KVM: Interrupt mask notifiers for ioapic
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / virt / kvm / kvm_main.c
blob786a3ae373b052ec8ea60cf3626ffd5ffc36857b
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
73 static cpumask_var_t cpus_hardware_enabled;
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
80 struct dentry *kvm_debugfs_dir;
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
85 static bool kvm_rebooting;
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
107 BUG_ON(!ioapic);
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
150 return NULL;
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
155 struct kvm_assigned_dev_kernel *assigned_dev;
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 assigned_dev->host_irq_disabled = false;
175 mutex_unlock(&assigned_dev->kvm->lock);
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
183 schedule_work(&assigned_dev->interrupt_work);
185 disable_irq_nosync(irq);
186 assigned_dev->host_irq_disabled = true;
188 return IRQ_HANDLED;
191 /* Ack the irq line for an assigned device */
192 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
194 struct kvm_assigned_dev_kernel *dev;
196 if (kian->gsi == -1)
197 return;
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 ack_notifier);
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
204 /* The guest irq may be shared so this ack may be
205 * from another device.
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
213 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
214 static void kvm_free_assigned_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
217 if (!irqchip_in_kernel(kvm))
218 return;
220 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
222 if (assigned_dev->irq_source_id != -1)
223 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
224 assigned_dev->irq_source_id = -1;
226 if (!assigned_dev->irq_requested_type)
227 return;
230 * In kvm_free_device_irq, cancel_work_sync return true if:
231 * 1. work is scheduled, and then cancelled.
232 * 2. work callback is executed.
234 * The first one ensured that the irq is disabled and no more events
235 * would happen. But for the second one, the irq may be enabled (e.g.
236 * for MSI). So we disable irq here to prevent further events.
238 * Notice this maybe result in nested disable if the interrupt type is
239 * INTx, but it's OK for we are going to free it.
241 * If this function is a part of VM destroy, please ensure that till
242 * now, the kvm state is still legal for probably we also have to wait
243 * interrupt_work done.
245 disable_irq_nosync(assigned_dev->host_irq);
246 cancel_work_sync(&assigned_dev->interrupt_work);
248 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
250 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
251 pci_disable_msi(assigned_dev->dev);
253 assigned_dev->irq_requested_type = 0;
257 static void kvm_free_assigned_device(struct kvm *kvm,
258 struct kvm_assigned_dev_kernel
259 *assigned_dev)
261 kvm_free_assigned_irq(kvm, assigned_dev);
263 pci_reset_function(assigned_dev->dev);
265 pci_release_regions(assigned_dev->dev);
266 pci_disable_device(assigned_dev->dev);
267 pci_dev_put(assigned_dev->dev);
269 list_del(&assigned_dev->list);
270 kfree(assigned_dev);
273 void kvm_free_all_assigned_devices(struct kvm *kvm)
275 struct list_head *ptr, *ptr2;
276 struct kvm_assigned_dev_kernel *assigned_dev;
278 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
279 assigned_dev = list_entry(ptr,
280 struct kvm_assigned_dev_kernel,
281 list);
283 kvm_free_assigned_device(kvm, assigned_dev);
287 static int assigned_device_update_intx(struct kvm *kvm,
288 struct kvm_assigned_dev_kernel *adev,
289 struct kvm_assigned_irq *airq)
291 adev->guest_irq = airq->guest_irq;
292 adev->ack_notifier.gsi = airq->guest_irq;
294 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
295 return 0;
297 if (irqchip_in_kernel(kvm)) {
298 if (!msi2intx &&
299 (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
300 free_irq(adev->host_irq, (void *)adev);
301 pci_disable_msi(adev->dev);
304 if (!capable(CAP_SYS_RAWIO))
305 return -EPERM;
307 if (airq->host_irq)
308 adev->host_irq = airq->host_irq;
309 else
310 adev->host_irq = adev->dev->irq;
312 /* Even though this is PCI, we don't want to use shared
313 * interrupts. Sharing host devices with guest-assigned devices
314 * on the same interrupt line is not a happy situation: there
315 * are going to be long delays in accepting, acking, etc.
317 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
318 0, "kvm_assigned_intx_device", (void *)adev))
319 return -EIO;
322 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
323 KVM_ASSIGNED_DEV_HOST_INTX;
324 return 0;
327 #ifdef CONFIG_X86
328 static int assigned_device_update_msi(struct kvm *kvm,
329 struct kvm_assigned_dev_kernel *adev,
330 struct kvm_assigned_irq *airq)
332 int r;
334 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
335 /* x86 don't care upper address of guest msi message addr */
336 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
337 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
338 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
339 adev->guest_msi.data = airq->guest_msi.data;
340 adev->ack_notifier.gsi = -1;
341 } else if (msi2intx) {
342 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
343 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
344 adev->guest_irq = airq->guest_irq;
345 adev->ack_notifier.gsi = airq->guest_irq;
346 } else {
348 * Guest require to disable device MSI, we disable MSI and
349 * re-enable INTx by default again. Notice it's only for
350 * non-msi2intx.
352 assigned_device_update_intx(kvm, adev, airq);
353 return 0;
356 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
357 return 0;
359 if (irqchip_in_kernel(kvm)) {
360 if (!msi2intx) {
361 if (adev->irq_requested_type &
362 KVM_ASSIGNED_DEV_HOST_INTX)
363 free_irq(adev->host_irq, (void *)adev);
365 r = pci_enable_msi(adev->dev);
366 if (r)
367 return r;
370 adev->host_irq = adev->dev->irq;
371 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
372 "kvm_assigned_msi_device", (void *)adev))
373 return -EIO;
376 if (!msi2intx)
377 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
379 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
380 return 0;
382 #endif
384 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
385 struct kvm_assigned_irq
386 *assigned_irq)
388 int r = 0;
389 struct kvm_assigned_dev_kernel *match;
390 u32 current_flags = 0, changed_flags;
392 mutex_lock(&kvm->lock);
394 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
395 assigned_irq->assigned_dev_id);
396 if (!match) {
397 mutex_unlock(&kvm->lock);
398 return -EINVAL;
401 if (!match->irq_requested_type) {
402 INIT_WORK(&match->interrupt_work,
403 kvm_assigned_dev_interrupt_work_handler);
404 if (irqchip_in_kernel(kvm)) {
405 /* Register ack nofitier */
406 match->ack_notifier.gsi = -1;
407 match->ack_notifier.irq_acked =
408 kvm_assigned_dev_ack_irq;
409 kvm_register_irq_ack_notifier(kvm,
410 &match->ack_notifier);
412 /* Request IRQ source ID */
413 r = kvm_request_irq_source_id(kvm);
414 if (r < 0)
415 goto out_release;
416 else
417 match->irq_source_id = r;
419 #ifdef CONFIG_X86
420 /* Determine host device irq type, we can know the
421 * result from dev->msi_enabled */
422 if (msi2intx)
423 pci_enable_msi(match->dev);
424 #endif
428 if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
429 (match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
430 current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
432 changed_flags = assigned_irq->flags ^ current_flags;
434 if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
435 (msi2intx && match->dev->msi_enabled)) {
436 #ifdef CONFIG_X86
437 r = assigned_device_update_msi(kvm, match, assigned_irq);
438 if (r) {
439 printk(KERN_WARNING "kvm: failed to enable "
440 "MSI device!\n");
441 goto out_release;
443 #else
444 r = -ENOTTY;
445 #endif
446 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
447 /* Host device IRQ 0 means don't support INTx */
448 if (!msi2intx) {
449 printk(KERN_WARNING
450 "kvm: wait device to enable MSI!\n");
451 r = 0;
452 } else {
453 printk(KERN_WARNING
454 "kvm: failed to enable MSI device!\n");
455 r = -ENOTTY;
456 goto out_release;
458 } else {
459 /* Non-sharing INTx mode */
460 r = assigned_device_update_intx(kvm, match, assigned_irq);
461 if (r) {
462 printk(KERN_WARNING "kvm: failed to enable "
463 "INTx device!\n");
464 goto out_release;
468 mutex_unlock(&kvm->lock);
469 return r;
470 out_release:
471 mutex_unlock(&kvm->lock);
472 kvm_free_assigned_device(kvm, match);
473 return r;
476 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
477 struct kvm_assigned_pci_dev *assigned_dev)
479 int r = 0;
480 struct kvm_assigned_dev_kernel *match;
481 struct pci_dev *dev;
483 down_read(&kvm->slots_lock);
484 mutex_lock(&kvm->lock);
486 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
487 assigned_dev->assigned_dev_id);
488 if (match) {
489 /* device already assigned */
490 r = -EINVAL;
491 goto out;
494 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
495 if (match == NULL) {
496 printk(KERN_INFO "%s: Couldn't allocate memory\n",
497 __func__);
498 r = -ENOMEM;
499 goto out;
501 dev = pci_get_bus_and_slot(assigned_dev->busnr,
502 assigned_dev->devfn);
503 if (!dev) {
504 printk(KERN_INFO "%s: host device not found\n", __func__);
505 r = -EINVAL;
506 goto out_free;
508 if (pci_enable_device(dev)) {
509 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
510 r = -EBUSY;
511 goto out_put;
513 r = pci_request_regions(dev, "kvm_assigned_device");
514 if (r) {
515 printk(KERN_INFO "%s: Could not get access to device regions\n",
516 __func__);
517 goto out_disable;
520 pci_reset_function(dev);
522 match->assigned_dev_id = assigned_dev->assigned_dev_id;
523 match->host_busnr = assigned_dev->busnr;
524 match->host_devfn = assigned_dev->devfn;
525 match->flags = assigned_dev->flags;
526 match->dev = dev;
527 match->irq_source_id = -1;
528 match->kvm = kvm;
530 list_add(&match->list, &kvm->arch.assigned_dev_head);
532 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
533 if (!kvm->arch.iommu_domain) {
534 r = kvm_iommu_map_guest(kvm);
535 if (r)
536 goto out_list_del;
538 r = kvm_assign_device(kvm, match);
539 if (r)
540 goto out_list_del;
543 out:
544 mutex_unlock(&kvm->lock);
545 up_read(&kvm->slots_lock);
546 return r;
547 out_list_del:
548 list_del(&match->list);
549 pci_release_regions(dev);
550 out_disable:
551 pci_disable_device(dev);
552 out_put:
553 pci_dev_put(dev);
554 out_free:
555 kfree(match);
556 mutex_unlock(&kvm->lock);
557 up_read(&kvm->slots_lock);
558 return r;
560 #endif
562 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
563 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
564 struct kvm_assigned_pci_dev *assigned_dev)
566 int r = 0;
567 struct kvm_assigned_dev_kernel *match;
569 mutex_lock(&kvm->lock);
571 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
572 assigned_dev->assigned_dev_id);
573 if (!match) {
574 printk(KERN_INFO "%s: device hasn't been assigned before, "
575 "so cannot be deassigned\n", __func__);
576 r = -EINVAL;
577 goto out;
580 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
581 kvm_deassign_device(kvm, match);
583 kvm_free_assigned_device(kvm, match);
585 out:
586 mutex_unlock(&kvm->lock);
587 return r;
589 #endif
591 static inline int valid_vcpu(int n)
593 return likely(n >= 0 && n < KVM_MAX_VCPUS);
596 inline int kvm_is_mmio_pfn(pfn_t pfn)
598 if (pfn_valid(pfn))
599 return PageReserved(pfn_to_page(pfn));
601 return true;
605 * Switches to specified vcpu, until a matching vcpu_put()
607 void vcpu_load(struct kvm_vcpu *vcpu)
609 int cpu;
611 mutex_lock(&vcpu->mutex);
612 cpu = get_cpu();
613 preempt_notifier_register(&vcpu->preempt_notifier);
614 kvm_arch_vcpu_load(vcpu, cpu);
615 put_cpu();
618 void vcpu_put(struct kvm_vcpu *vcpu)
620 preempt_disable();
621 kvm_arch_vcpu_put(vcpu);
622 preempt_notifier_unregister(&vcpu->preempt_notifier);
623 preempt_enable();
624 mutex_unlock(&vcpu->mutex);
627 static void ack_flush(void *_completed)
631 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
633 int i, cpu, me;
634 cpumask_var_t cpus;
635 bool called = true;
636 struct kvm_vcpu *vcpu;
638 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
639 cpumask_clear(cpus);
641 me = get_cpu();
642 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
643 vcpu = kvm->vcpus[i];
644 if (!vcpu)
645 continue;
646 if (test_and_set_bit(req, &vcpu->requests))
647 continue;
648 cpu = vcpu->cpu;
649 if (cpus != NULL && cpu != -1 && cpu != me)
650 cpumask_set_cpu(cpu, cpus);
652 if (unlikely(cpus == NULL))
653 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
654 else if (!cpumask_empty(cpus))
655 smp_call_function_many(cpus, ack_flush, NULL, 1);
656 else
657 called = false;
658 put_cpu();
659 free_cpumask_var(cpus);
660 return called;
663 void kvm_flush_remote_tlbs(struct kvm *kvm)
665 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
666 ++kvm->stat.remote_tlb_flush;
669 void kvm_reload_remote_mmus(struct kvm *kvm)
671 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
674 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
676 struct page *page;
677 int r;
679 mutex_init(&vcpu->mutex);
680 vcpu->cpu = -1;
681 vcpu->kvm = kvm;
682 vcpu->vcpu_id = id;
683 init_waitqueue_head(&vcpu->wq);
685 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
686 if (!page) {
687 r = -ENOMEM;
688 goto fail;
690 vcpu->run = page_address(page);
692 r = kvm_arch_vcpu_init(vcpu);
693 if (r < 0)
694 goto fail_free_run;
695 return 0;
697 fail_free_run:
698 free_page((unsigned long)vcpu->run);
699 fail:
700 return r;
702 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
704 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
706 kvm_arch_vcpu_uninit(vcpu);
707 free_page((unsigned long)vcpu->run);
709 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
711 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
712 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
714 return container_of(mn, struct kvm, mmu_notifier);
717 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
718 struct mm_struct *mm,
719 unsigned long address)
721 struct kvm *kvm = mmu_notifier_to_kvm(mn);
722 int need_tlb_flush;
725 * When ->invalidate_page runs, the linux pte has been zapped
726 * already but the page is still allocated until
727 * ->invalidate_page returns. So if we increase the sequence
728 * here the kvm page fault will notice if the spte can't be
729 * established because the page is going to be freed. If
730 * instead the kvm page fault establishes the spte before
731 * ->invalidate_page runs, kvm_unmap_hva will release it
732 * before returning.
734 * The sequence increase only need to be seen at spin_unlock
735 * time, and not at spin_lock time.
737 * Increasing the sequence after the spin_unlock would be
738 * unsafe because the kvm page fault could then establish the
739 * pte after kvm_unmap_hva returned, without noticing the page
740 * is going to be freed.
742 spin_lock(&kvm->mmu_lock);
743 kvm->mmu_notifier_seq++;
744 need_tlb_flush = kvm_unmap_hva(kvm, address);
745 spin_unlock(&kvm->mmu_lock);
747 /* we've to flush the tlb before the pages can be freed */
748 if (need_tlb_flush)
749 kvm_flush_remote_tlbs(kvm);
753 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754 struct mm_struct *mm,
755 unsigned long start,
756 unsigned long end)
758 struct kvm *kvm = mmu_notifier_to_kvm(mn);
759 int need_tlb_flush = 0;
761 spin_lock(&kvm->mmu_lock);
763 * The count increase must become visible at unlock time as no
764 * spte can be established without taking the mmu_lock and
765 * count is also read inside the mmu_lock critical section.
767 kvm->mmu_notifier_count++;
768 for (; start < end; start += PAGE_SIZE)
769 need_tlb_flush |= kvm_unmap_hva(kvm, start);
770 spin_unlock(&kvm->mmu_lock);
772 /* we've to flush the tlb before the pages can be freed */
773 if (need_tlb_flush)
774 kvm_flush_remote_tlbs(kvm);
777 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
778 struct mm_struct *mm,
779 unsigned long start,
780 unsigned long end)
782 struct kvm *kvm = mmu_notifier_to_kvm(mn);
784 spin_lock(&kvm->mmu_lock);
786 * This sequence increase will notify the kvm page fault that
787 * the page that is going to be mapped in the spte could have
788 * been freed.
790 kvm->mmu_notifier_seq++;
792 * The above sequence increase must be visible before the
793 * below count decrease but both values are read by the kvm
794 * page fault under mmu_lock spinlock so we don't need to add
795 * a smb_wmb() here in between the two.
797 kvm->mmu_notifier_count--;
798 spin_unlock(&kvm->mmu_lock);
800 BUG_ON(kvm->mmu_notifier_count < 0);
803 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
804 struct mm_struct *mm,
805 unsigned long address)
807 struct kvm *kvm = mmu_notifier_to_kvm(mn);
808 int young;
810 spin_lock(&kvm->mmu_lock);
811 young = kvm_age_hva(kvm, address);
812 spin_unlock(&kvm->mmu_lock);
814 if (young)
815 kvm_flush_remote_tlbs(kvm);
817 return young;
820 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
821 struct mm_struct *mm)
823 struct kvm *kvm = mmu_notifier_to_kvm(mn);
824 kvm_arch_flush_shadow(kvm);
827 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
828 .invalidate_page = kvm_mmu_notifier_invalidate_page,
829 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
830 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
831 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
832 .release = kvm_mmu_notifier_release,
834 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
836 static struct kvm *kvm_create_vm(void)
838 struct kvm *kvm = kvm_arch_create_vm();
839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
840 struct page *page;
841 #endif
843 if (IS_ERR(kvm))
844 goto out;
845 #ifdef CONFIG_HAVE_KVM_IRQCHIP
846 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
847 #endif
849 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
850 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
851 if (!page) {
852 kfree(kvm);
853 return ERR_PTR(-ENOMEM);
855 kvm->coalesced_mmio_ring =
856 (struct kvm_coalesced_mmio_ring *)page_address(page);
857 #endif
859 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
861 int err;
862 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
863 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
864 if (err) {
865 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
866 put_page(page);
867 #endif
868 kfree(kvm);
869 return ERR_PTR(err);
872 #endif
874 kvm->mm = current->mm;
875 atomic_inc(&kvm->mm->mm_count);
876 spin_lock_init(&kvm->mmu_lock);
877 kvm_io_bus_init(&kvm->pio_bus);
878 mutex_init(&kvm->lock);
879 kvm_io_bus_init(&kvm->mmio_bus);
880 init_rwsem(&kvm->slots_lock);
881 atomic_set(&kvm->users_count, 1);
882 spin_lock(&kvm_lock);
883 list_add(&kvm->vm_list, &vm_list);
884 spin_unlock(&kvm_lock);
885 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
886 kvm_coalesced_mmio_init(kvm);
887 #endif
888 out:
889 return kvm;
893 * Free any memory in @free but not in @dont.
895 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
896 struct kvm_memory_slot *dont)
898 if (!dont || free->rmap != dont->rmap)
899 vfree(free->rmap);
901 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
902 vfree(free->dirty_bitmap);
904 if (!dont || free->lpage_info != dont->lpage_info)
905 vfree(free->lpage_info);
907 free->npages = 0;
908 free->dirty_bitmap = NULL;
909 free->rmap = NULL;
910 free->lpage_info = NULL;
913 void kvm_free_physmem(struct kvm *kvm)
915 int i;
917 for (i = 0; i < kvm->nmemslots; ++i)
918 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
921 static void kvm_destroy_vm(struct kvm *kvm)
923 struct mm_struct *mm = kvm->mm;
925 kvm_arch_sync_events(kvm);
926 spin_lock(&kvm_lock);
927 list_del(&kvm->vm_list);
928 spin_unlock(&kvm_lock);
929 kvm_io_bus_destroy(&kvm->pio_bus);
930 kvm_io_bus_destroy(&kvm->mmio_bus);
931 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
932 if (kvm->coalesced_mmio_ring != NULL)
933 free_page((unsigned long)kvm->coalesced_mmio_ring);
934 #endif
935 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
936 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
937 #endif
938 kvm_arch_destroy_vm(kvm);
939 mmdrop(mm);
942 void kvm_get_kvm(struct kvm *kvm)
944 atomic_inc(&kvm->users_count);
946 EXPORT_SYMBOL_GPL(kvm_get_kvm);
948 void kvm_put_kvm(struct kvm *kvm)
950 if (atomic_dec_and_test(&kvm->users_count))
951 kvm_destroy_vm(kvm);
953 EXPORT_SYMBOL_GPL(kvm_put_kvm);
956 static int kvm_vm_release(struct inode *inode, struct file *filp)
958 struct kvm *kvm = filp->private_data;
960 kvm_put_kvm(kvm);
961 return 0;
965 * Allocate some memory and give it an address in the guest physical address
966 * space.
968 * Discontiguous memory is allowed, mostly for framebuffers.
970 * Must be called holding mmap_sem for write.
972 int __kvm_set_memory_region(struct kvm *kvm,
973 struct kvm_userspace_memory_region *mem,
974 int user_alloc)
976 int r;
977 gfn_t base_gfn;
978 unsigned long npages;
979 unsigned long i;
980 struct kvm_memory_slot *memslot;
981 struct kvm_memory_slot old, new;
983 r = -EINVAL;
984 /* General sanity checks */
985 if (mem->memory_size & (PAGE_SIZE - 1))
986 goto out;
987 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
988 goto out;
989 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
990 goto out;
991 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
992 goto out;
993 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
994 goto out;
996 memslot = &kvm->memslots[mem->slot];
997 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
998 npages = mem->memory_size >> PAGE_SHIFT;
1000 if (!npages)
1001 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1003 new = old = *memslot;
1005 new.base_gfn = base_gfn;
1006 new.npages = npages;
1007 new.flags = mem->flags;
1009 /* Disallow changing a memory slot's size. */
1010 r = -EINVAL;
1011 if (npages && old.npages && npages != old.npages)
1012 goto out_free;
1014 /* Check for overlaps */
1015 r = -EEXIST;
1016 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1017 struct kvm_memory_slot *s = &kvm->memslots[i];
1019 if (s == memslot)
1020 continue;
1021 if (!((base_gfn + npages <= s->base_gfn) ||
1022 (base_gfn >= s->base_gfn + s->npages)))
1023 goto out_free;
1026 /* Free page dirty bitmap if unneeded */
1027 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1028 new.dirty_bitmap = NULL;
1030 r = -ENOMEM;
1032 /* Allocate if a slot is being created */
1033 #ifndef CONFIG_S390
1034 if (npages && !new.rmap) {
1035 new.rmap = vmalloc(npages * sizeof(struct page *));
1037 if (!new.rmap)
1038 goto out_free;
1040 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1042 new.user_alloc = user_alloc;
1044 * hva_to_rmmap() serialzies with the mmu_lock and to be
1045 * safe it has to ignore memslots with !user_alloc &&
1046 * !userspace_addr.
1048 if (user_alloc)
1049 new.userspace_addr = mem->userspace_addr;
1050 else
1051 new.userspace_addr = 0;
1053 if (npages && !new.lpage_info) {
1054 int largepages = npages / KVM_PAGES_PER_HPAGE;
1055 if (npages % KVM_PAGES_PER_HPAGE)
1056 largepages++;
1057 if (base_gfn % KVM_PAGES_PER_HPAGE)
1058 largepages++;
1060 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1062 if (!new.lpage_info)
1063 goto out_free;
1065 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1067 if (base_gfn % KVM_PAGES_PER_HPAGE)
1068 new.lpage_info[0].write_count = 1;
1069 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1070 new.lpage_info[largepages-1].write_count = 1;
1073 /* Allocate page dirty bitmap if needed */
1074 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1075 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1077 new.dirty_bitmap = vmalloc(dirty_bytes);
1078 if (!new.dirty_bitmap)
1079 goto out_free;
1080 memset(new.dirty_bitmap, 0, dirty_bytes);
1082 #endif /* not defined CONFIG_S390 */
1084 if (!npages)
1085 kvm_arch_flush_shadow(kvm);
1087 spin_lock(&kvm->mmu_lock);
1088 if (mem->slot >= kvm->nmemslots)
1089 kvm->nmemslots = mem->slot + 1;
1091 *memslot = new;
1092 spin_unlock(&kvm->mmu_lock);
1094 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1095 if (r) {
1096 spin_lock(&kvm->mmu_lock);
1097 *memslot = old;
1098 spin_unlock(&kvm->mmu_lock);
1099 goto out_free;
1102 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1103 /* Slot deletion case: we have to update the current slot */
1104 if (!npages)
1105 *memslot = old;
1106 #ifdef CONFIG_DMAR
1107 /* map the pages in iommu page table */
1108 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1109 if (r)
1110 goto out;
1111 #endif
1112 return 0;
1114 out_free:
1115 kvm_free_physmem_slot(&new, &old);
1116 out:
1117 return r;
1120 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1122 int kvm_set_memory_region(struct kvm *kvm,
1123 struct kvm_userspace_memory_region *mem,
1124 int user_alloc)
1126 int r;
1128 down_write(&kvm->slots_lock);
1129 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1130 up_write(&kvm->slots_lock);
1131 return r;
1133 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1135 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1136 struct
1137 kvm_userspace_memory_region *mem,
1138 int user_alloc)
1140 if (mem->slot >= KVM_MEMORY_SLOTS)
1141 return -EINVAL;
1142 return kvm_set_memory_region(kvm, mem, user_alloc);
1145 int kvm_get_dirty_log(struct kvm *kvm,
1146 struct kvm_dirty_log *log, int *is_dirty)
1148 struct kvm_memory_slot *memslot;
1149 int r, i;
1150 int n;
1151 unsigned long any = 0;
1153 r = -EINVAL;
1154 if (log->slot >= KVM_MEMORY_SLOTS)
1155 goto out;
1157 memslot = &kvm->memslots[log->slot];
1158 r = -ENOENT;
1159 if (!memslot->dirty_bitmap)
1160 goto out;
1162 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1164 for (i = 0; !any && i < n/sizeof(long); ++i)
1165 any = memslot->dirty_bitmap[i];
1167 r = -EFAULT;
1168 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1169 goto out;
1171 if (any)
1172 *is_dirty = 1;
1174 r = 0;
1175 out:
1176 return r;
1179 int is_error_page(struct page *page)
1181 return page == bad_page;
1183 EXPORT_SYMBOL_GPL(is_error_page);
1185 int is_error_pfn(pfn_t pfn)
1187 return pfn == bad_pfn;
1189 EXPORT_SYMBOL_GPL(is_error_pfn);
1191 static inline unsigned long bad_hva(void)
1193 return PAGE_OFFSET;
1196 int kvm_is_error_hva(unsigned long addr)
1198 return addr == bad_hva();
1200 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1202 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1204 int i;
1206 for (i = 0; i < kvm->nmemslots; ++i) {
1207 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1209 if (gfn >= memslot->base_gfn
1210 && gfn < memslot->base_gfn + memslot->npages)
1211 return memslot;
1213 return NULL;
1215 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1217 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 gfn = unalias_gfn(kvm, gfn);
1220 return gfn_to_memslot_unaliased(kvm, gfn);
1223 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1225 int i;
1227 gfn = unalias_gfn(kvm, gfn);
1228 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1229 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1231 if (gfn >= memslot->base_gfn
1232 && gfn < memslot->base_gfn + memslot->npages)
1233 return 1;
1235 return 0;
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1239 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1241 struct kvm_memory_slot *slot;
1243 gfn = unalias_gfn(kvm, gfn);
1244 slot = gfn_to_memslot_unaliased(kvm, gfn);
1245 if (!slot)
1246 return bad_hva();
1247 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1249 EXPORT_SYMBOL_GPL(gfn_to_hva);
1251 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1253 struct page *page[1];
1254 unsigned long addr;
1255 int npages;
1256 pfn_t pfn;
1258 might_sleep();
1260 addr = gfn_to_hva(kvm, gfn);
1261 if (kvm_is_error_hva(addr)) {
1262 get_page(bad_page);
1263 return page_to_pfn(bad_page);
1266 npages = get_user_pages_fast(addr, 1, 1, page);
1268 if (unlikely(npages != 1)) {
1269 struct vm_area_struct *vma;
1271 down_read(&current->mm->mmap_sem);
1272 vma = find_vma(current->mm, addr);
1274 if (vma == NULL || addr < vma->vm_start ||
1275 !(vma->vm_flags & VM_PFNMAP)) {
1276 up_read(&current->mm->mmap_sem);
1277 get_page(bad_page);
1278 return page_to_pfn(bad_page);
1281 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1282 up_read(&current->mm->mmap_sem);
1283 BUG_ON(!kvm_is_mmio_pfn(pfn));
1284 } else
1285 pfn = page_to_pfn(page[0]);
1287 return pfn;
1290 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1292 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1294 pfn_t pfn;
1296 pfn = gfn_to_pfn(kvm, gfn);
1297 if (!kvm_is_mmio_pfn(pfn))
1298 return pfn_to_page(pfn);
1300 WARN_ON(kvm_is_mmio_pfn(pfn));
1302 get_page(bad_page);
1303 return bad_page;
1306 EXPORT_SYMBOL_GPL(gfn_to_page);
1308 void kvm_release_page_clean(struct page *page)
1310 kvm_release_pfn_clean(page_to_pfn(page));
1312 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1314 void kvm_release_pfn_clean(pfn_t pfn)
1316 if (!kvm_is_mmio_pfn(pfn))
1317 put_page(pfn_to_page(pfn));
1319 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1321 void kvm_release_page_dirty(struct page *page)
1323 kvm_release_pfn_dirty(page_to_pfn(page));
1325 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1327 void kvm_release_pfn_dirty(pfn_t pfn)
1329 kvm_set_pfn_dirty(pfn);
1330 kvm_release_pfn_clean(pfn);
1332 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1334 void kvm_set_page_dirty(struct page *page)
1336 kvm_set_pfn_dirty(page_to_pfn(page));
1338 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1340 void kvm_set_pfn_dirty(pfn_t pfn)
1342 if (!kvm_is_mmio_pfn(pfn)) {
1343 struct page *page = pfn_to_page(pfn);
1344 if (!PageReserved(page))
1345 SetPageDirty(page);
1348 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1350 void kvm_set_pfn_accessed(pfn_t pfn)
1352 if (!kvm_is_mmio_pfn(pfn))
1353 mark_page_accessed(pfn_to_page(pfn));
1355 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1357 void kvm_get_pfn(pfn_t pfn)
1359 if (!kvm_is_mmio_pfn(pfn))
1360 get_page(pfn_to_page(pfn));
1362 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1364 static int next_segment(unsigned long len, int offset)
1366 if (len > PAGE_SIZE - offset)
1367 return PAGE_SIZE - offset;
1368 else
1369 return len;
1372 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1373 int len)
1375 int r;
1376 unsigned long addr;
1378 addr = gfn_to_hva(kvm, gfn);
1379 if (kvm_is_error_hva(addr))
1380 return -EFAULT;
1381 r = copy_from_user(data, (void __user *)addr + offset, len);
1382 if (r)
1383 return -EFAULT;
1384 return 0;
1386 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1388 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1390 gfn_t gfn = gpa >> PAGE_SHIFT;
1391 int seg;
1392 int offset = offset_in_page(gpa);
1393 int ret;
1395 while ((seg = next_segment(len, offset)) != 0) {
1396 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1397 if (ret < 0)
1398 return ret;
1399 offset = 0;
1400 len -= seg;
1401 data += seg;
1402 ++gfn;
1404 return 0;
1406 EXPORT_SYMBOL_GPL(kvm_read_guest);
1408 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1409 unsigned long len)
1411 int r;
1412 unsigned long addr;
1413 gfn_t gfn = gpa >> PAGE_SHIFT;
1414 int offset = offset_in_page(gpa);
1416 addr = gfn_to_hva(kvm, gfn);
1417 if (kvm_is_error_hva(addr))
1418 return -EFAULT;
1419 pagefault_disable();
1420 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1421 pagefault_enable();
1422 if (r)
1423 return -EFAULT;
1424 return 0;
1426 EXPORT_SYMBOL(kvm_read_guest_atomic);
1428 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1429 int offset, int len)
1431 int r;
1432 unsigned long addr;
1434 addr = gfn_to_hva(kvm, gfn);
1435 if (kvm_is_error_hva(addr))
1436 return -EFAULT;
1437 r = copy_to_user((void __user *)addr + offset, data, len);
1438 if (r)
1439 return -EFAULT;
1440 mark_page_dirty(kvm, gfn);
1441 return 0;
1443 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1445 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1446 unsigned long len)
1448 gfn_t gfn = gpa >> PAGE_SHIFT;
1449 int seg;
1450 int offset = offset_in_page(gpa);
1451 int ret;
1453 while ((seg = next_segment(len, offset)) != 0) {
1454 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1455 if (ret < 0)
1456 return ret;
1457 offset = 0;
1458 len -= seg;
1459 data += seg;
1460 ++gfn;
1462 return 0;
1465 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1467 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1469 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1471 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1473 gfn_t gfn = gpa >> PAGE_SHIFT;
1474 int seg;
1475 int offset = offset_in_page(gpa);
1476 int ret;
1478 while ((seg = next_segment(len, offset)) != 0) {
1479 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1480 if (ret < 0)
1481 return ret;
1482 offset = 0;
1483 len -= seg;
1484 ++gfn;
1486 return 0;
1488 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1490 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1492 struct kvm_memory_slot *memslot;
1494 gfn = unalias_gfn(kvm, gfn);
1495 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1496 if (memslot && memslot->dirty_bitmap) {
1497 unsigned long rel_gfn = gfn - memslot->base_gfn;
1499 /* avoid RMW */
1500 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1501 set_bit(rel_gfn, memslot->dirty_bitmap);
1506 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1508 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1510 DEFINE_WAIT(wait);
1512 for (;;) {
1513 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1515 if (kvm_cpu_has_interrupt(vcpu) ||
1516 kvm_cpu_has_pending_timer(vcpu) ||
1517 kvm_arch_vcpu_runnable(vcpu)) {
1518 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1519 break;
1521 if (signal_pending(current))
1522 break;
1524 vcpu_put(vcpu);
1525 schedule();
1526 vcpu_load(vcpu);
1529 finish_wait(&vcpu->wq, &wait);
1532 void kvm_resched(struct kvm_vcpu *vcpu)
1534 if (!need_resched())
1535 return;
1536 cond_resched();
1538 EXPORT_SYMBOL_GPL(kvm_resched);
1540 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1542 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1543 struct page *page;
1545 if (vmf->pgoff == 0)
1546 page = virt_to_page(vcpu->run);
1547 #ifdef CONFIG_X86
1548 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1549 page = virt_to_page(vcpu->arch.pio_data);
1550 #endif
1551 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1552 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1553 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1554 #endif
1555 else
1556 return VM_FAULT_SIGBUS;
1557 get_page(page);
1558 vmf->page = page;
1559 return 0;
1562 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1563 .fault = kvm_vcpu_fault,
1566 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1568 vma->vm_ops = &kvm_vcpu_vm_ops;
1569 return 0;
1572 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1574 struct kvm_vcpu *vcpu = filp->private_data;
1576 kvm_put_kvm(vcpu->kvm);
1577 return 0;
1580 static struct file_operations kvm_vcpu_fops = {
1581 .release = kvm_vcpu_release,
1582 .unlocked_ioctl = kvm_vcpu_ioctl,
1583 .compat_ioctl = kvm_vcpu_ioctl,
1584 .mmap = kvm_vcpu_mmap,
1588 * Allocates an inode for the vcpu.
1590 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1592 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1593 if (fd < 0)
1594 kvm_put_kvm(vcpu->kvm);
1595 return fd;
1599 * Creates some virtual cpus. Good luck creating more than one.
1601 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1603 int r;
1604 struct kvm_vcpu *vcpu;
1606 if (!valid_vcpu(n))
1607 return -EINVAL;
1609 vcpu = kvm_arch_vcpu_create(kvm, n);
1610 if (IS_ERR(vcpu))
1611 return PTR_ERR(vcpu);
1613 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1615 r = kvm_arch_vcpu_setup(vcpu);
1616 if (r)
1617 return r;
1619 mutex_lock(&kvm->lock);
1620 if (kvm->vcpus[n]) {
1621 r = -EEXIST;
1622 goto vcpu_destroy;
1624 kvm->vcpus[n] = vcpu;
1625 mutex_unlock(&kvm->lock);
1627 /* Now it's all set up, let userspace reach it */
1628 kvm_get_kvm(kvm);
1629 r = create_vcpu_fd(vcpu);
1630 if (r < 0)
1631 goto unlink;
1632 return r;
1634 unlink:
1635 mutex_lock(&kvm->lock);
1636 kvm->vcpus[n] = NULL;
1637 vcpu_destroy:
1638 mutex_unlock(&kvm->lock);
1639 kvm_arch_vcpu_destroy(vcpu);
1640 return r;
1643 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1645 if (sigset) {
1646 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1647 vcpu->sigset_active = 1;
1648 vcpu->sigset = *sigset;
1649 } else
1650 vcpu->sigset_active = 0;
1651 return 0;
1654 static long kvm_vcpu_ioctl(struct file *filp,
1655 unsigned int ioctl, unsigned long arg)
1657 struct kvm_vcpu *vcpu = filp->private_data;
1658 void __user *argp = (void __user *)arg;
1659 int r;
1660 struct kvm_fpu *fpu = NULL;
1661 struct kvm_sregs *kvm_sregs = NULL;
1663 if (vcpu->kvm->mm != current->mm)
1664 return -EIO;
1665 switch (ioctl) {
1666 case KVM_RUN:
1667 r = -EINVAL;
1668 if (arg)
1669 goto out;
1670 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1671 break;
1672 case KVM_GET_REGS: {
1673 struct kvm_regs *kvm_regs;
1675 r = -ENOMEM;
1676 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1677 if (!kvm_regs)
1678 goto out;
1679 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1680 if (r)
1681 goto out_free1;
1682 r = -EFAULT;
1683 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1684 goto out_free1;
1685 r = 0;
1686 out_free1:
1687 kfree(kvm_regs);
1688 break;
1690 case KVM_SET_REGS: {
1691 struct kvm_regs *kvm_regs;
1693 r = -ENOMEM;
1694 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1695 if (!kvm_regs)
1696 goto out;
1697 r = -EFAULT;
1698 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1699 goto out_free2;
1700 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1701 if (r)
1702 goto out_free2;
1703 r = 0;
1704 out_free2:
1705 kfree(kvm_regs);
1706 break;
1708 case KVM_GET_SREGS: {
1709 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1710 r = -ENOMEM;
1711 if (!kvm_sregs)
1712 goto out;
1713 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1714 if (r)
1715 goto out;
1716 r = -EFAULT;
1717 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1718 goto out;
1719 r = 0;
1720 break;
1722 case KVM_SET_SREGS: {
1723 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1724 r = -ENOMEM;
1725 if (!kvm_sregs)
1726 goto out;
1727 r = -EFAULT;
1728 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1729 goto out;
1730 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1731 if (r)
1732 goto out;
1733 r = 0;
1734 break;
1736 case KVM_GET_MP_STATE: {
1737 struct kvm_mp_state mp_state;
1739 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1740 if (r)
1741 goto out;
1742 r = -EFAULT;
1743 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1744 goto out;
1745 r = 0;
1746 break;
1748 case KVM_SET_MP_STATE: {
1749 struct kvm_mp_state mp_state;
1751 r = -EFAULT;
1752 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1753 goto out;
1754 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1755 if (r)
1756 goto out;
1757 r = 0;
1758 break;
1760 case KVM_TRANSLATE: {
1761 struct kvm_translation tr;
1763 r = -EFAULT;
1764 if (copy_from_user(&tr, argp, sizeof tr))
1765 goto out;
1766 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1767 if (r)
1768 goto out;
1769 r = -EFAULT;
1770 if (copy_to_user(argp, &tr, sizeof tr))
1771 goto out;
1772 r = 0;
1773 break;
1775 case KVM_SET_GUEST_DEBUG: {
1776 struct kvm_guest_debug dbg;
1778 r = -EFAULT;
1779 if (copy_from_user(&dbg, argp, sizeof dbg))
1780 goto out;
1781 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1782 if (r)
1783 goto out;
1784 r = 0;
1785 break;
1787 case KVM_SET_SIGNAL_MASK: {
1788 struct kvm_signal_mask __user *sigmask_arg = argp;
1789 struct kvm_signal_mask kvm_sigmask;
1790 sigset_t sigset, *p;
1792 p = NULL;
1793 if (argp) {
1794 r = -EFAULT;
1795 if (copy_from_user(&kvm_sigmask, argp,
1796 sizeof kvm_sigmask))
1797 goto out;
1798 r = -EINVAL;
1799 if (kvm_sigmask.len != sizeof sigset)
1800 goto out;
1801 r = -EFAULT;
1802 if (copy_from_user(&sigset, sigmask_arg->sigset,
1803 sizeof sigset))
1804 goto out;
1805 p = &sigset;
1807 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1808 break;
1810 case KVM_GET_FPU: {
1811 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1812 r = -ENOMEM;
1813 if (!fpu)
1814 goto out;
1815 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1816 if (r)
1817 goto out;
1818 r = -EFAULT;
1819 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1820 goto out;
1821 r = 0;
1822 break;
1824 case KVM_SET_FPU: {
1825 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1826 r = -ENOMEM;
1827 if (!fpu)
1828 goto out;
1829 r = -EFAULT;
1830 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1831 goto out;
1832 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1833 if (r)
1834 goto out;
1835 r = 0;
1836 break;
1838 default:
1839 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1841 out:
1842 kfree(fpu);
1843 kfree(kvm_sregs);
1844 return r;
1847 static long kvm_vm_ioctl(struct file *filp,
1848 unsigned int ioctl, unsigned long arg)
1850 struct kvm *kvm = filp->private_data;
1851 void __user *argp = (void __user *)arg;
1852 int r;
1854 if (kvm->mm != current->mm)
1855 return -EIO;
1856 switch (ioctl) {
1857 case KVM_CREATE_VCPU:
1858 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1859 if (r < 0)
1860 goto out;
1861 break;
1862 case KVM_SET_USER_MEMORY_REGION: {
1863 struct kvm_userspace_memory_region kvm_userspace_mem;
1865 r = -EFAULT;
1866 if (copy_from_user(&kvm_userspace_mem, argp,
1867 sizeof kvm_userspace_mem))
1868 goto out;
1870 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1871 if (r)
1872 goto out;
1873 break;
1875 case KVM_GET_DIRTY_LOG: {
1876 struct kvm_dirty_log log;
1878 r = -EFAULT;
1879 if (copy_from_user(&log, argp, sizeof log))
1880 goto out;
1881 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1882 if (r)
1883 goto out;
1884 break;
1886 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1887 case KVM_REGISTER_COALESCED_MMIO: {
1888 struct kvm_coalesced_mmio_zone zone;
1889 r = -EFAULT;
1890 if (copy_from_user(&zone, argp, sizeof zone))
1891 goto out;
1892 r = -ENXIO;
1893 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1894 if (r)
1895 goto out;
1896 r = 0;
1897 break;
1899 case KVM_UNREGISTER_COALESCED_MMIO: {
1900 struct kvm_coalesced_mmio_zone zone;
1901 r = -EFAULT;
1902 if (copy_from_user(&zone, argp, sizeof zone))
1903 goto out;
1904 r = -ENXIO;
1905 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1906 if (r)
1907 goto out;
1908 r = 0;
1909 break;
1911 #endif
1912 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1913 case KVM_ASSIGN_PCI_DEVICE: {
1914 struct kvm_assigned_pci_dev assigned_dev;
1916 r = -EFAULT;
1917 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1918 goto out;
1919 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1920 if (r)
1921 goto out;
1922 break;
1924 case KVM_ASSIGN_IRQ: {
1925 struct kvm_assigned_irq assigned_irq;
1927 r = -EFAULT;
1928 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1929 goto out;
1930 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1931 if (r)
1932 goto out;
1933 break;
1935 #endif
1936 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1937 case KVM_DEASSIGN_PCI_DEVICE: {
1938 struct kvm_assigned_pci_dev assigned_dev;
1940 r = -EFAULT;
1941 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1942 goto out;
1943 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1944 if (r)
1945 goto out;
1946 break;
1948 #endif
1949 default:
1950 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1952 out:
1953 return r;
1956 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1958 struct page *page[1];
1959 unsigned long addr;
1960 int npages;
1961 gfn_t gfn = vmf->pgoff;
1962 struct kvm *kvm = vma->vm_file->private_data;
1964 addr = gfn_to_hva(kvm, gfn);
1965 if (kvm_is_error_hva(addr))
1966 return VM_FAULT_SIGBUS;
1968 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1969 NULL);
1970 if (unlikely(npages != 1))
1971 return VM_FAULT_SIGBUS;
1973 vmf->page = page[0];
1974 return 0;
1977 static struct vm_operations_struct kvm_vm_vm_ops = {
1978 .fault = kvm_vm_fault,
1981 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1983 vma->vm_ops = &kvm_vm_vm_ops;
1984 return 0;
1987 static struct file_operations kvm_vm_fops = {
1988 .release = kvm_vm_release,
1989 .unlocked_ioctl = kvm_vm_ioctl,
1990 .compat_ioctl = kvm_vm_ioctl,
1991 .mmap = kvm_vm_mmap,
1994 static int kvm_dev_ioctl_create_vm(void)
1996 int fd;
1997 struct kvm *kvm;
1999 kvm = kvm_create_vm();
2000 if (IS_ERR(kvm))
2001 return PTR_ERR(kvm);
2002 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2003 if (fd < 0)
2004 kvm_put_kvm(kvm);
2006 return fd;
2009 static long kvm_dev_ioctl_check_extension_generic(long arg)
2011 switch (arg) {
2012 case KVM_CAP_USER_MEMORY:
2013 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2014 return 1;
2015 default:
2016 break;
2018 return kvm_dev_ioctl_check_extension(arg);
2021 static long kvm_dev_ioctl(struct file *filp,
2022 unsigned int ioctl, unsigned long arg)
2024 long r = -EINVAL;
2026 switch (ioctl) {
2027 case KVM_GET_API_VERSION:
2028 r = -EINVAL;
2029 if (arg)
2030 goto out;
2031 r = KVM_API_VERSION;
2032 break;
2033 case KVM_CREATE_VM:
2034 r = -EINVAL;
2035 if (arg)
2036 goto out;
2037 r = kvm_dev_ioctl_create_vm();
2038 break;
2039 case KVM_CHECK_EXTENSION:
2040 r = kvm_dev_ioctl_check_extension_generic(arg);
2041 break;
2042 case KVM_GET_VCPU_MMAP_SIZE:
2043 r = -EINVAL;
2044 if (arg)
2045 goto out;
2046 r = PAGE_SIZE; /* struct kvm_run */
2047 #ifdef CONFIG_X86
2048 r += PAGE_SIZE; /* pio data page */
2049 #endif
2050 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2051 r += PAGE_SIZE; /* coalesced mmio ring page */
2052 #endif
2053 break;
2054 case KVM_TRACE_ENABLE:
2055 case KVM_TRACE_PAUSE:
2056 case KVM_TRACE_DISABLE:
2057 r = kvm_trace_ioctl(ioctl, arg);
2058 break;
2059 default:
2060 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2062 out:
2063 return r;
2066 static struct file_operations kvm_chardev_ops = {
2067 .unlocked_ioctl = kvm_dev_ioctl,
2068 .compat_ioctl = kvm_dev_ioctl,
2071 static struct miscdevice kvm_dev = {
2072 KVM_MINOR,
2073 "kvm",
2074 &kvm_chardev_ops,
2077 static void hardware_enable(void *junk)
2079 int cpu = raw_smp_processor_id();
2081 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2082 return;
2083 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2084 kvm_arch_hardware_enable(NULL);
2087 static void hardware_disable(void *junk)
2089 int cpu = raw_smp_processor_id();
2091 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2092 return;
2093 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2094 kvm_arch_hardware_disable(NULL);
2097 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2098 void *v)
2100 int cpu = (long)v;
2102 val &= ~CPU_TASKS_FROZEN;
2103 switch (val) {
2104 case CPU_DYING:
2105 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2106 cpu);
2107 hardware_disable(NULL);
2108 break;
2109 case CPU_UP_CANCELED:
2110 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2111 cpu);
2112 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2113 break;
2114 case CPU_ONLINE:
2115 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2116 cpu);
2117 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2118 break;
2120 return NOTIFY_OK;
2124 asmlinkage void kvm_handle_fault_on_reboot(void)
2126 if (kvm_rebooting)
2127 /* spin while reset goes on */
2128 while (true)
2130 /* Fault while not rebooting. We want the trace. */
2131 BUG();
2133 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2135 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2136 void *v)
2138 if (val == SYS_RESTART) {
2140 * Some (well, at least mine) BIOSes hang on reboot if
2141 * in vmx root mode.
2143 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2144 kvm_rebooting = true;
2145 on_each_cpu(hardware_disable, NULL, 1);
2147 return NOTIFY_OK;
2150 static struct notifier_block kvm_reboot_notifier = {
2151 .notifier_call = kvm_reboot,
2152 .priority = 0,
2155 void kvm_io_bus_init(struct kvm_io_bus *bus)
2157 memset(bus, 0, sizeof(*bus));
2160 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2162 int i;
2164 for (i = 0; i < bus->dev_count; i++) {
2165 struct kvm_io_device *pos = bus->devs[i];
2167 kvm_iodevice_destructor(pos);
2171 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2172 gpa_t addr, int len, int is_write)
2174 int i;
2176 for (i = 0; i < bus->dev_count; i++) {
2177 struct kvm_io_device *pos = bus->devs[i];
2179 if (pos->in_range(pos, addr, len, is_write))
2180 return pos;
2183 return NULL;
2186 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2188 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2190 bus->devs[bus->dev_count++] = dev;
2193 static struct notifier_block kvm_cpu_notifier = {
2194 .notifier_call = kvm_cpu_hotplug,
2195 .priority = 20, /* must be > scheduler priority */
2198 static int vm_stat_get(void *_offset, u64 *val)
2200 unsigned offset = (long)_offset;
2201 struct kvm *kvm;
2203 *val = 0;
2204 spin_lock(&kvm_lock);
2205 list_for_each_entry(kvm, &vm_list, vm_list)
2206 *val += *(u32 *)((void *)kvm + offset);
2207 spin_unlock(&kvm_lock);
2208 return 0;
2211 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2213 static int vcpu_stat_get(void *_offset, u64 *val)
2215 unsigned offset = (long)_offset;
2216 struct kvm *kvm;
2217 struct kvm_vcpu *vcpu;
2218 int i;
2220 *val = 0;
2221 spin_lock(&kvm_lock);
2222 list_for_each_entry(kvm, &vm_list, vm_list)
2223 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2224 vcpu = kvm->vcpus[i];
2225 if (vcpu)
2226 *val += *(u32 *)((void *)vcpu + offset);
2228 spin_unlock(&kvm_lock);
2229 return 0;
2232 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2234 static struct file_operations *stat_fops[] = {
2235 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2236 [KVM_STAT_VM] = &vm_stat_fops,
2239 static void kvm_init_debug(void)
2241 struct kvm_stats_debugfs_item *p;
2243 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2244 for (p = debugfs_entries; p->name; ++p)
2245 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2246 (void *)(long)p->offset,
2247 stat_fops[p->kind]);
2250 static void kvm_exit_debug(void)
2252 struct kvm_stats_debugfs_item *p;
2254 for (p = debugfs_entries; p->name; ++p)
2255 debugfs_remove(p->dentry);
2256 debugfs_remove(kvm_debugfs_dir);
2259 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2261 hardware_disable(NULL);
2262 return 0;
2265 static int kvm_resume(struct sys_device *dev)
2267 hardware_enable(NULL);
2268 return 0;
2271 static struct sysdev_class kvm_sysdev_class = {
2272 .name = "kvm",
2273 .suspend = kvm_suspend,
2274 .resume = kvm_resume,
2277 static struct sys_device kvm_sysdev = {
2278 .id = 0,
2279 .cls = &kvm_sysdev_class,
2282 struct page *bad_page;
2283 pfn_t bad_pfn;
2285 static inline
2286 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2288 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2291 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2293 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2295 kvm_arch_vcpu_load(vcpu, cpu);
2298 static void kvm_sched_out(struct preempt_notifier *pn,
2299 struct task_struct *next)
2301 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2303 kvm_arch_vcpu_put(vcpu);
2306 int kvm_init(void *opaque, unsigned int vcpu_size,
2307 struct module *module)
2309 int r;
2310 int cpu;
2312 kvm_init_debug();
2314 r = kvm_arch_init(opaque);
2315 if (r)
2316 goto out_fail;
2318 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2320 if (bad_page == NULL) {
2321 r = -ENOMEM;
2322 goto out;
2325 bad_pfn = page_to_pfn(bad_page);
2327 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2328 r = -ENOMEM;
2329 goto out_free_0;
2332 r = kvm_arch_hardware_setup();
2333 if (r < 0)
2334 goto out_free_0a;
2336 for_each_online_cpu(cpu) {
2337 smp_call_function_single(cpu,
2338 kvm_arch_check_processor_compat,
2339 &r, 1);
2340 if (r < 0)
2341 goto out_free_1;
2344 on_each_cpu(hardware_enable, NULL, 1);
2345 r = register_cpu_notifier(&kvm_cpu_notifier);
2346 if (r)
2347 goto out_free_2;
2348 register_reboot_notifier(&kvm_reboot_notifier);
2350 r = sysdev_class_register(&kvm_sysdev_class);
2351 if (r)
2352 goto out_free_3;
2354 r = sysdev_register(&kvm_sysdev);
2355 if (r)
2356 goto out_free_4;
2358 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2359 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2360 __alignof__(struct kvm_vcpu),
2361 0, NULL);
2362 if (!kvm_vcpu_cache) {
2363 r = -ENOMEM;
2364 goto out_free_5;
2367 kvm_chardev_ops.owner = module;
2368 kvm_vm_fops.owner = module;
2369 kvm_vcpu_fops.owner = module;
2371 r = misc_register(&kvm_dev);
2372 if (r) {
2373 printk(KERN_ERR "kvm: misc device register failed\n");
2374 goto out_free;
2377 kvm_preempt_ops.sched_in = kvm_sched_in;
2378 kvm_preempt_ops.sched_out = kvm_sched_out;
2379 #ifndef CONFIG_X86
2380 msi2intx = 0;
2381 #endif
2383 return 0;
2385 out_free:
2386 kmem_cache_destroy(kvm_vcpu_cache);
2387 out_free_5:
2388 sysdev_unregister(&kvm_sysdev);
2389 out_free_4:
2390 sysdev_class_unregister(&kvm_sysdev_class);
2391 out_free_3:
2392 unregister_reboot_notifier(&kvm_reboot_notifier);
2393 unregister_cpu_notifier(&kvm_cpu_notifier);
2394 out_free_2:
2395 on_each_cpu(hardware_disable, NULL, 1);
2396 out_free_1:
2397 kvm_arch_hardware_unsetup();
2398 out_free_0a:
2399 free_cpumask_var(cpus_hardware_enabled);
2400 out_free_0:
2401 __free_page(bad_page);
2402 out:
2403 kvm_arch_exit();
2404 kvm_exit_debug();
2405 out_fail:
2406 return r;
2408 EXPORT_SYMBOL_GPL(kvm_init);
2410 void kvm_exit(void)
2412 kvm_trace_cleanup();
2413 misc_deregister(&kvm_dev);
2414 kmem_cache_destroy(kvm_vcpu_cache);
2415 sysdev_unregister(&kvm_sysdev);
2416 sysdev_class_unregister(&kvm_sysdev_class);
2417 unregister_reboot_notifier(&kvm_reboot_notifier);
2418 unregister_cpu_notifier(&kvm_cpu_notifier);
2419 on_each_cpu(hardware_disable, NULL, 1);
2420 kvm_arch_hardware_unsetup();
2421 kvm_arch_exit();
2422 kvm_exit_debug();
2423 free_cpumask_var(cpus_hardware_enabled);
2424 __free_page(bad_page);
2426 EXPORT_SYMBOL_GPL(kvm_exit);