regulator: Implement enable_time() for WM835x ISINKs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / regulator / core.c
blobca8e1642538b73864c47f3617c84ed4570b57e24
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/delay.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/regulator/driver.h>
25 #include <linux/regulator/machine.h>
27 #define REGULATOR_VERSION "0.5"
29 static DEFINE_MUTEX(regulator_list_mutex);
30 static LIST_HEAD(regulator_list);
31 static LIST_HEAD(regulator_map_list);
32 static int has_full_constraints;
35 * struct regulator_map
37 * Used to provide symbolic supply names to devices.
39 struct regulator_map {
40 struct list_head list;
41 const char *dev_name; /* The dev_name() for the consumer */
42 const char *supply;
43 struct regulator_dev *regulator;
47 * struct regulator
49 * One for each consumer device.
51 struct regulator {
52 struct device *dev;
53 struct list_head list;
54 int uA_load;
55 int min_uV;
56 int max_uV;
57 char *supply_name;
58 struct device_attribute dev_attr;
59 struct regulator_dev *rdev;
62 static int _regulator_is_enabled(struct regulator_dev *rdev);
63 static int _regulator_disable(struct regulator_dev *rdev);
64 static int _regulator_get_voltage(struct regulator_dev *rdev);
65 static int _regulator_get_current_limit(struct regulator_dev *rdev);
66 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
67 static void _notifier_call_chain(struct regulator_dev *rdev,
68 unsigned long event, void *data);
70 static const char *rdev_get_name(struct regulator_dev *rdev)
72 if (rdev->constraints && rdev->constraints->name)
73 return rdev->constraints->name;
74 else if (rdev->desc->name)
75 return rdev->desc->name;
76 else
77 return "";
80 /* gets the regulator for a given consumer device */
81 static struct regulator *get_device_regulator(struct device *dev)
83 struct regulator *regulator = NULL;
84 struct regulator_dev *rdev;
86 mutex_lock(&regulator_list_mutex);
87 list_for_each_entry(rdev, &regulator_list, list) {
88 mutex_lock(&rdev->mutex);
89 list_for_each_entry(regulator, &rdev->consumer_list, list) {
90 if (regulator->dev == dev) {
91 mutex_unlock(&rdev->mutex);
92 mutex_unlock(&regulator_list_mutex);
93 return regulator;
96 mutex_unlock(&rdev->mutex);
98 mutex_unlock(&regulator_list_mutex);
99 return NULL;
102 /* Platform voltage constraint check */
103 static int regulator_check_voltage(struct regulator_dev *rdev,
104 int *min_uV, int *max_uV)
106 BUG_ON(*min_uV > *max_uV);
108 if (!rdev->constraints) {
109 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
110 rdev_get_name(rdev));
111 return -ENODEV;
113 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
114 printk(KERN_ERR "%s: operation not allowed for %s\n",
115 __func__, rdev_get_name(rdev));
116 return -EPERM;
119 if (*max_uV > rdev->constraints->max_uV)
120 *max_uV = rdev->constraints->max_uV;
121 if (*min_uV < rdev->constraints->min_uV)
122 *min_uV = rdev->constraints->min_uV;
124 if (*min_uV > *max_uV)
125 return -EINVAL;
127 return 0;
130 /* current constraint check */
131 static int regulator_check_current_limit(struct regulator_dev *rdev,
132 int *min_uA, int *max_uA)
134 BUG_ON(*min_uA > *max_uA);
136 if (!rdev->constraints) {
137 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
138 rdev_get_name(rdev));
139 return -ENODEV;
141 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
142 printk(KERN_ERR "%s: operation not allowed for %s\n",
143 __func__, rdev_get_name(rdev));
144 return -EPERM;
147 if (*max_uA > rdev->constraints->max_uA)
148 *max_uA = rdev->constraints->max_uA;
149 if (*min_uA < rdev->constraints->min_uA)
150 *min_uA = rdev->constraints->min_uA;
152 if (*min_uA > *max_uA)
153 return -EINVAL;
155 return 0;
158 /* operating mode constraint check */
159 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
161 switch (mode) {
162 case REGULATOR_MODE_FAST:
163 case REGULATOR_MODE_NORMAL:
164 case REGULATOR_MODE_IDLE:
165 case REGULATOR_MODE_STANDBY:
166 break;
167 default:
168 return -EINVAL;
171 if (!rdev->constraints) {
172 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
173 rdev_get_name(rdev));
174 return -ENODEV;
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
177 printk(KERN_ERR "%s: operation not allowed for %s\n",
178 __func__, rdev_get_name(rdev));
179 return -EPERM;
181 if (!(rdev->constraints->valid_modes_mask & mode)) {
182 printk(KERN_ERR "%s: invalid mode %x for %s\n",
183 __func__, mode, rdev_get_name(rdev));
184 return -EINVAL;
186 return 0;
189 /* dynamic regulator mode switching constraint check */
190 static int regulator_check_drms(struct regulator_dev *rdev)
192 if (!rdev->constraints) {
193 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
194 rdev_get_name(rdev));
195 return -ENODEV;
197 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
198 printk(KERN_ERR "%s: operation not allowed for %s\n",
199 __func__, rdev_get_name(rdev));
200 return -EPERM;
202 return 0;
205 static ssize_t device_requested_uA_show(struct device *dev,
206 struct device_attribute *attr, char *buf)
208 struct regulator *regulator;
210 regulator = get_device_regulator(dev);
211 if (regulator == NULL)
212 return 0;
214 return sprintf(buf, "%d\n", regulator->uA_load);
217 static ssize_t regulator_uV_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
220 struct regulator_dev *rdev = dev_get_drvdata(dev);
221 ssize_t ret;
223 mutex_lock(&rdev->mutex);
224 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
225 mutex_unlock(&rdev->mutex);
227 return ret;
229 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
231 static ssize_t regulator_uA_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
234 struct regulator_dev *rdev = dev_get_drvdata(dev);
236 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
238 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
240 static ssize_t regulator_name_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct regulator_dev *rdev = dev_get_drvdata(dev);
245 return sprintf(buf, "%s\n", rdev_get_name(rdev));
248 static ssize_t regulator_print_opmode(char *buf, int mode)
250 switch (mode) {
251 case REGULATOR_MODE_FAST:
252 return sprintf(buf, "fast\n");
253 case REGULATOR_MODE_NORMAL:
254 return sprintf(buf, "normal\n");
255 case REGULATOR_MODE_IDLE:
256 return sprintf(buf, "idle\n");
257 case REGULATOR_MODE_STANDBY:
258 return sprintf(buf, "standby\n");
260 return sprintf(buf, "unknown\n");
263 static ssize_t regulator_opmode_show(struct device *dev,
264 struct device_attribute *attr, char *buf)
266 struct regulator_dev *rdev = dev_get_drvdata(dev);
268 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
270 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
272 static ssize_t regulator_print_state(char *buf, int state)
274 if (state > 0)
275 return sprintf(buf, "enabled\n");
276 else if (state == 0)
277 return sprintf(buf, "disabled\n");
278 else
279 return sprintf(buf, "unknown\n");
282 static ssize_t regulator_state_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
285 struct regulator_dev *rdev = dev_get_drvdata(dev);
286 ssize_t ret;
288 mutex_lock(&rdev->mutex);
289 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
290 mutex_unlock(&rdev->mutex);
292 return ret;
294 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
296 static ssize_t regulator_status_show(struct device *dev,
297 struct device_attribute *attr, char *buf)
299 struct regulator_dev *rdev = dev_get_drvdata(dev);
300 int status;
301 char *label;
303 status = rdev->desc->ops->get_status(rdev);
304 if (status < 0)
305 return status;
307 switch (status) {
308 case REGULATOR_STATUS_OFF:
309 label = "off";
310 break;
311 case REGULATOR_STATUS_ON:
312 label = "on";
313 break;
314 case REGULATOR_STATUS_ERROR:
315 label = "error";
316 break;
317 case REGULATOR_STATUS_FAST:
318 label = "fast";
319 break;
320 case REGULATOR_STATUS_NORMAL:
321 label = "normal";
322 break;
323 case REGULATOR_STATUS_IDLE:
324 label = "idle";
325 break;
326 case REGULATOR_STATUS_STANDBY:
327 label = "standby";
328 break;
329 default:
330 return -ERANGE;
333 return sprintf(buf, "%s\n", label);
335 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
337 static ssize_t regulator_min_uA_show(struct device *dev,
338 struct device_attribute *attr, char *buf)
340 struct regulator_dev *rdev = dev_get_drvdata(dev);
342 if (!rdev->constraints)
343 return sprintf(buf, "constraint not defined\n");
345 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
347 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
349 static ssize_t regulator_max_uA_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 if (!rdev->constraints)
355 return sprintf(buf, "constraint not defined\n");
357 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
359 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
361 static ssize_t regulator_min_uV_show(struct device *dev,
362 struct device_attribute *attr, char *buf)
364 struct regulator_dev *rdev = dev_get_drvdata(dev);
366 if (!rdev->constraints)
367 return sprintf(buf, "constraint not defined\n");
369 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
371 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
373 static ssize_t regulator_max_uV_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
378 if (!rdev->constraints)
379 return sprintf(buf, "constraint not defined\n");
381 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
383 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
385 static ssize_t regulator_total_uA_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
388 struct regulator_dev *rdev = dev_get_drvdata(dev);
389 struct regulator *regulator;
390 int uA = 0;
392 mutex_lock(&rdev->mutex);
393 list_for_each_entry(regulator, &rdev->consumer_list, list)
394 uA += regulator->uA_load;
395 mutex_unlock(&rdev->mutex);
396 return sprintf(buf, "%d\n", uA);
398 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
400 static ssize_t regulator_num_users_show(struct device *dev,
401 struct device_attribute *attr, char *buf)
403 struct regulator_dev *rdev = dev_get_drvdata(dev);
404 return sprintf(buf, "%d\n", rdev->use_count);
407 static ssize_t regulator_type_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
412 switch (rdev->desc->type) {
413 case REGULATOR_VOLTAGE:
414 return sprintf(buf, "voltage\n");
415 case REGULATOR_CURRENT:
416 return sprintf(buf, "current\n");
418 return sprintf(buf, "unknown\n");
421 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
422 struct device_attribute *attr, char *buf)
424 struct regulator_dev *rdev = dev_get_drvdata(dev);
426 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
428 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
429 regulator_suspend_mem_uV_show, NULL);
431 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
436 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
438 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
439 regulator_suspend_disk_uV_show, NULL);
441 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
446 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
448 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
449 regulator_suspend_standby_uV_show, NULL);
451 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
454 struct regulator_dev *rdev = dev_get_drvdata(dev);
456 return regulator_print_opmode(buf,
457 rdev->constraints->state_mem.mode);
459 static DEVICE_ATTR(suspend_mem_mode, 0444,
460 regulator_suspend_mem_mode_show, NULL);
462 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
467 return regulator_print_opmode(buf,
468 rdev->constraints->state_disk.mode);
470 static DEVICE_ATTR(suspend_disk_mode, 0444,
471 regulator_suspend_disk_mode_show, NULL);
473 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
476 struct regulator_dev *rdev = dev_get_drvdata(dev);
478 return regulator_print_opmode(buf,
479 rdev->constraints->state_standby.mode);
481 static DEVICE_ATTR(suspend_standby_mode, 0444,
482 regulator_suspend_standby_mode_show, NULL);
484 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
487 struct regulator_dev *rdev = dev_get_drvdata(dev);
489 return regulator_print_state(buf,
490 rdev->constraints->state_mem.enabled);
492 static DEVICE_ATTR(suspend_mem_state, 0444,
493 regulator_suspend_mem_state_show, NULL);
495 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
500 return regulator_print_state(buf,
501 rdev->constraints->state_disk.enabled);
503 static DEVICE_ATTR(suspend_disk_state, 0444,
504 regulator_suspend_disk_state_show, NULL);
506 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
507 struct device_attribute *attr, char *buf)
509 struct regulator_dev *rdev = dev_get_drvdata(dev);
511 return regulator_print_state(buf,
512 rdev->constraints->state_standby.enabled);
514 static DEVICE_ATTR(suspend_standby_state, 0444,
515 regulator_suspend_standby_state_show, NULL);
519 * These are the only attributes are present for all regulators.
520 * Other attributes are a function of regulator functionality.
522 static struct device_attribute regulator_dev_attrs[] = {
523 __ATTR(name, 0444, regulator_name_show, NULL),
524 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
525 __ATTR(type, 0444, regulator_type_show, NULL),
526 __ATTR_NULL,
529 static void regulator_dev_release(struct device *dev)
531 struct regulator_dev *rdev = dev_get_drvdata(dev);
532 kfree(rdev);
535 static struct class regulator_class = {
536 .name = "regulator",
537 .dev_release = regulator_dev_release,
538 .dev_attrs = regulator_dev_attrs,
541 /* Calculate the new optimum regulator operating mode based on the new total
542 * consumer load. All locks held by caller */
543 static void drms_uA_update(struct regulator_dev *rdev)
545 struct regulator *sibling;
546 int current_uA = 0, output_uV, input_uV, err;
547 unsigned int mode;
549 err = regulator_check_drms(rdev);
550 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
551 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
552 return;
554 /* get output voltage */
555 output_uV = rdev->desc->ops->get_voltage(rdev);
556 if (output_uV <= 0)
557 return;
559 /* get input voltage */
560 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
561 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
562 else
563 input_uV = rdev->constraints->input_uV;
564 if (input_uV <= 0)
565 return;
567 /* calc total requested load */
568 list_for_each_entry(sibling, &rdev->consumer_list, list)
569 current_uA += sibling->uA_load;
571 /* now get the optimum mode for our new total regulator load */
572 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
573 output_uV, current_uA);
575 /* check the new mode is allowed */
576 err = regulator_check_mode(rdev, mode);
577 if (err == 0)
578 rdev->desc->ops->set_mode(rdev, mode);
581 static int suspend_set_state(struct regulator_dev *rdev,
582 struct regulator_state *rstate)
584 int ret = 0;
585 bool can_set_state;
587 can_set_state = rdev->desc->ops->set_suspend_enable &&
588 rdev->desc->ops->set_suspend_disable;
590 /* If we have no suspend mode configration don't set anything;
591 * only warn if the driver actually makes the suspend mode
592 * configurable.
594 if (!rstate->enabled && !rstate->disabled) {
595 if (can_set_state)
596 printk(KERN_WARNING "%s: No configuration for %s\n",
597 __func__, rdev_get_name(rdev));
598 return 0;
601 if (rstate->enabled && rstate->disabled) {
602 printk(KERN_ERR "%s: invalid configuration for %s\n",
603 __func__, rdev_get_name(rdev));
604 return -EINVAL;
607 if (!can_set_state) {
608 printk(KERN_ERR "%s: no way to set suspend state\n",
609 __func__);
610 return -EINVAL;
613 if (rstate->enabled)
614 ret = rdev->desc->ops->set_suspend_enable(rdev);
615 else
616 ret = rdev->desc->ops->set_suspend_disable(rdev);
617 if (ret < 0) {
618 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
619 return ret;
622 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
623 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
624 if (ret < 0) {
625 printk(KERN_ERR "%s: failed to set voltage\n",
626 __func__);
627 return ret;
631 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
632 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
633 if (ret < 0) {
634 printk(KERN_ERR "%s: failed to set mode\n", __func__);
635 return ret;
638 return ret;
641 /* locks held by caller */
642 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
644 if (!rdev->constraints)
645 return -EINVAL;
647 switch (state) {
648 case PM_SUSPEND_STANDBY:
649 return suspend_set_state(rdev,
650 &rdev->constraints->state_standby);
651 case PM_SUSPEND_MEM:
652 return suspend_set_state(rdev,
653 &rdev->constraints->state_mem);
654 case PM_SUSPEND_MAX:
655 return suspend_set_state(rdev,
656 &rdev->constraints->state_disk);
657 default:
658 return -EINVAL;
662 static void print_constraints(struct regulator_dev *rdev)
664 struct regulation_constraints *constraints = rdev->constraints;
665 char buf[80] = "";
666 int count = 0;
667 int ret;
669 if (constraints->min_uV && constraints->max_uV) {
670 if (constraints->min_uV == constraints->max_uV)
671 count += sprintf(buf + count, "%d mV ",
672 constraints->min_uV / 1000);
673 else
674 count += sprintf(buf + count, "%d <--> %d mV ",
675 constraints->min_uV / 1000,
676 constraints->max_uV / 1000);
679 if (!constraints->min_uV ||
680 constraints->min_uV != constraints->max_uV) {
681 ret = _regulator_get_voltage(rdev);
682 if (ret > 0)
683 count += sprintf(buf + count, "at %d mV ", ret / 1000);
686 if (constraints->min_uA && constraints->max_uA) {
687 if (constraints->min_uA == constraints->max_uA)
688 count += sprintf(buf + count, "%d mA ",
689 constraints->min_uA / 1000);
690 else
691 count += sprintf(buf + count, "%d <--> %d mA ",
692 constraints->min_uA / 1000,
693 constraints->max_uA / 1000);
696 if (!constraints->min_uA ||
697 constraints->min_uA != constraints->max_uA) {
698 ret = _regulator_get_current_limit(rdev);
699 if (ret > 0)
700 count += sprintf(buf + count, "at %d uA ", ret / 1000);
703 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
704 count += sprintf(buf + count, "fast ");
705 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
706 count += sprintf(buf + count, "normal ");
707 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
708 count += sprintf(buf + count, "idle ");
709 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
710 count += sprintf(buf + count, "standby");
712 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
715 static int machine_constraints_voltage(struct regulator_dev *rdev,
716 struct regulation_constraints *constraints)
718 struct regulator_ops *ops = rdev->desc->ops;
719 const char *name = rdev_get_name(rdev);
720 int ret;
722 /* do we need to apply the constraint voltage */
723 if (rdev->constraints->apply_uV &&
724 rdev->constraints->min_uV == rdev->constraints->max_uV &&
725 ops->set_voltage) {
726 ret = ops->set_voltage(rdev,
727 rdev->constraints->min_uV, rdev->constraints->max_uV);
728 if (ret < 0) {
729 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
730 __func__,
731 rdev->constraints->min_uV, name);
732 rdev->constraints = NULL;
733 return ret;
737 /* constrain machine-level voltage specs to fit
738 * the actual range supported by this regulator.
740 if (ops->list_voltage && rdev->desc->n_voltages) {
741 int count = rdev->desc->n_voltages;
742 int i;
743 int min_uV = INT_MAX;
744 int max_uV = INT_MIN;
745 int cmin = constraints->min_uV;
746 int cmax = constraints->max_uV;
748 /* it's safe to autoconfigure fixed-voltage supplies
749 and the constraints are used by list_voltage. */
750 if (count == 1 && !cmin) {
751 cmin = 1;
752 cmax = INT_MAX;
753 constraints->min_uV = cmin;
754 constraints->max_uV = cmax;
757 /* voltage constraints are optional */
758 if ((cmin == 0) && (cmax == 0))
759 return 0;
761 /* else require explicit machine-level constraints */
762 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
763 pr_err("%s: %s '%s' voltage constraints\n",
764 __func__, "invalid", name);
765 return -EINVAL;
768 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
769 for (i = 0; i < count; i++) {
770 int value;
772 value = ops->list_voltage(rdev, i);
773 if (value <= 0)
774 continue;
776 /* maybe adjust [min_uV..max_uV] */
777 if (value >= cmin && value < min_uV)
778 min_uV = value;
779 if (value <= cmax && value > max_uV)
780 max_uV = value;
783 /* final: [min_uV..max_uV] valid iff constraints valid */
784 if (max_uV < min_uV) {
785 pr_err("%s: %s '%s' voltage constraints\n",
786 __func__, "unsupportable", name);
787 return -EINVAL;
790 /* use regulator's subset of machine constraints */
791 if (constraints->min_uV < min_uV) {
792 pr_debug("%s: override '%s' %s, %d -> %d\n",
793 __func__, name, "min_uV",
794 constraints->min_uV, min_uV);
795 constraints->min_uV = min_uV;
797 if (constraints->max_uV > max_uV) {
798 pr_debug("%s: override '%s' %s, %d -> %d\n",
799 __func__, name, "max_uV",
800 constraints->max_uV, max_uV);
801 constraints->max_uV = max_uV;
805 return 0;
809 * set_machine_constraints - sets regulator constraints
810 * @rdev: regulator source
811 * @constraints: constraints to apply
813 * Allows platform initialisation code to define and constrain
814 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
815 * Constraints *must* be set by platform code in order for some
816 * regulator operations to proceed i.e. set_voltage, set_current_limit,
817 * set_mode.
819 static int set_machine_constraints(struct regulator_dev *rdev,
820 struct regulation_constraints *constraints)
822 int ret = 0;
823 const char *name;
824 struct regulator_ops *ops = rdev->desc->ops;
826 rdev->constraints = constraints;
828 name = rdev_get_name(rdev);
830 ret = machine_constraints_voltage(rdev, constraints);
831 if (ret != 0)
832 goto out;
834 /* do we need to setup our suspend state */
835 if (constraints->initial_state) {
836 ret = suspend_prepare(rdev, constraints->initial_state);
837 if (ret < 0) {
838 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
839 __func__, name);
840 rdev->constraints = NULL;
841 goto out;
845 if (constraints->initial_mode) {
846 if (!ops->set_mode) {
847 printk(KERN_ERR "%s: no set_mode operation for %s\n",
848 __func__, name);
849 ret = -EINVAL;
850 goto out;
853 ret = ops->set_mode(rdev, constraints->initial_mode);
854 if (ret < 0) {
855 printk(KERN_ERR
856 "%s: failed to set initial mode for %s: %d\n",
857 __func__, name, ret);
858 goto out;
862 /* If the constraints say the regulator should be on at this point
863 * and we have control then make sure it is enabled.
865 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
866 ret = ops->enable(rdev);
867 if (ret < 0) {
868 printk(KERN_ERR "%s: failed to enable %s\n",
869 __func__, name);
870 rdev->constraints = NULL;
871 goto out;
875 print_constraints(rdev);
876 out:
877 return ret;
881 * set_supply - set regulator supply regulator
882 * @rdev: regulator name
883 * @supply_rdev: supply regulator name
885 * Called by platform initialisation code to set the supply regulator for this
886 * regulator. This ensures that a regulators supply will also be enabled by the
887 * core if it's child is enabled.
889 static int set_supply(struct regulator_dev *rdev,
890 struct regulator_dev *supply_rdev)
892 int err;
894 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
895 "supply");
896 if (err) {
897 printk(KERN_ERR
898 "%s: could not add device link %s err %d\n",
899 __func__, supply_rdev->dev.kobj.name, err);
900 goto out;
902 rdev->supply = supply_rdev;
903 list_add(&rdev->slist, &supply_rdev->supply_list);
904 out:
905 return err;
909 * set_consumer_device_supply: Bind a regulator to a symbolic supply
910 * @rdev: regulator source
911 * @consumer_dev: device the supply applies to
912 * @consumer_dev_name: dev_name() string for device supply applies to
913 * @supply: symbolic name for supply
915 * Allows platform initialisation code to map physical regulator
916 * sources to symbolic names for supplies for use by devices. Devices
917 * should use these symbolic names to request regulators, avoiding the
918 * need to provide board-specific regulator names as platform data.
920 * Only one of consumer_dev and consumer_dev_name may be specified.
922 static int set_consumer_device_supply(struct regulator_dev *rdev,
923 struct device *consumer_dev, const char *consumer_dev_name,
924 const char *supply)
926 struct regulator_map *node;
927 int has_dev;
929 if (consumer_dev && consumer_dev_name)
930 return -EINVAL;
932 if (!consumer_dev_name && consumer_dev)
933 consumer_dev_name = dev_name(consumer_dev);
935 if (supply == NULL)
936 return -EINVAL;
938 if (consumer_dev_name != NULL)
939 has_dev = 1;
940 else
941 has_dev = 0;
943 list_for_each_entry(node, &regulator_map_list, list) {
944 if (consumer_dev_name != node->dev_name)
945 continue;
946 if (strcmp(node->supply, supply) != 0)
947 continue;
949 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
950 dev_name(&node->regulator->dev),
951 node->regulator->desc->name,
952 supply,
953 dev_name(&rdev->dev), rdev_get_name(rdev));
954 return -EBUSY;
957 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
958 if (node == NULL)
959 return -ENOMEM;
961 node->regulator = rdev;
962 node->supply = supply;
964 if (has_dev) {
965 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
966 if (node->dev_name == NULL) {
967 kfree(node);
968 return -ENOMEM;
972 list_add(&node->list, &regulator_map_list);
973 return 0;
976 static void unset_consumer_device_supply(struct regulator_dev *rdev,
977 const char *consumer_dev_name, struct device *consumer_dev)
979 struct regulator_map *node, *n;
981 if (consumer_dev && !consumer_dev_name)
982 consumer_dev_name = dev_name(consumer_dev);
984 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
985 if (rdev != node->regulator)
986 continue;
988 if (consumer_dev_name && node->dev_name &&
989 strcmp(consumer_dev_name, node->dev_name))
990 continue;
992 list_del(&node->list);
993 kfree(node->dev_name);
994 kfree(node);
995 return;
999 static void unset_regulator_supplies(struct regulator_dev *rdev)
1001 struct regulator_map *node, *n;
1003 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1004 if (rdev == node->regulator) {
1005 list_del(&node->list);
1006 kfree(node->dev_name);
1007 kfree(node);
1008 return;
1013 #define REG_STR_SIZE 32
1015 static struct regulator *create_regulator(struct regulator_dev *rdev,
1016 struct device *dev,
1017 const char *supply_name)
1019 struct regulator *regulator;
1020 char buf[REG_STR_SIZE];
1021 int err, size;
1023 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1024 if (regulator == NULL)
1025 return NULL;
1027 mutex_lock(&rdev->mutex);
1028 regulator->rdev = rdev;
1029 list_add(&regulator->list, &rdev->consumer_list);
1031 if (dev) {
1032 /* create a 'requested_microamps_name' sysfs entry */
1033 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1034 supply_name);
1035 if (size >= REG_STR_SIZE)
1036 goto overflow_err;
1038 regulator->dev = dev;
1039 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1040 if (regulator->dev_attr.attr.name == NULL)
1041 goto attr_name_err;
1043 regulator->dev_attr.attr.owner = THIS_MODULE;
1044 regulator->dev_attr.attr.mode = 0444;
1045 regulator->dev_attr.show = device_requested_uA_show;
1046 err = device_create_file(dev, &regulator->dev_attr);
1047 if (err < 0) {
1048 printk(KERN_WARNING "%s: could not add regulator_dev"
1049 " load sysfs\n", __func__);
1050 goto attr_name_err;
1053 /* also add a link to the device sysfs entry */
1054 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1055 dev->kobj.name, supply_name);
1056 if (size >= REG_STR_SIZE)
1057 goto attr_err;
1059 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1060 if (regulator->supply_name == NULL)
1061 goto attr_err;
1063 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1064 buf);
1065 if (err) {
1066 printk(KERN_WARNING
1067 "%s: could not add device link %s err %d\n",
1068 __func__, dev->kobj.name, err);
1069 device_remove_file(dev, &regulator->dev_attr);
1070 goto link_name_err;
1073 mutex_unlock(&rdev->mutex);
1074 return regulator;
1075 link_name_err:
1076 kfree(regulator->supply_name);
1077 attr_err:
1078 device_remove_file(regulator->dev, &regulator->dev_attr);
1079 attr_name_err:
1080 kfree(regulator->dev_attr.attr.name);
1081 overflow_err:
1082 list_del(&regulator->list);
1083 kfree(regulator);
1084 mutex_unlock(&rdev->mutex);
1085 return NULL;
1088 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1090 if (!rdev->desc->ops->enable_time)
1091 return 0;
1092 return rdev->desc->ops->enable_time(rdev);
1095 /* Internal regulator request function */
1096 static struct regulator *_regulator_get(struct device *dev, const char *id,
1097 int exclusive)
1099 struct regulator_dev *rdev;
1100 struct regulator_map *map;
1101 struct regulator *regulator = ERR_PTR(-ENODEV);
1102 const char *devname = NULL;
1103 int ret;
1105 if (id == NULL) {
1106 printk(KERN_ERR "regulator: get() with no identifier\n");
1107 return regulator;
1110 if (dev)
1111 devname = dev_name(dev);
1113 mutex_lock(&regulator_list_mutex);
1115 list_for_each_entry(map, &regulator_map_list, list) {
1116 /* If the mapping has a device set up it must match */
1117 if (map->dev_name &&
1118 (!devname || strcmp(map->dev_name, devname)))
1119 continue;
1121 if (strcmp(map->supply, id) == 0) {
1122 rdev = map->regulator;
1123 goto found;
1126 mutex_unlock(&regulator_list_mutex);
1127 return regulator;
1129 found:
1130 if (rdev->exclusive) {
1131 regulator = ERR_PTR(-EPERM);
1132 goto out;
1135 if (exclusive && rdev->open_count) {
1136 regulator = ERR_PTR(-EBUSY);
1137 goto out;
1140 if (!try_module_get(rdev->owner))
1141 goto out;
1143 regulator = create_regulator(rdev, dev, id);
1144 if (regulator == NULL) {
1145 regulator = ERR_PTR(-ENOMEM);
1146 module_put(rdev->owner);
1149 rdev->open_count++;
1150 if (exclusive) {
1151 rdev->exclusive = 1;
1153 ret = _regulator_is_enabled(rdev);
1154 if (ret > 0)
1155 rdev->use_count = 1;
1156 else
1157 rdev->use_count = 0;
1160 out:
1161 mutex_unlock(&regulator_list_mutex);
1163 return regulator;
1167 * regulator_get - lookup and obtain a reference to a regulator.
1168 * @dev: device for regulator "consumer"
1169 * @id: Supply name or regulator ID.
1171 * Returns a struct regulator corresponding to the regulator producer,
1172 * or IS_ERR() condition containing errno.
1174 * Use of supply names configured via regulator_set_device_supply() is
1175 * strongly encouraged. It is recommended that the supply name used
1176 * should match the name used for the supply and/or the relevant
1177 * device pins in the datasheet.
1179 struct regulator *regulator_get(struct device *dev, const char *id)
1181 return _regulator_get(dev, id, 0);
1183 EXPORT_SYMBOL_GPL(regulator_get);
1186 * regulator_get_exclusive - obtain exclusive access to a regulator.
1187 * @dev: device for regulator "consumer"
1188 * @id: Supply name or regulator ID.
1190 * Returns a struct regulator corresponding to the regulator producer,
1191 * or IS_ERR() condition containing errno. Other consumers will be
1192 * unable to obtain this reference is held and the use count for the
1193 * regulator will be initialised to reflect the current state of the
1194 * regulator.
1196 * This is intended for use by consumers which cannot tolerate shared
1197 * use of the regulator such as those which need to force the
1198 * regulator off for correct operation of the hardware they are
1199 * controlling.
1201 * Use of supply names configured via regulator_set_device_supply() is
1202 * strongly encouraged. It is recommended that the supply name used
1203 * should match the name used for the supply and/or the relevant
1204 * device pins in the datasheet.
1206 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1208 return _regulator_get(dev, id, 1);
1210 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1213 * regulator_put - "free" the regulator source
1214 * @regulator: regulator source
1216 * Note: drivers must ensure that all regulator_enable calls made on this
1217 * regulator source are balanced by regulator_disable calls prior to calling
1218 * this function.
1220 void regulator_put(struct regulator *regulator)
1222 struct regulator_dev *rdev;
1224 if (regulator == NULL || IS_ERR(regulator))
1225 return;
1227 mutex_lock(&regulator_list_mutex);
1228 rdev = regulator->rdev;
1230 /* remove any sysfs entries */
1231 if (regulator->dev) {
1232 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1233 kfree(regulator->supply_name);
1234 device_remove_file(regulator->dev, &regulator->dev_attr);
1235 kfree(regulator->dev_attr.attr.name);
1237 list_del(&regulator->list);
1238 kfree(regulator);
1240 rdev->open_count--;
1241 rdev->exclusive = 0;
1243 module_put(rdev->owner);
1244 mutex_unlock(&regulator_list_mutex);
1246 EXPORT_SYMBOL_GPL(regulator_put);
1248 static int _regulator_can_change_status(struct regulator_dev *rdev)
1250 if (!rdev->constraints)
1251 return 0;
1253 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1254 return 1;
1255 else
1256 return 0;
1259 /* locks held by regulator_enable() */
1260 static int _regulator_enable(struct regulator_dev *rdev)
1262 int ret, delay;
1264 /* do we need to enable the supply regulator first */
1265 if (rdev->supply) {
1266 ret = _regulator_enable(rdev->supply);
1267 if (ret < 0) {
1268 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1269 __func__, rdev_get_name(rdev), ret);
1270 return ret;
1274 /* check voltage and requested load before enabling */
1275 if (rdev->constraints &&
1276 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1277 drms_uA_update(rdev);
1279 if (rdev->use_count == 0) {
1280 /* The regulator may on if it's not switchable or left on */
1281 ret = _regulator_is_enabled(rdev);
1282 if (ret == -EINVAL || ret == 0) {
1283 if (!_regulator_can_change_status(rdev))
1284 return -EPERM;
1286 if (!rdev->desc->ops->enable)
1287 return -EINVAL;
1289 /* Query before enabling in case configuration
1290 * dependant. */
1291 ret = _regulator_get_enable_time(rdev);
1292 if (ret >= 0) {
1293 delay = ret;
1294 } else {
1295 printk(KERN_WARNING
1296 "%s: enable_time() failed for %s: %d\n",
1297 __func__, rdev_get_name(rdev),
1298 ret);
1299 delay = 0;
1302 /* Allow the regulator to ramp; it would be useful
1303 * to extend this for bulk operations so that the
1304 * regulators can ramp together. */
1305 ret = rdev->desc->ops->enable(rdev);
1306 if (ret < 0)
1307 return ret;
1309 if (delay >= 1000)
1310 mdelay(delay / 1000);
1311 else if (delay)
1312 udelay(delay);
1314 } else if (ret < 0) {
1315 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1316 __func__, rdev_get_name(rdev), ret);
1317 return ret;
1319 /* Fallthrough on positive return values - already enabled */
1322 rdev->use_count++;
1324 return 0;
1328 * regulator_enable - enable regulator output
1329 * @regulator: regulator source
1331 * Request that the regulator be enabled with the regulator output at
1332 * the predefined voltage or current value. Calls to regulator_enable()
1333 * must be balanced with calls to regulator_disable().
1335 * NOTE: the output value can be set by other drivers, boot loader or may be
1336 * hardwired in the regulator.
1338 int regulator_enable(struct regulator *regulator)
1340 struct regulator_dev *rdev = regulator->rdev;
1341 int ret = 0;
1343 mutex_lock(&rdev->mutex);
1344 ret = _regulator_enable(rdev);
1345 mutex_unlock(&rdev->mutex);
1346 return ret;
1348 EXPORT_SYMBOL_GPL(regulator_enable);
1350 /* locks held by regulator_disable() */
1351 static int _regulator_disable(struct regulator_dev *rdev)
1353 int ret = 0;
1355 if (WARN(rdev->use_count <= 0,
1356 "unbalanced disables for %s\n",
1357 rdev_get_name(rdev)))
1358 return -EIO;
1360 /* are we the last user and permitted to disable ? */
1361 if (rdev->use_count == 1 &&
1362 (rdev->constraints && !rdev->constraints->always_on)) {
1364 /* we are last user */
1365 if (_regulator_can_change_status(rdev) &&
1366 rdev->desc->ops->disable) {
1367 ret = rdev->desc->ops->disable(rdev);
1368 if (ret < 0) {
1369 printk(KERN_ERR "%s: failed to disable %s\n",
1370 __func__, rdev_get_name(rdev));
1371 return ret;
1374 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1375 NULL);
1378 /* decrease our supplies ref count and disable if required */
1379 if (rdev->supply)
1380 _regulator_disable(rdev->supply);
1382 rdev->use_count = 0;
1383 } else if (rdev->use_count > 1) {
1385 if (rdev->constraints &&
1386 (rdev->constraints->valid_ops_mask &
1387 REGULATOR_CHANGE_DRMS))
1388 drms_uA_update(rdev);
1390 rdev->use_count--;
1392 return ret;
1396 * regulator_disable - disable regulator output
1397 * @regulator: regulator source
1399 * Disable the regulator output voltage or current. Calls to
1400 * regulator_enable() must be balanced with calls to
1401 * regulator_disable().
1403 * NOTE: this will only disable the regulator output if no other consumer
1404 * devices have it enabled, the regulator device supports disabling and
1405 * machine constraints permit this operation.
1407 int regulator_disable(struct regulator *regulator)
1409 struct regulator_dev *rdev = regulator->rdev;
1410 int ret = 0;
1412 mutex_lock(&rdev->mutex);
1413 ret = _regulator_disable(rdev);
1414 mutex_unlock(&rdev->mutex);
1415 return ret;
1417 EXPORT_SYMBOL_GPL(regulator_disable);
1419 /* locks held by regulator_force_disable() */
1420 static int _regulator_force_disable(struct regulator_dev *rdev)
1422 int ret = 0;
1424 /* force disable */
1425 if (rdev->desc->ops->disable) {
1426 /* ah well, who wants to live forever... */
1427 ret = rdev->desc->ops->disable(rdev);
1428 if (ret < 0) {
1429 printk(KERN_ERR "%s: failed to force disable %s\n",
1430 __func__, rdev_get_name(rdev));
1431 return ret;
1433 /* notify other consumers that power has been forced off */
1434 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1435 REGULATOR_EVENT_DISABLE, NULL);
1438 /* decrease our supplies ref count and disable if required */
1439 if (rdev->supply)
1440 _regulator_disable(rdev->supply);
1442 rdev->use_count = 0;
1443 return ret;
1447 * regulator_force_disable - force disable regulator output
1448 * @regulator: regulator source
1450 * Forcibly disable the regulator output voltage or current.
1451 * NOTE: this *will* disable the regulator output even if other consumer
1452 * devices have it enabled. This should be used for situations when device
1453 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1455 int regulator_force_disable(struct regulator *regulator)
1457 int ret;
1459 mutex_lock(&regulator->rdev->mutex);
1460 regulator->uA_load = 0;
1461 ret = _regulator_force_disable(regulator->rdev);
1462 mutex_unlock(&regulator->rdev->mutex);
1463 return ret;
1465 EXPORT_SYMBOL_GPL(regulator_force_disable);
1467 static int _regulator_is_enabled(struct regulator_dev *rdev)
1469 /* sanity check */
1470 if (!rdev->desc->ops->is_enabled)
1471 return -EINVAL;
1473 return rdev->desc->ops->is_enabled(rdev);
1477 * regulator_is_enabled - is the regulator output enabled
1478 * @regulator: regulator source
1480 * Returns positive if the regulator driver backing the source/client
1481 * has requested that the device be enabled, zero if it hasn't, else a
1482 * negative errno code.
1484 * Note that the device backing this regulator handle can have multiple
1485 * users, so it might be enabled even if regulator_enable() was never
1486 * called for this particular source.
1488 int regulator_is_enabled(struct regulator *regulator)
1490 int ret;
1492 mutex_lock(&regulator->rdev->mutex);
1493 ret = _regulator_is_enabled(regulator->rdev);
1494 mutex_unlock(&regulator->rdev->mutex);
1496 return ret;
1498 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1501 * regulator_count_voltages - count regulator_list_voltage() selectors
1502 * @regulator: regulator source
1504 * Returns number of selectors, or negative errno. Selectors are
1505 * numbered starting at zero, and typically correspond to bitfields
1506 * in hardware registers.
1508 int regulator_count_voltages(struct regulator *regulator)
1510 struct regulator_dev *rdev = regulator->rdev;
1512 return rdev->desc->n_voltages ? : -EINVAL;
1514 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1517 * regulator_list_voltage - enumerate supported voltages
1518 * @regulator: regulator source
1519 * @selector: identify voltage to list
1520 * Context: can sleep
1522 * Returns a voltage that can be passed to @regulator_set_voltage(),
1523 * zero if this selector code can't be used on this sytem, or a
1524 * negative errno.
1526 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1528 struct regulator_dev *rdev = regulator->rdev;
1529 struct regulator_ops *ops = rdev->desc->ops;
1530 int ret;
1532 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1533 return -EINVAL;
1535 mutex_lock(&rdev->mutex);
1536 ret = ops->list_voltage(rdev, selector);
1537 mutex_unlock(&rdev->mutex);
1539 if (ret > 0) {
1540 if (ret < rdev->constraints->min_uV)
1541 ret = 0;
1542 else if (ret > rdev->constraints->max_uV)
1543 ret = 0;
1546 return ret;
1548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1551 * regulator_is_supported_voltage - check if a voltage range can be supported
1553 * @regulator: Regulator to check.
1554 * @min_uV: Minimum required voltage in uV.
1555 * @max_uV: Maximum required voltage in uV.
1557 * Returns a boolean or a negative error code.
1559 int regulator_is_supported_voltage(struct regulator *regulator,
1560 int min_uV, int max_uV)
1562 int i, voltages, ret;
1564 ret = regulator_count_voltages(regulator);
1565 if (ret < 0)
1566 return ret;
1567 voltages = ret;
1569 for (i = 0; i < voltages; i++) {
1570 ret = regulator_list_voltage(regulator, i);
1572 if (ret >= min_uV && ret <= max_uV)
1573 return 1;
1576 return 0;
1580 * regulator_set_voltage - set regulator output voltage
1581 * @regulator: regulator source
1582 * @min_uV: Minimum required voltage in uV
1583 * @max_uV: Maximum acceptable voltage in uV
1585 * Sets a voltage regulator to the desired output voltage. This can be set
1586 * during any regulator state. IOW, regulator can be disabled or enabled.
1588 * If the regulator is enabled then the voltage will change to the new value
1589 * immediately otherwise if the regulator is disabled the regulator will
1590 * output at the new voltage when enabled.
1592 * NOTE: If the regulator is shared between several devices then the lowest
1593 * request voltage that meets the system constraints will be used.
1594 * Regulator system constraints must be set for this regulator before
1595 * calling this function otherwise this call will fail.
1597 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1599 struct regulator_dev *rdev = regulator->rdev;
1600 int ret;
1602 mutex_lock(&rdev->mutex);
1604 /* sanity check */
1605 if (!rdev->desc->ops->set_voltage) {
1606 ret = -EINVAL;
1607 goto out;
1610 /* constraints check */
1611 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1612 if (ret < 0)
1613 goto out;
1614 regulator->min_uV = min_uV;
1615 regulator->max_uV = max_uV;
1616 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1618 out:
1619 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1620 mutex_unlock(&rdev->mutex);
1621 return ret;
1623 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1625 static int _regulator_get_voltage(struct regulator_dev *rdev)
1627 /* sanity check */
1628 if (rdev->desc->ops->get_voltage)
1629 return rdev->desc->ops->get_voltage(rdev);
1630 else
1631 return -EINVAL;
1635 * regulator_get_voltage - get regulator output voltage
1636 * @regulator: regulator source
1638 * This returns the current regulator voltage in uV.
1640 * NOTE: If the regulator is disabled it will return the voltage value. This
1641 * function should not be used to determine regulator state.
1643 int regulator_get_voltage(struct regulator *regulator)
1645 int ret;
1647 mutex_lock(&regulator->rdev->mutex);
1649 ret = _regulator_get_voltage(regulator->rdev);
1651 mutex_unlock(&regulator->rdev->mutex);
1653 return ret;
1655 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1658 * regulator_set_current_limit - set regulator output current limit
1659 * @regulator: regulator source
1660 * @min_uA: Minimuum supported current in uA
1661 * @max_uA: Maximum supported current in uA
1663 * Sets current sink to the desired output current. This can be set during
1664 * any regulator state. IOW, regulator can be disabled or enabled.
1666 * If the regulator is enabled then the current will change to the new value
1667 * immediately otherwise if the regulator is disabled the regulator will
1668 * output at the new current when enabled.
1670 * NOTE: Regulator system constraints must be set for this regulator before
1671 * calling this function otherwise this call will fail.
1673 int regulator_set_current_limit(struct regulator *regulator,
1674 int min_uA, int max_uA)
1676 struct regulator_dev *rdev = regulator->rdev;
1677 int ret;
1679 mutex_lock(&rdev->mutex);
1681 /* sanity check */
1682 if (!rdev->desc->ops->set_current_limit) {
1683 ret = -EINVAL;
1684 goto out;
1687 /* constraints check */
1688 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1689 if (ret < 0)
1690 goto out;
1692 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1693 out:
1694 mutex_unlock(&rdev->mutex);
1695 return ret;
1697 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1699 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1701 int ret;
1703 mutex_lock(&rdev->mutex);
1705 /* sanity check */
1706 if (!rdev->desc->ops->get_current_limit) {
1707 ret = -EINVAL;
1708 goto out;
1711 ret = rdev->desc->ops->get_current_limit(rdev);
1712 out:
1713 mutex_unlock(&rdev->mutex);
1714 return ret;
1718 * regulator_get_current_limit - get regulator output current
1719 * @regulator: regulator source
1721 * This returns the current supplied by the specified current sink in uA.
1723 * NOTE: If the regulator is disabled it will return the current value. This
1724 * function should not be used to determine regulator state.
1726 int regulator_get_current_limit(struct regulator *regulator)
1728 return _regulator_get_current_limit(regulator->rdev);
1730 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1733 * regulator_set_mode - set regulator operating mode
1734 * @regulator: regulator source
1735 * @mode: operating mode - one of the REGULATOR_MODE constants
1737 * Set regulator operating mode to increase regulator efficiency or improve
1738 * regulation performance.
1740 * NOTE: Regulator system constraints must be set for this regulator before
1741 * calling this function otherwise this call will fail.
1743 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1745 struct regulator_dev *rdev = regulator->rdev;
1746 int ret;
1748 mutex_lock(&rdev->mutex);
1750 /* sanity check */
1751 if (!rdev->desc->ops->set_mode) {
1752 ret = -EINVAL;
1753 goto out;
1756 /* constraints check */
1757 ret = regulator_check_mode(rdev, mode);
1758 if (ret < 0)
1759 goto out;
1761 ret = rdev->desc->ops->set_mode(rdev, mode);
1762 out:
1763 mutex_unlock(&rdev->mutex);
1764 return ret;
1766 EXPORT_SYMBOL_GPL(regulator_set_mode);
1768 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1770 int ret;
1772 mutex_lock(&rdev->mutex);
1774 /* sanity check */
1775 if (!rdev->desc->ops->get_mode) {
1776 ret = -EINVAL;
1777 goto out;
1780 ret = rdev->desc->ops->get_mode(rdev);
1781 out:
1782 mutex_unlock(&rdev->mutex);
1783 return ret;
1787 * regulator_get_mode - get regulator operating mode
1788 * @regulator: regulator source
1790 * Get the current regulator operating mode.
1792 unsigned int regulator_get_mode(struct regulator *regulator)
1794 return _regulator_get_mode(regulator->rdev);
1796 EXPORT_SYMBOL_GPL(regulator_get_mode);
1799 * regulator_set_optimum_mode - set regulator optimum operating mode
1800 * @regulator: regulator source
1801 * @uA_load: load current
1803 * Notifies the regulator core of a new device load. This is then used by
1804 * DRMS (if enabled by constraints) to set the most efficient regulator
1805 * operating mode for the new regulator loading.
1807 * Consumer devices notify their supply regulator of the maximum power
1808 * they will require (can be taken from device datasheet in the power
1809 * consumption tables) when they change operational status and hence power
1810 * state. Examples of operational state changes that can affect power
1811 * consumption are :-
1813 * o Device is opened / closed.
1814 * o Device I/O is about to begin or has just finished.
1815 * o Device is idling in between work.
1817 * This information is also exported via sysfs to userspace.
1819 * DRMS will sum the total requested load on the regulator and change
1820 * to the most efficient operating mode if platform constraints allow.
1822 * Returns the new regulator mode or error.
1824 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1826 struct regulator_dev *rdev = regulator->rdev;
1827 struct regulator *consumer;
1828 int ret, output_uV, input_uV, total_uA_load = 0;
1829 unsigned int mode;
1831 mutex_lock(&rdev->mutex);
1833 regulator->uA_load = uA_load;
1834 ret = regulator_check_drms(rdev);
1835 if (ret < 0)
1836 goto out;
1837 ret = -EINVAL;
1839 /* sanity check */
1840 if (!rdev->desc->ops->get_optimum_mode)
1841 goto out;
1843 /* get output voltage */
1844 output_uV = rdev->desc->ops->get_voltage(rdev);
1845 if (output_uV <= 0) {
1846 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1847 __func__, rdev_get_name(rdev));
1848 goto out;
1851 /* get input voltage */
1852 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1853 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1854 else
1855 input_uV = rdev->constraints->input_uV;
1856 if (input_uV <= 0) {
1857 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1858 __func__, rdev_get_name(rdev));
1859 goto out;
1862 /* calc total requested load for this regulator */
1863 list_for_each_entry(consumer, &rdev->consumer_list, list)
1864 total_uA_load += consumer->uA_load;
1866 mode = rdev->desc->ops->get_optimum_mode(rdev,
1867 input_uV, output_uV,
1868 total_uA_load);
1869 ret = regulator_check_mode(rdev, mode);
1870 if (ret < 0) {
1871 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1872 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1873 total_uA_load, input_uV, output_uV);
1874 goto out;
1877 ret = rdev->desc->ops->set_mode(rdev, mode);
1878 if (ret < 0) {
1879 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1880 __func__, mode, rdev_get_name(rdev));
1881 goto out;
1883 ret = mode;
1884 out:
1885 mutex_unlock(&rdev->mutex);
1886 return ret;
1888 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1891 * regulator_register_notifier - register regulator event notifier
1892 * @regulator: regulator source
1893 * @nb: notifier block
1895 * Register notifier block to receive regulator events.
1897 int regulator_register_notifier(struct regulator *regulator,
1898 struct notifier_block *nb)
1900 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1901 nb);
1903 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1906 * regulator_unregister_notifier - unregister regulator event notifier
1907 * @regulator: regulator source
1908 * @nb: notifier block
1910 * Unregister regulator event notifier block.
1912 int regulator_unregister_notifier(struct regulator *regulator,
1913 struct notifier_block *nb)
1915 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1916 nb);
1918 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1920 /* notify regulator consumers and downstream regulator consumers.
1921 * Note mutex must be held by caller.
1923 static void _notifier_call_chain(struct regulator_dev *rdev,
1924 unsigned long event, void *data)
1926 struct regulator_dev *_rdev;
1928 /* call rdev chain first */
1929 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1931 /* now notify regulator we supply */
1932 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1933 mutex_lock(&_rdev->mutex);
1934 _notifier_call_chain(_rdev, event, data);
1935 mutex_unlock(&_rdev->mutex);
1940 * regulator_bulk_get - get multiple regulator consumers
1942 * @dev: Device to supply
1943 * @num_consumers: Number of consumers to register
1944 * @consumers: Configuration of consumers; clients are stored here.
1946 * @return 0 on success, an errno on failure.
1948 * This helper function allows drivers to get several regulator
1949 * consumers in one operation. If any of the regulators cannot be
1950 * acquired then any regulators that were allocated will be freed
1951 * before returning to the caller.
1953 int regulator_bulk_get(struct device *dev, int num_consumers,
1954 struct regulator_bulk_data *consumers)
1956 int i;
1957 int ret;
1959 for (i = 0; i < num_consumers; i++)
1960 consumers[i].consumer = NULL;
1962 for (i = 0; i < num_consumers; i++) {
1963 consumers[i].consumer = regulator_get(dev,
1964 consumers[i].supply);
1965 if (IS_ERR(consumers[i].consumer)) {
1966 ret = PTR_ERR(consumers[i].consumer);
1967 dev_err(dev, "Failed to get supply '%s': %d\n",
1968 consumers[i].supply, ret);
1969 consumers[i].consumer = NULL;
1970 goto err;
1974 return 0;
1976 err:
1977 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1978 regulator_put(consumers[i].consumer);
1980 return ret;
1982 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1985 * regulator_bulk_enable - enable multiple regulator consumers
1987 * @num_consumers: Number of consumers
1988 * @consumers: Consumer data; clients are stored here.
1989 * @return 0 on success, an errno on failure
1991 * This convenience API allows consumers to enable multiple regulator
1992 * clients in a single API call. If any consumers cannot be enabled
1993 * then any others that were enabled will be disabled again prior to
1994 * return.
1996 int regulator_bulk_enable(int num_consumers,
1997 struct regulator_bulk_data *consumers)
1999 int i;
2000 int ret;
2002 for (i = 0; i < num_consumers; i++) {
2003 ret = regulator_enable(consumers[i].consumer);
2004 if (ret != 0)
2005 goto err;
2008 return 0;
2010 err:
2011 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2012 for (--i; i >= 0; --i)
2013 regulator_disable(consumers[i].consumer);
2015 return ret;
2017 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2020 * regulator_bulk_disable - disable multiple regulator consumers
2022 * @num_consumers: Number of consumers
2023 * @consumers: Consumer data; clients are stored here.
2024 * @return 0 on success, an errno on failure
2026 * This convenience API allows consumers to disable multiple regulator
2027 * clients in a single API call. If any consumers cannot be enabled
2028 * then any others that were disabled will be disabled again prior to
2029 * return.
2031 int regulator_bulk_disable(int num_consumers,
2032 struct regulator_bulk_data *consumers)
2034 int i;
2035 int ret;
2037 for (i = 0; i < num_consumers; i++) {
2038 ret = regulator_disable(consumers[i].consumer);
2039 if (ret != 0)
2040 goto err;
2043 return 0;
2045 err:
2046 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2047 ret);
2048 for (--i; i >= 0; --i)
2049 regulator_enable(consumers[i].consumer);
2051 return ret;
2053 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2056 * regulator_bulk_free - free multiple regulator consumers
2058 * @num_consumers: Number of consumers
2059 * @consumers: Consumer data; clients are stored here.
2061 * This convenience API allows consumers to free multiple regulator
2062 * clients in a single API call.
2064 void regulator_bulk_free(int num_consumers,
2065 struct regulator_bulk_data *consumers)
2067 int i;
2069 for (i = 0; i < num_consumers; i++) {
2070 regulator_put(consumers[i].consumer);
2071 consumers[i].consumer = NULL;
2074 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2077 * regulator_notifier_call_chain - call regulator event notifier
2078 * @rdev: regulator source
2079 * @event: notifier block
2080 * @data: callback-specific data.
2082 * Called by regulator drivers to notify clients a regulator event has
2083 * occurred. We also notify regulator clients downstream.
2084 * Note lock must be held by caller.
2086 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2087 unsigned long event, void *data)
2089 _notifier_call_chain(rdev, event, data);
2090 return NOTIFY_DONE;
2093 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2096 * regulator_mode_to_status - convert a regulator mode into a status
2098 * @mode: Mode to convert
2100 * Convert a regulator mode into a status.
2102 int regulator_mode_to_status(unsigned int mode)
2104 switch (mode) {
2105 case REGULATOR_MODE_FAST:
2106 return REGULATOR_STATUS_FAST;
2107 case REGULATOR_MODE_NORMAL:
2108 return REGULATOR_STATUS_NORMAL;
2109 case REGULATOR_MODE_IDLE:
2110 return REGULATOR_STATUS_IDLE;
2111 case REGULATOR_STATUS_STANDBY:
2112 return REGULATOR_STATUS_STANDBY;
2113 default:
2114 return 0;
2117 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2120 * To avoid cluttering sysfs (and memory) with useless state, only
2121 * create attributes that can be meaningfully displayed.
2123 static int add_regulator_attributes(struct regulator_dev *rdev)
2125 struct device *dev = &rdev->dev;
2126 struct regulator_ops *ops = rdev->desc->ops;
2127 int status = 0;
2129 /* some attributes need specific methods to be displayed */
2130 if (ops->get_voltage) {
2131 status = device_create_file(dev, &dev_attr_microvolts);
2132 if (status < 0)
2133 return status;
2135 if (ops->get_current_limit) {
2136 status = device_create_file(dev, &dev_attr_microamps);
2137 if (status < 0)
2138 return status;
2140 if (ops->get_mode) {
2141 status = device_create_file(dev, &dev_attr_opmode);
2142 if (status < 0)
2143 return status;
2145 if (ops->is_enabled) {
2146 status = device_create_file(dev, &dev_attr_state);
2147 if (status < 0)
2148 return status;
2150 if (ops->get_status) {
2151 status = device_create_file(dev, &dev_attr_status);
2152 if (status < 0)
2153 return status;
2156 /* some attributes are type-specific */
2157 if (rdev->desc->type == REGULATOR_CURRENT) {
2158 status = device_create_file(dev, &dev_attr_requested_microamps);
2159 if (status < 0)
2160 return status;
2163 /* all the other attributes exist to support constraints;
2164 * don't show them if there are no constraints, or if the
2165 * relevant supporting methods are missing.
2167 if (!rdev->constraints)
2168 return status;
2170 /* constraints need specific supporting methods */
2171 if (ops->set_voltage) {
2172 status = device_create_file(dev, &dev_attr_min_microvolts);
2173 if (status < 0)
2174 return status;
2175 status = device_create_file(dev, &dev_attr_max_microvolts);
2176 if (status < 0)
2177 return status;
2179 if (ops->set_current_limit) {
2180 status = device_create_file(dev, &dev_attr_min_microamps);
2181 if (status < 0)
2182 return status;
2183 status = device_create_file(dev, &dev_attr_max_microamps);
2184 if (status < 0)
2185 return status;
2188 /* suspend mode constraints need multiple supporting methods */
2189 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2190 return status;
2192 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2193 if (status < 0)
2194 return status;
2195 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2196 if (status < 0)
2197 return status;
2198 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2199 if (status < 0)
2200 return status;
2202 if (ops->set_suspend_voltage) {
2203 status = device_create_file(dev,
2204 &dev_attr_suspend_standby_microvolts);
2205 if (status < 0)
2206 return status;
2207 status = device_create_file(dev,
2208 &dev_attr_suspend_mem_microvolts);
2209 if (status < 0)
2210 return status;
2211 status = device_create_file(dev,
2212 &dev_attr_suspend_disk_microvolts);
2213 if (status < 0)
2214 return status;
2217 if (ops->set_suspend_mode) {
2218 status = device_create_file(dev,
2219 &dev_attr_suspend_standby_mode);
2220 if (status < 0)
2221 return status;
2222 status = device_create_file(dev,
2223 &dev_attr_suspend_mem_mode);
2224 if (status < 0)
2225 return status;
2226 status = device_create_file(dev,
2227 &dev_attr_suspend_disk_mode);
2228 if (status < 0)
2229 return status;
2232 return status;
2236 * regulator_register - register regulator
2237 * @regulator_desc: regulator to register
2238 * @dev: struct device for the regulator
2239 * @init_data: platform provided init data, passed through by driver
2240 * @driver_data: private regulator data
2242 * Called by regulator drivers to register a regulator.
2243 * Returns 0 on success.
2245 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2246 struct device *dev, struct regulator_init_data *init_data,
2247 void *driver_data)
2249 static atomic_t regulator_no = ATOMIC_INIT(0);
2250 struct regulator_dev *rdev;
2251 int ret, i;
2253 if (regulator_desc == NULL)
2254 return ERR_PTR(-EINVAL);
2256 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2257 return ERR_PTR(-EINVAL);
2259 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2260 regulator_desc->type != REGULATOR_CURRENT)
2261 return ERR_PTR(-EINVAL);
2263 if (!init_data)
2264 return ERR_PTR(-EINVAL);
2266 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2267 if (rdev == NULL)
2268 return ERR_PTR(-ENOMEM);
2270 mutex_lock(&regulator_list_mutex);
2272 mutex_init(&rdev->mutex);
2273 rdev->reg_data = driver_data;
2274 rdev->owner = regulator_desc->owner;
2275 rdev->desc = regulator_desc;
2276 INIT_LIST_HEAD(&rdev->consumer_list);
2277 INIT_LIST_HEAD(&rdev->supply_list);
2278 INIT_LIST_HEAD(&rdev->list);
2279 INIT_LIST_HEAD(&rdev->slist);
2280 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2282 /* preform any regulator specific init */
2283 if (init_data->regulator_init) {
2284 ret = init_data->regulator_init(rdev->reg_data);
2285 if (ret < 0)
2286 goto clean;
2289 /* register with sysfs */
2290 rdev->dev.class = &regulator_class;
2291 rdev->dev.parent = dev;
2292 dev_set_name(&rdev->dev, "regulator.%d",
2293 atomic_inc_return(&regulator_no) - 1);
2294 ret = device_register(&rdev->dev);
2295 if (ret != 0)
2296 goto clean;
2298 dev_set_drvdata(&rdev->dev, rdev);
2300 /* set regulator constraints */
2301 ret = set_machine_constraints(rdev, &init_data->constraints);
2302 if (ret < 0)
2303 goto scrub;
2305 /* add attributes supported by this regulator */
2306 ret = add_regulator_attributes(rdev);
2307 if (ret < 0)
2308 goto scrub;
2310 /* set supply regulator if it exists */
2311 if (init_data->supply_regulator_dev) {
2312 ret = set_supply(rdev,
2313 dev_get_drvdata(init_data->supply_regulator_dev));
2314 if (ret < 0)
2315 goto scrub;
2318 /* add consumers devices */
2319 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2320 ret = set_consumer_device_supply(rdev,
2321 init_data->consumer_supplies[i].dev,
2322 init_data->consumer_supplies[i].dev_name,
2323 init_data->consumer_supplies[i].supply);
2324 if (ret < 0) {
2325 for (--i; i >= 0; i--)
2326 unset_consumer_device_supply(rdev,
2327 init_data->consumer_supplies[i].dev_name,
2328 init_data->consumer_supplies[i].dev);
2329 goto scrub;
2333 list_add(&rdev->list, &regulator_list);
2334 out:
2335 mutex_unlock(&regulator_list_mutex);
2336 return rdev;
2338 scrub:
2339 device_unregister(&rdev->dev);
2340 /* device core frees rdev */
2341 rdev = ERR_PTR(ret);
2342 goto out;
2344 clean:
2345 kfree(rdev);
2346 rdev = ERR_PTR(ret);
2347 goto out;
2349 EXPORT_SYMBOL_GPL(regulator_register);
2352 * regulator_unregister - unregister regulator
2353 * @rdev: regulator to unregister
2355 * Called by regulator drivers to unregister a regulator.
2357 void regulator_unregister(struct regulator_dev *rdev)
2359 if (rdev == NULL)
2360 return;
2362 mutex_lock(&regulator_list_mutex);
2363 WARN_ON(rdev->open_count);
2364 unset_regulator_supplies(rdev);
2365 list_del(&rdev->list);
2366 if (rdev->supply)
2367 sysfs_remove_link(&rdev->dev.kobj, "supply");
2368 device_unregister(&rdev->dev);
2369 mutex_unlock(&regulator_list_mutex);
2371 EXPORT_SYMBOL_GPL(regulator_unregister);
2374 * regulator_suspend_prepare - prepare regulators for system wide suspend
2375 * @state: system suspend state
2377 * Configure each regulator with it's suspend operating parameters for state.
2378 * This will usually be called by machine suspend code prior to supending.
2380 int regulator_suspend_prepare(suspend_state_t state)
2382 struct regulator_dev *rdev;
2383 int ret = 0;
2385 /* ON is handled by regulator active state */
2386 if (state == PM_SUSPEND_ON)
2387 return -EINVAL;
2389 mutex_lock(&regulator_list_mutex);
2390 list_for_each_entry(rdev, &regulator_list, list) {
2392 mutex_lock(&rdev->mutex);
2393 ret = suspend_prepare(rdev, state);
2394 mutex_unlock(&rdev->mutex);
2396 if (ret < 0) {
2397 printk(KERN_ERR "%s: failed to prepare %s\n",
2398 __func__, rdev_get_name(rdev));
2399 goto out;
2402 out:
2403 mutex_unlock(&regulator_list_mutex);
2404 return ret;
2406 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2409 * regulator_has_full_constraints - the system has fully specified constraints
2411 * Calling this function will cause the regulator API to disable all
2412 * regulators which have a zero use count and don't have an always_on
2413 * constraint in a late_initcall.
2415 * The intention is that this will become the default behaviour in a
2416 * future kernel release so users are encouraged to use this facility
2417 * now.
2419 void regulator_has_full_constraints(void)
2421 has_full_constraints = 1;
2423 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2426 * rdev_get_drvdata - get rdev regulator driver data
2427 * @rdev: regulator
2429 * Get rdev regulator driver private data. This call can be used in the
2430 * regulator driver context.
2432 void *rdev_get_drvdata(struct regulator_dev *rdev)
2434 return rdev->reg_data;
2436 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2439 * regulator_get_drvdata - get regulator driver data
2440 * @regulator: regulator
2442 * Get regulator driver private data. This call can be used in the consumer
2443 * driver context when non API regulator specific functions need to be called.
2445 void *regulator_get_drvdata(struct regulator *regulator)
2447 return regulator->rdev->reg_data;
2449 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2452 * regulator_set_drvdata - set regulator driver data
2453 * @regulator: regulator
2454 * @data: data
2456 void regulator_set_drvdata(struct regulator *regulator, void *data)
2458 regulator->rdev->reg_data = data;
2460 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2463 * regulator_get_id - get regulator ID
2464 * @rdev: regulator
2466 int rdev_get_id(struct regulator_dev *rdev)
2468 return rdev->desc->id;
2470 EXPORT_SYMBOL_GPL(rdev_get_id);
2472 struct device *rdev_get_dev(struct regulator_dev *rdev)
2474 return &rdev->dev;
2476 EXPORT_SYMBOL_GPL(rdev_get_dev);
2478 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2480 return reg_init_data->driver_data;
2482 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2484 static int __init regulator_init(void)
2486 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2487 return class_register(&regulator_class);
2490 /* init early to allow our consumers to complete system booting */
2491 core_initcall(regulator_init);
2493 static int __init regulator_init_complete(void)
2495 struct regulator_dev *rdev;
2496 struct regulator_ops *ops;
2497 struct regulation_constraints *c;
2498 int enabled, ret;
2499 const char *name;
2501 mutex_lock(&regulator_list_mutex);
2503 /* If we have a full configuration then disable any regulators
2504 * which are not in use or always_on. This will become the
2505 * default behaviour in the future.
2507 list_for_each_entry(rdev, &regulator_list, list) {
2508 ops = rdev->desc->ops;
2509 c = rdev->constraints;
2511 name = rdev_get_name(rdev);
2513 if (!ops->disable || (c && c->always_on))
2514 continue;
2516 mutex_lock(&rdev->mutex);
2518 if (rdev->use_count)
2519 goto unlock;
2521 /* If we can't read the status assume it's on. */
2522 if (ops->is_enabled)
2523 enabled = ops->is_enabled(rdev);
2524 else
2525 enabled = 1;
2527 if (!enabled)
2528 goto unlock;
2530 if (has_full_constraints) {
2531 /* We log since this may kill the system if it
2532 * goes wrong. */
2533 printk(KERN_INFO "%s: disabling %s\n",
2534 __func__, name);
2535 ret = ops->disable(rdev);
2536 if (ret != 0) {
2537 printk(KERN_ERR
2538 "%s: couldn't disable %s: %d\n",
2539 __func__, name, ret);
2541 } else {
2542 /* The intention is that in future we will
2543 * assume that full constraints are provided
2544 * so warn even if we aren't going to do
2545 * anything here.
2547 printk(KERN_WARNING
2548 "%s: incomplete constraints, leaving %s on\n",
2549 __func__, name);
2552 unlock:
2553 mutex_unlock(&rdev->mutex);
2556 mutex_unlock(&regulator_list_mutex);
2558 return 0;
2560 late_initcall(regulator_init_complete);