dm: calculate queue limits during resume not load
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blobf609793a92d05c11d6ad0a0de00475f2ba369289
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
34 static const char *_name = DM_NAME;
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
39 static DEFINE_SPINLOCK(_minor_lock);
41 * For bio-based dm.
42 * One of these is allocated per bio.
44 struct dm_io {
45 struct mapped_device *md;
46 int error;
47 atomic_t io_count;
48 struct bio *bio;
49 unsigned long start_time;
53 * For bio-based dm.
54 * One of these is allocated per target within a bio. Hopefully
55 * this will be simplified out one day.
57 struct dm_target_io {
58 struct dm_io *io;
59 struct dm_target *ti;
60 union map_info info;
64 * For request-based dm.
65 * One of these is allocated per request.
67 struct dm_rq_target_io {
68 struct mapped_device *md;
69 struct dm_target *ti;
70 struct request *orig, clone;
71 int error;
72 union map_info info;
76 * For request-based dm.
77 * One of these is allocated per bio.
79 struct dm_rq_clone_bio_info {
80 struct bio *orig;
81 struct request *rq;
84 union map_info *dm_get_mapinfo(struct bio *bio)
86 if (bio && bio->bi_private)
87 return &((struct dm_target_io *)bio->bi_private)->info;
88 return NULL;
91 #define MINOR_ALLOCED ((void *)-1)
94 * Bits for the md->flags field.
96 #define DMF_BLOCK_IO_FOR_SUSPEND 0
97 #define DMF_SUSPENDED 1
98 #define DMF_FROZEN 2
99 #define DMF_FREEING 3
100 #define DMF_DELETING 4
101 #define DMF_NOFLUSH_SUSPENDING 5
102 #define DMF_QUEUE_IO_TO_THREAD 6
105 * Work processed by per-device workqueue.
107 struct mapped_device {
108 struct rw_semaphore io_lock;
109 struct mutex suspend_lock;
110 rwlock_t map_lock;
111 atomic_t holders;
112 atomic_t open_count;
114 unsigned long flags;
116 struct request_queue *queue;
117 struct gendisk *disk;
118 char name[16];
120 void *interface_ptr;
123 * A list of ios that arrived while we were suspended.
125 atomic_t pending;
126 wait_queue_head_t wait;
127 struct work_struct work;
128 struct bio_list deferred;
129 spinlock_t deferred_lock;
132 * An error from the barrier request currently being processed.
134 int barrier_error;
137 * Processing queue (flush/barriers)
139 struct workqueue_struct *wq;
142 * The current mapping.
144 struct dm_table *map;
147 * io objects are allocated from here.
149 mempool_t *io_pool;
150 mempool_t *tio_pool;
152 struct bio_set *bs;
155 * Event handling.
157 atomic_t event_nr;
158 wait_queue_head_t eventq;
159 atomic_t uevent_seq;
160 struct list_head uevent_list;
161 spinlock_t uevent_lock; /* Protect access to uevent_list */
164 * freeze/thaw support require holding onto a super block
166 struct super_block *frozen_sb;
167 struct block_device *bdev;
169 /* forced geometry settings */
170 struct hd_geometry geometry;
172 /* sysfs handle */
173 struct kobject kobj;
175 /* zero-length barrier that will be cloned and submitted to targets */
176 struct bio barrier_bio;
179 #define MIN_IOS 256
180 static struct kmem_cache *_io_cache;
181 static struct kmem_cache *_tio_cache;
182 static struct kmem_cache *_rq_tio_cache;
183 static struct kmem_cache *_rq_bio_info_cache;
185 static int __init local_init(void)
187 int r = -ENOMEM;
189 /* allocate a slab for the dm_ios */
190 _io_cache = KMEM_CACHE(dm_io, 0);
191 if (!_io_cache)
192 return r;
194 /* allocate a slab for the target ios */
195 _tio_cache = KMEM_CACHE(dm_target_io, 0);
196 if (!_tio_cache)
197 goto out_free_io_cache;
199 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
200 if (!_rq_tio_cache)
201 goto out_free_tio_cache;
203 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
204 if (!_rq_bio_info_cache)
205 goto out_free_rq_tio_cache;
207 r = dm_uevent_init();
208 if (r)
209 goto out_free_rq_bio_info_cache;
211 _major = major;
212 r = register_blkdev(_major, _name);
213 if (r < 0)
214 goto out_uevent_exit;
216 if (!_major)
217 _major = r;
219 return 0;
221 out_uevent_exit:
222 dm_uevent_exit();
223 out_free_rq_bio_info_cache:
224 kmem_cache_destroy(_rq_bio_info_cache);
225 out_free_rq_tio_cache:
226 kmem_cache_destroy(_rq_tio_cache);
227 out_free_tio_cache:
228 kmem_cache_destroy(_tio_cache);
229 out_free_io_cache:
230 kmem_cache_destroy(_io_cache);
232 return r;
235 static void local_exit(void)
237 kmem_cache_destroy(_rq_bio_info_cache);
238 kmem_cache_destroy(_rq_tio_cache);
239 kmem_cache_destroy(_tio_cache);
240 kmem_cache_destroy(_io_cache);
241 unregister_blkdev(_major, _name);
242 dm_uevent_exit();
244 _major = 0;
246 DMINFO("cleaned up");
249 static int (*_inits[])(void) __initdata = {
250 local_init,
251 dm_target_init,
252 dm_linear_init,
253 dm_stripe_init,
254 dm_kcopyd_init,
255 dm_interface_init,
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_kcopyd_exit,
264 dm_interface_exit,
267 static int __init dm_init(void)
269 const int count = ARRAY_SIZE(_inits);
271 int r, i;
273 for (i = 0; i < count; i++) {
274 r = _inits[i]();
275 if (r)
276 goto bad;
279 return 0;
281 bad:
282 while (i--)
283 _exits[i]();
285 return r;
288 static void __exit dm_exit(void)
290 int i = ARRAY_SIZE(_exits);
292 while (i--)
293 _exits[i]();
297 * Block device functions
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
301 struct mapped_device *md;
303 spin_lock(&_minor_lock);
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 test_bit(DMF_DELETING, &md->flags)) {
311 md = NULL;
312 goto out;
315 dm_get(md);
316 atomic_inc(&md->open_count);
318 out:
319 spin_unlock(&_minor_lock);
321 return md ? 0 : -ENXIO;
324 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
326 struct mapped_device *md = disk->private_data;
327 atomic_dec(&md->open_count);
328 dm_put(md);
329 return 0;
332 int dm_open_count(struct mapped_device *md)
334 return atomic_read(&md->open_count);
338 * Guarantees nothing is using the device before it's deleted.
340 int dm_lock_for_deletion(struct mapped_device *md)
342 int r = 0;
344 spin_lock(&_minor_lock);
346 if (dm_open_count(md))
347 r = -EBUSY;
348 else
349 set_bit(DMF_DELETING, &md->flags);
351 spin_unlock(&_minor_lock);
353 return r;
356 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
358 struct mapped_device *md = bdev->bd_disk->private_data;
360 return dm_get_geometry(md, geo);
363 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
364 unsigned int cmd, unsigned long arg)
366 struct mapped_device *md = bdev->bd_disk->private_data;
367 struct dm_table *map = dm_get_table(md);
368 struct dm_target *tgt;
369 int r = -ENOTTY;
371 if (!map || !dm_table_get_size(map))
372 goto out;
374 /* We only support devices that have a single target */
375 if (dm_table_get_num_targets(map) != 1)
376 goto out;
378 tgt = dm_table_get_target(map, 0);
380 if (dm_suspended(md)) {
381 r = -EAGAIN;
382 goto out;
385 if (tgt->type->ioctl)
386 r = tgt->type->ioctl(tgt, cmd, arg);
388 out:
389 dm_table_put(map);
391 return r;
394 static struct dm_io *alloc_io(struct mapped_device *md)
396 return mempool_alloc(md->io_pool, GFP_NOIO);
399 static void free_io(struct mapped_device *md, struct dm_io *io)
401 mempool_free(io, md->io_pool);
404 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
406 mempool_free(tio, md->tio_pool);
409 static void start_io_acct(struct dm_io *io)
411 struct mapped_device *md = io->md;
412 int cpu;
414 io->start_time = jiffies;
416 cpu = part_stat_lock();
417 part_round_stats(cpu, &dm_disk(md)->part0);
418 part_stat_unlock();
419 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
422 static void end_io_acct(struct dm_io *io)
424 struct mapped_device *md = io->md;
425 struct bio *bio = io->bio;
426 unsigned long duration = jiffies - io->start_time;
427 int pending, cpu;
428 int rw = bio_data_dir(bio);
430 cpu = part_stat_lock();
431 part_round_stats(cpu, &dm_disk(md)->part0);
432 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
433 part_stat_unlock();
436 * After this is decremented the bio must not be touched if it is
437 * a barrier.
439 dm_disk(md)->part0.in_flight = pending =
440 atomic_dec_return(&md->pending);
442 /* nudge anyone waiting on suspend queue */
443 if (!pending)
444 wake_up(&md->wait);
448 * Add the bio to the list of deferred io.
450 static void queue_io(struct mapped_device *md, struct bio *bio)
452 down_write(&md->io_lock);
454 spin_lock_irq(&md->deferred_lock);
455 bio_list_add(&md->deferred, bio);
456 spin_unlock_irq(&md->deferred_lock);
458 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
459 queue_work(md->wq, &md->work);
461 up_write(&md->io_lock);
465 * Everyone (including functions in this file), should use this
466 * function to access the md->map field, and make sure they call
467 * dm_table_put() when finished.
469 struct dm_table *dm_get_table(struct mapped_device *md)
471 struct dm_table *t;
473 read_lock(&md->map_lock);
474 t = md->map;
475 if (t)
476 dm_table_get(t);
477 read_unlock(&md->map_lock);
479 return t;
483 * Get the geometry associated with a dm device
485 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
487 *geo = md->geometry;
489 return 0;
493 * Set the geometry of a device.
495 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
497 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
499 if (geo->start > sz) {
500 DMWARN("Start sector is beyond the geometry limits.");
501 return -EINVAL;
504 md->geometry = *geo;
506 return 0;
509 /*-----------------------------------------------------------------
510 * CRUD START:
511 * A more elegant soln is in the works that uses the queue
512 * merge fn, unfortunately there are a couple of changes to
513 * the block layer that I want to make for this. So in the
514 * interests of getting something for people to use I give
515 * you this clearly demarcated crap.
516 *---------------------------------------------------------------*/
518 static int __noflush_suspending(struct mapped_device *md)
520 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
524 * Decrements the number of outstanding ios that a bio has been
525 * cloned into, completing the original io if necc.
527 static void dec_pending(struct dm_io *io, int error)
529 unsigned long flags;
530 int io_error;
531 struct bio *bio;
532 struct mapped_device *md = io->md;
534 /* Push-back supersedes any I/O errors */
535 if (error && !(io->error > 0 && __noflush_suspending(md)))
536 io->error = error;
538 if (atomic_dec_and_test(&io->io_count)) {
539 if (io->error == DM_ENDIO_REQUEUE) {
541 * Target requested pushing back the I/O.
543 spin_lock_irqsave(&md->deferred_lock, flags);
544 if (__noflush_suspending(md)) {
545 if (!bio_barrier(io->bio))
546 bio_list_add_head(&md->deferred,
547 io->bio);
548 } else
549 /* noflush suspend was interrupted. */
550 io->error = -EIO;
551 spin_unlock_irqrestore(&md->deferred_lock, flags);
554 io_error = io->error;
555 bio = io->bio;
557 if (bio_barrier(bio)) {
559 * There can be just one barrier request so we use
560 * a per-device variable for error reporting.
561 * Note that you can't touch the bio after end_io_acct
563 if (!md->barrier_error && io_error != -EOPNOTSUPP)
564 md->barrier_error = io_error;
565 end_io_acct(io);
566 } else {
567 end_io_acct(io);
569 if (io_error != DM_ENDIO_REQUEUE) {
570 trace_block_bio_complete(md->queue, bio);
572 bio_endio(bio, io_error);
576 free_io(md, io);
580 static void clone_endio(struct bio *bio, int error)
582 int r = 0;
583 struct dm_target_io *tio = bio->bi_private;
584 struct dm_io *io = tio->io;
585 struct mapped_device *md = tio->io->md;
586 dm_endio_fn endio = tio->ti->type->end_io;
588 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
589 error = -EIO;
591 if (endio) {
592 r = endio(tio->ti, bio, error, &tio->info);
593 if (r < 0 || r == DM_ENDIO_REQUEUE)
595 * error and requeue request are handled
596 * in dec_pending().
598 error = r;
599 else if (r == DM_ENDIO_INCOMPLETE)
600 /* The target will handle the io */
601 return;
602 else if (r) {
603 DMWARN("unimplemented target endio return value: %d", r);
604 BUG();
609 * Store md for cleanup instead of tio which is about to get freed.
611 bio->bi_private = md->bs;
613 free_tio(md, tio);
614 bio_put(bio);
615 dec_pending(io, error);
618 static sector_t max_io_len(struct mapped_device *md,
619 sector_t sector, struct dm_target *ti)
621 sector_t offset = sector - ti->begin;
622 sector_t len = ti->len - offset;
625 * Does the target need to split even further ?
627 if (ti->split_io) {
628 sector_t boundary;
629 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
630 - offset;
631 if (len > boundary)
632 len = boundary;
635 return len;
638 static void __map_bio(struct dm_target *ti, struct bio *clone,
639 struct dm_target_io *tio)
641 int r;
642 sector_t sector;
643 struct mapped_device *md;
645 clone->bi_end_io = clone_endio;
646 clone->bi_private = tio;
649 * Map the clone. If r == 0 we don't need to do
650 * anything, the target has assumed ownership of
651 * this io.
653 atomic_inc(&tio->io->io_count);
654 sector = clone->bi_sector;
655 r = ti->type->map(ti, clone, &tio->info);
656 if (r == DM_MAPIO_REMAPPED) {
657 /* the bio has been remapped so dispatch it */
659 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
660 tio->io->bio->bi_bdev->bd_dev, sector);
662 generic_make_request(clone);
663 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
664 /* error the io and bail out, or requeue it if needed */
665 md = tio->io->md;
666 dec_pending(tio->io, r);
668 * Store bio_set for cleanup.
670 clone->bi_private = md->bs;
671 bio_put(clone);
672 free_tio(md, tio);
673 } else if (r) {
674 DMWARN("unimplemented target map return value: %d", r);
675 BUG();
679 struct clone_info {
680 struct mapped_device *md;
681 struct dm_table *map;
682 struct bio *bio;
683 struct dm_io *io;
684 sector_t sector;
685 sector_t sector_count;
686 unsigned short idx;
689 static void dm_bio_destructor(struct bio *bio)
691 struct bio_set *bs = bio->bi_private;
693 bio_free(bio, bs);
697 * Creates a little bio that is just does part of a bvec.
699 static struct bio *split_bvec(struct bio *bio, sector_t sector,
700 unsigned short idx, unsigned int offset,
701 unsigned int len, struct bio_set *bs)
703 struct bio *clone;
704 struct bio_vec *bv = bio->bi_io_vec + idx;
706 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
707 clone->bi_destructor = dm_bio_destructor;
708 *clone->bi_io_vec = *bv;
710 clone->bi_sector = sector;
711 clone->bi_bdev = bio->bi_bdev;
712 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
713 clone->bi_vcnt = 1;
714 clone->bi_size = to_bytes(len);
715 clone->bi_io_vec->bv_offset = offset;
716 clone->bi_io_vec->bv_len = clone->bi_size;
717 clone->bi_flags |= 1 << BIO_CLONED;
719 if (bio_integrity(bio)) {
720 bio_integrity_clone(clone, bio, GFP_NOIO);
721 bio_integrity_trim(clone,
722 bio_sector_offset(bio, idx, offset), len);
725 return clone;
729 * Creates a bio that consists of range of complete bvecs.
731 static struct bio *clone_bio(struct bio *bio, sector_t sector,
732 unsigned short idx, unsigned short bv_count,
733 unsigned int len, struct bio_set *bs)
735 struct bio *clone;
737 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
738 __bio_clone(clone, bio);
739 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
740 clone->bi_destructor = dm_bio_destructor;
741 clone->bi_sector = sector;
742 clone->bi_idx = idx;
743 clone->bi_vcnt = idx + bv_count;
744 clone->bi_size = to_bytes(len);
745 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
747 if (bio_integrity(bio)) {
748 bio_integrity_clone(clone, bio, GFP_NOIO);
750 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
751 bio_integrity_trim(clone,
752 bio_sector_offset(bio, idx, 0), len);
755 return clone;
758 static struct dm_target_io *alloc_tio(struct clone_info *ci,
759 struct dm_target *ti)
761 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
763 tio->io = ci->io;
764 tio->ti = ti;
765 memset(&tio->info, 0, sizeof(tio->info));
767 return tio;
770 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
771 unsigned flush_nr)
773 struct dm_target_io *tio = alloc_tio(ci, ti);
774 struct bio *clone;
776 tio->info.flush_request = flush_nr;
778 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
779 __bio_clone(clone, ci->bio);
780 clone->bi_destructor = dm_bio_destructor;
782 __map_bio(ti, clone, tio);
785 static int __clone_and_map_empty_barrier(struct clone_info *ci)
787 unsigned target_nr = 0, flush_nr;
788 struct dm_target *ti;
790 while ((ti = dm_table_get_target(ci->map, target_nr++)))
791 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
792 flush_nr++)
793 __flush_target(ci, ti, flush_nr);
795 ci->sector_count = 0;
797 return 0;
800 static int __clone_and_map(struct clone_info *ci)
802 struct bio *clone, *bio = ci->bio;
803 struct dm_target *ti;
804 sector_t len = 0, max;
805 struct dm_target_io *tio;
807 if (unlikely(bio_empty_barrier(bio)))
808 return __clone_and_map_empty_barrier(ci);
810 ti = dm_table_find_target(ci->map, ci->sector);
811 if (!dm_target_is_valid(ti))
812 return -EIO;
814 max = max_io_len(ci->md, ci->sector, ti);
817 * Allocate a target io object.
819 tio = alloc_tio(ci, ti);
821 if (ci->sector_count <= max) {
823 * Optimise for the simple case where we can do all of
824 * the remaining io with a single clone.
826 clone = clone_bio(bio, ci->sector, ci->idx,
827 bio->bi_vcnt - ci->idx, ci->sector_count,
828 ci->md->bs);
829 __map_bio(ti, clone, tio);
830 ci->sector_count = 0;
832 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
834 * There are some bvecs that don't span targets.
835 * Do as many of these as possible.
837 int i;
838 sector_t remaining = max;
839 sector_t bv_len;
841 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
842 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
844 if (bv_len > remaining)
845 break;
847 remaining -= bv_len;
848 len += bv_len;
851 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
852 ci->md->bs);
853 __map_bio(ti, clone, tio);
855 ci->sector += len;
856 ci->sector_count -= len;
857 ci->idx = i;
859 } else {
861 * Handle a bvec that must be split between two or more targets.
863 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
864 sector_t remaining = to_sector(bv->bv_len);
865 unsigned int offset = 0;
867 do {
868 if (offset) {
869 ti = dm_table_find_target(ci->map, ci->sector);
870 if (!dm_target_is_valid(ti))
871 return -EIO;
873 max = max_io_len(ci->md, ci->sector, ti);
875 tio = alloc_tio(ci, ti);
878 len = min(remaining, max);
880 clone = split_bvec(bio, ci->sector, ci->idx,
881 bv->bv_offset + offset, len,
882 ci->md->bs);
884 __map_bio(ti, clone, tio);
886 ci->sector += len;
887 ci->sector_count -= len;
888 offset += to_bytes(len);
889 } while (remaining -= len);
891 ci->idx++;
894 return 0;
898 * Split the bio into several clones and submit it to targets.
900 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
902 struct clone_info ci;
903 int error = 0;
905 ci.map = dm_get_table(md);
906 if (unlikely(!ci.map)) {
907 if (!bio_barrier(bio))
908 bio_io_error(bio);
909 else
910 if (!md->barrier_error)
911 md->barrier_error = -EIO;
912 return;
915 ci.md = md;
916 ci.bio = bio;
917 ci.io = alloc_io(md);
918 ci.io->error = 0;
919 atomic_set(&ci.io->io_count, 1);
920 ci.io->bio = bio;
921 ci.io->md = md;
922 ci.sector = bio->bi_sector;
923 ci.sector_count = bio_sectors(bio);
924 if (unlikely(bio_empty_barrier(bio)))
925 ci.sector_count = 1;
926 ci.idx = bio->bi_idx;
928 start_io_acct(ci.io);
929 while (ci.sector_count && !error)
930 error = __clone_and_map(&ci);
932 /* drop the extra reference count */
933 dec_pending(ci.io, error);
934 dm_table_put(ci.map);
936 /*-----------------------------------------------------------------
937 * CRUD END
938 *---------------------------------------------------------------*/
940 static int dm_merge_bvec(struct request_queue *q,
941 struct bvec_merge_data *bvm,
942 struct bio_vec *biovec)
944 struct mapped_device *md = q->queuedata;
945 struct dm_table *map = dm_get_table(md);
946 struct dm_target *ti;
947 sector_t max_sectors;
948 int max_size = 0;
950 if (unlikely(!map))
951 goto out;
953 ti = dm_table_find_target(map, bvm->bi_sector);
954 if (!dm_target_is_valid(ti))
955 goto out_table;
958 * Find maximum amount of I/O that won't need splitting
960 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
961 (sector_t) BIO_MAX_SECTORS);
962 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
963 if (max_size < 0)
964 max_size = 0;
967 * merge_bvec_fn() returns number of bytes
968 * it can accept at this offset
969 * max is precomputed maximal io size
971 if (max_size && ti->type->merge)
972 max_size = ti->type->merge(ti, bvm, biovec, max_size);
974 * If the target doesn't support merge method and some of the devices
975 * provided their merge_bvec method (we know this by looking at
976 * queue_max_hw_sectors), then we can't allow bios with multiple vector
977 * entries. So always set max_size to 0, and the code below allows
978 * just one page.
980 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
982 max_size = 0;
984 out_table:
985 dm_table_put(map);
987 out:
989 * Always allow an entire first page
991 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
992 max_size = biovec->bv_len;
994 return max_size;
998 * The request function that just remaps the bio built up by
999 * dm_merge_bvec.
1001 static int dm_request(struct request_queue *q, struct bio *bio)
1003 int rw = bio_data_dir(bio);
1004 struct mapped_device *md = q->queuedata;
1005 int cpu;
1007 down_read(&md->io_lock);
1009 cpu = part_stat_lock();
1010 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1011 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1012 part_stat_unlock();
1015 * If we're suspended or the thread is processing barriers
1016 * we have to queue this io for later.
1018 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1019 unlikely(bio_barrier(bio))) {
1020 up_read(&md->io_lock);
1022 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1023 bio_rw(bio) == READA) {
1024 bio_io_error(bio);
1025 return 0;
1028 queue_io(md, bio);
1030 return 0;
1033 __split_and_process_bio(md, bio);
1034 up_read(&md->io_lock);
1035 return 0;
1038 static void dm_unplug_all(struct request_queue *q)
1040 struct mapped_device *md = q->queuedata;
1041 struct dm_table *map = dm_get_table(md);
1043 if (map) {
1044 dm_table_unplug_all(map);
1045 dm_table_put(map);
1049 static int dm_any_congested(void *congested_data, int bdi_bits)
1051 int r = bdi_bits;
1052 struct mapped_device *md = congested_data;
1053 struct dm_table *map;
1055 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1056 map = dm_get_table(md);
1057 if (map) {
1058 r = dm_table_any_congested(map, bdi_bits);
1059 dm_table_put(map);
1063 return r;
1066 /*-----------------------------------------------------------------
1067 * An IDR is used to keep track of allocated minor numbers.
1068 *---------------------------------------------------------------*/
1069 static DEFINE_IDR(_minor_idr);
1071 static void free_minor(int minor)
1073 spin_lock(&_minor_lock);
1074 idr_remove(&_minor_idr, minor);
1075 spin_unlock(&_minor_lock);
1079 * See if the device with a specific minor # is free.
1081 static int specific_minor(int minor)
1083 int r, m;
1085 if (minor >= (1 << MINORBITS))
1086 return -EINVAL;
1088 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1089 if (!r)
1090 return -ENOMEM;
1092 spin_lock(&_minor_lock);
1094 if (idr_find(&_minor_idr, minor)) {
1095 r = -EBUSY;
1096 goto out;
1099 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1100 if (r)
1101 goto out;
1103 if (m != minor) {
1104 idr_remove(&_minor_idr, m);
1105 r = -EBUSY;
1106 goto out;
1109 out:
1110 spin_unlock(&_minor_lock);
1111 return r;
1114 static int next_free_minor(int *minor)
1116 int r, m;
1118 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1119 if (!r)
1120 return -ENOMEM;
1122 spin_lock(&_minor_lock);
1124 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1125 if (r)
1126 goto out;
1128 if (m >= (1 << MINORBITS)) {
1129 idr_remove(&_minor_idr, m);
1130 r = -ENOSPC;
1131 goto out;
1134 *minor = m;
1136 out:
1137 spin_unlock(&_minor_lock);
1138 return r;
1141 static struct block_device_operations dm_blk_dops;
1143 static void dm_wq_work(struct work_struct *work);
1146 * Allocate and initialise a blank device with a given minor.
1148 static struct mapped_device *alloc_dev(int minor)
1150 int r;
1151 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1152 void *old_md;
1154 if (!md) {
1155 DMWARN("unable to allocate device, out of memory.");
1156 return NULL;
1159 if (!try_module_get(THIS_MODULE))
1160 goto bad_module_get;
1162 /* get a minor number for the dev */
1163 if (minor == DM_ANY_MINOR)
1164 r = next_free_minor(&minor);
1165 else
1166 r = specific_minor(minor);
1167 if (r < 0)
1168 goto bad_minor;
1170 init_rwsem(&md->io_lock);
1171 mutex_init(&md->suspend_lock);
1172 spin_lock_init(&md->deferred_lock);
1173 rwlock_init(&md->map_lock);
1174 atomic_set(&md->holders, 1);
1175 atomic_set(&md->open_count, 0);
1176 atomic_set(&md->event_nr, 0);
1177 atomic_set(&md->uevent_seq, 0);
1178 INIT_LIST_HEAD(&md->uevent_list);
1179 spin_lock_init(&md->uevent_lock);
1181 md->queue = blk_alloc_queue(GFP_KERNEL);
1182 if (!md->queue)
1183 goto bad_queue;
1185 md->queue->queuedata = md;
1186 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1187 md->queue->backing_dev_info.congested_data = md;
1188 blk_queue_make_request(md->queue, dm_request);
1189 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1190 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1191 md->queue->unplug_fn = dm_unplug_all;
1192 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1194 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1195 if (!md->io_pool)
1196 goto bad_io_pool;
1198 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1199 if (!md->tio_pool)
1200 goto bad_tio_pool;
1202 md->bs = bioset_create(16, 0);
1203 if (!md->bs)
1204 goto bad_no_bioset;
1206 md->disk = alloc_disk(1);
1207 if (!md->disk)
1208 goto bad_disk;
1210 atomic_set(&md->pending, 0);
1211 init_waitqueue_head(&md->wait);
1212 INIT_WORK(&md->work, dm_wq_work);
1213 init_waitqueue_head(&md->eventq);
1215 md->disk->major = _major;
1216 md->disk->first_minor = minor;
1217 md->disk->fops = &dm_blk_dops;
1218 md->disk->queue = md->queue;
1219 md->disk->private_data = md;
1220 sprintf(md->disk->disk_name, "dm-%d", minor);
1221 add_disk(md->disk);
1222 format_dev_t(md->name, MKDEV(_major, minor));
1224 md->wq = create_singlethread_workqueue("kdmflush");
1225 if (!md->wq)
1226 goto bad_thread;
1228 md->bdev = bdget_disk(md->disk, 0);
1229 if (!md->bdev)
1230 goto bad_bdev;
1232 /* Populate the mapping, nobody knows we exist yet */
1233 spin_lock(&_minor_lock);
1234 old_md = idr_replace(&_minor_idr, md, minor);
1235 spin_unlock(&_minor_lock);
1237 BUG_ON(old_md != MINOR_ALLOCED);
1239 return md;
1241 bad_bdev:
1242 destroy_workqueue(md->wq);
1243 bad_thread:
1244 put_disk(md->disk);
1245 bad_disk:
1246 bioset_free(md->bs);
1247 bad_no_bioset:
1248 mempool_destroy(md->tio_pool);
1249 bad_tio_pool:
1250 mempool_destroy(md->io_pool);
1251 bad_io_pool:
1252 blk_cleanup_queue(md->queue);
1253 bad_queue:
1254 free_minor(minor);
1255 bad_minor:
1256 module_put(THIS_MODULE);
1257 bad_module_get:
1258 kfree(md);
1259 return NULL;
1262 static void unlock_fs(struct mapped_device *md);
1264 static void free_dev(struct mapped_device *md)
1266 int minor = MINOR(disk_devt(md->disk));
1268 unlock_fs(md);
1269 bdput(md->bdev);
1270 destroy_workqueue(md->wq);
1271 mempool_destroy(md->tio_pool);
1272 mempool_destroy(md->io_pool);
1273 bioset_free(md->bs);
1274 blk_integrity_unregister(md->disk);
1275 del_gendisk(md->disk);
1276 free_minor(minor);
1278 spin_lock(&_minor_lock);
1279 md->disk->private_data = NULL;
1280 spin_unlock(&_minor_lock);
1282 put_disk(md->disk);
1283 blk_cleanup_queue(md->queue);
1284 module_put(THIS_MODULE);
1285 kfree(md);
1289 * Bind a table to the device.
1291 static void event_callback(void *context)
1293 unsigned long flags;
1294 LIST_HEAD(uevents);
1295 struct mapped_device *md = (struct mapped_device *) context;
1297 spin_lock_irqsave(&md->uevent_lock, flags);
1298 list_splice_init(&md->uevent_list, &uevents);
1299 spin_unlock_irqrestore(&md->uevent_lock, flags);
1301 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1303 atomic_inc(&md->event_nr);
1304 wake_up(&md->eventq);
1307 static void __set_size(struct mapped_device *md, sector_t size)
1309 set_capacity(md->disk, size);
1311 mutex_lock(&md->bdev->bd_inode->i_mutex);
1312 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1313 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1316 static int __bind(struct mapped_device *md, struct dm_table *t,
1317 struct queue_limits *limits)
1319 struct request_queue *q = md->queue;
1320 sector_t size;
1322 size = dm_table_get_size(t);
1325 * Wipe any geometry if the size of the table changed.
1327 if (size != get_capacity(md->disk))
1328 memset(&md->geometry, 0, sizeof(md->geometry));
1330 __set_size(md, size);
1332 if (!size) {
1333 dm_table_destroy(t);
1334 return 0;
1337 dm_table_event_callback(t, event_callback, md);
1339 write_lock(&md->map_lock);
1340 md->map = t;
1341 dm_table_set_restrictions(t, q, limits);
1342 write_unlock(&md->map_lock);
1344 return 0;
1347 static void __unbind(struct mapped_device *md)
1349 struct dm_table *map = md->map;
1351 if (!map)
1352 return;
1354 dm_table_event_callback(map, NULL, NULL);
1355 write_lock(&md->map_lock);
1356 md->map = NULL;
1357 write_unlock(&md->map_lock);
1358 dm_table_destroy(map);
1362 * Constructor for a new device.
1364 int dm_create(int minor, struct mapped_device **result)
1366 struct mapped_device *md;
1368 md = alloc_dev(minor);
1369 if (!md)
1370 return -ENXIO;
1372 dm_sysfs_init(md);
1374 *result = md;
1375 return 0;
1378 static struct mapped_device *dm_find_md(dev_t dev)
1380 struct mapped_device *md;
1381 unsigned minor = MINOR(dev);
1383 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1384 return NULL;
1386 spin_lock(&_minor_lock);
1388 md = idr_find(&_minor_idr, minor);
1389 if (md && (md == MINOR_ALLOCED ||
1390 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1391 test_bit(DMF_FREEING, &md->flags))) {
1392 md = NULL;
1393 goto out;
1396 out:
1397 spin_unlock(&_minor_lock);
1399 return md;
1402 struct mapped_device *dm_get_md(dev_t dev)
1404 struct mapped_device *md = dm_find_md(dev);
1406 if (md)
1407 dm_get(md);
1409 return md;
1412 void *dm_get_mdptr(struct mapped_device *md)
1414 return md->interface_ptr;
1417 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1419 md->interface_ptr = ptr;
1422 void dm_get(struct mapped_device *md)
1424 atomic_inc(&md->holders);
1427 const char *dm_device_name(struct mapped_device *md)
1429 return md->name;
1431 EXPORT_SYMBOL_GPL(dm_device_name);
1433 void dm_put(struct mapped_device *md)
1435 struct dm_table *map;
1437 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1439 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1440 map = dm_get_table(md);
1441 idr_replace(&_minor_idr, MINOR_ALLOCED,
1442 MINOR(disk_devt(dm_disk(md))));
1443 set_bit(DMF_FREEING, &md->flags);
1444 spin_unlock(&_minor_lock);
1445 if (!dm_suspended(md)) {
1446 dm_table_presuspend_targets(map);
1447 dm_table_postsuspend_targets(map);
1449 dm_sysfs_exit(md);
1450 dm_table_put(map);
1451 __unbind(md);
1452 free_dev(md);
1455 EXPORT_SYMBOL_GPL(dm_put);
1457 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1459 int r = 0;
1460 DECLARE_WAITQUEUE(wait, current);
1462 dm_unplug_all(md->queue);
1464 add_wait_queue(&md->wait, &wait);
1466 while (1) {
1467 set_current_state(interruptible);
1469 smp_mb();
1470 if (!atomic_read(&md->pending))
1471 break;
1473 if (interruptible == TASK_INTERRUPTIBLE &&
1474 signal_pending(current)) {
1475 r = -EINTR;
1476 break;
1479 io_schedule();
1481 set_current_state(TASK_RUNNING);
1483 remove_wait_queue(&md->wait, &wait);
1485 return r;
1488 static void dm_flush(struct mapped_device *md)
1490 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1492 bio_init(&md->barrier_bio);
1493 md->barrier_bio.bi_bdev = md->bdev;
1494 md->barrier_bio.bi_rw = WRITE_BARRIER;
1495 __split_and_process_bio(md, &md->barrier_bio);
1497 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1500 static void process_barrier(struct mapped_device *md, struct bio *bio)
1502 md->barrier_error = 0;
1504 dm_flush(md);
1506 if (!bio_empty_barrier(bio)) {
1507 __split_and_process_bio(md, bio);
1508 dm_flush(md);
1511 if (md->barrier_error != DM_ENDIO_REQUEUE)
1512 bio_endio(bio, md->barrier_error);
1513 else {
1514 spin_lock_irq(&md->deferred_lock);
1515 bio_list_add_head(&md->deferred, bio);
1516 spin_unlock_irq(&md->deferred_lock);
1521 * Process the deferred bios
1523 static void dm_wq_work(struct work_struct *work)
1525 struct mapped_device *md = container_of(work, struct mapped_device,
1526 work);
1527 struct bio *c;
1529 down_write(&md->io_lock);
1531 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1532 spin_lock_irq(&md->deferred_lock);
1533 c = bio_list_pop(&md->deferred);
1534 spin_unlock_irq(&md->deferred_lock);
1536 if (!c) {
1537 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1538 break;
1541 up_write(&md->io_lock);
1543 if (bio_barrier(c))
1544 process_barrier(md, c);
1545 else
1546 __split_and_process_bio(md, c);
1548 down_write(&md->io_lock);
1551 up_write(&md->io_lock);
1554 static void dm_queue_flush(struct mapped_device *md)
1556 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1557 smp_mb__after_clear_bit();
1558 queue_work(md->wq, &md->work);
1562 * Swap in a new table (destroying old one).
1564 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1566 struct queue_limits limits;
1567 int r = -EINVAL;
1569 mutex_lock(&md->suspend_lock);
1571 /* device must be suspended */
1572 if (!dm_suspended(md))
1573 goto out;
1575 r = dm_calculate_queue_limits(table, &limits);
1576 if (r)
1577 goto out;
1579 __unbind(md);
1580 r = __bind(md, table, &limits);
1582 out:
1583 mutex_unlock(&md->suspend_lock);
1584 return r;
1588 * Functions to lock and unlock any filesystem running on the
1589 * device.
1591 static int lock_fs(struct mapped_device *md)
1593 int r;
1595 WARN_ON(md->frozen_sb);
1597 md->frozen_sb = freeze_bdev(md->bdev);
1598 if (IS_ERR(md->frozen_sb)) {
1599 r = PTR_ERR(md->frozen_sb);
1600 md->frozen_sb = NULL;
1601 return r;
1604 set_bit(DMF_FROZEN, &md->flags);
1606 return 0;
1609 static void unlock_fs(struct mapped_device *md)
1611 if (!test_bit(DMF_FROZEN, &md->flags))
1612 return;
1614 thaw_bdev(md->bdev, md->frozen_sb);
1615 md->frozen_sb = NULL;
1616 clear_bit(DMF_FROZEN, &md->flags);
1620 * We need to be able to change a mapping table under a mounted
1621 * filesystem. For example we might want to move some data in
1622 * the background. Before the table can be swapped with
1623 * dm_bind_table, dm_suspend must be called to flush any in
1624 * flight bios and ensure that any further io gets deferred.
1626 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1628 struct dm_table *map = NULL;
1629 int r = 0;
1630 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1631 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1633 mutex_lock(&md->suspend_lock);
1635 if (dm_suspended(md)) {
1636 r = -EINVAL;
1637 goto out_unlock;
1640 map = dm_get_table(md);
1643 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1644 * This flag is cleared before dm_suspend returns.
1646 if (noflush)
1647 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1649 /* This does not get reverted if there's an error later. */
1650 dm_table_presuspend_targets(map);
1653 * Flush I/O to the device. noflush supersedes do_lockfs,
1654 * because lock_fs() needs to flush I/Os.
1656 if (!noflush && do_lockfs) {
1657 r = lock_fs(md);
1658 if (r)
1659 goto out;
1663 * Here we must make sure that no processes are submitting requests
1664 * to target drivers i.e. no one may be executing
1665 * __split_and_process_bio. This is called from dm_request and
1666 * dm_wq_work.
1668 * To get all processes out of __split_and_process_bio in dm_request,
1669 * we take the write lock. To prevent any process from reentering
1670 * __split_and_process_bio from dm_request, we set
1671 * DMF_QUEUE_IO_TO_THREAD.
1673 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1674 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1675 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1676 * further calls to __split_and_process_bio from dm_wq_work.
1678 down_write(&md->io_lock);
1679 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1680 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1681 up_write(&md->io_lock);
1683 flush_workqueue(md->wq);
1686 * At this point no more requests are entering target request routines.
1687 * We call dm_wait_for_completion to wait for all existing requests
1688 * to finish.
1690 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1692 down_write(&md->io_lock);
1693 if (noflush)
1694 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1695 up_write(&md->io_lock);
1697 /* were we interrupted ? */
1698 if (r < 0) {
1699 dm_queue_flush(md);
1701 unlock_fs(md);
1702 goto out; /* pushback list is already flushed, so skip flush */
1706 * If dm_wait_for_completion returned 0, the device is completely
1707 * quiescent now. There is no request-processing activity. All new
1708 * requests are being added to md->deferred list.
1711 dm_table_postsuspend_targets(map);
1713 set_bit(DMF_SUSPENDED, &md->flags);
1715 out:
1716 dm_table_put(map);
1718 out_unlock:
1719 mutex_unlock(&md->suspend_lock);
1720 return r;
1723 int dm_resume(struct mapped_device *md)
1725 int r = -EINVAL;
1726 struct dm_table *map = NULL;
1728 mutex_lock(&md->suspend_lock);
1729 if (!dm_suspended(md))
1730 goto out;
1732 map = dm_get_table(md);
1733 if (!map || !dm_table_get_size(map))
1734 goto out;
1736 r = dm_table_resume_targets(map);
1737 if (r)
1738 goto out;
1740 dm_queue_flush(md);
1742 unlock_fs(md);
1744 clear_bit(DMF_SUSPENDED, &md->flags);
1746 dm_table_unplug_all(map);
1747 r = 0;
1748 out:
1749 dm_table_put(map);
1750 mutex_unlock(&md->suspend_lock);
1752 return r;
1755 /*-----------------------------------------------------------------
1756 * Event notification.
1757 *---------------------------------------------------------------*/
1758 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
1759 unsigned cookie)
1761 char udev_cookie[DM_COOKIE_LENGTH];
1762 char *envp[] = { udev_cookie, NULL };
1764 if (!cookie)
1765 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
1766 else {
1767 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
1768 DM_COOKIE_ENV_VAR_NAME, cookie);
1769 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
1773 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1775 return atomic_add_return(1, &md->uevent_seq);
1778 uint32_t dm_get_event_nr(struct mapped_device *md)
1780 return atomic_read(&md->event_nr);
1783 int dm_wait_event(struct mapped_device *md, int event_nr)
1785 return wait_event_interruptible(md->eventq,
1786 (event_nr != atomic_read(&md->event_nr)));
1789 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1791 unsigned long flags;
1793 spin_lock_irqsave(&md->uevent_lock, flags);
1794 list_add(elist, &md->uevent_list);
1795 spin_unlock_irqrestore(&md->uevent_lock, flags);
1799 * The gendisk is only valid as long as you have a reference
1800 * count on 'md'.
1802 struct gendisk *dm_disk(struct mapped_device *md)
1804 return md->disk;
1807 struct kobject *dm_kobject(struct mapped_device *md)
1809 return &md->kobj;
1813 * struct mapped_device should not be exported outside of dm.c
1814 * so use this check to verify that kobj is part of md structure
1816 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1818 struct mapped_device *md;
1820 md = container_of(kobj, struct mapped_device, kobj);
1821 if (&md->kobj != kobj)
1822 return NULL;
1824 if (test_bit(DMF_FREEING, &md->flags) ||
1825 test_bit(DMF_DELETING, &md->flags))
1826 return NULL;
1828 dm_get(md);
1829 return md;
1832 int dm_suspended(struct mapped_device *md)
1834 return test_bit(DMF_SUSPENDED, &md->flags);
1837 int dm_noflush_suspending(struct dm_target *ti)
1839 struct mapped_device *md = dm_table_get_md(ti->table);
1840 int r = __noflush_suspending(md);
1842 dm_put(md);
1844 return r;
1846 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1848 static struct block_device_operations dm_blk_dops = {
1849 .open = dm_blk_open,
1850 .release = dm_blk_close,
1851 .ioctl = dm_blk_ioctl,
1852 .getgeo = dm_blk_getgeo,
1853 .owner = THIS_MODULE
1856 EXPORT_SYMBOL(dm_get_mapinfo);
1859 * module hooks
1861 module_init(dm_init);
1862 module_exit(dm_exit);
1864 module_param(major, uint, 0);
1865 MODULE_PARM_DESC(major, "The major number of the device mapper");
1866 MODULE_DESCRIPTION(DM_NAME " driver");
1867 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1868 MODULE_LICENSE("GPL");