[PATCH] fix missing ifdefs in syscall classes hookup for generic targets
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blobd28450c3cad79ea2d7ddc4f3812dc2fff3a3fab2
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/tlb.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
59 #include <linux/swapops.h>
60 #include <linux/elf.h>
62 #ifndef CONFIG_NEED_MULTIPLE_NODES
63 /* use the per-pgdat data instead for discontigmem - mbligh */
64 unsigned long max_mapnr;
65 struct page *mem_map;
67 EXPORT_SYMBOL(max_mapnr);
68 EXPORT_SYMBOL(mem_map);
69 #endif
71 unsigned long num_physpages;
73 * A number of key systems in x86 including ioremap() rely on the assumption
74 * that high_memory defines the upper bound on direct map memory, then end
75 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
76 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
77 * and ZONE_HIGHMEM.
79 void * high_memory;
80 unsigned long vmalloc_earlyreserve;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 int randomize_va_space __read_mostly = 1;
88 static int __init disable_randmaps(char *s)
90 randomize_va_space = 0;
91 return 1;
93 __setup("norandmaps", disable_randmaps);
97 * If a p?d_bad entry is found while walking page tables, report
98 * the error, before resetting entry to p?d_none. Usually (but
99 * very seldom) called out from the p?d_none_or_clear_bad macros.
102 void pgd_clear_bad(pgd_t *pgd)
104 pgd_ERROR(*pgd);
105 pgd_clear(pgd);
108 void pud_clear_bad(pud_t *pud)
110 pud_ERROR(*pud);
111 pud_clear(pud);
114 void pmd_clear_bad(pmd_t *pmd)
116 pmd_ERROR(*pmd);
117 pmd_clear(pmd);
121 * Note: this doesn't free the actual pages themselves. That
122 * has been handled earlier when unmapping all the memory regions.
124 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126 struct page *page = pmd_page(*pmd);
127 pmd_clear(pmd);
128 pte_lock_deinit(page);
129 pte_free_tlb(tlb, page);
130 dec_zone_page_state(page, NR_PAGETABLE);
131 tlb->mm->nr_ptes--;
134 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
135 unsigned long addr, unsigned long end,
136 unsigned long floor, unsigned long ceiling)
138 pmd_t *pmd;
139 unsigned long next;
140 unsigned long start;
142 start = addr;
143 pmd = pmd_offset(pud, addr);
144 do {
145 next = pmd_addr_end(addr, end);
146 if (pmd_none_or_clear_bad(pmd))
147 continue;
148 free_pte_range(tlb, pmd);
149 } while (pmd++, addr = next, addr != end);
151 start &= PUD_MASK;
152 if (start < floor)
153 return;
154 if (ceiling) {
155 ceiling &= PUD_MASK;
156 if (!ceiling)
157 return;
159 if (end - 1 > ceiling - 1)
160 return;
162 pmd = pmd_offset(pud, start);
163 pud_clear(pud);
164 pmd_free_tlb(tlb, pmd);
167 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
168 unsigned long addr, unsigned long end,
169 unsigned long floor, unsigned long ceiling)
171 pud_t *pud;
172 unsigned long next;
173 unsigned long start;
175 start = addr;
176 pud = pud_offset(pgd, addr);
177 do {
178 next = pud_addr_end(addr, end);
179 if (pud_none_or_clear_bad(pud))
180 continue;
181 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
182 } while (pud++, addr = next, addr != end);
184 start &= PGDIR_MASK;
185 if (start < floor)
186 return;
187 if (ceiling) {
188 ceiling &= PGDIR_MASK;
189 if (!ceiling)
190 return;
192 if (end - 1 > ceiling - 1)
193 return;
195 pud = pud_offset(pgd, start);
196 pgd_clear(pgd);
197 pud_free_tlb(tlb, pud);
201 * This function frees user-level page tables of a process.
203 * Must be called with pagetable lock held.
205 void free_pgd_range(struct mmu_gather **tlb,
206 unsigned long addr, unsigned long end,
207 unsigned long floor, unsigned long ceiling)
209 pgd_t *pgd;
210 unsigned long next;
211 unsigned long start;
214 * The next few lines have given us lots of grief...
216 * Why are we testing PMD* at this top level? Because often
217 * there will be no work to do at all, and we'd prefer not to
218 * go all the way down to the bottom just to discover that.
220 * Why all these "- 1"s? Because 0 represents both the bottom
221 * of the address space and the top of it (using -1 for the
222 * top wouldn't help much: the masks would do the wrong thing).
223 * The rule is that addr 0 and floor 0 refer to the bottom of
224 * the address space, but end 0 and ceiling 0 refer to the top
225 * Comparisons need to use "end - 1" and "ceiling - 1" (though
226 * that end 0 case should be mythical).
228 * Wherever addr is brought up or ceiling brought down, we must
229 * be careful to reject "the opposite 0" before it confuses the
230 * subsequent tests. But what about where end is brought down
231 * by PMD_SIZE below? no, end can't go down to 0 there.
233 * Whereas we round start (addr) and ceiling down, by different
234 * masks at different levels, in order to test whether a table
235 * now has no other vmas using it, so can be freed, we don't
236 * bother to round floor or end up - the tests don't need that.
239 addr &= PMD_MASK;
240 if (addr < floor) {
241 addr += PMD_SIZE;
242 if (!addr)
243 return;
245 if (ceiling) {
246 ceiling &= PMD_MASK;
247 if (!ceiling)
248 return;
250 if (end - 1 > ceiling - 1)
251 end -= PMD_SIZE;
252 if (addr > end - 1)
253 return;
255 start = addr;
256 pgd = pgd_offset((*tlb)->mm, addr);
257 do {
258 next = pgd_addr_end(addr, end);
259 if (pgd_none_or_clear_bad(pgd))
260 continue;
261 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
262 } while (pgd++, addr = next, addr != end);
264 if (!(*tlb)->fullmm)
265 flush_tlb_pgtables((*tlb)->mm, start, end);
268 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
269 unsigned long floor, unsigned long ceiling)
271 while (vma) {
272 struct vm_area_struct *next = vma->vm_next;
273 unsigned long addr = vma->vm_start;
276 * Hide vma from rmap and vmtruncate before freeing pgtables
278 anon_vma_unlink(vma);
279 unlink_file_vma(vma);
281 if (is_vm_hugetlb_page(vma)) {
282 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
283 floor, next? next->vm_start: ceiling);
284 } else {
286 * Optimization: gather nearby vmas into one call down
288 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
289 && !is_vm_hugetlb_page(next)) {
290 vma = next;
291 next = vma->vm_next;
292 anon_vma_unlink(vma);
293 unlink_file_vma(vma);
295 free_pgd_range(tlb, addr, vma->vm_end,
296 floor, next? next->vm_start: ceiling);
298 vma = next;
302 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 struct page *new = pte_alloc_one(mm, address);
305 if (!new)
306 return -ENOMEM;
308 pte_lock_init(new);
309 spin_lock(&mm->page_table_lock);
310 if (pmd_present(*pmd)) { /* Another has populated it */
311 pte_lock_deinit(new);
312 pte_free(new);
313 } else {
314 mm->nr_ptes++;
315 inc_zone_page_state(new, NR_PAGETABLE);
316 pmd_populate(mm, pmd, new);
318 spin_unlock(&mm->page_table_lock);
319 return 0;
322 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
325 if (!new)
326 return -ENOMEM;
328 spin_lock(&init_mm.page_table_lock);
329 if (pmd_present(*pmd)) /* Another has populated it */
330 pte_free_kernel(new);
331 else
332 pmd_populate_kernel(&init_mm, pmd, new);
333 spin_unlock(&init_mm.page_table_lock);
334 return 0;
337 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 if (file_rss)
340 add_mm_counter(mm, file_rss, file_rss);
341 if (anon_rss)
342 add_mm_counter(mm, anon_rss, anon_rss);
346 * This function is called to print an error when a bad pte
347 * is found. For example, we might have a PFN-mapped pte in
348 * a region that doesn't allow it.
350 * The calling function must still handle the error.
352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 "vm_flags = %lx, vaddr = %lx\n",
356 (long long)pte_val(pte),
357 (vma->vm_mm == current->mm ? current->comm : "???"),
358 vma->vm_flags, vaddr);
359 dump_stack();
362 static inline int is_cow_mapping(unsigned int flags)
364 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
368 * This function gets the "struct page" associated with a pte.
370 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
371 * will have each page table entry just pointing to a raw page frame
372 * number, and as far as the VM layer is concerned, those do not have
373 * pages associated with them - even if the PFN might point to memory
374 * that otherwise is perfectly fine and has a "struct page".
376 * The way we recognize those mappings is through the rules set up
377 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
378 * and the vm_pgoff will point to the first PFN mapped: thus every
379 * page that is a raw mapping will always honor the rule
381 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 * and if that isn't true, the page has been COW'ed (in which case it
384 * _does_ have a "struct page" associated with it even if it is in a
385 * VM_PFNMAP range).
387 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 unsigned long pfn = pte_pfn(pte);
391 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
392 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
393 if (pfn == vma->vm_pgoff + off)
394 return NULL;
395 if (!is_cow_mapping(vma->vm_flags))
396 return NULL;
400 * Add some anal sanity checks for now. Eventually,
401 * we should just do "return pfn_to_page(pfn)", but
402 * in the meantime we check that we get a valid pfn,
403 * and that the resulting page looks ok.
405 if (unlikely(!pfn_valid(pfn))) {
406 print_bad_pte(vma, pte, addr);
407 return NULL;
411 * NOTE! We still have PageReserved() pages in the page
412 * tables.
414 * The PAGE_ZERO() pages and various VDSO mappings can
415 * cause them to exist.
417 return pfn_to_page(pfn);
421 * copy one vm_area from one task to the other. Assumes the page tables
422 * already present in the new task to be cleared in the whole range
423 * covered by this vma.
426 static inline void
427 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
428 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
429 unsigned long addr, int *rss)
431 unsigned long vm_flags = vma->vm_flags;
432 pte_t pte = *src_pte;
433 struct page *page;
435 /* pte contains position in swap or file, so copy. */
436 if (unlikely(!pte_present(pte))) {
437 if (!pte_file(pte)) {
438 swp_entry_t entry = pte_to_swp_entry(pte);
440 swap_duplicate(entry);
441 /* make sure dst_mm is on swapoff's mmlist. */
442 if (unlikely(list_empty(&dst_mm->mmlist))) {
443 spin_lock(&mmlist_lock);
444 if (list_empty(&dst_mm->mmlist))
445 list_add(&dst_mm->mmlist,
446 &src_mm->mmlist);
447 spin_unlock(&mmlist_lock);
449 if (is_write_migration_entry(entry) &&
450 is_cow_mapping(vm_flags)) {
452 * COW mappings require pages in both parent
453 * and child to be set to read.
455 make_migration_entry_read(&entry);
456 pte = swp_entry_to_pte(entry);
457 set_pte_at(src_mm, addr, src_pte, pte);
460 goto out_set_pte;
464 * If it's a COW mapping, write protect it both
465 * in the parent and the child
467 if (is_cow_mapping(vm_flags)) {
468 ptep_set_wrprotect(src_mm, addr, src_pte);
469 pte = *src_pte;
473 * If it's a shared mapping, mark it clean in
474 * the child
476 if (vm_flags & VM_SHARED)
477 pte = pte_mkclean(pte);
478 pte = pte_mkold(pte);
480 page = vm_normal_page(vma, addr, pte);
481 if (page) {
482 get_page(page);
483 page_dup_rmap(page);
484 rss[!!PageAnon(page)]++;
487 out_set_pte:
488 set_pte_at(dst_mm, addr, dst_pte, pte);
491 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
492 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
493 unsigned long addr, unsigned long end)
495 pte_t *src_pte, *dst_pte;
496 spinlock_t *src_ptl, *dst_ptl;
497 int progress = 0;
498 int rss[2];
500 again:
501 rss[1] = rss[0] = 0;
502 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
503 if (!dst_pte)
504 return -ENOMEM;
505 src_pte = pte_offset_map_nested(src_pmd, addr);
506 src_ptl = pte_lockptr(src_mm, src_pmd);
507 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509 do {
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
514 if (progress >= 32) {
515 progress = 0;
516 if (need_resched() ||
517 need_lockbreak(src_ptl) ||
518 need_lockbreak(dst_ptl))
519 break;
521 if (pte_none(*src_pte)) {
522 progress++;
523 continue;
525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526 progress += 8;
527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
529 spin_unlock(src_ptl);
530 pte_unmap_nested(src_pte - 1);
531 add_mm_rss(dst_mm, rss[0], rss[1]);
532 pte_unmap_unlock(dst_pte - 1, dst_ptl);
533 cond_resched();
534 if (addr != end)
535 goto again;
536 return 0;
539 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
540 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
541 unsigned long addr, unsigned long end)
543 pmd_t *src_pmd, *dst_pmd;
544 unsigned long next;
546 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
547 if (!dst_pmd)
548 return -ENOMEM;
549 src_pmd = pmd_offset(src_pud, addr);
550 do {
551 next = pmd_addr_end(addr, end);
552 if (pmd_none_or_clear_bad(src_pmd))
553 continue;
554 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
555 vma, addr, next))
556 return -ENOMEM;
557 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
558 return 0;
561 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
562 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
563 unsigned long addr, unsigned long end)
565 pud_t *src_pud, *dst_pud;
566 unsigned long next;
568 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
569 if (!dst_pud)
570 return -ENOMEM;
571 src_pud = pud_offset(src_pgd, addr);
572 do {
573 next = pud_addr_end(addr, end);
574 if (pud_none_or_clear_bad(src_pud))
575 continue;
576 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
577 vma, addr, next))
578 return -ENOMEM;
579 } while (dst_pud++, src_pud++, addr = next, addr != end);
580 return 0;
583 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
584 struct vm_area_struct *vma)
586 pgd_t *src_pgd, *dst_pgd;
587 unsigned long next;
588 unsigned long addr = vma->vm_start;
589 unsigned long end = vma->vm_end;
592 * Don't copy ptes where a page fault will fill them correctly.
593 * Fork becomes much lighter when there are big shared or private
594 * readonly mappings. The tradeoff is that copy_page_range is more
595 * efficient than faulting.
597 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
598 if (!vma->anon_vma)
599 return 0;
602 if (is_vm_hugetlb_page(vma))
603 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605 dst_pgd = pgd_offset(dst_mm, addr);
606 src_pgd = pgd_offset(src_mm, addr);
607 do {
608 next = pgd_addr_end(addr, end);
609 if (pgd_none_or_clear_bad(src_pgd))
610 continue;
611 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
612 vma, addr, next))
613 return -ENOMEM;
614 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
615 return 0;
618 static unsigned long zap_pte_range(struct mmu_gather *tlb,
619 struct vm_area_struct *vma, pmd_t *pmd,
620 unsigned long addr, unsigned long end,
621 long *zap_work, struct zap_details *details)
623 struct mm_struct *mm = tlb->mm;
624 pte_t *pte;
625 spinlock_t *ptl;
626 int file_rss = 0;
627 int anon_rss = 0;
629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630 do {
631 pte_t ptent = *pte;
632 if (pte_none(ptent)) {
633 (*zap_work)--;
634 continue;
637 (*zap_work) -= PAGE_SIZE;
639 if (pte_present(ptent)) {
640 struct page *page;
642 page = vm_normal_page(vma, addr, ptent);
643 if (unlikely(details) && page) {
645 * unmap_shared_mapping_pages() wants to
646 * invalidate cache without truncating:
647 * unmap shared but keep private pages.
649 if (details->check_mapping &&
650 details->check_mapping != page->mapping)
651 continue;
653 * Each page->index must be checked when
654 * invalidating or truncating nonlinear.
656 if (details->nonlinear_vma &&
657 (page->index < details->first_index ||
658 page->index > details->last_index))
659 continue;
661 ptent = ptep_get_and_clear_full(mm, addr, pte,
662 tlb->fullmm);
663 tlb_remove_tlb_entry(tlb, pte, addr);
664 if (unlikely(!page))
665 continue;
666 if (unlikely(details) && details->nonlinear_vma
667 && linear_page_index(details->nonlinear_vma,
668 addr) != page->index)
669 set_pte_at(mm, addr, pte,
670 pgoff_to_pte(page->index));
671 if (PageAnon(page))
672 anon_rss--;
673 else {
674 if (pte_dirty(ptent))
675 set_page_dirty(page);
676 if (pte_young(ptent))
677 mark_page_accessed(page);
678 file_rss--;
680 page_remove_rmap(page);
681 tlb_remove_page(tlb, page);
682 continue;
685 * If details->check_mapping, we leave swap entries;
686 * if details->nonlinear_vma, we leave file entries.
688 if (unlikely(details))
689 continue;
690 if (!pte_file(ptent))
691 free_swap_and_cache(pte_to_swp_entry(ptent));
692 pte_clear_full(mm, addr, pte, tlb->fullmm);
693 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
695 add_mm_rss(mm, file_rss, anon_rss);
696 pte_unmap_unlock(pte - 1, ptl);
698 return addr;
701 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
702 struct vm_area_struct *vma, pud_t *pud,
703 unsigned long addr, unsigned long end,
704 long *zap_work, struct zap_details *details)
706 pmd_t *pmd;
707 unsigned long next;
709 pmd = pmd_offset(pud, addr);
710 do {
711 next = pmd_addr_end(addr, end);
712 if (pmd_none_or_clear_bad(pmd)) {
713 (*zap_work)--;
714 continue;
716 next = zap_pte_range(tlb, vma, pmd, addr, next,
717 zap_work, details);
718 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
720 return addr;
723 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
724 struct vm_area_struct *vma, pgd_t *pgd,
725 unsigned long addr, unsigned long end,
726 long *zap_work, struct zap_details *details)
728 pud_t *pud;
729 unsigned long next;
731 pud = pud_offset(pgd, addr);
732 do {
733 next = pud_addr_end(addr, end);
734 if (pud_none_or_clear_bad(pud)) {
735 (*zap_work)--;
736 continue;
738 next = zap_pmd_range(tlb, vma, pud, addr, next,
739 zap_work, details);
740 } while (pud++, addr = next, (addr != end && *zap_work > 0));
742 return addr;
745 static unsigned long unmap_page_range(struct mmu_gather *tlb,
746 struct vm_area_struct *vma,
747 unsigned long addr, unsigned long end,
748 long *zap_work, struct zap_details *details)
750 pgd_t *pgd;
751 unsigned long next;
753 if (details && !details->check_mapping && !details->nonlinear_vma)
754 details = NULL;
756 BUG_ON(addr >= end);
757 tlb_start_vma(tlb, vma);
758 pgd = pgd_offset(vma->vm_mm, addr);
759 do {
760 next = pgd_addr_end(addr, end);
761 if (pgd_none_or_clear_bad(pgd)) {
762 (*zap_work)--;
763 continue;
765 next = zap_pud_range(tlb, vma, pgd, addr, next,
766 zap_work, details);
767 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
768 tlb_end_vma(tlb, vma);
770 return addr;
773 #ifdef CONFIG_PREEMPT
774 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
775 #else
776 /* No preempt: go for improved straight-line efficiency */
777 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
778 #endif
781 * unmap_vmas - unmap a range of memory covered by a list of vma's
782 * @tlbp: address of the caller's struct mmu_gather
783 * @vma: the starting vma
784 * @start_addr: virtual address at which to start unmapping
785 * @end_addr: virtual address at which to end unmapping
786 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
787 * @details: details of nonlinear truncation or shared cache invalidation
789 * Returns the end address of the unmapping (restart addr if interrupted).
791 * Unmap all pages in the vma list.
793 * We aim to not hold locks for too long (for scheduling latency reasons).
794 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
795 * return the ending mmu_gather to the caller.
797 * Only addresses between `start' and `end' will be unmapped.
799 * The VMA list must be sorted in ascending virtual address order.
801 * unmap_vmas() assumes that the caller will flush the whole unmapped address
802 * range after unmap_vmas() returns. So the only responsibility here is to
803 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
804 * drops the lock and schedules.
806 unsigned long unmap_vmas(struct mmu_gather **tlbp,
807 struct vm_area_struct *vma, unsigned long start_addr,
808 unsigned long end_addr, unsigned long *nr_accounted,
809 struct zap_details *details)
811 long zap_work = ZAP_BLOCK_SIZE;
812 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
813 int tlb_start_valid = 0;
814 unsigned long start = start_addr;
815 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
816 int fullmm = (*tlbp)->fullmm;
818 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
819 unsigned long end;
821 start = max(vma->vm_start, start_addr);
822 if (start >= vma->vm_end)
823 continue;
824 end = min(vma->vm_end, end_addr);
825 if (end <= vma->vm_start)
826 continue;
828 if (vma->vm_flags & VM_ACCOUNT)
829 *nr_accounted += (end - start) >> PAGE_SHIFT;
831 while (start != end) {
832 if (!tlb_start_valid) {
833 tlb_start = start;
834 tlb_start_valid = 1;
837 if (unlikely(is_vm_hugetlb_page(vma))) {
838 unmap_hugepage_range(vma, start, end);
839 zap_work -= (end - start) /
840 (HPAGE_SIZE / PAGE_SIZE);
841 start = end;
842 } else
843 start = unmap_page_range(*tlbp, vma,
844 start, end, &zap_work, details);
846 if (zap_work > 0) {
847 BUG_ON(start != end);
848 break;
851 tlb_finish_mmu(*tlbp, tlb_start, start);
853 if (need_resched() ||
854 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
855 if (i_mmap_lock) {
856 *tlbp = NULL;
857 goto out;
859 cond_resched();
862 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
863 tlb_start_valid = 0;
864 zap_work = ZAP_BLOCK_SIZE;
867 out:
868 return start; /* which is now the end (or restart) address */
872 * zap_page_range - remove user pages in a given range
873 * @vma: vm_area_struct holding the applicable pages
874 * @address: starting address of pages to zap
875 * @size: number of bytes to zap
876 * @details: details of nonlinear truncation or shared cache invalidation
878 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
879 unsigned long size, struct zap_details *details)
881 struct mm_struct *mm = vma->vm_mm;
882 struct mmu_gather *tlb;
883 unsigned long end = address + size;
884 unsigned long nr_accounted = 0;
886 lru_add_drain();
887 tlb = tlb_gather_mmu(mm, 0);
888 update_hiwater_rss(mm);
889 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
890 if (tlb)
891 tlb_finish_mmu(tlb, address, end);
892 return end;
896 * Do a quick page-table lookup for a single page.
898 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
899 unsigned int flags)
901 pgd_t *pgd;
902 pud_t *pud;
903 pmd_t *pmd;
904 pte_t *ptep, pte;
905 spinlock_t *ptl;
906 struct page *page;
907 struct mm_struct *mm = vma->vm_mm;
909 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
910 if (!IS_ERR(page)) {
911 BUG_ON(flags & FOLL_GET);
912 goto out;
915 page = NULL;
916 pgd = pgd_offset(mm, address);
917 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
918 goto no_page_table;
920 pud = pud_offset(pgd, address);
921 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
922 goto no_page_table;
924 pmd = pmd_offset(pud, address);
925 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
926 goto no_page_table;
928 if (pmd_huge(*pmd)) {
929 BUG_ON(flags & FOLL_GET);
930 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
931 goto out;
934 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
935 if (!ptep)
936 goto out;
938 pte = *ptep;
939 if (!pte_present(pte))
940 goto unlock;
941 if ((flags & FOLL_WRITE) && !pte_write(pte))
942 goto unlock;
943 page = vm_normal_page(vma, address, pte);
944 if (unlikely(!page))
945 goto unlock;
947 if (flags & FOLL_GET)
948 get_page(page);
949 if (flags & FOLL_TOUCH) {
950 if ((flags & FOLL_WRITE) &&
951 !pte_dirty(pte) && !PageDirty(page))
952 set_page_dirty(page);
953 mark_page_accessed(page);
955 unlock:
956 pte_unmap_unlock(ptep, ptl);
957 out:
958 return page;
960 no_page_table:
962 * When core dumping an enormous anonymous area that nobody
963 * has touched so far, we don't want to allocate page tables.
965 if (flags & FOLL_ANON) {
966 page = ZERO_PAGE(address);
967 if (flags & FOLL_GET)
968 get_page(page);
969 BUG_ON(flags & FOLL_WRITE);
971 return page;
974 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
975 unsigned long start, int len, int write, int force,
976 struct page **pages, struct vm_area_struct **vmas)
978 int i;
979 unsigned int vm_flags;
982 * Require read or write permissions.
983 * If 'force' is set, we only require the "MAY" flags.
985 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
986 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
987 i = 0;
989 do {
990 struct vm_area_struct *vma;
991 unsigned int foll_flags;
993 vma = find_extend_vma(mm, start);
994 if (!vma && in_gate_area(tsk, start)) {
995 unsigned long pg = start & PAGE_MASK;
996 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
997 pgd_t *pgd;
998 pud_t *pud;
999 pmd_t *pmd;
1000 pte_t *pte;
1001 if (write) /* user gate pages are read-only */
1002 return i ? : -EFAULT;
1003 if (pg > TASK_SIZE)
1004 pgd = pgd_offset_k(pg);
1005 else
1006 pgd = pgd_offset_gate(mm, pg);
1007 BUG_ON(pgd_none(*pgd));
1008 pud = pud_offset(pgd, pg);
1009 BUG_ON(pud_none(*pud));
1010 pmd = pmd_offset(pud, pg);
1011 if (pmd_none(*pmd))
1012 return i ? : -EFAULT;
1013 pte = pte_offset_map(pmd, pg);
1014 if (pte_none(*pte)) {
1015 pte_unmap(pte);
1016 return i ? : -EFAULT;
1018 if (pages) {
1019 struct page *page = vm_normal_page(gate_vma, start, *pte);
1020 pages[i] = page;
1021 if (page)
1022 get_page(page);
1024 pte_unmap(pte);
1025 if (vmas)
1026 vmas[i] = gate_vma;
1027 i++;
1028 start += PAGE_SIZE;
1029 len--;
1030 continue;
1033 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034 || !(vm_flags & vma->vm_flags))
1035 return i ? : -EFAULT;
1037 if (is_vm_hugetlb_page(vma)) {
1038 i = follow_hugetlb_page(mm, vma, pages, vmas,
1039 &start, &len, i);
1040 continue;
1043 foll_flags = FOLL_TOUCH;
1044 if (pages)
1045 foll_flags |= FOLL_GET;
1046 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1047 (!vma->vm_ops || !vma->vm_ops->nopage))
1048 foll_flags |= FOLL_ANON;
1050 do {
1051 struct page *page;
1053 if (write)
1054 foll_flags |= FOLL_WRITE;
1056 cond_resched();
1057 while (!(page = follow_page(vma, start, foll_flags))) {
1058 int ret;
1059 ret = __handle_mm_fault(mm, vma, start,
1060 foll_flags & FOLL_WRITE);
1062 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1063 * broken COW when necessary, even if maybe_mkwrite
1064 * decided not to set pte_write. We can thus safely do
1065 * subsequent page lookups as if they were reads.
1067 if (ret & VM_FAULT_WRITE)
1068 foll_flags &= ~FOLL_WRITE;
1070 switch (ret & ~VM_FAULT_WRITE) {
1071 case VM_FAULT_MINOR:
1072 tsk->min_flt++;
1073 break;
1074 case VM_FAULT_MAJOR:
1075 tsk->maj_flt++;
1076 break;
1077 case VM_FAULT_SIGBUS:
1078 return i ? i : -EFAULT;
1079 case VM_FAULT_OOM:
1080 return i ? i : -ENOMEM;
1081 default:
1082 BUG();
1085 if (pages) {
1086 pages[i] = page;
1088 flush_anon_page(page, start);
1089 flush_dcache_page(page);
1091 if (vmas)
1092 vmas[i] = vma;
1093 i++;
1094 start += PAGE_SIZE;
1095 len--;
1096 } while (len && start < vma->vm_end);
1097 } while (len);
1098 return i;
1100 EXPORT_SYMBOL(get_user_pages);
1102 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1103 unsigned long addr, unsigned long end, pgprot_t prot)
1105 pte_t *pte;
1106 spinlock_t *ptl;
1108 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1109 if (!pte)
1110 return -ENOMEM;
1111 do {
1112 struct page *page = ZERO_PAGE(addr);
1113 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1114 page_cache_get(page);
1115 page_add_file_rmap(page);
1116 inc_mm_counter(mm, file_rss);
1117 BUG_ON(!pte_none(*pte));
1118 set_pte_at(mm, addr, pte, zero_pte);
1119 } while (pte++, addr += PAGE_SIZE, addr != end);
1120 pte_unmap_unlock(pte - 1, ptl);
1121 return 0;
1124 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1125 unsigned long addr, unsigned long end, pgprot_t prot)
1127 pmd_t *pmd;
1128 unsigned long next;
1130 pmd = pmd_alloc(mm, pud, addr);
1131 if (!pmd)
1132 return -ENOMEM;
1133 do {
1134 next = pmd_addr_end(addr, end);
1135 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1136 return -ENOMEM;
1137 } while (pmd++, addr = next, addr != end);
1138 return 0;
1141 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1142 unsigned long addr, unsigned long end, pgprot_t prot)
1144 pud_t *pud;
1145 unsigned long next;
1147 pud = pud_alloc(mm, pgd, addr);
1148 if (!pud)
1149 return -ENOMEM;
1150 do {
1151 next = pud_addr_end(addr, end);
1152 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1153 return -ENOMEM;
1154 } while (pud++, addr = next, addr != end);
1155 return 0;
1158 int zeromap_page_range(struct vm_area_struct *vma,
1159 unsigned long addr, unsigned long size, pgprot_t prot)
1161 pgd_t *pgd;
1162 unsigned long next;
1163 unsigned long end = addr + size;
1164 struct mm_struct *mm = vma->vm_mm;
1165 int err;
1167 BUG_ON(addr >= end);
1168 pgd = pgd_offset(mm, addr);
1169 flush_cache_range(vma, addr, end);
1170 do {
1171 next = pgd_addr_end(addr, end);
1172 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1173 if (err)
1174 break;
1175 } while (pgd++, addr = next, addr != end);
1176 return err;
1179 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1181 pgd_t * pgd = pgd_offset(mm, addr);
1182 pud_t * pud = pud_alloc(mm, pgd, addr);
1183 if (pud) {
1184 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1185 if (pmd)
1186 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1188 return NULL;
1192 * This is the old fallback for page remapping.
1194 * For historical reasons, it only allows reserved pages. Only
1195 * old drivers should use this, and they needed to mark their
1196 * pages reserved for the old functions anyway.
1198 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1200 int retval;
1201 pte_t *pte;
1202 spinlock_t *ptl;
1204 retval = -EINVAL;
1205 if (PageAnon(page))
1206 goto out;
1207 retval = -ENOMEM;
1208 flush_dcache_page(page);
1209 pte = get_locked_pte(mm, addr, &ptl);
1210 if (!pte)
1211 goto out;
1212 retval = -EBUSY;
1213 if (!pte_none(*pte))
1214 goto out_unlock;
1216 /* Ok, finally just insert the thing.. */
1217 get_page(page);
1218 inc_mm_counter(mm, file_rss);
1219 page_add_file_rmap(page);
1220 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1222 retval = 0;
1223 out_unlock:
1224 pte_unmap_unlock(pte, ptl);
1225 out:
1226 return retval;
1230 * This allows drivers to insert individual pages they've allocated
1231 * into a user vma.
1233 * The page has to be a nice clean _individual_ kernel allocation.
1234 * If you allocate a compound page, you need to have marked it as
1235 * such (__GFP_COMP), or manually just split the page up yourself
1236 * (see split_page()).
1238 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1239 * took an arbitrary page protection parameter. This doesn't allow
1240 * that. Your vma protection will have to be set up correctly, which
1241 * means that if you want a shared writable mapping, you'd better
1242 * ask for a shared writable mapping!
1244 * The page does not need to be reserved.
1246 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1248 if (addr < vma->vm_start || addr >= vma->vm_end)
1249 return -EFAULT;
1250 if (!page_count(page))
1251 return -EINVAL;
1252 vma->vm_flags |= VM_INSERTPAGE;
1253 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1255 EXPORT_SYMBOL(vm_insert_page);
1258 * maps a range of physical memory into the requested pages. the old
1259 * mappings are removed. any references to nonexistent pages results
1260 * in null mappings (currently treated as "copy-on-access")
1262 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1263 unsigned long addr, unsigned long end,
1264 unsigned long pfn, pgprot_t prot)
1266 pte_t *pte;
1267 spinlock_t *ptl;
1269 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1270 if (!pte)
1271 return -ENOMEM;
1272 do {
1273 BUG_ON(!pte_none(*pte));
1274 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1275 pfn++;
1276 } while (pte++, addr += PAGE_SIZE, addr != end);
1277 pte_unmap_unlock(pte - 1, ptl);
1278 return 0;
1281 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1282 unsigned long addr, unsigned long end,
1283 unsigned long pfn, pgprot_t prot)
1285 pmd_t *pmd;
1286 unsigned long next;
1288 pfn -= addr >> PAGE_SHIFT;
1289 pmd = pmd_alloc(mm, pud, addr);
1290 if (!pmd)
1291 return -ENOMEM;
1292 do {
1293 next = pmd_addr_end(addr, end);
1294 if (remap_pte_range(mm, pmd, addr, next,
1295 pfn + (addr >> PAGE_SHIFT), prot))
1296 return -ENOMEM;
1297 } while (pmd++, addr = next, addr != end);
1298 return 0;
1301 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1302 unsigned long addr, unsigned long end,
1303 unsigned long pfn, pgprot_t prot)
1305 pud_t *pud;
1306 unsigned long next;
1308 pfn -= addr >> PAGE_SHIFT;
1309 pud = pud_alloc(mm, pgd, addr);
1310 if (!pud)
1311 return -ENOMEM;
1312 do {
1313 next = pud_addr_end(addr, end);
1314 if (remap_pmd_range(mm, pud, addr, next,
1315 pfn + (addr >> PAGE_SHIFT), prot))
1316 return -ENOMEM;
1317 } while (pud++, addr = next, addr != end);
1318 return 0;
1321 /* Note: this is only safe if the mm semaphore is held when called. */
1322 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1323 unsigned long pfn, unsigned long size, pgprot_t prot)
1325 pgd_t *pgd;
1326 unsigned long next;
1327 unsigned long end = addr + PAGE_ALIGN(size);
1328 struct mm_struct *mm = vma->vm_mm;
1329 int err;
1332 * Physically remapped pages are special. Tell the
1333 * rest of the world about it:
1334 * VM_IO tells people not to look at these pages
1335 * (accesses can have side effects).
1336 * VM_RESERVED is specified all over the place, because
1337 * in 2.4 it kept swapout's vma scan off this vma; but
1338 * in 2.6 the LRU scan won't even find its pages, so this
1339 * flag means no more than count its pages in reserved_vm,
1340 * and omit it from core dump, even when VM_IO turned off.
1341 * VM_PFNMAP tells the core MM that the base pages are just
1342 * raw PFN mappings, and do not have a "struct page" associated
1343 * with them.
1345 * There's a horrible special case to handle copy-on-write
1346 * behaviour that some programs depend on. We mark the "original"
1347 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1349 if (is_cow_mapping(vma->vm_flags)) {
1350 if (addr != vma->vm_start || end != vma->vm_end)
1351 return -EINVAL;
1352 vma->vm_pgoff = pfn;
1355 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1357 BUG_ON(addr >= end);
1358 pfn -= addr >> PAGE_SHIFT;
1359 pgd = pgd_offset(mm, addr);
1360 flush_cache_range(vma, addr, end);
1361 do {
1362 next = pgd_addr_end(addr, end);
1363 err = remap_pud_range(mm, pgd, addr, next,
1364 pfn + (addr >> PAGE_SHIFT), prot);
1365 if (err)
1366 break;
1367 } while (pgd++, addr = next, addr != end);
1368 return err;
1370 EXPORT_SYMBOL(remap_pfn_range);
1373 * handle_pte_fault chooses page fault handler according to an entry
1374 * which was read non-atomically. Before making any commitment, on
1375 * those architectures or configurations (e.g. i386 with PAE) which
1376 * might give a mix of unmatched parts, do_swap_page and do_file_page
1377 * must check under lock before unmapping the pte and proceeding
1378 * (but do_wp_page is only called after already making such a check;
1379 * and do_anonymous_page and do_no_page can safely check later on).
1381 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1382 pte_t *page_table, pte_t orig_pte)
1384 int same = 1;
1385 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1386 if (sizeof(pte_t) > sizeof(unsigned long)) {
1387 spinlock_t *ptl = pte_lockptr(mm, pmd);
1388 spin_lock(ptl);
1389 same = pte_same(*page_table, orig_pte);
1390 spin_unlock(ptl);
1392 #endif
1393 pte_unmap(page_table);
1394 return same;
1398 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1399 * servicing faults for write access. In the normal case, do always want
1400 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1401 * that do not have writing enabled, when used by access_process_vm.
1403 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1405 if (likely(vma->vm_flags & VM_WRITE))
1406 pte = pte_mkwrite(pte);
1407 return pte;
1410 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1413 * If the source page was a PFN mapping, we don't have
1414 * a "struct page" for it. We do a best-effort copy by
1415 * just copying from the original user address. If that
1416 * fails, we just zero-fill it. Live with it.
1418 if (unlikely(!src)) {
1419 void *kaddr = kmap_atomic(dst, KM_USER0);
1420 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1423 * This really shouldn't fail, because the page is there
1424 * in the page tables. But it might just be unreadable,
1425 * in which case we just give up and fill the result with
1426 * zeroes.
1428 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1429 memset(kaddr, 0, PAGE_SIZE);
1430 kunmap_atomic(kaddr, KM_USER0);
1431 return;
1434 copy_user_highpage(dst, src, va);
1438 * This routine handles present pages, when users try to write
1439 * to a shared page. It is done by copying the page to a new address
1440 * and decrementing the shared-page counter for the old page.
1442 * Note that this routine assumes that the protection checks have been
1443 * done by the caller (the low-level page fault routine in most cases).
1444 * Thus we can safely just mark it writable once we've done any necessary
1445 * COW.
1447 * We also mark the page dirty at this point even though the page will
1448 * change only once the write actually happens. This avoids a few races,
1449 * and potentially makes it more efficient.
1451 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1452 * but allow concurrent faults), with pte both mapped and locked.
1453 * We return with mmap_sem still held, but pte unmapped and unlocked.
1455 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1456 unsigned long address, pte_t *page_table, pmd_t *pmd,
1457 spinlock_t *ptl, pte_t orig_pte)
1459 struct page *old_page, *new_page;
1460 pte_t entry;
1461 int reuse, ret = VM_FAULT_MINOR;
1463 old_page = vm_normal_page(vma, address, orig_pte);
1464 if (!old_page)
1465 goto gotten;
1467 if (unlikely((vma->vm_flags & (VM_SHARED|VM_WRITE)) ==
1468 (VM_SHARED|VM_WRITE))) {
1469 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1471 * Notify the address space that the page is about to
1472 * become writable so that it can prohibit this or wait
1473 * for the page to get into an appropriate state.
1475 * We do this without the lock held, so that it can
1476 * sleep if it needs to.
1478 page_cache_get(old_page);
1479 pte_unmap_unlock(page_table, ptl);
1481 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1482 goto unwritable_page;
1484 page_cache_release(old_page);
1487 * Since we dropped the lock we need to revalidate
1488 * the PTE as someone else may have changed it. If
1489 * they did, we just return, as we can count on the
1490 * MMU to tell us if they didn't also make it writable.
1492 page_table = pte_offset_map_lock(mm, pmd, address,
1493 &ptl);
1494 if (!pte_same(*page_table, orig_pte))
1495 goto unlock;
1498 reuse = 1;
1499 } else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1500 reuse = can_share_swap_page(old_page);
1501 unlock_page(old_page);
1502 } else {
1503 reuse = 0;
1506 if (reuse) {
1507 flush_cache_page(vma, address, pte_pfn(orig_pte));
1508 entry = pte_mkyoung(orig_pte);
1509 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1510 ptep_set_access_flags(vma, address, page_table, entry, 1);
1511 update_mmu_cache(vma, address, entry);
1512 lazy_mmu_prot_update(entry);
1513 ret |= VM_FAULT_WRITE;
1514 goto unlock;
1518 * Ok, we need to copy. Oh, well..
1520 page_cache_get(old_page);
1521 gotten:
1522 pte_unmap_unlock(page_table, ptl);
1524 if (unlikely(anon_vma_prepare(vma)))
1525 goto oom;
1526 if (old_page == ZERO_PAGE(address)) {
1527 new_page = alloc_zeroed_user_highpage(vma, address);
1528 if (!new_page)
1529 goto oom;
1530 } else {
1531 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1532 if (!new_page)
1533 goto oom;
1534 cow_user_page(new_page, old_page, address);
1538 * Re-check the pte - we dropped the lock
1540 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1541 if (likely(pte_same(*page_table, orig_pte))) {
1542 if (old_page) {
1543 page_remove_rmap(old_page);
1544 if (!PageAnon(old_page)) {
1545 dec_mm_counter(mm, file_rss);
1546 inc_mm_counter(mm, anon_rss);
1548 } else
1549 inc_mm_counter(mm, anon_rss);
1550 flush_cache_page(vma, address, pte_pfn(orig_pte));
1551 entry = mk_pte(new_page, vma->vm_page_prot);
1552 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1553 lazy_mmu_prot_update(entry);
1555 * Clear the pte entry and flush it first, before updating the
1556 * pte with the new entry. This will avoid a race condition
1557 * seen in the presence of one thread doing SMC and another
1558 * thread doing COW.
1560 ptep_clear_flush(vma, address, page_table);
1561 set_pte_at(mm, address, page_table, entry);
1562 update_mmu_cache(vma, address, entry);
1563 lru_cache_add_active(new_page);
1564 page_add_new_anon_rmap(new_page, vma, address);
1566 /* Free the old page.. */
1567 new_page = old_page;
1568 ret |= VM_FAULT_WRITE;
1570 if (new_page)
1571 page_cache_release(new_page);
1572 if (old_page)
1573 page_cache_release(old_page);
1574 unlock:
1575 pte_unmap_unlock(page_table, ptl);
1576 return ret;
1577 oom:
1578 if (old_page)
1579 page_cache_release(old_page);
1580 return VM_FAULT_OOM;
1582 unwritable_page:
1583 page_cache_release(old_page);
1584 return VM_FAULT_SIGBUS;
1588 * Helper functions for unmap_mapping_range().
1590 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1592 * We have to restart searching the prio_tree whenever we drop the lock,
1593 * since the iterator is only valid while the lock is held, and anyway
1594 * a later vma might be split and reinserted earlier while lock dropped.
1596 * The list of nonlinear vmas could be handled more efficiently, using
1597 * a placeholder, but handle it in the same way until a need is shown.
1598 * It is important to search the prio_tree before nonlinear list: a vma
1599 * may become nonlinear and be shifted from prio_tree to nonlinear list
1600 * while the lock is dropped; but never shifted from list to prio_tree.
1602 * In order to make forward progress despite restarting the search,
1603 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1604 * quickly skip it next time around. Since the prio_tree search only
1605 * shows us those vmas affected by unmapping the range in question, we
1606 * can't efficiently keep all vmas in step with mapping->truncate_count:
1607 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1608 * mapping->truncate_count and vma->vm_truncate_count are protected by
1609 * i_mmap_lock.
1611 * In order to make forward progress despite repeatedly restarting some
1612 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1613 * and restart from that address when we reach that vma again. It might
1614 * have been split or merged, shrunk or extended, but never shifted: so
1615 * restart_addr remains valid so long as it remains in the vma's range.
1616 * unmap_mapping_range forces truncate_count to leap over page-aligned
1617 * values so we can save vma's restart_addr in its truncate_count field.
1619 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1621 static void reset_vma_truncate_counts(struct address_space *mapping)
1623 struct vm_area_struct *vma;
1624 struct prio_tree_iter iter;
1626 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1627 vma->vm_truncate_count = 0;
1628 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1629 vma->vm_truncate_count = 0;
1632 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1633 unsigned long start_addr, unsigned long end_addr,
1634 struct zap_details *details)
1636 unsigned long restart_addr;
1637 int need_break;
1639 again:
1640 restart_addr = vma->vm_truncate_count;
1641 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1642 start_addr = restart_addr;
1643 if (start_addr >= end_addr) {
1644 /* Top of vma has been split off since last time */
1645 vma->vm_truncate_count = details->truncate_count;
1646 return 0;
1650 restart_addr = zap_page_range(vma, start_addr,
1651 end_addr - start_addr, details);
1652 need_break = need_resched() ||
1653 need_lockbreak(details->i_mmap_lock);
1655 if (restart_addr >= end_addr) {
1656 /* We have now completed this vma: mark it so */
1657 vma->vm_truncate_count = details->truncate_count;
1658 if (!need_break)
1659 return 0;
1660 } else {
1661 /* Note restart_addr in vma's truncate_count field */
1662 vma->vm_truncate_count = restart_addr;
1663 if (!need_break)
1664 goto again;
1667 spin_unlock(details->i_mmap_lock);
1668 cond_resched();
1669 spin_lock(details->i_mmap_lock);
1670 return -EINTR;
1673 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1674 struct zap_details *details)
1676 struct vm_area_struct *vma;
1677 struct prio_tree_iter iter;
1678 pgoff_t vba, vea, zba, zea;
1680 restart:
1681 vma_prio_tree_foreach(vma, &iter, root,
1682 details->first_index, details->last_index) {
1683 /* Skip quickly over those we have already dealt with */
1684 if (vma->vm_truncate_count == details->truncate_count)
1685 continue;
1687 vba = vma->vm_pgoff;
1688 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1689 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1690 zba = details->first_index;
1691 if (zba < vba)
1692 zba = vba;
1693 zea = details->last_index;
1694 if (zea > vea)
1695 zea = vea;
1697 if (unmap_mapping_range_vma(vma,
1698 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1699 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1700 details) < 0)
1701 goto restart;
1705 static inline void unmap_mapping_range_list(struct list_head *head,
1706 struct zap_details *details)
1708 struct vm_area_struct *vma;
1711 * In nonlinear VMAs there is no correspondence between virtual address
1712 * offset and file offset. So we must perform an exhaustive search
1713 * across *all* the pages in each nonlinear VMA, not just the pages
1714 * whose virtual address lies outside the file truncation point.
1716 restart:
1717 list_for_each_entry(vma, head, shared.vm_set.list) {
1718 /* Skip quickly over those we have already dealt with */
1719 if (vma->vm_truncate_count == details->truncate_count)
1720 continue;
1721 details->nonlinear_vma = vma;
1722 if (unmap_mapping_range_vma(vma, vma->vm_start,
1723 vma->vm_end, details) < 0)
1724 goto restart;
1729 * unmap_mapping_range - unmap the portion of all mmaps
1730 * in the specified address_space corresponding to the specified
1731 * page range in the underlying file.
1732 * @mapping: the address space containing mmaps to be unmapped.
1733 * @holebegin: byte in first page to unmap, relative to the start of
1734 * the underlying file. This will be rounded down to a PAGE_SIZE
1735 * boundary. Note that this is different from vmtruncate(), which
1736 * must keep the partial page. In contrast, we must get rid of
1737 * partial pages.
1738 * @holelen: size of prospective hole in bytes. This will be rounded
1739 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1740 * end of the file.
1741 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1742 * but 0 when invalidating pagecache, don't throw away private data.
1744 void unmap_mapping_range(struct address_space *mapping,
1745 loff_t const holebegin, loff_t const holelen, int even_cows)
1747 struct zap_details details;
1748 pgoff_t hba = holebegin >> PAGE_SHIFT;
1749 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1751 /* Check for overflow. */
1752 if (sizeof(holelen) > sizeof(hlen)) {
1753 long long holeend =
1754 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1755 if (holeend & ~(long long)ULONG_MAX)
1756 hlen = ULONG_MAX - hba + 1;
1759 details.check_mapping = even_cows? NULL: mapping;
1760 details.nonlinear_vma = NULL;
1761 details.first_index = hba;
1762 details.last_index = hba + hlen - 1;
1763 if (details.last_index < details.first_index)
1764 details.last_index = ULONG_MAX;
1765 details.i_mmap_lock = &mapping->i_mmap_lock;
1767 spin_lock(&mapping->i_mmap_lock);
1769 /* serialize i_size write against truncate_count write */
1770 smp_wmb();
1771 /* Protect against page faults, and endless unmapping loops */
1772 mapping->truncate_count++;
1774 * For archs where spin_lock has inclusive semantics like ia64
1775 * this smp_mb() will prevent to read pagetable contents
1776 * before the truncate_count increment is visible to
1777 * other cpus.
1779 smp_mb();
1780 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1781 if (mapping->truncate_count == 0)
1782 reset_vma_truncate_counts(mapping);
1783 mapping->truncate_count++;
1785 details.truncate_count = mapping->truncate_count;
1787 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1788 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1789 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1790 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1791 spin_unlock(&mapping->i_mmap_lock);
1793 EXPORT_SYMBOL(unmap_mapping_range);
1796 * Handle all mappings that got truncated by a "truncate()"
1797 * system call.
1799 * NOTE! We have to be ready to update the memory sharing
1800 * between the file and the memory map for a potential last
1801 * incomplete page. Ugly, but necessary.
1803 int vmtruncate(struct inode * inode, loff_t offset)
1805 struct address_space *mapping = inode->i_mapping;
1806 unsigned long limit;
1808 if (inode->i_size < offset)
1809 goto do_expand;
1811 * truncation of in-use swapfiles is disallowed - it would cause
1812 * subsequent swapout to scribble on the now-freed blocks.
1814 if (IS_SWAPFILE(inode))
1815 goto out_busy;
1816 i_size_write(inode, offset);
1817 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1818 truncate_inode_pages(mapping, offset);
1819 goto out_truncate;
1821 do_expand:
1822 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1823 if (limit != RLIM_INFINITY && offset > limit)
1824 goto out_sig;
1825 if (offset > inode->i_sb->s_maxbytes)
1826 goto out_big;
1827 i_size_write(inode, offset);
1829 out_truncate:
1830 if (inode->i_op && inode->i_op->truncate)
1831 inode->i_op->truncate(inode);
1832 return 0;
1833 out_sig:
1834 send_sig(SIGXFSZ, current, 0);
1835 out_big:
1836 return -EFBIG;
1837 out_busy:
1838 return -ETXTBSY;
1840 EXPORT_SYMBOL(vmtruncate);
1842 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1844 struct address_space *mapping = inode->i_mapping;
1847 * If the underlying filesystem is not going to provide
1848 * a way to truncate a range of blocks (punch a hole) -
1849 * we should return failure right now.
1851 if (!inode->i_op || !inode->i_op->truncate_range)
1852 return -ENOSYS;
1854 mutex_lock(&inode->i_mutex);
1855 down_write(&inode->i_alloc_sem);
1856 unmap_mapping_range(mapping, offset, (end - offset), 1);
1857 truncate_inode_pages_range(mapping, offset, end);
1858 inode->i_op->truncate_range(inode, offset, end);
1859 up_write(&inode->i_alloc_sem);
1860 mutex_unlock(&inode->i_mutex);
1862 return 0;
1864 EXPORT_UNUSED_SYMBOL(vmtruncate_range); /* June 2006 */
1867 * Primitive swap readahead code. We simply read an aligned block of
1868 * (1 << page_cluster) entries in the swap area. This method is chosen
1869 * because it doesn't cost us any seek time. We also make sure to queue
1870 * the 'original' request together with the readahead ones...
1872 * This has been extended to use the NUMA policies from the mm triggering
1873 * the readahead.
1875 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1877 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1879 #ifdef CONFIG_NUMA
1880 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1881 #endif
1882 int i, num;
1883 struct page *new_page;
1884 unsigned long offset;
1887 * Get the number of handles we should do readahead io to.
1889 num = valid_swaphandles(entry, &offset);
1890 for (i = 0; i < num; offset++, i++) {
1891 /* Ok, do the async read-ahead now */
1892 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1893 offset), vma, addr);
1894 if (!new_page)
1895 break;
1896 page_cache_release(new_page);
1897 #ifdef CONFIG_NUMA
1899 * Find the next applicable VMA for the NUMA policy.
1901 addr += PAGE_SIZE;
1902 if (addr == 0)
1903 vma = NULL;
1904 if (vma) {
1905 if (addr >= vma->vm_end) {
1906 vma = next_vma;
1907 next_vma = vma ? vma->vm_next : NULL;
1909 if (vma && addr < vma->vm_start)
1910 vma = NULL;
1911 } else {
1912 if (next_vma && addr >= next_vma->vm_start) {
1913 vma = next_vma;
1914 next_vma = vma->vm_next;
1917 #endif
1919 lru_add_drain(); /* Push any new pages onto the LRU now */
1923 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1924 * but allow concurrent faults), and pte mapped but not yet locked.
1925 * We return with mmap_sem still held, but pte unmapped and unlocked.
1927 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1928 unsigned long address, pte_t *page_table, pmd_t *pmd,
1929 int write_access, pte_t orig_pte)
1931 spinlock_t *ptl;
1932 struct page *page;
1933 swp_entry_t entry;
1934 pte_t pte;
1935 int ret = VM_FAULT_MINOR;
1937 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1938 goto out;
1940 entry = pte_to_swp_entry(orig_pte);
1941 if (is_migration_entry(entry)) {
1942 migration_entry_wait(mm, pmd, address);
1943 goto out;
1945 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1946 page = lookup_swap_cache(entry);
1947 if (!page) {
1948 swapin_readahead(entry, address, vma);
1949 page = read_swap_cache_async(entry, vma, address);
1950 if (!page) {
1952 * Back out if somebody else faulted in this pte
1953 * while we released the pte lock.
1955 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1956 if (likely(pte_same(*page_table, orig_pte)))
1957 ret = VM_FAULT_OOM;
1958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1959 goto unlock;
1962 /* Had to read the page from swap area: Major fault */
1963 ret = VM_FAULT_MAJOR;
1964 count_vm_event(PGMAJFAULT);
1965 grab_swap_token();
1968 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1969 mark_page_accessed(page);
1970 lock_page(page);
1973 * Back out if somebody else already faulted in this pte.
1975 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1976 if (unlikely(!pte_same(*page_table, orig_pte)))
1977 goto out_nomap;
1979 if (unlikely(!PageUptodate(page))) {
1980 ret = VM_FAULT_SIGBUS;
1981 goto out_nomap;
1984 /* The page isn't present yet, go ahead with the fault. */
1986 inc_mm_counter(mm, anon_rss);
1987 pte = mk_pte(page, vma->vm_page_prot);
1988 if (write_access && can_share_swap_page(page)) {
1989 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1990 write_access = 0;
1993 flush_icache_page(vma, page);
1994 set_pte_at(mm, address, page_table, pte);
1995 page_add_anon_rmap(page, vma, address);
1997 swap_free(entry);
1998 if (vm_swap_full())
1999 remove_exclusive_swap_page(page);
2000 unlock_page(page);
2002 if (write_access) {
2003 if (do_wp_page(mm, vma, address,
2004 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2005 ret = VM_FAULT_OOM;
2006 goto out;
2009 /* No need to invalidate - it was non-present before */
2010 update_mmu_cache(vma, address, pte);
2011 lazy_mmu_prot_update(pte);
2012 unlock:
2013 pte_unmap_unlock(page_table, ptl);
2014 out:
2015 return ret;
2016 out_nomap:
2017 pte_unmap_unlock(page_table, ptl);
2018 unlock_page(page);
2019 page_cache_release(page);
2020 return ret;
2024 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2025 * but allow concurrent faults), and pte mapped but not yet locked.
2026 * We return with mmap_sem still held, but pte unmapped and unlocked.
2028 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2029 unsigned long address, pte_t *page_table, pmd_t *pmd,
2030 int write_access)
2032 struct page *page;
2033 spinlock_t *ptl;
2034 pte_t entry;
2036 if (write_access) {
2037 /* Allocate our own private page. */
2038 pte_unmap(page_table);
2040 if (unlikely(anon_vma_prepare(vma)))
2041 goto oom;
2042 page = alloc_zeroed_user_highpage(vma, address);
2043 if (!page)
2044 goto oom;
2046 entry = mk_pte(page, vma->vm_page_prot);
2047 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2049 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2050 if (!pte_none(*page_table))
2051 goto release;
2052 inc_mm_counter(mm, anon_rss);
2053 lru_cache_add_active(page);
2054 page_add_new_anon_rmap(page, vma, address);
2055 } else {
2056 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2057 page = ZERO_PAGE(address);
2058 page_cache_get(page);
2059 entry = mk_pte(page, vma->vm_page_prot);
2061 ptl = pte_lockptr(mm, pmd);
2062 spin_lock(ptl);
2063 if (!pte_none(*page_table))
2064 goto release;
2065 inc_mm_counter(mm, file_rss);
2066 page_add_file_rmap(page);
2069 set_pte_at(mm, address, page_table, entry);
2071 /* No need to invalidate - it was non-present before */
2072 update_mmu_cache(vma, address, entry);
2073 lazy_mmu_prot_update(entry);
2074 unlock:
2075 pte_unmap_unlock(page_table, ptl);
2076 return VM_FAULT_MINOR;
2077 release:
2078 page_cache_release(page);
2079 goto unlock;
2080 oom:
2081 return VM_FAULT_OOM;
2085 * do_no_page() tries to create a new page mapping. It aggressively
2086 * tries to share with existing pages, but makes a separate copy if
2087 * the "write_access" parameter is true in order to avoid the next
2088 * page fault.
2090 * As this is called only for pages that do not currently exist, we
2091 * do not need to flush old virtual caches or the TLB.
2093 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2094 * but allow concurrent faults), and pte mapped but not yet locked.
2095 * We return with mmap_sem still held, but pte unmapped and unlocked.
2097 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2098 unsigned long address, pte_t *page_table, pmd_t *pmd,
2099 int write_access)
2101 spinlock_t *ptl;
2102 struct page *new_page;
2103 struct address_space *mapping = NULL;
2104 pte_t entry;
2105 unsigned int sequence = 0;
2106 int ret = VM_FAULT_MINOR;
2107 int anon = 0;
2109 pte_unmap(page_table);
2110 BUG_ON(vma->vm_flags & VM_PFNMAP);
2112 if (vma->vm_file) {
2113 mapping = vma->vm_file->f_mapping;
2114 sequence = mapping->truncate_count;
2115 smp_rmb(); /* serializes i_size against truncate_count */
2117 retry:
2118 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2120 * No smp_rmb is needed here as long as there's a full
2121 * spin_lock/unlock sequence inside the ->nopage callback
2122 * (for the pagecache lookup) that acts as an implicit
2123 * smp_mb() and prevents the i_size read to happen
2124 * after the next truncate_count read.
2127 /* no page was available -- either SIGBUS or OOM */
2128 if (new_page == NOPAGE_SIGBUS)
2129 return VM_FAULT_SIGBUS;
2130 if (new_page == NOPAGE_OOM)
2131 return VM_FAULT_OOM;
2134 * Should we do an early C-O-W break?
2136 if (write_access) {
2137 if (!(vma->vm_flags & VM_SHARED)) {
2138 struct page *page;
2140 if (unlikely(anon_vma_prepare(vma)))
2141 goto oom;
2142 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2143 if (!page)
2144 goto oom;
2145 copy_user_highpage(page, new_page, address);
2146 page_cache_release(new_page);
2147 new_page = page;
2148 anon = 1;
2150 } else {
2151 /* if the page will be shareable, see if the backing
2152 * address space wants to know that the page is about
2153 * to become writable */
2154 if (vma->vm_ops->page_mkwrite &&
2155 vma->vm_ops->page_mkwrite(vma, new_page) < 0
2157 page_cache_release(new_page);
2158 return VM_FAULT_SIGBUS;
2163 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2165 * For a file-backed vma, someone could have truncated or otherwise
2166 * invalidated this page. If unmap_mapping_range got called,
2167 * retry getting the page.
2169 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2170 pte_unmap_unlock(page_table, ptl);
2171 page_cache_release(new_page);
2172 cond_resched();
2173 sequence = mapping->truncate_count;
2174 smp_rmb();
2175 goto retry;
2179 * This silly early PAGE_DIRTY setting removes a race
2180 * due to the bad i386 page protection. But it's valid
2181 * for other architectures too.
2183 * Note that if write_access is true, we either now have
2184 * an exclusive copy of the page, or this is a shared mapping,
2185 * so we can make it writable and dirty to avoid having to
2186 * handle that later.
2188 /* Only go through if we didn't race with anybody else... */
2189 if (pte_none(*page_table)) {
2190 flush_icache_page(vma, new_page);
2191 entry = mk_pte(new_page, vma->vm_page_prot);
2192 if (write_access)
2193 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2194 set_pte_at(mm, address, page_table, entry);
2195 if (anon) {
2196 inc_mm_counter(mm, anon_rss);
2197 lru_cache_add_active(new_page);
2198 page_add_new_anon_rmap(new_page, vma, address);
2199 } else {
2200 inc_mm_counter(mm, file_rss);
2201 page_add_file_rmap(new_page);
2203 } else {
2204 /* One of our sibling threads was faster, back out. */
2205 page_cache_release(new_page);
2206 goto unlock;
2209 /* no need to invalidate: a not-present page shouldn't be cached */
2210 update_mmu_cache(vma, address, entry);
2211 lazy_mmu_prot_update(entry);
2212 unlock:
2213 pte_unmap_unlock(page_table, ptl);
2214 return ret;
2215 oom:
2216 page_cache_release(new_page);
2217 return VM_FAULT_OOM;
2221 * Fault of a previously existing named mapping. Repopulate the pte
2222 * from the encoded file_pte if possible. This enables swappable
2223 * nonlinear vmas.
2225 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2226 * but allow concurrent faults), and pte mapped but not yet locked.
2227 * We return with mmap_sem still held, but pte unmapped and unlocked.
2229 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2230 unsigned long address, pte_t *page_table, pmd_t *pmd,
2231 int write_access, pte_t orig_pte)
2233 pgoff_t pgoff;
2234 int err;
2236 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2237 return VM_FAULT_MINOR;
2239 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2241 * Page table corrupted: show pte and kill process.
2243 print_bad_pte(vma, orig_pte, address);
2244 return VM_FAULT_OOM;
2246 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2248 pgoff = pte_to_pgoff(orig_pte);
2249 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2250 vma->vm_page_prot, pgoff, 0);
2251 if (err == -ENOMEM)
2252 return VM_FAULT_OOM;
2253 if (err)
2254 return VM_FAULT_SIGBUS;
2255 return VM_FAULT_MAJOR;
2259 * These routines also need to handle stuff like marking pages dirty
2260 * and/or accessed for architectures that don't do it in hardware (most
2261 * RISC architectures). The early dirtying is also good on the i386.
2263 * There is also a hook called "update_mmu_cache()" that architectures
2264 * with external mmu caches can use to update those (ie the Sparc or
2265 * PowerPC hashed page tables that act as extended TLBs).
2267 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2268 * but allow concurrent faults), and pte mapped but not yet locked.
2269 * We return with mmap_sem still held, but pte unmapped and unlocked.
2271 static inline int handle_pte_fault(struct mm_struct *mm,
2272 struct vm_area_struct *vma, unsigned long address,
2273 pte_t *pte, pmd_t *pmd, int write_access)
2275 pte_t entry;
2276 pte_t old_entry;
2277 spinlock_t *ptl;
2279 old_entry = entry = *pte;
2280 if (!pte_present(entry)) {
2281 if (pte_none(entry)) {
2282 if (!vma->vm_ops || !vma->vm_ops->nopage)
2283 return do_anonymous_page(mm, vma, address,
2284 pte, pmd, write_access);
2285 return do_no_page(mm, vma, address,
2286 pte, pmd, write_access);
2288 if (pte_file(entry))
2289 return do_file_page(mm, vma, address,
2290 pte, pmd, write_access, entry);
2291 return do_swap_page(mm, vma, address,
2292 pte, pmd, write_access, entry);
2295 ptl = pte_lockptr(mm, pmd);
2296 spin_lock(ptl);
2297 if (unlikely(!pte_same(*pte, entry)))
2298 goto unlock;
2299 if (write_access) {
2300 if (!pte_write(entry))
2301 return do_wp_page(mm, vma, address,
2302 pte, pmd, ptl, entry);
2303 entry = pte_mkdirty(entry);
2305 entry = pte_mkyoung(entry);
2306 if (!pte_same(old_entry, entry)) {
2307 ptep_set_access_flags(vma, address, pte, entry, write_access);
2308 update_mmu_cache(vma, address, entry);
2309 lazy_mmu_prot_update(entry);
2310 } else {
2312 * This is needed only for protection faults but the arch code
2313 * is not yet telling us if this is a protection fault or not.
2314 * This still avoids useless tlb flushes for .text page faults
2315 * with threads.
2317 if (write_access)
2318 flush_tlb_page(vma, address);
2320 unlock:
2321 pte_unmap_unlock(pte, ptl);
2322 return VM_FAULT_MINOR;
2326 * By the time we get here, we already hold the mm semaphore
2328 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2329 unsigned long address, int write_access)
2331 pgd_t *pgd;
2332 pud_t *pud;
2333 pmd_t *pmd;
2334 pte_t *pte;
2336 __set_current_state(TASK_RUNNING);
2338 count_vm_event(PGFAULT);
2340 if (unlikely(is_vm_hugetlb_page(vma)))
2341 return hugetlb_fault(mm, vma, address, write_access);
2343 pgd = pgd_offset(mm, address);
2344 pud = pud_alloc(mm, pgd, address);
2345 if (!pud)
2346 return VM_FAULT_OOM;
2347 pmd = pmd_alloc(mm, pud, address);
2348 if (!pmd)
2349 return VM_FAULT_OOM;
2350 pte = pte_alloc_map(mm, pmd, address);
2351 if (!pte)
2352 return VM_FAULT_OOM;
2354 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2357 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2359 #ifndef __PAGETABLE_PUD_FOLDED
2361 * Allocate page upper directory.
2362 * We've already handled the fast-path in-line.
2364 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2366 pud_t *new = pud_alloc_one(mm, address);
2367 if (!new)
2368 return -ENOMEM;
2370 spin_lock(&mm->page_table_lock);
2371 if (pgd_present(*pgd)) /* Another has populated it */
2372 pud_free(new);
2373 else
2374 pgd_populate(mm, pgd, new);
2375 spin_unlock(&mm->page_table_lock);
2376 return 0;
2378 #else
2379 /* Workaround for gcc 2.96 */
2380 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2382 return 0;
2384 #endif /* __PAGETABLE_PUD_FOLDED */
2386 #ifndef __PAGETABLE_PMD_FOLDED
2388 * Allocate page middle directory.
2389 * We've already handled the fast-path in-line.
2391 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2393 pmd_t *new = pmd_alloc_one(mm, address);
2394 if (!new)
2395 return -ENOMEM;
2397 spin_lock(&mm->page_table_lock);
2398 #ifndef __ARCH_HAS_4LEVEL_HACK
2399 if (pud_present(*pud)) /* Another has populated it */
2400 pmd_free(new);
2401 else
2402 pud_populate(mm, pud, new);
2403 #else
2404 if (pgd_present(*pud)) /* Another has populated it */
2405 pmd_free(new);
2406 else
2407 pgd_populate(mm, pud, new);
2408 #endif /* __ARCH_HAS_4LEVEL_HACK */
2409 spin_unlock(&mm->page_table_lock);
2410 return 0;
2412 #else
2413 /* Workaround for gcc 2.96 */
2414 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2416 return 0;
2418 #endif /* __PAGETABLE_PMD_FOLDED */
2420 int make_pages_present(unsigned long addr, unsigned long end)
2422 int ret, len, write;
2423 struct vm_area_struct * vma;
2425 vma = find_vma(current->mm, addr);
2426 if (!vma)
2427 return -1;
2428 write = (vma->vm_flags & VM_WRITE) != 0;
2429 BUG_ON(addr >= end);
2430 BUG_ON(end > vma->vm_end);
2431 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2432 ret = get_user_pages(current, current->mm, addr,
2433 len, write, 0, NULL, NULL);
2434 if (ret < 0)
2435 return ret;
2436 return ret == len ? 0 : -1;
2440 * Map a vmalloc()-space virtual address to the physical page.
2442 struct page * vmalloc_to_page(void * vmalloc_addr)
2444 unsigned long addr = (unsigned long) vmalloc_addr;
2445 struct page *page = NULL;
2446 pgd_t *pgd = pgd_offset_k(addr);
2447 pud_t *pud;
2448 pmd_t *pmd;
2449 pte_t *ptep, pte;
2451 if (!pgd_none(*pgd)) {
2452 pud = pud_offset(pgd, addr);
2453 if (!pud_none(*pud)) {
2454 pmd = pmd_offset(pud, addr);
2455 if (!pmd_none(*pmd)) {
2456 ptep = pte_offset_map(pmd, addr);
2457 pte = *ptep;
2458 if (pte_present(pte))
2459 page = pte_page(pte);
2460 pte_unmap(ptep);
2464 return page;
2467 EXPORT_SYMBOL(vmalloc_to_page);
2470 * Map a vmalloc()-space virtual address to the physical page frame number.
2472 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2474 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2477 EXPORT_SYMBOL(vmalloc_to_pfn);
2479 #if !defined(__HAVE_ARCH_GATE_AREA)
2481 #if defined(AT_SYSINFO_EHDR)
2482 static struct vm_area_struct gate_vma;
2484 static int __init gate_vma_init(void)
2486 gate_vma.vm_mm = NULL;
2487 gate_vma.vm_start = FIXADDR_USER_START;
2488 gate_vma.vm_end = FIXADDR_USER_END;
2489 gate_vma.vm_page_prot = PAGE_READONLY;
2490 gate_vma.vm_flags = 0;
2491 return 0;
2493 __initcall(gate_vma_init);
2494 #endif
2496 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2498 #ifdef AT_SYSINFO_EHDR
2499 return &gate_vma;
2500 #else
2501 return NULL;
2502 #endif
2505 int in_gate_area_no_task(unsigned long addr)
2507 #ifdef AT_SYSINFO_EHDR
2508 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2509 return 1;
2510 #endif
2511 return 0;
2514 #endif /* __HAVE_ARCH_GATE_AREA */