;
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd: MTD device structure
338 * @ofs: offset from device start
339 * @getchip: 0, if the chip is already selected
341 * Check, if the block is bad.
343 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345 int page, chipnr, res = 0;
346 struct nand_chip *chip = mtd->priv;
347 u16 bad;
349 if (chip->options & NAND_BBT_SCANLASTPAGE)
350 ofs += mtd->erasesize - mtd->writesize;
352 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
354 if (getchip) {
355 chipnr = (int)(ofs >> chip->chip_shift);
357 nand_get_device(chip, mtd, FL_READING);
359 /* Select the NAND device */
360 chip->select_chip(mtd, chipnr);
363 if (chip->options & NAND_BUSWIDTH_16) {
364 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
365 page);
366 bad = cpu_to_le16(chip->read_word(mtd));
367 if (chip->badblockpos & 0x1)
368 bad >>= 8;
369 else
370 bad &= 0xFF;
371 } else {
372 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
373 bad = chip->read_byte(mtd);
376 if (likely(chip->badblockbits == 8))
377 res = bad != 0xFF;
378 else
379 res = hweight8(bad) < chip->badblockbits;
381 if (getchip)
382 nand_release_device(mtd);
384 return res;
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
395 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397 struct nand_chip *chip = mtd->priv;
398 uint8_t buf[2] = { 0, 0 };
399 int block, ret, i = 0;
401 if (chip->options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
404 /* Get block number */
405 block = (int)(ofs >> chip->bbt_erase_shift);
406 if (chip->bbt)
407 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409 /* Do we have a flash based bad block table ? */
410 if (chip->options & NAND_USE_FLASH_BBT)
411 ret = nand_update_bbt(mtd, ofs);
412 else {
413 nand_get_device(chip, mtd, FL_WRITING);
415 /* Write to first two pages and to byte 1 and 6 if necessary.
416 * If we write to more than one location, the first error
417 * encountered quits the procedure. We write two bytes per
418 * location, so we dont have to mess with 16 bit access.
420 do {
421 chip->ops.len = chip->ops.ooblen = 2;
422 chip->ops.datbuf = NULL;
423 chip->ops.oobbuf = buf;
424 chip->ops.ooboffs = chip->badblockpos & ~0x01;
426 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
428 if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430 & ~0x01;
431 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
433 i++;
434 ofs += mtd->writesize;
435 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436 i < 2);
438 nand_release_device(mtd);
440 if (!ret)
441 mtd->ecc_stats.badblocks++;
443 return ret;
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd: MTD device structure
449 * Check, if the device is write protected
451 * The function expects, that the device is already selected
453 static int nand_check_wp(struct mtd_info *mtd)
455 struct nand_chip *chip = mtd->priv;
457 /* broken xD cards report WP despite being writable */
458 if (chip->options & NAND_BROKEN_XD)
459 return 0;
461 /* Check the WP bit */
462 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
470 * @getchip: 0, if the chip is already selected
471 * @allowbbt: 1, if its allowed to access the bbt area
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
476 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477 int allowbbt)
479 struct nand_chip *chip = mtd->priv;
481 if (!chip->bbt)
482 return chip->block_bad(mtd, ofs, getchip);
484 /* Return info from the table */
485 return nand_isbad_bbt(mtd, ofs, allowbbt);
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd: MTD device structure
491 * @timeo: Timeout
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 * context.
496 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
498 struct nand_chip *chip = mtd->priv;
499 int i;
501 /* Wait for the device to get ready */
502 for (i = 0; i < timeo; i++) {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 mdelay(1);
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
514 void nand_wait_ready(struct mtd_info *mtd)
516 struct nand_chip *chip = mtd->priv;
517 unsigned long timeo = jiffies + 2;
519 /* 400ms timeout */
520 if (in_interrupt() || oops_in_progress)
521 return panic_nand_wait_ready(mtd, 400);
523 led_trigger_event(nand_led_trigger, LED_FULL);
524 /* wait until command is processed or timeout occures */
525 do {
526 if (chip->dev_ready(mtd))
527 break;
528 touch_softlockup_watchdog();
529 } while (time_before(jiffies, timeo));
530 led_trigger_event(nand_led_trigger, LED_OFF);
532 EXPORT_SYMBOL_GPL(nand_wait_ready);
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd: MTD device structure
537 * @command: the command to be sent
538 * @column: the column address for this command, -1 if none
539 * @page_addr: the page address for this command, -1 if none
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
544 static void nand_command(struct mtd_info *mtd, unsigned int command,
545 int column, int page_addr)
547 register struct nand_chip *chip = mtd->priv;
548 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
551 * Write out the command to the device.
553 if (command == NAND_CMD_SEQIN) {
554 int readcmd;
556 if (column >= mtd->writesize) {
557 /* OOB area */
558 column -= mtd->writesize;
559 readcmd = NAND_CMD_READOOB;
560 } else if (column < 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd = NAND_CMD_READ0;
563 } else {
564 column -= 256;
565 readcmd = NAND_CMD_READ1;
567 chip->cmd_ctrl(mtd, readcmd, ctrl);
568 ctrl &= ~NAND_CTRL_CHANGE;
570 chip->cmd_ctrl(mtd, command, ctrl);
573 * Address cycle, when necessary
575 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576 /* Serially input address */
577 if (column != -1) {
578 /* Adjust columns for 16 bit buswidth */
579 if (chip->options & NAND_BUSWIDTH_16)
580 column >>= 1;
581 chip->cmd_ctrl(mtd, column, ctrl);
582 ctrl &= ~NAND_CTRL_CHANGE;
584 if (page_addr != -1) {
585 chip->cmd_ctrl(mtd, page_addr, ctrl);
586 ctrl &= ~NAND_CTRL_CHANGE;
587 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
588 /* One more address cycle for devices > 32MiB */
589 if (chip->chipsize > (32 << 20))
590 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
592 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
595 * program and erase have their own busy handlers
596 * status and sequential in needs no delay
598 switch (command) {
600 case NAND_CMD_PAGEPROG:
601 case NAND_CMD_ERASE1:
602 case NAND_CMD_ERASE2:
603 case NAND_CMD_SEQIN:
604 case NAND_CMD_STATUS:
605 return;
607 case NAND_CMD_RESET:
608 if (chip->dev_ready)
609 break;
610 udelay(chip->chip_delay);
611 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
613 chip->cmd_ctrl(mtd,
614 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
615 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
616 return;
618 /* This applies to read commands */
619 default:
621 * If we don't have access to the busy pin, we apply the given
622 * command delay
624 if (!chip->dev_ready) {
625 udelay(chip->chip_delay);
626 return;
629 /* Apply this short delay always to ensure that we do wait tWB in
630 * any case on any machine. */
631 ndelay(100);
633 nand_wait_ready(mtd);
637 * nand_command_lp - [DEFAULT] Send command to NAND large page device
638 * @mtd: MTD device structure
639 * @command: the command to be sent
640 * @column: the column address for this command, -1 if none
641 * @page_addr: the page address for this command, -1 if none
643 * Send command to NAND device. This is the version for the new large page
644 * devices We dont have the separate regions as we have in the small page
645 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
647 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
648 int column, int page_addr)
650 register struct nand_chip *chip = mtd->priv;
652 /* Emulate NAND_CMD_READOOB */
653 if (command == NAND_CMD_READOOB) {
654 column += mtd->writesize;
655 command = NAND_CMD_READ0;
658 /* Command latch cycle */
659 chip->cmd_ctrl(mtd, command & 0xff,
660 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
662 if (column != -1 || page_addr != -1) {
663 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
665 /* Serially input address */
666 if (column != -1) {
667 /* Adjust columns for 16 bit buswidth */
668 if (chip->options & NAND_BUSWIDTH_16)
669 column >>= 1;
670 chip->cmd_ctrl(mtd, column, ctrl);
671 ctrl &= ~NAND_CTRL_CHANGE;
672 chip->cmd_ctrl(mtd, column >> 8, ctrl);
674 if (page_addr != -1) {
675 chip->cmd_ctrl(mtd, page_addr, ctrl);
676 chip->cmd_ctrl(mtd, page_addr >> 8,
677 NAND_NCE | NAND_ALE);
678 /* One more address cycle for devices > 128MiB */
679 if (chip->chipsize > (128 << 20))
680 chip->cmd_ctrl(mtd, page_addr >> 16,
681 NAND_NCE | NAND_ALE);
684 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
687 * program and erase have their own busy handlers
688 * status, sequential in, and deplete1 need no delay
690 switch (command) {
692 case NAND_CMD_CACHEDPROG:
693 case NAND_CMD_PAGEPROG:
694 case NAND_CMD_ERASE1:
695 case NAND_CMD_ERASE2:
696 case NAND_CMD_SEQIN:
697 case NAND_CMD_RNDIN:
698 case NAND_CMD_STATUS:
699 case NAND_CMD_DEPLETE1:
700 return;
703 * read error status commands require only a short delay
705 case NAND_CMD_STATUS_ERROR:
706 case NAND_CMD_STATUS_ERROR0:
707 case NAND_CMD_STATUS_ERROR1:
708 case NAND_CMD_STATUS_ERROR2:
709 case NAND_CMD_STATUS_ERROR3:
710 udelay(chip->chip_delay);
711 return;
713 case NAND_CMD_RESET:
714 if (chip->dev_ready)
715 break;
716 udelay(chip->chip_delay);
717 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
718 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
719 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
720 NAND_NCE | NAND_CTRL_CHANGE);
721 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
722 return;
724 case NAND_CMD_RNDOUT:
725 /* No ready / busy check necessary */
726 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729 NAND_NCE | NAND_CTRL_CHANGE);
730 return;
732 case NAND_CMD_READ0:
733 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 NAND_NCE | NAND_CTRL_CHANGE);
738 /* This applies to read commands */
739 default:
741 * If we don't have access to the busy pin, we apply the given
742 * command delay
744 if (!chip->dev_ready) {
745 udelay(chip->chip_delay);
746 return;
750 /* Apply this short delay always to ensure that we do wait tWB in
751 * any case on any machine. */
752 ndelay(100);
754 nand_wait_ready(mtd);
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip: the nand chip descriptor
760 * @mtd: MTD device structure
761 * @new_state: the state which is requested
763 * Used when in panic, no locks are taken.
765 static void panic_nand_get_device(struct nand_chip *chip,
766 struct mtd_info *mtd, int new_state)
768 /* Hardware controller shared among independend devices */
769 chip->controller->active = chip;
770 chip->state = new_state;
774 * nand_get_device - [GENERIC] Get chip for selected access
775 * @chip: the nand chip descriptor
776 * @mtd: MTD device structure
777 * @new_state: the state which is requested
779 * Get the device and lock it for exclusive access
781 static int
782 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
784 spinlock_t *lock = &chip->controller->lock;
785 wait_queue_head_t *wq = &chip->controller->wq;
786 DECLARE_WAITQUEUE(wait, current);
787 retry:
788 spin_lock(lock);
790 /* Hardware controller shared among independent devices */
791 if (!chip->controller->active)
792 chip->controller->active = chip;
794 if (chip->controller->active == chip && chip->state == FL_READY) {
795 chip->state = new_state;
796 spin_unlock(lock);
797 return 0;
799 if (new_state == FL_PM_SUSPENDED) {
800 if (chip->controller->active->state == FL_PM_SUSPENDED) {
801 chip->state = FL_PM_SUSPENDED;
802 spin_unlock(lock);
803 return 0;
806 set_current_state(TASK_UNINTERRUPTIBLE);
807 add_wait_queue(wq, &wait);
808 spin_unlock(lock);
809 schedule();
810 remove_wait_queue(wq, &wait);
811 goto retry;
815 * panic_nand_wait - [GENERIC] wait until the command is done
816 * @mtd: MTD device structure
817 * @chip: NAND chip structure
818 * @timeo: Timeout
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops trough mtdoops.
824 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825 unsigned long timeo)
827 int i;
828 for (i = 0; i < timeo; i++) {
829 if (chip->dev_ready) {
830 if (chip->dev_ready(mtd))
831 break;
832 } else {
833 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834 break;
836 mdelay(1);
841 * nand_wait - [DEFAULT] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
845 * Wait for command done. This applies to erase and program only
846 * Erase can take up to 400ms and program up to 20ms according to
847 * general NAND and SmartMedia specs
849 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
852 unsigned long timeo = jiffies;
853 int status, state = chip->state;
855 if (state == FL_ERASING)
856 timeo += (HZ * 400) / 1000;
857 else
858 timeo += (HZ * 20) / 1000;
860 led_trigger_event(nand_led_trigger, LED_FULL);
862 /* Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine. */
864 ndelay(100);
866 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
868 else
869 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
871 if (in_interrupt() || oops_in_progress)
872 panic_nand_wait(mtd, chip, timeo);
873 else {
874 while (time_before(jiffies, timeo)) {
875 if (chip->dev_ready) {
876 if (chip->dev_ready(mtd))
877 break;
878 } else {
879 if (chip->read_byte(mtd) & NAND_STATUS_READY)
880 break;
882 cond_resched();
885 led_trigger_event(nand_led_trigger, LED_OFF);
887 status = (int)chip->read_byte(mtd);
888 return status;
892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
894 * @mtd: mtd info
895 * @ofs: offset to start unlock from
896 * @len: length to unlock
897 * @invert: when = 0, unlock the range of blocks within the lower and
898 * upper boundary address
899 * when = 1, unlock the range of blocks outside the boundaries
900 * of the lower and upper boundary address
902 * return - unlock status
904 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905 uint64_t len, int invert)
907 int ret = 0;
908 int status, page;
909 struct nand_chip *chip = mtd->priv;
911 /* Submit address of first page to unlock */
912 page = ofs >> chip->page_shift;
913 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
915 /* Submit address of last page to unlock */
916 page = (ofs + len) >> chip->page_shift;
917 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918 (page | invert) & chip->pagemask);
920 /* Call wait ready function */
921 status = chip->waitfunc(mtd, chip);
922 udelay(1000);
923 /* See if device thinks it succeeded */
924 if (status & 0x01) {
925 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926 __func__, status);
927 ret = -EIO;
930 return ret;
934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
936 * @mtd: mtd info
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
940 * return - unlock status
942 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
944 int ret = 0;
945 int chipnr;
946 struct nand_chip *chip = mtd->priv;
948 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949 __func__, (unsigned long long)ofs, len);
951 if (check_offs_len(mtd, ofs, len))
952 ret = -EINVAL;
954 /* Align to last block address if size addresses end of the device */
955 if (ofs + len == mtd->size)
956 len -= mtd->erasesize;
958 nand_get_device(chip, mtd, FL_UNLOCKING);
960 /* Shift to get chip number */
961 chipnr = ofs >> chip->chip_shift;
963 chip->select_chip(mtd, chipnr);
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd)) {
967 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968 __func__);
969 ret = -EIO;
970 goto out;
973 ret = __nand_unlock(mtd, ofs, len, 0);
975 out:
976 /* de-select the NAND device */
977 chip->select_chip(mtd, -1);
979 nand_release_device(mtd);
981 return ret;
985 * nand_lock - [REPLACEABLE] locks all blocks present in the device
987 * @mtd: mtd info
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
991 * return - lock status
993 * This feature is not supported in many NAND parts. 'Micron' NAND parts
994 * do have this feature, but it allows only to lock all blocks, not for
995 * specified range for block.
997 * Implementing 'lock' feature by making use of 'unlock', for now.
999 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1001 int ret = 0;
1002 int chipnr, status, page;
1003 struct nand_chip *chip = mtd->priv;
1005 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1006 __func__, (unsigned long long)ofs, len);
1008 if (check_offs_len(mtd, ofs, len))
1009 ret = -EINVAL;
1011 nand_get_device(chip, mtd, FL_LOCKING);
1013 /* Shift to get chip number */
1014 chipnr = ofs >> chip->chip_shift;
1016 chip->select_chip(mtd, chipnr);
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd)) {
1020 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1021 __func__);
1022 status = MTD_ERASE_FAILED;
1023 ret = -EIO;
1024 goto out;
1027 /* Submit address of first page to lock */
1028 page = ofs >> chip->page_shift;
1029 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1031 /* Call wait ready function */
1032 status = chip->waitfunc(mtd, chip);
1033 udelay(1000);
1034 /* See if device thinks it succeeded */
1035 if (status & 0x01) {
1036 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1037 __func__, status);
1038 ret = -EIO;
1039 goto out;
1042 ret = __nand_unlock(mtd, ofs, len, 0x1);
1044 out:
1045 /* de-select the NAND device */
1046 chip->select_chip(mtd, -1);
1048 nand_release_device(mtd);
1050 return ret;
1054 * nand_read_page_raw - [Intern] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
1060 * Not for syndrome calculating ecc controllers, which use a special oob layout
1062 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1063 uint8_t *buf, int page)
1065 chip->read_buf(mtd, buf, mtd->writesize);
1066 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067 return 0;
1071 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
1075 * @page: page number to read
1077 * We need a special oob layout and handling even when OOB isn't used.
1079 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1080 uint8_t *buf, int page)
1082 int eccsize = chip->ecc.size;
1083 int eccbytes = chip->ecc.bytes;
1084 uint8_t *oob = chip->oob_poi;
1085 int steps, size;
1087 for (steps = chip->ecc.steps; steps > 0; steps--) {
1088 chip->read_buf(mtd, buf, eccsize);
1089 buf += eccsize;
1091 if (chip->ecc.prepad) {
1092 chip->read_buf(mtd, oob, chip->ecc.prepad);
1093 oob += chip->ecc.prepad;
1096 chip->read_buf(mtd, oob, eccbytes);
1097 oob += eccbytes;
1099 if (chip->ecc.postpad) {
1100 chip->read_buf(mtd, oob, chip->ecc.postpad);
1101 oob += chip->ecc.postpad;
1105 size = mtd->oobsize - (oob - chip->oob_poi);
1106 if (size)
1107 chip->read_buf(mtd, oob, size);
1109 return 0;
1113 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @buf: buffer to store read data
1117 * @page: page number to read
1119 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1120 uint8_t *buf, int page)
1122 int i, eccsize = chip->ecc.size;
1123 int eccbytes = chip->ecc.bytes;
1124 int eccsteps = chip->ecc.steps;
1125 uint8_t *p = buf;
1126 uint8_t *ecc_calc = chip->buffers->ecccalc;
1127 uint8_t *ecc_code = chip->buffers->ecccode;
1128 uint32_t *eccpos = chip->ecc.layout->eccpos;
1130 chip->ecc.read_page_raw(mtd, chip, buf, page);
1132 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1133 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1135 for (i = 0; i < chip->ecc.total; i++)
1136 ecc_code[i] = chip->oob_poi[eccpos[i]];
1138 eccsteps = chip->ecc.steps;
1139 p = buf;
1141 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142 int stat;
1144 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1145 if (stat < 0)
1146 mtd->ecc_stats.failed++;
1147 else
1148 mtd->ecc_stats.corrected += stat;
1150 return 0;
1154 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155 * @mtd: mtd info structure
1156 * @chip: nand chip info structure
1157 * @data_offs: offset of requested data within the page
1158 * @readlen: data length
1159 * @bufpoi: buffer to store read data
1161 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1163 int start_step, end_step, num_steps;
1164 uint32_t *eccpos = chip->ecc.layout->eccpos;
1165 uint8_t *p;
1166 int data_col_addr, i, gaps = 0;
1167 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1168 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1170 /* Column address wihin the page aligned to ECC size (256bytes). */
1171 start_step = data_offs / chip->ecc.size;
1172 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1173 num_steps = end_step - start_step + 1;
1175 /* Data size aligned to ECC ecc.size*/
1176 datafrag_len = num_steps * chip->ecc.size;
1177 eccfrag_len = num_steps * chip->ecc.bytes;
1179 data_col_addr = start_step * chip->ecc.size;
1180 /* If we read not a page aligned data */
1181 if (data_col_addr != 0)
1182 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1184 p = bufpoi + data_col_addr;
1185 chip->read_buf(mtd, p, datafrag_len);
1187 /* Calculate ECC */
1188 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1189 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1191 /* The performance is faster if to position offsets
1192 according to ecc.pos. Let make sure here that
1193 there are no gaps in ecc positions */
1194 for (i = 0; i < eccfrag_len - 1; i++) {
1195 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1196 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1197 gaps = 1;
1198 break;
1201 if (gaps) {
1202 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1203 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1204 } else {
1205 /* send the command to read the particular ecc bytes */
1206 /* take care about buswidth alignment in read_buf */
1207 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1208 aligned_len = eccfrag_len;
1209 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1210 aligned_len++;
1211 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1212 aligned_len++;
1214 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1215 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1218 for (i = 0; i < eccfrag_len; i++)
1219 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1221 p = bufpoi + data_col_addr;
1222 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1223 int stat;
1225 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1226 if (stat == -1)
1227 mtd->ecc_stats.failed++;
1228 else
1229 mtd->ecc_stats.corrected += stat;
1231 return 0;
1235 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1236 * @mtd: mtd info structure
1237 * @chip: nand chip info structure
1238 * @buf: buffer to store read data
1239 * @page: page number to read
1241 * Not for syndrome calculating ecc controllers which need a special oob layout
1243 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1244 uint8_t *buf, int page)
1246 int i, eccsize = chip->ecc.size;
1247 int eccbytes = chip->ecc.bytes;
1248 int eccsteps = chip->ecc.steps;
1249 uint8_t *p = buf;
1250 uint8_t *ecc_calc = chip->buffers->ecccalc;
1251 uint8_t *ecc_code = chip->buffers->ecccode;
1252 uint32_t *eccpos = chip->ecc.layout->eccpos;
1254 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1256 chip->read_buf(mtd, p, eccsize);
1257 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1259 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1261 for (i = 0; i < chip->ecc.total; i++)
1262 ecc_code[i] = chip->oob_poi[eccpos[i]];
1264 eccsteps = chip->ecc.steps;
1265 p = buf;
1267 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1268 int stat;
1270 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1271 if (stat < 0)
1272 mtd->ecc_stats.failed++;
1273 else
1274 mtd->ecc_stats.corrected += stat;
1276 return 0;
1280 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281 * @mtd: mtd info structure
1282 * @chip: nand chip info structure
1283 * @buf: buffer to store read data
1284 * @page: page number to read
1286 * Hardware ECC for large page chips, require OOB to be read first.
1287 * For this ECC mode, the write_page method is re-used from ECC_HW.
1288 * These methods read/write ECC from the OOB area, unlike the
1289 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290 * "infix ECC" scheme and reads/writes ECC from the data area, by
1291 * overwriting the NAND manufacturer bad block markings.
1293 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1294 struct nand_chip *chip, uint8_t *buf, int page)
1296 int i, eccsize = chip->ecc.size;
1297 int eccbytes = chip->ecc.bytes;
1298 int eccsteps = chip->ecc.steps;
1299 uint8_t *p = buf;
1300 uint8_t *ecc_code = chip->buffers->ecccode;
1301 uint32_t *eccpos = chip->ecc.layout->eccpos;
1302 uint8_t *ecc_calc = chip->buffers->ecccalc;
1304 /* Read the OOB area first */
1305 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1306 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1307 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1309 for (i = 0; i < chip->ecc.total; i++)
1310 ecc_code[i] = chip->oob_poi[eccpos[i]];
1312 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1313 int stat;
1315 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1316 chip->read_buf(mtd, p, eccsize);
1317 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1319 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1320 if (stat < 0)
1321 mtd->ecc_stats.failed++;
1322 else
1323 mtd->ecc_stats.corrected += stat;
1325 return 0;
1329 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1330 * @mtd: mtd info structure
1331 * @chip: nand chip info structure
1332 * @buf: buffer to store read data
1333 * @page: page number to read
1335 * The hw generator calculates the error syndrome automatically. Therefor
1336 * we need a special oob layout and handling.
1338 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1339 uint8_t *buf, int page)
1341 int i, eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 int eccsteps = chip->ecc.steps;
1344 uint8_t *p = buf;
1345 uint8_t *oob = chip->oob_poi;
1347 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1348 int stat;
1350 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1351 chip->read_buf(mtd, p, eccsize);
1353 if (chip->ecc.prepad) {
1354 chip->read_buf(mtd, oob, chip->ecc.prepad);
1355 oob += chip->ecc.prepad;
1358 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1359 chip->read_buf(mtd, oob, eccbytes);
1360 stat = chip->ecc.correct(mtd, p, oob, NULL);
1362 if (stat < 0)
1363 mtd->ecc_stats.failed++;
1364 else
1365 mtd->ecc_stats.corrected += stat;
1367 oob += eccbytes;
1369 if (chip->ecc.postpad) {
1370 chip->read_buf(mtd, oob, chip->ecc.postpad);
1371 oob += chip->ecc.postpad;
1375 /* Calculate remaining oob bytes */
1376 i = mtd->oobsize - (oob - chip->oob_poi);
1377 if (i)
1378 chip->read_buf(mtd, oob, i);
1380 return 0;
1384 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385 * @chip: nand chip structure
1386 * @oob: oob destination address
1387 * @ops: oob ops structure
1388 * @len: size of oob to transfer
1390 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1391 struct mtd_oob_ops *ops, size_t len)
1393 switch(ops->mode) {
1395 case MTD_OOB_PLACE:
1396 case MTD_OOB_RAW:
1397 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1398 return oob + len;
1400 case MTD_OOB_AUTO: {
1401 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1402 uint32_t boffs = 0, roffs = ops->ooboffs;
1403 size_t bytes = 0;
1405 for(; free->length && len; free++, len -= bytes) {
1406 /* Read request not from offset 0 ? */
1407 if (unlikely(roffs)) {
1408 if (roffs >= free->length) {
1409 roffs -= free->length;
1410 continue;
1412 boffs = free->offset + roffs;
1413 bytes = min_t(size_t, len,
1414 (free->length - roffs));
1415 roffs = 0;
1416 } else {
1417 bytes = min_t(size_t, len, free->length);
1418 boffs = free->offset;
1420 memcpy(oob, chip->oob_poi + boffs, bytes);
1421 oob += bytes;
1423 return oob;
1425 default:
1426 BUG();
1428 return NULL;
1432 * nand_do_read_ops - [Internal] Read data with ECC
1434 * @mtd: MTD device structure
1435 * @from: offset to read from
1436 * @ops: oob ops structure
1438 * Internal function. Called with chip held.
1440 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441 struct mtd_oob_ops *ops)
1443 int chipnr, page, realpage, col, bytes, aligned;
1444 struct nand_chip *chip = mtd->priv;
1445 struct mtd_ecc_stats stats;
1446 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1447 int sndcmd = 1;
1448 int ret = 0;
1449 uint32_t readlen = ops->len;
1450 uint32_t oobreadlen = ops->ooblen;
1451 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1452 mtd->oobavail : mtd->oobsize;
1454 uint8_t *bufpoi, *oob, *buf;
1456 stats = mtd->ecc_stats;
1458 chipnr = (int)(from >> chip->chip_shift);
1459 chip->select_chip(mtd, chipnr);
1461 realpage = (int)(from >> chip->page_shift);
1462 page = realpage & chip->pagemask;
1464 col = (int)(from & (mtd->writesize - 1));
1466 buf = ops->datbuf;
1467 oob = ops->oobbuf;
1469 while(1) {
1470 bytes = min(mtd->writesize - col, readlen);
1471 aligned = (bytes == mtd->writesize);
1473 /* Is the current page in the buffer ? */
1474 if (realpage != chip->pagebuf || oob) {
1475 bufpoi = aligned ? buf : chip->buffers->databuf;
1477 if (likely(sndcmd)) {
1478 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1479 sndcmd = 0;
1482 /* Now read the page into the buffer */
1483 if (unlikely(ops->mode == MTD_OOB_RAW))
1484 ret = chip->ecc.read_page_raw(mtd, chip,
1485 bufpoi, page);
1486 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1487 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1488 else
1489 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1490 page);
1491 if (ret < 0)
1492 break;
1494 /* Transfer not aligned data */
1495 if (!aligned) {
1496 if (!NAND_SUBPAGE_READ(chip) && !oob)
1497 chip->pagebuf = realpage;
1498 memcpy(buf, chip->buffers->databuf + col, bytes);
1501 buf += bytes;
1503 if (unlikely(oob)) {
1505 int toread = min(oobreadlen, max_oobsize);
1507 if (toread) {
1508 oob = nand_transfer_oob(chip,
1509 oob, ops, toread);
1510 oobreadlen -= toread;
1514 if (!(chip->options & NAND_NO_READRDY)) {
1516 * Apply delay or wait for ready/busy pin. Do
1517 * this before the AUTOINCR check, so no
1518 * problems arise if a chip which does auto
1519 * increment is marked as NOAUTOINCR by the
1520 * board driver.
1522 if (!chip->dev_ready)
1523 udelay(chip->chip_delay);
1524 else
1525 nand_wait_ready(mtd);
1527 } else {
1528 memcpy(buf, chip->buffers->databuf + col, bytes);
1529 buf += bytes;
1532 readlen -= bytes;
1534 if (!readlen)
1535 break;
1537 /* For subsequent reads align to page boundary. */
1538 col = 0;
1539 /* Increment page address */
1540 realpage++;
1542 page = realpage & chip->pagemask;
1543 /* Check, if we cross a chip boundary */
1544 if (!page) {
1545 chipnr++;
1546 chip->select_chip(mtd, -1);
1547 chip->select_chip(mtd, chipnr);
1550 /* Check, if the chip supports auto page increment
1551 * or if we have hit a block boundary.
1553 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1554 sndcmd = 1;
1557 ops->retlen = ops->len - (size_t) readlen;
1558 if (oob)
1559 ops->oobretlen = ops->ooblen - oobreadlen;
1561 if (ret)
1562 return ret;
1564 if (mtd->ecc_stats.failed - stats.failed)
1565 return -EBADMSG;
1567 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1571 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1572 * @mtd: MTD device structure
1573 * @from: offset to read from
1574 * @len: number of bytes to read
1575 * @retlen: pointer to variable to store the number of read bytes
1576 * @buf: the databuffer to put data
1578 * Get hold of the chip and call nand_do_read
1580 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1581 size_t *retlen, uint8_t *buf)
1583 struct nand_chip *chip = mtd->priv;
1584 int ret;
1586 /* Do not allow reads past end of device */
1587 if ((from + len) > mtd->size)
1588 return -EINVAL;
1589 if (!len)
1590 return 0;
1592 nand_get_device(chip, mtd, FL_READING);
1594 chip->ops.len = len;
1595 chip->ops.datbuf = buf;
1596 chip->ops.oobbuf = NULL;
1598 ret = nand_do_read_ops(mtd, from, &chip->ops);
1600 *retlen = chip->ops.retlen;
1602 nand_release_device(mtd);
1604 return ret;
1608 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @page: page number to read
1612 * @sndcmd: flag whether to issue read command or not
1614 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1615 int page, int sndcmd)
1617 if (sndcmd) {
1618 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1619 sndcmd = 0;
1621 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1622 return sndcmd;
1626 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1627 * with syndromes
1628 * @mtd: mtd info structure
1629 * @chip: nand chip info structure
1630 * @page: page number to read
1631 * @sndcmd: flag whether to issue read command or not
1633 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1634 int page, int sndcmd)
1636 uint8_t *buf = chip->oob_poi;
1637 int length = mtd->oobsize;
1638 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1639 int eccsize = chip->ecc.size;
1640 uint8_t *bufpoi = buf;
1641 int i, toread, sndrnd = 0, pos;
1643 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1644 for (i = 0; i < chip->ecc.steps; i++) {
1645 if (sndrnd) {
1646 pos = eccsize + i * (eccsize + chunk);
1647 if (mtd->writesize > 512)
1648 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1649 else
1650 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1651 } else
1652 sndrnd = 1;
1653 toread = min_t(int, length, chunk);
1654 chip->read_buf(mtd, bufpoi, toread);
1655 bufpoi += toread;
1656 length -= toread;
1658 if (length > 0)
1659 chip->read_buf(mtd, bufpoi, length);
1661 return 1;
1665 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @page: page number to write
1670 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1671 int page)
1673 int status = 0;
1674 const uint8_t *buf = chip->oob_poi;
1675 int length = mtd->oobsize;
1677 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1678 chip->write_buf(mtd, buf, length);
1679 /* Send command to program the OOB data */
1680 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1682 status = chip->waitfunc(mtd, chip);
1684 return status & NAND_STATUS_FAIL ? -EIO : 0;
1688 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1689 * with syndrome - only for large page flash !
1690 * @mtd: mtd info structure
1691 * @chip: nand chip info structure
1692 * @page: page number to write
1694 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1695 struct nand_chip *chip, int page)
1697 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1698 int eccsize = chip->ecc.size, length = mtd->oobsize;
1699 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1700 const uint8_t *bufpoi = chip->oob_poi;
1703 * data-ecc-data-ecc ... ecc-oob
1704 * or
1705 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1707 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1708 pos = steps * (eccsize + chunk);
1709 steps = 0;
1710 } else
1711 pos = eccsize;
1713 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1714 for (i = 0; i < steps; i++) {
1715 if (sndcmd) {
1716 if (mtd->writesize <= 512) {
1717 uint32_t fill = 0xFFFFFFFF;
1719 len = eccsize;
1720 while (len > 0) {
1721 int num = min_t(int, len, 4);
1722 chip->write_buf(mtd, (uint8_t *)&fill,
1723 num);
1724 len -= num;
1726 } else {
1727 pos = eccsize + i * (eccsize + chunk);
1728 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1730 } else
1731 sndcmd = 1;
1732 len = min_t(int, length, chunk);
1733 chip->write_buf(mtd, bufpoi, len);
1734 bufpoi += len;
1735 length -= len;
1737 if (length > 0)
1738 chip->write_buf(mtd, bufpoi, length);
1740 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1741 status = chip->waitfunc(mtd, chip);
1743 return status & NAND_STATUS_FAIL ? -EIO : 0;
1747 * nand_do_read_oob - [Intern] NAND read out-of-band
1748 * @mtd: MTD device structure
1749 * @from: offset to read from
1750 * @ops: oob operations description structure
1752 * NAND read out-of-band data from the spare area
1754 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1755 struct mtd_oob_ops *ops)
1757 int page, realpage, chipnr, sndcmd = 1;
1758 struct nand_chip *chip = mtd->priv;
1759 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1760 int readlen = ops->ooblen;
1761 int len;
1762 uint8_t *buf = ops->oobbuf;
1764 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1765 __func__, (unsigned long long)from, readlen);
1767 if (ops->mode == MTD_OOB_AUTO)
1768 len = chip->ecc.layout->oobavail;
1769 else
1770 len = mtd->oobsize;
1772 if (unlikely(ops->ooboffs >= len)) {
1773 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1774 "outside oob\n", __func__);
1775 return -EINVAL;
1778 /* Do not allow reads past end of device */
1779 if (unlikely(from >= mtd->size ||
1780 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1781 (from >> chip->page_shift)) * len)) {
1782 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1783 "of device\n", __func__);
1784 return -EINVAL;
1787 chipnr = (int)(from >> chip->chip_shift);
1788 chip->select_chip(mtd, chipnr);
1790 /* Shift to get page */
1791 realpage = (int)(from >> chip->page_shift);
1792 page = realpage & chip->pagemask;
1794 while(1) {
1795 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1797 len = min(len, readlen);
1798 buf = nand_transfer_oob(chip, buf, ops, len);
1800 if (!(chip->options & NAND_NO_READRDY)) {
1802 * Apply delay or wait for ready/busy pin. Do this
1803 * before the AUTOINCR check, so no problems arise if a
1804 * chip which does auto increment is marked as
1805 * NOAUTOINCR by the board driver.
1807 if (!chip->dev_ready)
1808 udelay(chip->chip_delay);
1809 else
1810 nand_wait_ready(mtd);
1813 readlen -= len;
1814 if (!readlen)
1815 break;
1817 /* Increment page address */
1818 realpage++;
1820 page = realpage & chip->pagemask;
1821 /* Check, if we cross a chip boundary */
1822 if (!page) {
1823 chipnr++;
1824 chip->select_chip(mtd, -1);
1825 chip->select_chip(mtd, chipnr);
1828 /* Check, if the chip supports auto page increment
1829 * or if we have hit a block boundary.
1831 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1832 sndcmd = 1;
1835 ops->oobretlen = ops->ooblen;
1836 return 0;
1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1841 * @mtd: MTD device structure
1842 * @from: offset to read from
1843 * @ops: oob operation description structure
1845 * NAND read data and/or out-of-band data
1847 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1848 struct mtd_oob_ops *ops)
1850 struct nand_chip *chip = mtd->priv;
1851 int ret = -ENOTSUPP;
1853 ops->retlen = 0;
1855 /* Do not allow reads past end of device */
1856 if (ops->datbuf && (from + ops->len) > mtd->size) {
1857 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1858 "beyond end of device\n", __func__);
1859 return -EINVAL;
1862 nand_get_device(chip, mtd, FL_READING);
1864 switch(ops->mode) {
1865 case MTD_OOB_PLACE:
1866 case MTD_OOB_AUTO:
1867 case MTD_OOB_RAW:
1868 break;
1870 default:
1871 goto out;
1874 if (!ops->datbuf)
1875 ret = nand_do_read_oob(mtd, from, ops);
1876 else
1877 ret = nand_do_read_ops(mtd, from, ops);
1879 out:
1880 nand_release_device(mtd);
1881 return ret;
1886 * nand_write_page_raw - [Intern] raw page write function
1887 * @mtd: mtd info structure
1888 * @chip: nand chip info structure
1889 * @buf: data buffer
1891 * Not for syndrome calculating ecc controllers, which use a special oob layout
1893 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1894 const uint8_t *buf)
1896 chip->write_buf(mtd, buf, mtd->writesize);
1897 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1901 * nand_write_page_raw_syndrome - [Intern] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1904 * @buf: data buffer
1906 * We need a special oob layout and handling even when ECC isn't checked.
1908 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1909 const uint8_t *buf)
1911 int eccsize = chip->ecc.size;
1912 int eccbytes = chip->ecc.bytes;
1913 uint8_t *oob = chip->oob_poi;
1914 int steps, size;
1916 for (steps = chip->ecc.steps; steps > 0; steps--) {
1917 chip->write_buf(mtd, buf, eccsize);
1918 buf += eccsize;
1920 if (chip->ecc.prepad) {
1921 chip->write_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1925 chip->read_buf(mtd, oob, eccbytes);
1926 oob += eccbytes;
1928 if (chip->ecc.postpad) {
1929 chip->write_buf(mtd, oob, chip->ecc.postpad);
1930 oob += chip->ecc.postpad;
1934 size = mtd->oobsize - (oob - chip->oob_poi);
1935 if (size)
1936 chip->write_buf(mtd, oob, size);
1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @buf: data buffer
1944 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1945 const uint8_t *buf)
1947 int i, eccsize = chip->ecc.size;
1948 int eccbytes = chip->ecc.bytes;
1949 int eccsteps = chip->ecc.steps;
1950 uint8_t *ecc_calc = chip->buffers->ecccalc;
1951 const uint8_t *p = buf;
1952 uint32_t *eccpos = chip->ecc.layout->eccpos;
1954 /* Software ecc calculation */
1955 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1956 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1958 for (i = 0; i < chip->ecc.total; i++)
1959 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1961 chip->ecc.write_page_raw(mtd, chip, buf);
1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1968 * @buf: data buffer
1970 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1971 const uint8_t *buf)
1973 int i, eccsize = chip->ecc.size;
1974 int eccbytes = chip->ecc.bytes;
1975 int eccsteps = chip->ecc.steps;
1976 uint8_t *ecc_calc = chip->buffers->ecccalc;
1977 const uint8_t *p = buf;
1978 uint32_t *eccpos = chip->ecc.layout->eccpos;
1980 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1981 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1982 chip->write_buf(mtd, p, eccsize);
1983 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1986 for (i = 0; i < chip->ecc.total; i++)
1987 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1989 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1996 * @buf: data buffer
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2001 static void nand_write_page_syndrome(struct mtd_info *mtd,
2002 struct nand_chip *chip, const uint8_t *buf)
2004 int i, eccsize = chip->ecc.size;
2005 int eccbytes = chip->ecc.bytes;
2006 int eccsteps = chip->ecc.steps;
2007 const uint8_t *p = buf;
2008 uint8_t *oob = chip->oob_poi;
2010 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2012 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2013 chip->write_buf(mtd, p, eccsize);
2015 if (chip->ecc.prepad) {
2016 chip->write_buf(mtd, oob, chip->ecc.prepad);
2017 oob += chip->ecc.prepad;
2020 chip->ecc.calculate(mtd, p, oob);
2021 chip->write_buf(mtd, oob, eccbytes);
2022 oob += eccbytes;
2024 if (chip->ecc.postpad) {
2025 chip->write_buf(mtd, oob, chip->ecc.postpad);
2026 oob += chip->ecc.postpad;
2030 /* Calculate remaining oob bytes */
2031 i = mtd->oobsize - (oob - chip->oob_poi);
2032 if (i)
2033 chip->write_buf(mtd, oob, i);
2037 * nand_write_page - [REPLACEABLE] write one page
2038 * @mtd: MTD device structure
2039 * @chip: NAND chip descriptor
2040 * @buf: the data to write
2041 * @page: page number to write
2042 * @cached: cached programming
2043 * @raw: use _raw version of write_page
2045 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2046 const uint8_t *buf, int page, int cached, int raw)
2048 int status;
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2052 if (unlikely(raw))
2053 chip->ecc.write_page_raw(mtd, chip, buf);
2054 else
2055 chip->ecc.write_page(mtd, chip, buf);
2058 * Cached progamming disabled for now, Not sure if its worth the
2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2061 cached = 0;
2063 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2065 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2066 status = chip->waitfunc(mtd, chip);
2068 * See if operation failed and additional status checks are
2069 * available
2071 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072 status = chip->errstat(mtd, chip, FL_WRITING, status,
2073 page);
2075 if (status & NAND_STATUS_FAIL)
2076 return -EIO;
2077 } else {
2078 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2079 status = chip->waitfunc(mtd, chip);
2082 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083 /* Send command to read back the data */
2084 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2086 if (chip->verify_buf(mtd, buf, mtd->writesize))
2087 return -EIO;
2088 #endif
2089 return 0;
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip: nand chip structure
2095 * @oob: oob data buffer
2096 * @len: oob data write length
2097 * @ops: oob ops structure
2099 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2100 struct mtd_oob_ops *ops)
2102 switch(ops->mode) {
2104 case MTD_OOB_PLACE:
2105 case MTD_OOB_RAW:
2106 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2107 return oob + len;
2109 case MTD_OOB_AUTO: {
2110 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2111 uint32_t boffs = 0, woffs = ops->ooboffs;
2112 size_t bytes = 0;
2114 for(; free->length && len; free++, len -= bytes) {
2115 /* Write request not from offset 0 ? */
2116 if (unlikely(woffs)) {
2117 if (woffs >= free->length) {
2118 woffs -= free->length;
2119 continue;
2121 boffs = free->offset + woffs;
2122 bytes = min_t(size_t, len,
2123 (free->length - woffs));
2124 woffs = 0;
2125 } else {
2126 bytes = min_t(size_t, len, free->length);
2127 boffs = free->offset;
2129 memcpy(chip->oob_poi + boffs, oob, bytes);
2130 oob += bytes;
2132 return oob;
2134 default:
2135 BUG();
2137 return NULL;
2140 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
2143 * nand_do_write_ops - [Internal] NAND write with ECC
2144 * @mtd: MTD device structure
2145 * @to: offset to write to
2146 * @ops: oob operations description structure
2148 * NAND write with ECC
2150 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2151 struct mtd_oob_ops *ops)
2153 int chipnr, realpage, page, blockmask, column;
2154 struct nand_chip *chip = mtd->priv;
2155 uint32_t writelen = ops->len;
2157 uint32_t oobwritelen = ops->ooblen;
2158 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2159 mtd->oobavail : mtd->oobsize;
2161 uint8_t *oob = ops->oobbuf;
2162 uint8_t *buf = ops->datbuf;
2163 int ret, subpage;
2165 ops->retlen = 0;
2166 if (!writelen)
2167 return 0;
2169 /* reject writes, which are not page aligned */
2170 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2171 printk(KERN_NOTICE "%s: Attempt to write not "
2172 "page aligned data\n", __func__);
2173 return -EINVAL;
2176 column = to & (mtd->writesize - 1);
2177 subpage = column || (writelen & (mtd->writesize - 1));
2179 if (subpage && oob)
2180 return -EINVAL;
2182 chipnr = (int)(to >> chip->chip_shift);
2183 chip->select_chip(mtd, chipnr);
2185 /* Check, if it is write protected */
2186 if (nand_check_wp(mtd))
2187 return -EIO;
2189 realpage = (int)(to >> chip->page_shift);
2190 page = realpage & chip->pagemask;
2191 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2193 /* Invalidate the page cache, when we write to the cached page */
2194 if (to <= (chip->pagebuf << chip->page_shift) &&
2195 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2196 chip->pagebuf = -1;
2198 /* If we're not given explicit OOB data, let it be 0xFF */
2199 if (likely(!oob))
2200 memset(chip->oob_poi, 0xff, mtd->oobsize);
2202 /* Don't allow multipage oob writes with offset */
2203 if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2204 return -EINVAL;
2206 while(1) {
2207 int bytes = mtd->writesize;
2208 int cached = writelen > bytes && page != blockmask;
2209 uint8_t *wbuf = buf;
2211 /* Partial page write ? */
2212 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2213 cached = 0;
2214 bytes = min_t(int, bytes - column, (int) writelen);
2215 chip->pagebuf = -1;
2216 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2217 memcpy(&chip->buffers->databuf[column], buf, bytes);
2218 wbuf = chip->buffers->databuf;
2221 if (unlikely(oob)) {
2222 size_t len = min(oobwritelen, oobmaxlen);
2223 oob = nand_fill_oob(chip, oob, len, ops);
2224 oobwritelen -= len;
2227 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2228 (ops->mode == MTD_OOB_RAW));
2229 if (ret)
2230 break;
2232 writelen -= bytes;
2233 if (!writelen)
2234 break;
2236 column = 0;
2237 buf += bytes;
2238 realpage++;
2240 page = realpage & chip->pagemask;
2241 /* Check, if we cross a chip boundary */
2242 if (!page) {
2243 chipnr++;
2244 chip->select_chip(mtd, -1);
2245 chip->select_chip(mtd, chipnr);
2249 ops->retlen = ops->len - writelen;
2250 if (unlikely(oob))
2251 ops->oobretlen = ops->ooblen;
2252 return ret;
2256 * panic_nand_write - [MTD Interface] NAND write with ECC
2257 * @mtd: MTD device structure
2258 * @to: offset to write to
2259 * @len: number of bytes to write
2260 * @retlen: pointer to variable to store the number of written bytes
2261 * @buf: the data to write
2263 * NAND write with ECC. Used when performing writes in interrupt context, this
2264 * may for example be called by mtdoops when writing an oops while in panic.
2266 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2267 size_t *retlen, const uint8_t *buf)
2269 struct nand_chip *chip = mtd->priv;
2270 int ret;
2272 /* Do not allow reads past end of device */
2273 if ((to + len) > mtd->size)
2274 return -EINVAL;
2275 if (!len)
2276 return 0;
2278 /* Wait for the device to get ready. */
2279 panic_nand_wait(mtd, chip, 400);
2281 /* Grab the device. */
2282 panic_nand_get_device(chip, mtd, FL_WRITING);
2284 chip->ops.len = len;
2285 chip->ops.datbuf = (uint8_t *)buf;
2286 chip->ops.oobbuf = NULL;
2288 ret = nand_do_write_ops(mtd, to, &chip->ops);
2290 *retlen = chip->ops.retlen;
2291 return ret;
2295 * nand_write - [MTD Interface] NAND write with ECC
2296 * @mtd: MTD device structure
2297 * @to: offset to write to
2298 * @len: number of bytes to write
2299 * @retlen: pointer to variable to store the number of written bytes
2300 * @buf: the data to write
2302 * NAND write with ECC
2304 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 size_t *retlen, const uint8_t *buf)
2307 struct nand_chip *chip = mtd->priv;
2308 int ret;
2310 /* Do not allow reads past end of device */
2311 if ((to + len) > mtd->size)
2312 return -EINVAL;
2313 if (!len)
2314 return 0;
2316 nand_get_device(chip, mtd, FL_WRITING);
2318 chip->ops.len = len;
2319 chip->ops.datbuf = (uint8_t *)buf;
2320 chip->ops.oobbuf = NULL;
2322 ret = nand_do_write_ops(mtd, to, &chip->ops);
2324 *retlen = chip->ops.retlen;
2326 nand_release_device(mtd);
2328 return ret;
2332 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2333 * @mtd: MTD device structure
2334 * @to: offset to write to
2335 * @ops: oob operation description structure
2337 * NAND write out-of-band
2339 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2340 struct mtd_oob_ops *ops)
2342 int chipnr, page, status, len;
2343 struct nand_chip *chip = mtd->priv;
2345 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2346 __func__, (unsigned int)to, (int)ops->ooblen);
2348 if (ops->mode == MTD_OOB_AUTO)
2349 len = chip->ecc.layout->oobavail;
2350 else
2351 len = mtd->oobsize;
2353 /* Do not allow write past end of page */
2354 if ((ops->ooboffs + ops->ooblen) > len) {
2355 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2356 "past end of page\n", __func__);
2357 return -EINVAL;
2360 if (unlikely(ops->ooboffs >= len)) {
2361 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2362 "write outside oob\n", __func__);
2363 return -EINVAL;
2366 /* Do not allow reads past end of device */
2367 if (unlikely(to >= mtd->size ||
2368 ops->ooboffs + ops->ooblen >
2369 ((mtd->size >> chip->page_shift) -
2370 (to >> chip->page_shift)) * len)) {
2371 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2372 "end of device\n", __func__);
2373 return -EINVAL;
2376 chipnr = (int)(to >> chip->chip_shift);
2377 chip->select_chip(mtd, chipnr);
2379 /* Shift to get page */
2380 page = (int)(to >> chip->page_shift);
2383 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2384 * of my DiskOnChip 2000 test units) will clear the whole data page too
2385 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2386 * it in the doc2000 driver in August 1999. dwmw2.
2388 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2390 /* Check, if it is write protected */
2391 if (nand_check_wp(mtd))
2392 return -EROFS;
2394 /* Invalidate the page cache, if we write to the cached page */
2395 if (page == chip->pagebuf)
2396 chip->pagebuf = -1;
2398 memset(chip->oob_poi, 0xff, mtd->oobsize);
2399 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2400 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2401 memset(chip->oob_poi, 0xff, mtd->oobsize);
2403 if (status)
2404 return status;
2406 ops->oobretlen = ops->ooblen;
2408 return 0;
2412 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2413 * @mtd: MTD device structure
2414 * @to: offset to write to
2415 * @ops: oob operation description structure
2417 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2418 struct mtd_oob_ops *ops)
2420 struct nand_chip *chip = mtd->priv;
2421 int ret = -ENOTSUPP;
2423 ops->retlen = 0;
2425 /* Do not allow writes past end of device */
2426 if (ops->datbuf && (to + ops->len) > mtd->size) {
2427 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2428 "end of device\n", __func__);
2429 return -EINVAL;
2432 nand_get_device(chip, mtd, FL_WRITING);
2434 switch(ops->mode) {
2435 case MTD_OOB_PLACE:
2436 case MTD_OOB_AUTO:
2437 case MTD_OOB_RAW:
2438 break;
2440 default:
2441 goto out;
2444 if (!ops->datbuf)
2445 ret = nand_do_write_oob(mtd, to, ops);
2446 else
2447 ret = nand_do_write_ops(mtd, to, ops);
2449 out:
2450 nand_release_device(mtd);
2451 return ret;
2455 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2456 * @mtd: MTD device structure
2457 * @page: the page address of the block which will be erased
2459 * Standard erase command for NAND chips
2461 static void single_erase_cmd(struct mtd_info *mtd, int page)
2463 struct nand_chip *chip = mtd->priv;
2464 /* Send commands to erase a block */
2465 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2466 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2470 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2471 * @mtd: MTD device structure
2472 * @page: the page address of the block which will be erased
2474 * AND multi block erase command function
2475 * Erase 4 consecutive blocks
2477 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2479 struct nand_chip *chip = mtd->priv;
2480 /* Send commands to erase a block */
2481 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2484 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2485 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2489 * nand_erase - [MTD Interface] erase block(s)
2490 * @mtd: MTD device structure
2491 * @instr: erase instruction
2493 * Erase one ore more blocks
2495 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2497 return nand_erase_nand(mtd, instr, 0);
2500 #define BBT_PAGE_MASK 0xffffff3f
2502 * nand_erase_nand - [Internal] erase block(s)
2503 * @mtd: MTD device structure
2504 * @instr: erase instruction
2505 * @allowbbt: allow erasing the bbt area
2507 * Erase one ore more blocks
2509 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2510 int allowbbt)
2512 int page, status, pages_per_block, ret, chipnr;
2513 struct nand_chip *chip = mtd->priv;
2514 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2515 unsigned int bbt_masked_page = 0xffffffff;
2516 loff_t len;
2518 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2519 __func__, (unsigned long long)instr->addr,
2520 (unsigned long long)instr->len);
2522 if (check_offs_len(mtd, instr->addr, instr->len))
2523 return -EINVAL;
2525 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2527 /* Grab the lock and see if the device is available */
2528 nand_get_device(chip, mtd, FL_ERASING);
2530 /* Shift to get first page */
2531 page = (int)(instr->addr >> chip->page_shift);
2532 chipnr = (int)(instr->addr >> chip->chip_shift);
2534 /* Calculate pages in each block */
2535 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2537 /* Select the NAND device */
2538 chip->select_chip(mtd, chipnr);
2540 /* Check, if it is write protected */
2541 if (nand_check_wp(mtd)) {
2542 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2543 __func__);
2544 instr->state = MTD_ERASE_FAILED;
2545 goto erase_exit;
2549 * If BBT requires refresh, set the BBT page mask to see if the BBT
2550 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2551 * can not be matched. This is also done when the bbt is actually
2552 * erased to avoid recusrsive updates
2554 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2555 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2557 /* Loop through the pages */
2558 len = instr->len;
2560 instr->state = MTD_ERASING;
2562 while (len) {
2564 * heck if we have a bad block, we do not erase bad blocks !
2566 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2567 chip->page_shift, 0, allowbbt)) {
2568 printk(KERN_WARNING "%s: attempt to erase a bad block "
2569 "at page 0x%08x\n", __func__, page);
2570 instr->state = MTD_ERASE_FAILED;
2571 goto erase_exit;
2575 * Invalidate the page cache, if we erase the block which
2576 * contains the current cached page
2578 if (page <= chip->pagebuf && chip->pagebuf <
2579 (page + pages_per_block))
2580 chip->pagebuf = -1;
2582 chip->erase_cmd(mtd, page & chip->pagemask);
2584 status = chip->waitfunc(mtd, chip);
2587 * See if operation failed and additional status checks are
2588 * available
2590 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2591 status = chip->errstat(mtd, chip, FL_ERASING,
2592 status, page);
2594 /* See if block erase succeeded */
2595 if (status & NAND_STATUS_FAIL) {
2596 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2597 "page 0x%08x\n", __func__, page);
2598 instr->state = MTD_ERASE_FAILED;
2599 instr->fail_addr =
2600 ((loff_t)page << chip->page_shift);
2601 goto erase_exit;
2605 * If BBT requires refresh, set the BBT rewrite flag to the
2606 * page being erased
2608 if (bbt_masked_page != 0xffffffff &&
2609 (page & BBT_PAGE_MASK) == bbt_masked_page)
2610 rewrite_bbt[chipnr] =
2611 ((loff_t)page << chip->page_shift);
2613 /* Increment page address and decrement length */
2614 len -= (1 << chip->phys_erase_shift);
2615 page += pages_per_block;
2617 /* Check, if we cross a chip boundary */
2618 if (len && !(page & chip->pagemask)) {
2619 chipnr++;
2620 chip->select_chip(mtd, -1);
2621 chip->select_chip(mtd, chipnr);
2624 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625 * page mask to see if this BBT should be rewritten
2627 if (bbt_masked_page != 0xffffffff &&
2628 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2629 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2630 BBT_PAGE_MASK;
2633 instr->state = MTD_ERASE_DONE;
2635 erase_exit:
2637 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2639 /* Deselect and wake up anyone waiting on the device */
2640 nand_release_device(mtd);
2642 /* Do call back function */
2643 if (!ret)
2644 mtd_erase_callback(instr);
2647 * If BBT requires refresh and erase was successful, rewrite any
2648 * selected bad block tables
2650 if (bbt_masked_page == 0xffffffff || ret)
2651 return ret;
2653 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2654 if (!rewrite_bbt[chipnr])
2655 continue;
2656 /* update the BBT for chip */
2657 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2658 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2659 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2660 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2663 /* Return more or less happy */
2664 return ret;
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd: MTD device structure
2671 * Sync is actually a wait for chip ready function
2673 static void nand_sync(struct mtd_info *mtd)
2675 struct nand_chip *chip = mtd->priv;
2677 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2679 /* Grab the lock and see if the device is available */
2680 nand_get_device(chip, mtd, FL_SYNCING);
2681 /* Release it and go back */
2682 nand_release_device(mtd);
2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2687 * @mtd: MTD device structure
2688 * @offs: offset relative to mtd start
2690 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2692 /* Check for invalid offset */
2693 if (offs > mtd->size)
2694 return -EINVAL;
2696 return nand_block_checkbad(mtd, offs, 1, 0);
2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2701 * @mtd: MTD device structure
2702 * @ofs: offset relative to mtd start
2704 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2706 struct nand_chip *chip = mtd->priv;
2707 int ret;
2709 if ((ret = nand_block_isbad(mtd, ofs))) {
2710 /* If it was bad already, return success and do nothing. */
2711 if (ret > 0)
2712 return 0;
2713 return ret;
2716 return chip->block_markbad(mtd, ofs);
2720 * nand_suspend - [MTD Interface] Suspend the NAND flash
2721 * @mtd: MTD device structure
2723 static int nand_suspend(struct mtd_info *mtd)
2725 struct nand_chip *chip = mtd->priv;
2727 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2731 * nand_resume - [MTD Interface] Resume the NAND flash
2732 * @mtd: MTD device structure
2734 static void nand_resume(struct mtd_info *mtd)
2736 struct nand_chip *chip = mtd->priv;
2738 if (chip->state == FL_PM_SUSPENDED)
2739 nand_release_device(mtd);
2740 else
2741 printk(KERN_ERR "%s called for a chip which is not "
2742 "in suspended state\n", __func__);
2746 * Set default functions
2748 static void nand_set_defaults(struct nand_chip *chip, int busw)
2750 /* check for proper chip_delay setup, set 20us if not */
2751 if (!chip->chip_delay)
2752 chip->chip_delay = 20;
2754 /* check, if a user supplied command function given */
2755 if (chip->cmdfunc == NULL)
2756 chip->cmdfunc = nand_command;
2758 /* check, if a user supplied wait function given */
2759 if (chip->waitfunc == NULL)
2760 chip->waitfunc = nand_wait;
2762 if (!chip->select_chip)
2763 chip->select_chip = nand_select_chip;
2764 if (!chip->read_byte)
2765 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2766 if (!chip->read_word)
2767 chip->read_word = nand_read_word;
2768 if (!chip->block_bad)
2769 chip->block_bad = nand_block_bad;
2770 if (!chip->block_markbad)
2771 chip->block_markbad = nand_default_block_markbad;
2772 if (!chip->write_buf)
2773 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2774 if (!chip->read_buf)
2775 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2776 if (!chip->verify_buf)
2777 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2778 if (!chip->scan_bbt)
2779 chip->scan_bbt = nand_default_bbt;
2781 if (!chip->controller) {
2782 chip->controller = &chip->hwcontrol;
2783 spin_lock_init(&chip->controller->lock);
2784 init_waitqueue_head(&chip->controller->wq);
2790 * Get the flash and manufacturer id and lookup if the type is supported
2792 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2793 struct nand_chip *chip,
2794 int busw, int *maf_id,
2795 struct nand_flash_dev *type)
2797 int i, dev_id, maf_idx;
2798 u8 id_data[8];
2800 /* Select the device */
2801 chip->select_chip(mtd, 0);
2804 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2805 * after power-up
2807 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2809 /* Send the command for reading device ID */
2810 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2812 /* Read manufacturer and device IDs */
2813 *maf_id = chip->read_byte(mtd);
2814 dev_id = chip->read_byte(mtd);
2816 /* Try again to make sure, as some systems the bus-hold or other
2817 * interface concerns can cause random data which looks like a
2818 * possibly credible NAND flash to appear. If the two results do
2819 * not match, ignore the device completely.
2822 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2824 /* Read entire ID string */
2826 for (i = 0; i < 8; i++)
2827 id_data[i] = chip->read_byte(mtd);
2829 if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2830 printk(KERN_INFO "%s: second ID read did not match "
2831 "%02x,%02x against %02x,%02x\n", __func__,
2832 *maf_id, dev_id, id_data[0], id_data[1]);
2833 return ERR_PTR(-ENODEV);
2836 if (!type)
2837 type = nand_flash_ids;
2839 for (; type->name != NULL; type++)
2840 if (dev_id == type->id)
2841 break;
2843 if (!type->name)
2844 return ERR_PTR(-ENODEV);
2846 if (!mtd->name)
2847 mtd->name = type->name;
2849 chip->chipsize = (uint64_t)type->chipsize << 20;
2851 /* Newer devices have all the information in additional id bytes */
2852 if (!type->pagesize) {
2853 int extid;
2854 /* The 3rd id byte holds MLC / multichip data */
2855 chip->cellinfo = id_data[2];
2856 /* The 4th id byte is the important one */
2857 extid = id_data[3];
2860 * Field definitions are in the following datasheets:
2861 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2862 * New style (6 byte ID): Samsung K9GAG08U0D (p.40)
2864 * Check for wraparound + Samsung ID + nonzero 6th byte
2865 * to decide what to do.
2867 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2868 id_data[0] == NAND_MFR_SAMSUNG &&
2869 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2870 id_data[5] != 0x00) {
2871 /* Calc pagesize */
2872 mtd->writesize = 2048 << (extid & 0x03);
2873 extid >>= 2;
2874 /* Calc oobsize */
2875 mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2876 extid >>= 2;
2877 /* Calc blocksize */
2878 mtd->erasesize = (128 * 1024) <<
2879 (((extid >> 1) & 0x04) | (extid & 0x03));
2880 busw = 0;
2881 } else {
2882 /* Calc pagesize */
2883 mtd->writesize = 1024 << (extid & 0x03);
2884 extid >>= 2;
2885 /* Calc oobsize */
2886 mtd->oobsize = (8 << (extid & 0x01)) *
2887 (mtd->writesize >> 9);
2888 extid >>= 2;
2889 /* Calc blocksize. Blocksize is multiples of 64KiB */
2890 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2891 extid >>= 2;
2892 /* Get buswidth information */
2893 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2895 } else {
2897 * Old devices have chip data hardcoded in the device id table
2899 mtd->erasesize = type->erasesize;
2900 mtd->writesize = type->pagesize;
2901 mtd->oobsize = mtd->writesize / 32;
2902 busw = type->options & NAND_BUSWIDTH_16;
2905 /* Try to identify manufacturer */
2906 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2907 if (nand_manuf_ids[maf_idx].id == *maf_id)
2908 break;
2912 * Check, if buswidth is correct. Hardware drivers should set
2913 * chip correct !
2915 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2916 printk(KERN_INFO "NAND device: Manufacturer ID:"
2917 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2918 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2919 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2920 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2921 busw ? 16 : 8);
2922 return ERR_PTR(-EINVAL);
2925 /* Calculate the address shift from the page size */
2926 chip->page_shift = ffs(mtd->writesize) - 1;
2927 /* Convert chipsize to number of pages per chip -1. */
2928 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2930 chip->bbt_erase_shift = chip->phys_erase_shift =
2931 ffs(mtd->erasesize) - 1;
2932 if (chip->chipsize & 0xffffffff)
2933 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2934 else
2935 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2937 /* Set the bad block position */
2938 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
2939 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
2940 else
2941 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
2943 /* Get chip options, preserve non chip based options */
2944 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2945 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2948 * Set chip as a default. Board drivers can override it, if necessary
2950 chip->options |= NAND_NO_AUTOINCR;
2952 /* Check if chip is a not a samsung device. Do not clear the
2953 * options for chips which are not having an extended id.
2955 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2956 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2959 * Bad block marker is stored in the last page of each block
2960 * on Samsung and Hynix MLC devices; stored in first two pages
2961 * of each block on Micron devices with 2KiB pages and on
2962 * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2963 * the first page.
2965 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2966 (*maf_id == NAND_MFR_SAMSUNG ||
2967 *maf_id == NAND_MFR_HYNIX))
2968 chip->options |= NAND_BBT_SCANLASTPAGE;
2969 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2970 (*maf_id == NAND_MFR_SAMSUNG ||
2971 *maf_id == NAND_MFR_HYNIX ||
2972 *maf_id == NAND_MFR_AMD)) ||
2973 (mtd->writesize == 2048 &&
2974 *maf_id == NAND_MFR_MICRON))
2975 chip->options |= NAND_BBT_SCAN2NDPAGE;
2978 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
2980 if (!(busw & NAND_BUSWIDTH_16) &&
2981 *maf_id == NAND_MFR_STMICRO &&
2982 mtd->writesize == 2048) {
2983 chip->options |= NAND_BBT_SCANBYTE1AND6;
2984 chip->badblockpos = 0;
2987 /* Check for AND chips with 4 page planes */
2988 if (chip->options & NAND_4PAGE_ARRAY)
2989 chip->erase_cmd = multi_erase_cmd;
2990 else
2991 chip->erase_cmd = single_erase_cmd;
2993 /* Do not replace user supplied command function ! */
2994 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2995 chip->cmdfunc = nand_command_lp;
2997 printk(KERN_INFO "NAND device: Manufacturer ID:"
2998 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2999 nand_manuf_ids[maf_idx].name, type->name);
3001 return type;
3005 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3006 * @mtd: MTD device structure
3007 * @maxchips: Number of chips to scan for
3008 * @table: Alternative NAND ID table
3010 * This is the first phase of the normal nand_scan() function. It
3011 * reads the flash ID and sets up MTD fields accordingly.
3013 * The mtd->owner field must be set to the module of the caller.
3015 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3016 struct nand_flash_dev *table)
3018 int i, busw, nand_maf_id;
3019 struct nand_chip *chip = mtd->priv;
3020 struct nand_flash_dev *type;
3022 /* Get buswidth to select the correct functions */
3023 busw = chip->options & NAND_BUSWIDTH_16;
3024 /* Set the default functions */
3025 nand_set_defaults(chip, busw);
3027 /* Read the flash type */
3028 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
3030 if (IS_ERR(type)) {
3031 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3032 printk(KERN_WARNING "No NAND device found.\n");
3033 chip->select_chip(mtd, -1);
3034 return PTR_ERR(type);
3037 /* Check for a chip array */
3038 for (i = 1; i < maxchips; i++) {
3039 chip->select_chip(mtd, i);
3040 /* See comment in nand_get_flash_type for reset */
3041 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3042 /* Send the command for reading device ID */
3043 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3044 /* Read manufacturer and device IDs */
3045 if (nand_maf_id != chip->read_byte(mtd) ||
3046 type->id != chip->read_byte(mtd))
3047 break;
3049 if (i > 1)
3050 printk(KERN_INFO "%d NAND chips detected\n", i);
3052 /* Store the number of chips and calc total size for mtd */
3053 chip->numchips = i;
3054 mtd->size = i * chip->chipsize;
3056 return 0;
3061 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3062 * @mtd: MTD device structure
3064 * This is the second phase of the normal nand_scan() function. It
3065 * fills out all the uninitialized function pointers with the defaults
3066 * and scans for a bad block table if appropriate.
3068 int nand_scan_tail(struct mtd_info *mtd)
3070 int i;
3071 struct nand_chip *chip = mtd->priv;
3073 if (!(chip->options & NAND_OWN_BUFFERS))
3074 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3075 if (!chip->buffers)
3076 return -ENOMEM;
3078 /* Set the internal oob buffer location, just after the page data */
3079 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3082 * If no default placement scheme is given, select an appropriate one
3084 if (!chip->ecc.layout) {
3085 switch (mtd->oobsize) {
3086 case 8:
3087 chip->ecc.layout = &nand_oob_8;
3088 break;
3089 case 16:
3090 chip->ecc.layout = &nand_oob_16;
3091 break;
3092 case 64:
3093 chip->ecc.layout = &nand_oob_64;
3094 break;
3095 case 128:
3096 chip->ecc.layout = &nand_oob_128;
3097 break;
3098 default:
3099 printk(KERN_WARNING "No oob scheme defined for "
3100 "oobsize %d\n", mtd->oobsize);
3101 BUG();
3105 if (!chip->write_page)
3106 chip->write_page = nand_write_page;
3109 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3110 * selected and we have 256 byte pagesize fallback to software ECC
3113 switch (chip->ecc.mode) {
3114 case NAND_ECC_HW_OOB_FIRST:
3115 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3116 if (!chip->ecc.calculate || !chip->ecc.correct ||
3117 !chip->ecc.hwctl) {
3118 printk(KERN_WARNING "No ECC functions supplied; "
3119 "Hardware ECC not possible\n");
3120 BUG();
3122 if (!chip->ecc.read_page)
3123 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3125 case NAND_ECC_HW:
3126 /* Use standard hwecc read page function ? */
3127 if (!chip->ecc.read_page)
3128 chip->ecc.read_page = nand_read_page_hwecc;
3129 if (!chip->ecc.write_page)
3130 chip->ecc.write_page = nand_write_page_hwecc;
3131 if (!chip->ecc.read_page_raw)
3132 chip->ecc.read_page_raw = nand_read_page_raw;
3133 if (!chip->ecc.write_page_raw)
3134 chip->ecc.write_page_raw = nand_write_page_raw;
3135 if (!chip->ecc.read_oob)
3136 chip->ecc.read_oob = nand_read_oob_std;
3137 if (!chip->ecc.write_oob)
3138 chip->ecc.write_oob = nand_write_oob_std;
3140 case NAND_ECC_HW_SYNDROME:
3141 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3142 !chip->ecc.hwctl) &&
3143 (!chip->ecc.read_page ||
3144 chip->ecc.read_page == nand_read_page_hwecc ||
3145 !chip->ecc.write_page ||
3146 chip->ecc.write_page == nand_write_page_hwecc)) {
3147 printk(KERN_WARNING "No ECC functions supplied; "
3148 "Hardware ECC not possible\n");
3149 BUG();
3151 /* Use standard syndrome read/write page function ? */
3152 if (!chip->ecc.read_page)
3153 chip->ecc.read_page = nand_read_page_syndrome;
3154 if (!chip->ecc.write_page)
3155 chip->ecc.write_page = nand_write_page_syndrome;
3156 if (!chip->ecc.read_page_raw)
3157 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3158 if (!chip->ecc.write_page_raw)
3159 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3160 if (!chip->ecc.read_oob)
3161 chip->ecc.read_oob = nand_read_oob_syndrome;
3162 if (!chip->ecc.write_oob)
3163 chip->ecc.write_oob = nand_write_oob_syndrome;
3165 if (mtd->writesize >= chip->ecc.size)
3166 break;
3167 printk(KERN_WARNING "%d byte HW ECC not possible on "
3168 "%d byte page size, fallback to SW ECC\n",
3169 chip->ecc.size, mtd->writesize);
3170 chip->ecc.mode = NAND_ECC_SOFT;
3172 case NAND_ECC_SOFT:
3173 chip->ecc.calculate = nand_calculate_ecc;
3174 chip->ecc.correct = nand_correct_data;
3175 chip->ecc.read_page = nand_read_page_swecc;
3176 chip->ecc.read_subpage = nand_read_subpage;
3177 chip->ecc.write_page = nand_write_page_swecc;
3178 chip->ecc.read_page_raw = nand_read_page_raw;
3179 chip->ecc.write_page_raw = nand_write_page_raw;
3180 chip->ecc.read_oob = nand_read_oob_std;
3181 chip->ecc.write_oob = nand_write_oob_std;
3182 if (!chip->ecc.size)
3183 chip->ecc.size = 256;
3184 chip->ecc.bytes = 3;
3185 break;
3187 case NAND_ECC_NONE:
3188 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3189 "This is not recommended !!\n");
3190 chip->ecc.read_page = nand_read_page_raw;
3191 chip->ecc.write_page = nand_write_page_raw;
3192 chip->ecc.read_oob = nand_read_oob_std;
3193 chip->ecc.read_page_raw = nand_read_page_raw;
3194 chip->ecc.write_page_raw = nand_write_page_raw;
3195 chip->ecc.write_oob = nand_write_oob_std;
3196 chip->ecc.size = mtd->writesize;
3197 chip->ecc.bytes = 0;
3198 break;
3200 default:
3201 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3202 chip->ecc.mode);
3203 BUG();
3207 * The number of bytes available for a client to place data into
3208 * the out of band area
3210 chip->ecc.layout->oobavail = 0;
3211 for (i = 0; chip->ecc.layout->oobfree[i].length
3212 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3213 chip->ecc.layout->oobavail +=
3214 chip->ecc.layout->oobfree[i].length;
3215 mtd->oobavail = chip->ecc.layout->oobavail;
3218 * Set the number of read / write steps for one page depending on ECC
3219 * mode
3221 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3222 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3223 printk(KERN_WARNING "Invalid ecc parameters\n");
3224 BUG();
3226 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3229 * Allow subpage writes up to ecc.steps. Not possible for MLC
3230 * FLASH.
3232 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3233 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3234 switch(chip->ecc.steps) {
3235 case 2:
3236 mtd->subpage_sft = 1;
3237 break;
3238 case 4:
3239 case 8:
3240 case 16:
3241 mtd->subpage_sft = 2;
3242 break;
3245 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3247 /* Initialize state */
3248 chip->state = FL_READY;
3250 /* De-select the device */
3251 chip->select_chip(mtd, -1);
3253 /* Invalidate the pagebuffer reference */
3254 chip->pagebuf = -1;
3256 /* Fill in remaining MTD driver data */
3257 mtd->type = MTD_NANDFLASH;
3258 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3259 MTD_CAP_NANDFLASH;
3260 mtd->erase = nand_erase;
3261 mtd->point = NULL;
3262 mtd->unpoint = NULL;
3263 mtd->read = nand_read;
3264 mtd->write = nand_write;
3265 mtd->panic_write = panic_nand_write;
3266 mtd->read_oob = nand_read_oob;
3267 mtd->write_oob = nand_write_oob;
3268 mtd->sync = nand_sync;
3269 mtd->lock = NULL;
3270 mtd->unlock = NULL;
3271 mtd->suspend = nand_suspend;
3272 mtd->resume = nand_resume;
3273 mtd->block_isbad = nand_block_isbad;
3274 mtd->block_markbad = nand_block_markbad;
3276 /* propagate ecc.layout to mtd_info */
3277 mtd->ecclayout = chip->ecc.layout;
3279 /* Check, if we should skip the bad block table scan */
3280 if (chip->options & NAND_SKIP_BBTSCAN)
3281 return 0;
3283 /* Build bad block table */
3284 return chip->scan_bbt(mtd);
3287 /* is_module_text_address() isn't exported, and it's mostly a pointless
3288 test if this is a module _anyway_ -- they'd have to try _really_ hard
3289 to call us from in-kernel code if the core NAND support is modular. */
3290 #ifdef MODULE
3291 #define caller_is_module() (1)
3292 #else
3293 #define caller_is_module() \
3294 is_module_text_address((unsigned long)__builtin_return_address(0))
3295 #endif
3298 * nand_scan - [NAND Interface] Scan for the NAND device
3299 * @mtd: MTD device structure
3300 * @maxchips: Number of chips to scan for
3302 * This fills out all the uninitialized function pointers
3303 * with the defaults.
3304 * The flash ID is read and the mtd/chip structures are
3305 * filled with the appropriate values.
3306 * The mtd->owner field must be set to the module of the caller
3309 int nand_scan(struct mtd_info *mtd, int maxchips)
3311 int ret;
3313 /* Many callers got this wrong, so check for it for a while... */
3314 if (!mtd->owner && caller_is_module()) {
3315 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3316 __func__);
3317 BUG();
3320 ret = nand_scan_ident(mtd, maxchips, NULL);
3321 if (!ret)
3322 ret = nand_scan_tail(mtd);
3323 return ret;
3327 * nand_release - [NAND Interface] Free resources held by the NAND device
3328 * @mtd: MTD device structure
3330 void nand_release(struct mtd_info *mtd)
3332 struct nand_chip *chip = mtd->priv;
3334 #ifdef CONFIG_MTD_PARTITIONS
3335 /* Deregister partitions */
3336 del_mtd_partitions(mtd);
3337 #endif
3338 /* Deregister the device */
3339 del_mtd_device(mtd);
3341 /* Free bad block table memory */
3342 kfree(chip->bbt);
3343 if (!(chip->options & NAND_OWN_BUFFERS))
3344 kfree(chip->buffers);
3346 /* Free bad block descriptor memory */
3347 if (chip->badblock_pattern && chip->badblock_pattern->options
3348 & NAND_BBT_DYNAMICSTRUCT)
3349 kfree(chip->badblock_pattern);
3352 EXPORT_SYMBOL_GPL(nand_lock);
3353 EXPORT_SYMBOL_GPL(nand_unlock);
3354 EXPORT_SYMBOL_GPL(nand_scan);
3355 EXPORT_SYMBOL_GPL(nand_scan_ident);
3356 EXPORT_SYMBOL_GPL(nand_scan_tail);
3357 EXPORT_SYMBOL_GPL(nand_release);
3359 static int __init nand_base_init(void)
3361 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3362 return 0;
3365 static void __exit nand_base_exit(void)
3367 led_trigger_unregister_simple(nand_led_trigger);
3370 module_init(nand_base_init);
3371 module_exit(nand_base_exit);
3373 MODULE_LICENSE("GPL");
3374 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3375 MODULE_DESCRIPTION("Generic NAND flash driver code");