block: update git url for blktrace
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_fair.c
blob0080968d3e4a88e883a7905f409e22013abc8d55
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 return cfs_rq->rq;
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
105 return container_of(cfs_rq, struct rq, cfs);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct *task_of(struct sched_entity *se)
114 return container_of(se, struct task_struct, se);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
128 return min_vruntime;
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
137 return min_vruntime;
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->vruntime - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
157 * Find the right place in the rbtree:
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
216 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
218 return cfs_rq->rb_leftmost;
221 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
226 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
230 if (!last)
231 return NULL;
233 return rb_entry(last, struct sched_entity, run_node);
236 /**************************************************************
237 * Scheduling class statistics methods:
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
247 if (ret || !write)
248 return ret;
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
253 return 0;
255 #endif
258 * The idea is to set a period in which each task runs once.
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
263 * p = (nr <= nl) ? l : l*nr/nl
265 static u64 __sched_period(unsigned long nr_running)
267 u64 period = sysctl_sched_latency;
268 unsigned long nr_latency = sched_nr_latency;
270 if (unlikely(nr_running > nr_latency)) {
271 period = sysctl_sched_min_granularity;
272 period *= nr_running;
275 return period;
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
282 * s = p*w/rw
284 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
291 * We calculate the vruntime slice.
293 * vs = s/w = p/rw
295 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
297 u64 vslice = __sched_period(nr_running);
299 vslice *= NICE_0_LOAD;
300 do_div(vslice, rq_weight);
302 return vslice;
305 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
307 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
308 cfs_rq->nr_running + 1);
312 * Update the current task's runtime statistics. Skip current tasks that
313 * are not in our scheduling class.
315 static inline void
316 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
317 unsigned long delta_exec)
319 unsigned long delta_exec_weighted;
321 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
323 curr->sum_exec_runtime += delta_exec;
324 schedstat_add(cfs_rq, exec_clock, delta_exec);
325 delta_exec_weighted = delta_exec;
326 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
327 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
328 &curr->load);
330 curr->vruntime += delta_exec_weighted;
333 static void update_curr(struct cfs_rq *cfs_rq)
335 struct sched_entity *curr = cfs_rq->curr;
336 u64 now = rq_of(cfs_rq)->clock;
337 unsigned long delta_exec;
339 if (unlikely(!curr))
340 return;
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
347 delta_exec = (unsigned long)(now - curr->exec_start);
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
355 cpuacct_charge(curtask, delta_exec);
359 static inline void
360 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
366 * Task is being enqueued - update stats:
368 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
374 if (se != cfs_rq->curr)
375 update_stats_wait_start(cfs_rq, se);
378 static void
379 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
386 schedstat_set(se->wait_start, 0);
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
401 * We are picking a new current task - update its stats:
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 * We are starting a new run period:
409 se->exec_start = rq_of(cfs_rq)->clock;
412 /**************************************************
413 * Scheduling class queueing methods:
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437 struct task_struct *tsk = task_of(se);
439 if ((s64)delta < 0)
440 delta = 0;
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
448 account_scheduler_latency(tsk, delta >> 10, 1);
450 if (se->block_start) {
451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
452 struct task_struct *tsk = task_of(se);
454 if ((s64)delta < 0)
455 delta = 0;
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
473 account_scheduler_latency(tsk, delta >> 10, 0);
475 #endif
478 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
480 #ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
483 if (d < 0)
484 d = -d;
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488 #endif
491 static void
492 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
494 u64 vruntime;
496 if (first_fair(cfs_rq)) {
497 vruntime = min_vruntime(cfs_rq->min_vruntime,
498 __pick_next_entity(cfs_rq)->vruntime);
499 } else
500 vruntime = cfs_rq->min_vruntime;
503 * The 'current' period is already promised to the current tasks,
504 * however the extra weight of the new task will slow them down a
505 * little, place the new task so that it fits in the slot that
506 * stays open at the end.
508 if (initial && sched_feat(START_DEBIT))
509 vruntime += sched_vslice_add(cfs_rq, se);
511 if (!initial) {
512 /* sleeps upto a single latency don't count. */
513 if (sched_feat(NEW_FAIR_SLEEPERS))
514 vruntime -= sysctl_sched_latency;
516 /* ensure we never gain time by being placed backwards. */
517 vruntime = max_vruntime(se->vruntime, vruntime);
520 se->vruntime = vruntime;
523 static void
524 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
527 * Update run-time statistics of the 'current'.
529 update_curr(cfs_rq);
531 if (wakeup) {
532 place_entity(cfs_rq, se, 0);
533 enqueue_sleeper(cfs_rq, se);
536 update_stats_enqueue(cfs_rq, se);
537 check_spread(cfs_rq, se);
538 if (se != cfs_rq->curr)
539 __enqueue_entity(cfs_rq, se);
540 account_entity_enqueue(cfs_rq, se);
543 static void update_avg(u64 *avg, u64 sample)
545 s64 diff = sample - *avg;
546 *avg += diff >> 3;
549 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 if (!se->last_wakeup)
552 return;
554 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
555 se->last_wakeup = 0;
558 static void
559 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
562 * Update run-time statistics of the 'current'.
564 update_curr(cfs_rq);
566 update_stats_dequeue(cfs_rq, se);
567 if (sleep) {
568 update_avg_stats(cfs_rq, se);
569 #ifdef CONFIG_SCHEDSTATS
570 if (entity_is_task(se)) {
571 struct task_struct *tsk = task_of(se);
573 if (tsk->state & TASK_INTERRUPTIBLE)
574 se->sleep_start = rq_of(cfs_rq)->clock;
575 if (tsk->state & TASK_UNINTERRUPTIBLE)
576 se->block_start = rq_of(cfs_rq)->clock;
578 #endif
581 if (se != cfs_rq->curr)
582 __dequeue_entity(cfs_rq, se);
583 account_entity_dequeue(cfs_rq, se);
587 * Preempt the current task with a newly woken task if needed:
589 static void
590 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
592 unsigned long ideal_runtime, delta_exec;
594 ideal_runtime = sched_slice(cfs_rq, curr);
595 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
596 if (delta_exec > ideal_runtime)
597 resched_task(rq_of(cfs_rq)->curr);
600 static void
601 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 /* 'current' is not kept within the tree. */
604 if (se->on_rq) {
606 * Any task has to be enqueued before it get to execute on
607 * a CPU. So account for the time it spent waiting on the
608 * runqueue.
610 update_stats_wait_end(cfs_rq, se);
611 __dequeue_entity(cfs_rq, se);
614 update_stats_curr_start(cfs_rq, se);
615 cfs_rq->curr = se;
616 #ifdef CONFIG_SCHEDSTATS
618 * Track our maximum slice length, if the CPU's load is at
619 * least twice that of our own weight (i.e. dont track it
620 * when there are only lesser-weight tasks around):
622 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
623 se->slice_max = max(se->slice_max,
624 se->sum_exec_runtime - se->prev_sum_exec_runtime);
626 #endif
627 se->prev_sum_exec_runtime = se->sum_exec_runtime;
630 static struct sched_entity *
631 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 s64 diff, gran;
635 if (!cfs_rq->next)
636 return se;
638 diff = cfs_rq->next->vruntime - se->vruntime;
639 if (diff < 0)
640 return se;
642 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
643 if (diff > gran)
644 return se;
646 return cfs_rq->next;
649 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
651 struct sched_entity *se = NULL;
653 if (first_fair(cfs_rq)) {
654 se = __pick_next_entity(cfs_rq);
655 se = pick_next(cfs_rq, se);
656 set_next_entity(cfs_rq, se);
659 return se;
662 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
665 * If still on the runqueue then deactivate_task()
666 * was not called and update_curr() has to be done:
668 if (prev->on_rq)
669 update_curr(cfs_rq);
671 check_spread(cfs_rq, prev);
672 if (prev->on_rq) {
673 update_stats_wait_start(cfs_rq, prev);
674 /* Put 'current' back into the tree. */
675 __enqueue_entity(cfs_rq, prev);
677 cfs_rq->curr = NULL;
680 static void
681 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
684 * Update run-time statistics of the 'current'.
686 update_curr(cfs_rq);
688 #ifdef CONFIG_SCHED_HRTICK
690 * queued ticks are scheduled to match the slice, so don't bother
691 * validating it and just reschedule.
693 if (queued)
694 return resched_task(rq_of(cfs_rq)->curr);
696 * don't let the period tick interfere with the hrtick preemption
698 if (!sched_feat(DOUBLE_TICK) &&
699 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
700 return;
701 #endif
703 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
704 check_preempt_tick(cfs_rq, curr);
707 /**************************************************
708 * CFS operations on tasks:
711 #ifdef CONFIG_FAIR_GROUP_SCHED
713 /* Walk up scheduling entities hierarchy */
714 #define for_each_sched_entity(se) \
715 for (; se; se = se->parent)
717 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
719 return p->se.cfs_rq;
722 /* runqueue on which this entity is (to be) queued */
723 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
725 return se->cfs_rq;
728 /* runqueue "owned" by this group */
729 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
731 return grp->my_q;
734 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
735 * another cpu ('this_cpu')
737 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
739 return cfs_rq->tg->cfs_rq[this_cpu];
742 /* Iterate thr' all leaf cfs_rq's on a runqueue */
743 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
744 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
746 /* Do the two (enqueued) entities belong to the same group ? */
747 static inline int
748 is_same_group(struct sched_entity *se, struct sched_entity *pse)
750 if (se->cfs_rq == pse->cfs_rq)
751 return 1;
753 return 0;
756 static inline struct sched_entity *parent_entity(struct sched_entity *se)
758 return se->parent;
761 #else /* CONFIG_FAIR_GROUP_SCHED */
763 #define for_each_sched_entity(se) \
764 for (; se; se = NULL)
766 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
768 return &task_rq(p)->cfs;
771 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
773 struct task_struct *p = task_of(se);
774 struct rq *rq = task_rq(p);
776 return &rq->cfs;
779 /* runqueue "owned" by this group */
780 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
782 return NULL;
785 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
787 return &cpu_rq(this_cpu)->cfs;
790 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
791 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
793 static inline int
794 is_same_group(struct sched_entity *se, struct sched_entity *pse)
796 return 1;
799 static inline struct sched_entity *parent_entity(struct sched_entity *se)
801 return NULL;
804 #endif /* CONFIG_FAIR_GROUP_SCHED */
806 #ifdef CONFIG_SCHED_HRTICK
807 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
809 int requeue = rq->curr == p;
810 struct sched_entity *se = &p->se;
811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
813 WARN_ON(task_rq(p) != rq);
815 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
816 u64 slice = sched_slice(cfs_rq, se);
817 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
818 s64 delta = slice - ran;
820 if (delta < 0) {
821 if (rq->curr == p)
822 resched_task(p);
823 return;
827 * Don't schedule slices shorter than 10000ns, that just
828 * doesn't make sense. Rely on vruntime for fairness.
830 if (!requeue)
831 delta = max(10000LL, delta);
833 hrtick_start(rq, delta, requeue);
836 #else
837 static inline void
838 hrtick_start_fair(struct rq *rq, struct task_struct *p)
841 #endif
844 * The enqueue_task method is called before nr_running is
845 * increased. Here we update the fair scheduling stats and
846 * then put the task into the rbtree:
848 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
850 struct cfs_rq *cfs_rq;
851 struct sched_entity *se = &p->se;
853 for_each_sched_entity(se) {
854 if (se->on_rq)
855 break;
856 cfs_rq = cfs_rq_of(se);
857 enqueue_entity(cfs_rq, se, wakeup);
858 wakeup = 1;
861 hrtick_start_fair(rq, rq->curr);
865 * The dequeue_task method is called before nr_running is
866 * decreased. We remove the task from the rbtree and
867 * update the fair scheduling stats:
869 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
871 struct cfs_rq *cfs_rq;
872 struct sched_entity *se = &p->se;
874 for_each_sched_entity(se) {
875 cfs_rq = cfs_rq_of(se);
876 dequeue_entity(cfs_rq, se, sleep);
877 /* Don't dequeue parent if it has other entities besides us */
878 if (cfs_rq->load.weight)
879 break;
880 sleep = 1;
883 hrtick_start_fair(rq, rq->curr);
887 * sched_yield() support is very simple - we dequeue and enqueue.
889 * If compat_yield is turned on then we requeue to the end of the tree.
891 static void yield_task_fair(struct rq *rq)
893 struct task_struct *curr = rq->curr;
894 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
895 struct sched_entity *rightmost, *se = &curr->se;
898 * Are we the only task in the tree?
900 if (unlikely(cfs_rq->nr_running == 1))
901 return;
903 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
904 __update_rq_clock(rq);
906 * Update run-time statistics of the 'current'.
908 update_curr(cfs_rq);
910 return;
913 * Find the rightmost entry in the rbtree:
915 rightmost = __pick_last_entity(cfs_rq);
917 * Already in the rightmost position?
919 if (unlikely(rightmost->vruntime < se->vruntime))
920 return;
923 * Minimally necessary key value to be last in the tree:
924 * Upon rescheduling, sched_class::put_prev_task() will place
925 * 'current' within the tree based on its new key value.
927 se->vruntime = rightmost->vruntime + 1;
931 * wake_idle() will wake a task on an idle cpu if task->cpu is
932 * not idle and an idle cpu is available. The span of cpus to
933 * search starts with cpus closest then further out as needed,
934 * so we always favor a closer, idle cpu.
936 * Returns the CPU we should wake onto.
938 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
939 static int wake_idle(int cpu, struct task_struct *p)
941 cpumask_t tmp;
942 struct sched_domain *sd;
943 int i;
946 * If it is idle, then it is the best cpu to run this task.
948 * This cpu is also the best, if it has more than one task already.
949 * Siblings must be also busy(in most cases) as they didn't already
950 * pickup the extra load from this cpu and hence we need not check
951 * sibling runqueue info. This will avoid the checks and cache miss
952 * penalities associated with that.
954 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
955 return cpu;
957 for_each_domain(cpu, sd) {
958 if (sd->flags & SD_WAKE_IDLE) {
959 cpus_and(tmp, sd->span, p->cpus_allowed);
960 for_each_cpu_mask(i, tmp) {
961 if (idle_cpu(i)) {
962 if (i != task_cpu(p)) {
963 schedstat_inc(p,
964 se.nr_wakeups_idle);
966 return i;
969 } else {
970 break;
973 return cpu;
975 #else
976 static inline int wake_idle(int cpu, struct task_struct *p)
978 return cpu;
980 #endif
982 #ifdef CONFIG_SMP
984 static const struct sched_class fair_sched_class;
986 static int
987 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
988 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
989 int idx, unsigned long load, unsigned long this_load,
990 unsigned int imbalance)
992 struct task_struct *curr = this_rq->curr;
993 unsigned long tl = this_load;
994 unsigned long tl_per_task;
996 if (!(this_sd->flags & SD_WAKE_AFFINE))
997 return 0;
1000 * If the currently running task will sleep within
1001 * a reasonable amount of time then attract this newly
1002 * woken task:
1004 if (sync && curr->sched_class == &fair_sched_class) {
1005 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1006 p->se.avg_overlap < sysctl_sched_migration_cost)
1007 return 1;
1010 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1011 tl_per_task = cpu_avg_load_per_task(this_cpu);
1014 * If sync wakeup then subtract the (maximum possible)
1015 * effect of the currently running task from the load
1016 * of the current CPU:
1018 if (sync)
1019 tl -= current->se.load.weight;
1021 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1022 100*(tl + p->se.load.weight) <= imbalance*load) {
1024 * This domain has SD_WAKE_AFFINE and
1025 * p is cache cold in this domain, and
1026 * there is no bad imbalance.
1028 schedstat_inc(this_sd, ttwu_move_affine);
1029 schedstat_inc(p, se.nr_wakeups_affine);
1031 return 1;
1033 return 0;
1036 static int select_task_rq_fair(struct task_struct *p, int sync)
1038 struct sched_domain *sd, *this_sd = NULL;
1039 int prev_cpu, this_cpu, new_cpu;
1040 unsigned long load, this_load;
1041 struct rq *rq, *this_rq;
1042 unsigned int imbalance;
1043 int idx;
1045 prev_cpu = task_cpu(p);
1046 rq = task_rq(p);
1047 this_cpu = smp_processor_id();
1048 this_rq = cpu_rq(this_cpu);
1049 new_cpu = prev_cpu;
1052 * 'this_sd' is the first domain that both
1053 * this_cpu and prev_cpu are present in:
1055 for_each_domain(this_cpu, sd) {
1056 if (cpu_isset(prev_cpu, sd->span)) {
1057 this_sd = sd;
1058 break;
1062 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1063 goto out;
1066 * Check for affine wakeup and passive balancing possibilities.
1068 if (!this_sd)
1069 goto out;
1071 idx = this_sd->wake_idx;
1073 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1075 load = source_load(prev_cpu, idx);
1076 this_load = target_load(this_cpu, idx);
1078 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1079 load, this_load, imbalance))
1080 return this_cpu;
1082 if (prev_cpu == this_cpu)
1083 goto out;
1086 * Start passive balancing when half the imbalance_pct
1087 * limit is reached.
1089 if (this_sd->flags & SD_WAKE_BALANCE) {
1090 if (imbalance*this_load <= 100*load) {
1091 schedstat_inc(this_sd, ttwu_move_balance);
1092 schedstat_inc(p, se.nr_wakeups_passive);
1093 return this_cpu;
1097 out:
1098 return wake_idle(new_cpu, p);
1100 #endif /* CONFIG_SMP */
1104 * Preempt the current task with a newly woken task if needed:
1106 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1108 struct task_struct *curr = rq->curr;
1109 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1110 struct sched_entity *se = &curr->se, *pse = &p->se;
1111 unsigned long gran;
1113 if (unlikely(rt_prio(p->prio))) {
1114 update_rq_clock(rq);
1115 update_curr(cfs_rq);
1116 resched_task(curr);
1117 return;
1120 se->last_wakeup = se->sum_exec_runtime;
1121 if (unlikely(se == pse))
1122 return;
1124 cfs_rq_of(pse)->next = pse;
1127 * Batch tasks do not preempt (their preemption is driven by
1128 * the tick):
1130 if (unlikely(p->policy == SCHED_BATCH))
1131 return;
1133 if (!sched_feat(WAKEUP_PREEMPT))
1134 return;
1136 while (!is_same_group(se, pse)) {
1137 se = parent_entity(se);
1138 pse = parent_entity(pse);
1141 gran = sysctl_sched_wakeup_granularity;
1143 * More easily preempt - nice tasks, while not making
1144 * it harder for + nice tasks.
1146 if (unlikely(se->load.weight > NICE_0_LOAD))
1147 gran = calc_delta_fair(gran, &se->load);
1149 if (pse->vruntime + gran < se->vruntime)
1150 resched_task(curr);
1153 static struct task_struct *pick_next_task_fair(struct rq *rq)
1155 struct task_struct *p;
1156 struct cfs_rq *cfs_rq = &rq->cfs;
1157 struct sched_entity *se;
1159 if (unlikely(!cfs_rq->nr_running))
1160 return NULL;
1162 do {
1163 se = pick_next_entity(cfs_rq);
1164 cfs_rq = group_cfs_rq(se);
1165 } while (cfs_rq);
1167 p = task_of(se);
1168 hrtick_start_fair(rq, p);
1170 return p;
1174 * Account for a descheduled task:
1176 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1178 struct sched_entity *se = &prev->se;
1179 struct cfs_rq *cfs_rq;
1181 for_each_sched_entity(se) {
1182 cfs_rq = cfs_rq_of(se);
1183 put_prev_entity(cfs_rq, se);
1187 #ifdef CONFIG_SMP
1188 /**************************************************
1189 * Fair scheduling class load-balancing methods:
1193 * Load-balancing iterator. Note: while the runqueue stays locked
1194 * during the whole iteration, the current task might be
1195 * dequeued so the iterator has to be dequeue-safe. Here we
1196 * achieve that by always pre-iterating before returning
1197 * the current task:
1199 static struct task_struct *
1200 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1202 struct task_struct *p;
1204 if (!curr)
1205 return NULL;
1207 p = rb_entry(curr, struct task_struct, se.run_node);
1208 cfs_rq->rb_load_balance_curr = rb_next(curr);
1210 return p;
1213 static struct task_struct *load_balance_start_fair(void *arg)
1215 struct cfs_rq *cfs_rq = arg;
1217 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1220 static struct task_struct *load_balance_next_fair(void *arg)
1222 struct cfs_rq *cfs_rq = arg;
1224 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1227 #ifdef CONFIG_FAIR_GROUP_SCHED
1228 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1230 struct sched_entity *curr;
1231 struct task_struct *p;
1233 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1234 return MAX_PRIO;
1236 curr = cfs_rq->curr;
1237 if (!curr)
1238 curr = __pick_next_entity(cfs_rq);
1240 p = task_of(curr);
1242 return p->prio;
1244 #endif
1246 static unsigned long
1247 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1248 unsigned long max_load_move,
1249 struct sched_domain *sd, enum cpu_idle_type idle,
1250 int *all_pinned, int *this_best_prio)
1252 struct cfs_rq *busy_cfs_rq;
1253 long rem_load_move = max_load_move;
1254 struct rq_iterator cfs_rq_iterator;
1256 cfs_rq_iterator.start = load_balance_start_fair;
1257 cfs_rq_iterator.next = load_balance_next_fair;
1259 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1260 #ifdef CONFIG_FAIR_GROUP_SCHED
1261 struct cfs_rq *this_cfs_rq;
1262 long imbalance;
1263 unsigned long maxload;
1265 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1267 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1268 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1269 if (imbalance <= 0)
1270 continue;
1272 /* Don't pull more than imbalance/2 */
1273 imbalance /= 2;
1274 maxload = min(rem_load_move, imbalance);
1276 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1277 #else
1278 # define maxload rem_load_move
1279 #endif
1281 * pass busy_cfs_rq argument into
1282 * load_balance_[start|next]_fair iterators
1284 cfs_rq_iterator.arg = busy_cfs_rq;
1285 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1286 maxload, sd, idle, all_pinned,
1287 this_best_prio,
1288 &cfs_rq_iterator);
1290 if (rem_load_move <= 0)
1291 break;
1294 return max_load_move - rem_load_move;
1297 static int
1298 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1299 struct sched_domain *sd, enum cpu_idle_type idle)
1301 struct cfs_rq *busy_cfs_rq;
1302 struct rq_iterator cfs_rq_iterator;
1304 cfs_rq_iterator.start = load_balance_start_fair;
1305 cfs_rq_iterator.next = load_balance_next_fair;
1307 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1309 * pass busy_cfs_rq argument into
1310 * load_balance_[start|next]_fair iterators
1312 cfs_rq_iterator.arg = busy_cfs_rq;
1313 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1314 &cfs_rq_iterator))
1315 return 1;
1318 return 0;
1320 #endif
1323 * scheduler tick hitting a task of our scheduling class:
1325 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1327 struct cfs_rq *cfs_rq;
1328 struct sched_entity *se = &curr->se;
1330 for_each_sched_entity(se) {
1331 cfs_rq = cfs_rq_of(se);
1332 entity_tick(cfs_rq, se, queued);
1336 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1339 * Share the fairness runtime between parent and child, thus the
1340 * total amount of pressure for CPU stays equal - new tasks
1341 * get a chance to run but frequent forkers are not allowed to
1342 * monopolize the CPU. Note: the parent runqueue is locked,
1343 * the child is not running yet.
1345 static void task_new_fair(struct rq *rq, struct task_struct *p)
1347 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1348 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1349 int this_cpu = smp_processor_id();
1351 sched_info_queued(p);
1353 update_curr(cfs_rq);
1354 place_entity(cfs_rq, se, 1);
1356 /* 'curr' will be NULL if the child belongs to a different group */
1357 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1358 curr && curr->vruntime < se->vruntime) {
1360 * Upon rescheduling, sched_class::put_prev_task() will place
1361 * 'current' within the tree based on its new key value.
1363 swap(curr->vruntime, se->vruntime);
1366 enqueue_task_fair(rq, p, 0);
1367 resched_task(rq->curr);
1371 * Priority of the task has changed. Check to see if we preempt
1372 * the current task.
1374 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1375 int oldprio, int running)
1378 * Reschedule if we are currently running on this runqueue and
1379 * our priority decreased, or if we are not currently running on
1380 * this runqueue and our priority is higher than the current's
1382 if (running) {
1383 if (p->prio > oldprio)
1384 resched_task(rq->curr);
1385 } else
1386 check_preempt_curr(rq, p);
1390 * We switched to the sched_fair class.
1392 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1393 int running)
1396 * We were most likely switched from sched_rt, so
1397 * kick off the schedule if running, otherwise just see
1398 * if we can still preempt the current task.
1400 if (running)
1401 resched_task(rq->curr);
1402 else
1403 check_preempt_curr(rq, p);
1406 /* Account for a task changing its policy or group.
1408 * This routine is mostly called to set cfs_rq->curr field when a task
1409 * migrates between groups/classes.
1411 static void set_curr_task_fair(struct rq *rq)
1413 struct sched_entity *se = &rq->curr->se;
1415 for_each_sched_entity(se)
1416 set_next_entity(cfs_rq_of(se), se);
1419 #ifdef CONFIG_FAIR_GROUP_SCHED
1420 static void moved_group_fair(struct task_struct *p)
1422 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1424 update_curr(cfs_rq);
1425 place_entity(cfs_rq, &p->se, 1);
1427 #endif
1430 * All the scheduling class methods:
1432 static const struct sched_class fair_sched_class = {
1433 .next = &idle_sched_class,
1434 .enqueue_task = enqueue_task_fair,
1435 .dequeue_task = dequeue_task_fair,
1436 .yield_task = yield_task_fair,
1437 #ifdef CONFIG_SMP
1438 .select_task_rq = select_task_rq_fair,
1439 #endif /* CONFIG_SMP */
1441 .check_preempt_curr = check_preempt_wakeup,
1443 .pick_next_task = pick_next_task_fair,
1444 .put_prev_task = put_prev_task_fair,
1446 #ifdef CONFIG_SMP
1447 .load_balance = load_balance_fair,
1448 .move_one_task = move_one_task_fair,
1449 #endif
1451 .set_curr_task = set_curr_task_fair,
1452 .task_tick = task_tick_fair,
1453 .task_new = task_new_fair,
1455 .prio_changed = prio_changed_fair,
1456 .switched_to = switched_to_fair,
1458 #ifdef CONFIG_FAIR_GROUP_SCHED
1459 .moved_group = moved_group_fair,
1460 #endif
1463 #ifdef CONFIG_SCHED_DEBUG
1464 static void print_cfs_stats(struct seq_file *m, int cpu)
1466 struct cfs_rq *cfs_rq;
1468 #ifdef CONFIG_FAIR_GROUP_SCHED
1469 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1470 #endif
1471 rcu_read_lock();
1472 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1473 print_cfs_rq(m, cpu, cfs_rq);
1474 rcu_read_unlock();
1476 #endif