dm: calculate queue limits during resume not load
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / pmac.c
blob97642a7a79c4143afc17e04db691cf555ddc8b40
1 /*
2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
47 #ifndef CONFIG_PPC64
48 #include <asm/mediabay.h>
49 #endif
51 #define DRV_NAME "ide-pmac"
53 #undef IDE_PMAC_DEBUG
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
59 int irq;
60 int kind;
61 int aapl_bus_id;
62 unsigned mediabay : 1;
63 unsigned broken_dma : 1;
64 unsigned broken_dma_warn : 1;
65 struct device_node* node;
66 struct macio_dev *mdev;
67 u32 timings[4];
68 volatile u32 __iomem * *kauai_fcr;
69 /* Those fields are duplicating what is in hwif. We currently
70 * can't use the hwif ones because of some assumptions that are
71 * beeing done by the generic code about the kind of dma controller
72 * and format of the dma table. This will have to be fixed though.
74 volatile struct dbdma_regs __iomem * dma_regs;
75 struct dbdma_cmd* dma_table_cpu;
76 } pmac_ide_hwif_t;
78 enum {
79 controller_ohare, /* OHare based */
80 controller_heathrow, /* Heathrow/Paddington */
81 controller_kl_ata3, /* KeyLargo ATA-3 */
82 controller_kl_ata4, /* KeyLargo ATA-4 */
83 controller_un_ata6, /* UniNorth2 ATA-6 */
84 controller_k2_ata6, /* K2 ATA-6 */
85 controller_sh_ata6, /* Shasta ATA-6 */
88 static const char* model_name[] = {
89 "OHare ATA", /* OHare based */
90 "Heathrow ATA", /* Heathrow/Paddington */
91 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
99 * Extra registers, both 32-bit little-endian
101 #define IDE_TIMING_CONFIG 0x200
102 #define IDE_INTERRUPT 0x300
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG 0x200
106 #define IDE_KAUAI_ULTRA_CONFIG 0x210
107 #define IDE_KAUAI_POLL_CONFIG 0x220
110 * Timing configuration register definitions
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
119 /* 133Mhz cell, found in shasta.
120 * See comments about 100 Mhz Uninorth 2...
121 * Note that PIO_MASK and MDMA_MASK seem to overlap
123 #define TR_133_PIOREG_PIO_MASK 0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN 0x00000001
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129 * this one yet, it appears as a pci device (106b/0033) on uninorth
130 * internal PCI bus and it's clock is controlled like gem or fw. It
131 * appears to be an evolution of keylargo ATA4 with a timing register
132 * extended to 2 32bits registers and a similar DBDMA channel. Other
133 * registers seem to exist but I can't tell much about them.
135 * So far, I'm using pre-calculated tables for this extracted from
136 * the values used by the MacOS X driver.
138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139 * register controls the UDMA timings. At least, it seems bit 0
140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
142 * know their meaning yet
144 #define TR_100_PIOREG_PIO_MASK 0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN 0x00000001
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151 * 40 connector cable and to 4 on 80 connector one.
152 * Clock unit is 15ns (66Mhz)
154 * 3 Values can be programmed:
155 * - Write data setup, which appears to match the cycle time. They
156 * also call it DIOW setup.
157 * - Ready to pause time (from spec)
158 * - Address setup. That one is weird. I don't see where exactly
159 * it fits in UDMA cycles, I got it's name from an obscure piece
160 * of commented out code in Darwin. They leave it to 0, we do as
161 * well, despite a comment that would lead to think it has a
162 * min value of 45ns.
163 * Apple also add 60ns to the write data setup (or cycle time ?) on
164 * reads.
166 #define TR_66_UDMA_MASK 0xfff00000
167 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
170 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
172 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
174 #define TR_66_MDMA_MASK 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT 15
177 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT 10
179 #define TR_66_PIO_MASK 0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT 5
182 #define TR_66_PIO_ACCESS_MASK 0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT 0
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
188 * The access time and recovery time can be programmed. Some older
189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
190 * the same here fore safety against broken old hardware ;)
191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
192 * time and removes one from recovery. It's not supported on KeyLargo
193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
194 * is used to reach long timings used in this mode.
196 #define TR_33_MDMA_MASK 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT 16
199 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT 11
201 #define TR_33_MDMA_HALFTICK 0x00200000
202 #define TR_33_PIO_MASK 0x000007ff
203 #define TR_33_PIO_E 0x00000400
204 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT 5
206 #define TR_33_PIO_ACCESS_MASK 0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT 0
210 * Interrupt register definitions
212 #define IDE_INTR_DMA 0x80000000
213 #define IDE_INTR_DEVICE 0x40000000
216 * FCR Register on Kauai. Not sure what bit 0x4 is ...
218 #define KAUAI_FCR_UATA_MAGIC 0x00000004
219 #define KAUAI_FCR_UATA_RESET_N 0x00000002
220 #define KAUAI_FCR_UATA_ENABLE 0x00000001
222 /* Rounded Multiword DMA timings
224 * I gave up finding a generic formula for all controller
225 * types and instead, built tables based on timing values
226 * used by Apple in Darwin's implementation.
228 struct mdma_timings_t {
229 int accessTime;
230 int recoveryTime;
231 int cycleTime;
234 struct mdma_timings_t mdma_timings_33[] =
236 { 240, 240, 480 },
237 { 180, 180, 360 },
238 { 135, 135, 270 },
239 { 120, 120, 240 },
240 { 105, 105, 210 },
241 { 90, 90, 180 },
242 { 75, 75, 150 },
243 { 75, 45, 120 },
244 { 0, 0, 0 }
247 struct mdma_timings_t mdma_timings_33k[] =
249 { 240, 240, 480 },
250 { 180, 180, 360 },
251 { 150, 150, 300 },
252 { 120, 120, 240 },
253 { 90, 120, 210 },
254 { 90, 90, 180 },
255 { 90, 60, 150 },
256 { 90, 30, 120 },
257 { 0, 0, 0 }
260 struct mdma_timings_t mdma_timings_66[] =
262 { 240, 240, 480 },
263 { 180, 180, 360 },
264 { 135, 135, 270 },
265 { 120, 120, 240 },
266 { 105, 105, 210 },
267 { 90, 90, 180 },
268 { 90, 75, 165 },
269 { 75, 45, 120 },
270 { 0, 0, 0 }
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274 struct {
275 int addrSetup; /* ??? */
276 int rdy2pause;
277 int wrDataSetup;
278 } kl66_udma_timings[] =
280 { 0, 180, 120 }, /* Mode 0 */
281 { 0, 150, 90 }, /* 1 */
282 { 0, 120, 60 }, /* 2 */
283 { 0, 90, 45 }, /* 3 */
284 { 0, 90, 30 } /* 4 */
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
289 int cycle_time;
290 u32 timing_reg;
293 static struct kauai_timing kauai_pio_timings[] =
295 { 930 , 0x08000fff },
296 { 600 , 0x08000a92 },
297 { 383 , 0x0800060f },
298 { 360 , 0x08000492 },
299 { 330 , 0x0800048f },
300 { 300 , 0x080003cf },
301 { 270 , 0x080003cc },
302 { 240 , 0x0800038b },
303 { 239 , 0x0800030c },
304 { 180 , 0x05000249 },
305 { 120 , 0x04000148 },
306 { 0 , 0 },
309 static struct kauai_timing kauai_mdma_timings[] =
311 { 1260 , 0x00fff000 },
312 { 480 , 0x00618000 },
313 { 360 , 0x00492000 },
314 { 270 , 0x0038e000 },
315 { 240 , 0x0030c000 },
316 { 210 , 0x002cb000 },
317 { 180 , 0x00249000 },
318 { 150 , 0x00209000 },
319 { 120 , 0x00148000 },
320 { 0 , 0 },
323 static struct kauai_timing kauai_udma_timings[] =
325 { 120 , 0x000070c0 },
326 { 90 , 0x00005d80 },
327 { 60 , 0x00004a60 },
328 { 45 , 0x00003a50 },
329 { 30 , 0x00002a30 },
330 { 20 , 0x00002921 },
331 { 0 , 0 },
334 static struct kauai_timing shasta_pio_timings[] =
336 { 930 , 0x08000fff },
337 { 600 , 0x0A000c97 },
338 { 383 , 0x07000712 },
339 { 360 , 0x040003cd },
340 { 330 , 0x040003cd },
341 { 300 , 0x040003cd },
342 { 270 , 0x040003cd },
343 { 240 , 0x040003cd },
344 { 239 , 0x040003cd },
345 { 180 , 0x0400028b },
346 { 120 , 0x0400010a },
347 { 0 , 0 },
350 static struct kauai_timing shasta_mdma_timings[] =
352 { 1260 , 0x00fff000 },
353 { 480 , 0x00820800 },
354 { 360 , 0x00820800 },
355 { 270 , 0x00820800 },
356 { 240 , 0x00820800 },
357 { 210 , 0x00820800 },
358 { 180 , 0x00820800 },
359 { 150 , 0x0028b000 },
360 { 120 , 0x001ca000 },
361 { 0 , 0 },
364 static struct kauai_timing shasta_udma133_timings[] =
366 { 120 , 0x00035901, },
367 { 90 , 0x000348b1, },
368 { 60 , 0x00033881, },
369 { 45 , 0x00033861, },
370 { 30 , 0x00033841, },
371 { 20 , 0x00033031, },
372 { 15 , 0x00033021, },
373 { 0 , 0 },
377 static inline u32
378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
380 int i;
382 for (i=0; table[i].cycle_time; i++)
383 if (cycle_time > table[i+1].cycle_time)
384 return table[i].timing_reg;
385 BUG();
386 return 0;
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS 256
393 * Wait 1s for disk to answer on IDE bus after a hard reset
394 * of the device (via GPIO/FCR).
396 * Some devices seem to "pollute" the bus even after dropping
397 * the BSY bit (typically some combo drives slave on the UDMA
398 * bus) after a hard reset. Since we hard reset all drives on
399 * KeyLargo ATA66, we have to keep that delay around. I may end
400 * up not hard resetting anymore on these and keep the delay only
401 * for older interfaces instead (we have to reset when coming
402 * from MacOS...) --BenH.
404 #define IDE_WAKEUP_DELAY (1*HZ)
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
408 #define PMAC_IDE_REG(x) \
409 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
412 * Apply the timings of the proper unit (master/slave) to the shared
413 * timing register when selecting that unit. This version is for
414 * ASICs with a single timing register
416 static void pmac_ide_apply_timings(ide_drive_t *drive)
418 ide_hwif_t *hwif = drive->hwif;
419 pmac_ide_hwif_t *pmif =
420 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
422 if (drive->dn & 1)
423 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424 else
425 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
426 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
430 * Apply the timings of the proper unit (master/slave) to the shared
431 * timing register when selecting that unit. This version is for
432 * ASICs with a dual timing register (Kauai)
434 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
436 ide_hwif_t *hwif = drive->hwif;
437 pmac_ide_hwif_t *pmif =
438 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
440 if (drive->dn & 1) {
441 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
442 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
443 } else {
444 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
445 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
447 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
451 * Force an update of controller timing values for a given drive
453 static void
454 pmac_ide_do_update_timings(ide_drive_t *drive)
456 ide_hwif_t *hwif = drive->hwif;
457 pmac_ide_hwif_t *pmif =
458 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
460 if (pmif->kind == controller_sh_ata6 ||
461 pmif->kind == controller_un_ata6 ||
462 pmif->kind == controller_k2_ata6)
463 pmac_ide_kauai_apply_timings(drive);
464 else
465 pmac_ide_apply_timings(drive);
468 static void pmac_dev_select(ide_drive_t *drive)
470 pmac_ide_apply_timings(drive);
472 writeb(drive->select | ATA_DEVICE_OBS,
473 (void __iomem *)drive->hwif->io_ports.device_addr);
476 static void pmac_kauai_dev_select(ide_drive_t *drive)
478 pmac_ide_kauai_apply_timings(drive);
480 writeb(drive->select | ATA_DEVICE_OBS,
481 (void __iomem *)drive->hwif->io_ports.device_addr);
484 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
486 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
487 (void)readl((void __iomem *)(hwif->io_ports.data_addr
488 + IDE_TIMING_CONFIG));
491 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
493 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
494 (void)readl((void __iomem *)(hwif->io_ports.data_addr
495 + IDE_TIMING_CONFIG));
499 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
501 static void
502 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
504 ide_hwif_t *hwif = drive->hwif;
505 pmac_ide_hwif_t *pmif =
506 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
507 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
508 u32 *timings, t;
509 unsigned accessTicks, recTicks;
510 unsigned accessTime, recTime;
511 unsigned int cycle_time;
513 /* which drive is it ? */
514 timings = &pmif->timings[drive->dn & 1];
515 t = *timings;
517 cycle_time = ide_pio_cycle_time(drive, pio);
519 switch (pmif->kind) {
520 case controller_sh_ata6: {
521 /* 133Mhz cell */
522 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
523 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
524 break;
526 case controller_un_ata6:
527 case controller_k2_ata6: {
528 /* 100Mhz cell */
529 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
530 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
531 break;
533 case controller_kl_ata4:
534 /* 66Mhz cell */
535 recTime = cycle_time - tim->active - tim->setup;
536 recTime = max(recTime, 150U);
537 accessTime = tim->active;
538 accessTime = max(accessTime, 150U);
539 accessTicks = SYSCLK_TICKS_66(accessTime);
540 accessTicks = min(accessTicks, 0x1fU);
541 recTicks = SYSCLK_TICKS_66(recTime);
542 recTicks = min(recTicks, 0x1fU);
543 t = (t & ~TR_66_PIO_MASK) |
544 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
545 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
546 break;
547 default: {
548 /* 33Mhz cell */
549 int ebit = 0;
550 recTime = cycle_time - tim->active - tim->setup;
551 recTime = max(recTime, 150U);
552 accessTime = tim->active;
553 accessTime = max(accessTime, 150U);
554 accessTicks = SYSCLK_TICKS(accessTime);
555 accessTicks = min(accessTicks, 0x1fU);
556 accessTicks = max(accessTicks, 4U);
557 recTicks = SYSCLK_TICKS(recTime);
558 recTicks = min(recTicks, 0x1fU);
559 recTicks = max(recTicks, 5U) - 4;
560 if (recTicks > 9) {
561 recTicks--; /* guess, but it's only for PIO0, so... */
562 ebit = 1;
564 t = (t & ~TR_33_PIO_MASK) |
565 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
566 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
567 if (ebit)
568 t |= TR_33_PIO_E;
569 break;
573 #ifdef IDE_PMAC_DEBUG
574 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
575 drive->name, pio, *timings);
576 #endif
578 *timings = t;
579 pmac_ide_do_update_timings(drive);
583 * Calculate KeyLargo ATA/66 UDMA timings
585 static int
586 set_timings_udma_ata4(u32 *timings, u8 speed)
588 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
590 if (speed > XFER_UDMA_4)
591 return 1;
593 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
594 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
595 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
597 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
598 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
599 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
600 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
601 TR_66_UDMA_EN;
602 #ifdef IDE_PMAC_DEBUG
603 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
604 speed & 0xf, *timings);
605 #endif
607 return 0;
611 * Calculate Kauai ATA/100 UDMA timings
613 static int
614 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
616 struct ide_timing *t = ide_timing_find_mode(speed);
617 u32 tr;
619 if (speed > XFER_UDMA_5 || t == NULL)
620 return 1;
621 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
622 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
623 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
625 return 0;
629 * Calculate Shasta ATA/133 UDMA timings
631 static int
632 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
634 struct ide_timing *t = ide_timing_find_mode(speed);
635 u32 tr;
637 if (speed > XFER_UDMA_6 || t == NULL)
638 return 1;
639 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
640 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
641 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
643 return 0;
647 * Calculate MDMA timings for all cells
649 static void
650 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
651 u8 speed)
653 u16 *id = drive->id;
654 int cycleTime, accessTime = 0, recTime = 0;
655 unsigned accessTicks, recTicks;
656 struct mdma_timings_t* tm = NULL;
657 int i;
659 /* Get default cycle time for mode */
660 switch(speed & 0xf) {
661 case 0: cycleTime = 480; break;
662 case 1: cycleTime = 150; break;
663 case 2: cycleTime = 120; break;
664 default:
665 BUG();
666 break;
669 /* Check if drive provides explicit DMA cycle time */
670 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
671 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
673 /* OHare limits according to some old Apple sources */
674 if ((intf_type == controller_ohare) && (cycleTime < 150))
675 cycleTime = 150;
676 /* Get the proper timing array for this controller */
677 switch(intf_type) {
678 case controller_sh_ata6:
679 case controller_un_ata6:
680 case controller_k2_ata6:
681 break;
682 case controller_kl_ata4:
683 tm = mdma_timings_66;
684 break;
685 case controller_kl_ata3:
686 tm = mdma_timings_33k;
687 break;
688 default:
689 tm = mdma_timings_33;
690 break;
692 if (tm != NULL) {
693 /* Lookup matching access & recovery times */
694 i = -1;
695 for (;;) {
696 if (tm[i+1].cycleTime < cycleTime)
697 break;
698 i++;
700 cycleTime = tm[i].cycleTime;
701 accessTime = tm[i].accessTime;
702 recTime = tm[i].recoveryTime;
704 #ifdef IDE_PMAC_DEBUG
705 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
706 drive->name, cycleTime, accessTime, recTime);
707 #endif
709 switch(intf_type) {
710 case controller_sh_ata6: {
711 /* 133Mhz cell */
712 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
713 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
714 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
716 case controller_un_ata6:
717 case controller_k2_ata6: {
718 /* 100Mhz cell */
719 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
720 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
721 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
723 break;
724 case controller_kl_ata4:
725 /* 66Mhz cell */
726 accessTicks = SYSCLK_TICKS_66(accessTime);
727 accessTicks = min(accessTicks, 0x1fU);
728 accessTicks = max(accessTicks, 0x1U);
729 recTicks = SYSCLK_TICKS_66(recTime);
730 recTicks = min(recTicks, 0x1fU);
731 recTicks = max(recTicks, 0x3U);
732 /* Clear out mdma bits and disable udma */
733 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
734 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
735 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
736 break;
737 case controller_kl_ata3:
738 /* 33Mhz cell on KeyLargo */
739 accessTicks = SYSCLK_TICKS(accessTime);
740 accessTicks = max(accessTicks, 1U);
741 accessTicks = min(accessTicks, 0x1fU);
742 accessTime = accessTicks * IDE_SYSCLK_NS;
743 recTicks = SYSCLK_TICKS(recTime);
744 recTicks = max(recTicks, 1U);
745 recTicks = min(recTicks, 0x1fU);
746 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
747 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
748 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
749 break;
750 default: {
751 /* 33Mhz cell on others */
752 int halfTick = 0;
753 int origAccessTime = accessTime;
754 int origRecTime = recTime;
756 accessTicks = SYSCLK_TICKS(accessTime);
757 accessTicks = max(accessTicks, 1U);
758 accessTicks = min(accessTicks, 0x1fU);
759 accessTime = accessTicks * IDE_SYSCLK_NS;
760 recTicks = SYSCLK_TICKS(recTime);
761 recTicks = max(recTicks, 2U) - 1;
762 recTicks = min(recTicks, 0x1fU);
763 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
764 if ((accessTicks > 1) &&
765 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
766 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
767 halfTick = 1;
768 accessTicks--;
770 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
771 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
772 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
773 if (halfTick)
774 *timings |= TR_33_MDMA_HALFTICK;
777 #ifdef IDE_PMAC_DEBUG
778 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
779 drive->name, speed & 0xf, *timings);
780 #endif
783 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
785 ide_hwif_t *hwif = drive->hwif;
786 pmac_ide_hwif_t *pmif =
787 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
788 int ret = 0;
789 u32 *timings, *timings2, tl[2];
790 u8 unit = drive->dn & 1;
792 timings = &pmif->timings[unit];
793 timings2 = &pmif->timings[unit+2];
795 /* Copy timings to local image */
796 tl[0] = *timings;
797 tl[1] = *timings2;
799 if (speed >= XFER_UDMA_0) {
800 if (pmif->kind == controller_kl_ata4)
801 ret = set_timings_udma_ata4(&tl[0], speed);
802 else if (pmif->kind == controller_un_ata6
803 || pmif->kind == controller_k2_ata6)
804 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
805 else if (pmif->kind == controller_sh_ata6)
806 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
807 else
808 ret = -1;
809 } else
810 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
812 if (ret)
813 return;
815 /* Apply timings to controller */
816 *timings = tl[0];
817 *timings2 = tl[1];
819 pmac_ide_do_update_timings(drive);
823 * Blast some well known "safe" values to the timing registers at init or
824 * wakeup from sleep time, before we do real calculation
826 static void
827 sanitize_timings(pmac_ide_hwif_t *pmif)
829 unsigned int value, value2 = 0;
831 switch(pmif->kind) {
832 case controller_sh_ata6:
833 value = 0x0a820c97;
834 value2 = 0x00033031;
835 break;
836 case controller_un_ata6:
837 case controller_k2_ata6:
838 value = 0x08618a92;
839 value2 = 0x00002921;
840 break;
841 case controller_kl_ata4:
842 value = 0x0008438c;
843 break;
844 case controller_kl_ata3:
845 value = 0x00084526;
846 break;
847 case controller_heathrow:
848 case controller_ohare:
849 default:
850 value = 0x00074526;
851 break;
853 pmif->timings[0] = pmif->timings[1] = value;
854 pmif->timings[2] = pmif->timings[3] = value2;
857 /* Suspend call back, should be called after the child devices
858 * have actually been suspended
860 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
862 /* We clear the timings */
863 pmif->timings[0] = 0;
864 pmif->timings[1] = 0;
866 disable_irq(pmif->irq);
868 /* The media bay will handle itself just fine */
869 if (pmif->mediabay)
870 return 0;
872 /* Kauai has bus control FCRs directly here */
873 if (pmif->kauai_fcr) {
874 u32 fcr = readl(pmif->kauai_fcr);
875 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
876 writel(fcr, pmif->kauai_fcr);
879 /* Disable the bus on older machines and the cell on kauai */
880 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
883 return 0;
886 /* Resume call back, should be called before the child devices
887 * are resumed
889 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
891 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
892 if (!pmif->mediabay) {
893 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
894 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
895 msleep(10);
896 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
898 /* Kauai has it different */
899 if (pmif->kauai_fcr) {
900 u32 fcr = readl(pmif->kauai_fcr);
901 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
902 writel(fcr, pmif->kauai_fcr);
905 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
908 /* Sanitize drive timings */
909 sanitize_timings(pmif);
911 enable_irq(pmif->irq);
913 return 0;
916 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
918 pmac_ide_hwif_t *pmif =
919 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
920 struct device_node *np = pmif->node;
921 const char *cable = of_get_property(np, "cable-type", NULL);
922 struct device_node *root = of_find_node_by_path("/");
923 const char *model = of_get_property(root, "model", NULL);
925 /* Get cable type from device-tree. */
926 if (cable && !strncmp(cable, "80-", 3)) {
927 /* Some drives fail to detect 80c cable in PowerBook */
928 /* These machine use proprietary short IDE cable anyway */
929 if (!strncmp(model, "PowerBook", 9))
930 return ATA_CBL_PATA40_SHORT;
931 else
932 return ATA_CBL_PATA80;
936 * G5's seem to have incorrect cable type in device-tree.
937 * Let's assume they have a 80 conductor cable, this seem
938 * to be always the case unless the user mucked around.
940 if (of_device_is_compatible(np, "K2-UATA") ||
941 of_device_is_compatible(np, "shasta-ata"))
942 return ATA_CBL_PATA80;
944 return ATA_CBL_PATA40;
947 static void pmac_ide_init_dev(ide_drive_t *drive)
949 ide_hwif_t *hwif = drive->hwif;
950 pmac_ide_hwif_t *pmif =
951 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
953 if (pmif->mediabay) {
954 #ifdef CONFIG_PMAC_MEDIABAY
955 if (check_media_bay_by_base(pmif->regbase, MB_CD) == 0) {
956 drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
957 return;
959 #endif
960 drive->dev_flags |= IDE_DFLAG_NOPROBE;
964 static const struct ide_tp_ops pmac_tp_ops = {
965 .exec_command = pmac_exec_command,
966 .read_status = ide_read_status,
967 .read_altstatus = ide_read_altstatus,
968 .write_devctl = pmac_write_devctl,
970 .dev_select = pmac_dev_select,
971 .tf_load = ide_tf_load,
972 .tf_read = ide_tf_read,
974 .input_data = ide_input_data,
975 .output_data = ide_output_data,
978 static const struct ide_tp_ops pmac_ata6_tp_ops = {
979 .exec_command = pmac_exec_command,
980 .read_status = ide_read_status,
981 .read_altstatus = ide_read_altstatus,
982 .write_devctl = pmac_write_devctl,
984 .dev_select = pmac_kauai_dev_select,
985 .tf_load = ide_tf_load,
986 .tf_read = ide_tf_read,
988 .input_data = ide_input_data,
989 .output_data = ide_output_data,
992 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
993 .init_dev = pmac_ide_init_dev,
994 .set_pio_mode = pmac_ide_set_pio_mode,
995 .set_dma_mode = pmac_ide_set_dma_mode,
996 .cable_detect = pmac_ide_cable_detect,
999 static const struct ide_port_ops pmac_ide_port_ops = {
1000 .init_dev = pmac_ide_init_dev,
1001 .set_pio_mode = pmac_ide_set_pio_mode,
1002 .set_dma_mode = pmac_ide_set_dma_mode,
1005 static const struct ide_dma_ops pmac_dma_ops;
1007 static const struct ide_port_info pmac_port_info = {
1008 .name = DRV_NAME,
1009 .init_dma = pmac_ide_init_dma,
1010 .chipset = ide_pmac,
1011 .tp_ops = &pmac_tp_ops,
1012 .port_ops = &pmac_ide_port_ops,
1013 .dma_ops = &pmac_dma_ops,
1014 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1015 IDE_HFLAG_POST_SET_MODE |
1016 IDE_HFLAG_MMIO |
1017 IDE_HFLAG_UNMASK_IRQS,
1018 .pio_mask = ATA_PIO4,
1019 .mwdma_mask = ATA_MWDMA2,
1023 * Setup, register & probe an IDE channel driven by this driver, this is
1024 * called by one of the 2 probe functions (macio or PCI).
1026 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1027 struct ide_hw *hw)
1029 struct device_node *np = pmif->node;
1030 const int *bidp;
1031 struct ide_host *host;
1032 ide_hwif_t *hwif;
1033 struct ide_hw *hws[] = { hw };
1034 struct ide_port_info d = pmac_port_info;
1035 int rc;
1037 pmif->broken_dma = pmif->broken_dma_warn = 0;
1038 if (of_device_is_compatible(np, "shasta-ata")) {
1039 pmif->kind = controller_sh_ata6;
1040 d.tp_ops = &pmac_ata6_tp_ops;
1041 d.port_ops = &pmac_ide_ata4_port_ops;
1042 d.udma_mask = ATA_UDMA6;
1043 } else if (of_device_is_compatible(np, "kauai-ata")) {
1044 pmif->kind = controller_un_ata6;
1045 d.tp_ops = &pmac_ata6_tp_ops;
1046 d.port_ops = &pmac_ide_ata4_port_ops;
1047 d.udma_mask = ATA_UDMA5;
1048 } else if (of_device_is_compatible(np, "K2-UATA")) {
1049 pmif->kind = controller_k2_ata6;
1050 d.tp_ops = &pmac_ata6_tp_ops;
1051 d.port_ops = &pmac_ide_ata4_port_ops;
1052 d.udma_mask = ATA_UDMA5;
1053 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1054 if (strcmp(np->name, "ata-4") == 0) {
1055 pmif->kind = controller_kl_ata4;
1056 d.port_ops = &pmac_ide_ata4_port_ops;
1057 d.udma_mask = ATA_UDMA4;
1058 } else
1059 pmif->kind = controller_kl_ata3;
1060 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1061 pmif->kind = controller_heathrow;
1062 } else {
1063 pmif->kind = controller_ohare;
1064 pmif->broken_dma = 1;
1067 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1068 pmif->aapl_bus_id = bidp ? *bidp : 0;
1070 /* On Kauai-type controllers, we make sure the FCR is correct */
1071 if (pmif->kauai_fcr)
1072 writel(KAUAI_FCR_UATA_MAGIC |
1073 KAUAI_FCR_UATA_RESET_N |
1074 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076 pmif->mediabay = 0;
1078 /* Make sure we have sane timings */
1079 sanitize_timings(pmif);
1081 host = ide_host_alloc(&d, hws, 1);
1082 if (host == NULL)
1083 return -ENOMEM;
1084 hwif = host->ports[0];
1086 #ifndef CONFIG_PPC64
1087 /* XXX FIXME: Media bay stuff need re-organizing */
1088 if (np->parent && np->parent->name
1089 && strcasecmp(np->parent->name, "media-bay") == 0) {
1090 #ifdef CONFIG_PMAC_MEDIABAY
1091 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1092 hwif);
1093 #endif /* CONFIG_PMAC_MEDIABAY */
1094 pmif->mediabay = 1;
1095 if (!bidp)
1096 pmif->aapl_bus_id = 1;
1097 } else if (pmif->kind == controller_ohare) {
1098 /* The code below is having trouble on some ohare machines
1099 * (timing related ?). Until I can put my hand on one of these
1100 * units, I keep the old way
1102 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1103 } else
1104 #endif
1106 /* This is necessary to enable IDE when net-booting */
1107 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1108 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1109 msleep(10);
1110 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1111 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1114 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1115 "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1116 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1117 pmif->mediabay ? " (mediabay)" : "", hw->irq);
1119 rc = ide_host_register(host, &d, hws);
1120 if (rc) {
1121 ide_host_free(host);
1122 return rc;
1125 return 0;
1128 static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1130 int i;
1132 for (i = 0; i < 8; ++i)
1133 hw->io_ports_array[i] = base + i * 0x10;
1135 hw->io_ports.ctl_addr = base + 0x160;
1139 * Attach to a macio probed interface
1141 static int __devinit
1142 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1144 void __iomem *base;
1145 unsigned long regbase;
1146 pmac_ide_hwif_t *pmif;
1147 int irq, rc;
1148 struct ide_hw hw;
1150 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1151 if (pmif == NULL)
1152 return -ENOMEM;
1154 if (macio_resource_count(mdev) == 0) {
1155 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1156 mdev->ofdev.node->full_name);
1157 rc = -ENXIO;
1158 goto out_free_pmif;
1161 /* Request memory resource for IO ports */
1162 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1163 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1164 "%s!\n", mdev->ofdev.node->full_name);
1165 rc = -EBUSY;
1166 goto out_free_pmif;
1169 /* XXX This is bogus. Should be fixed in the registry by checking
1170 * the kind of host interrupt controller, a bit like gatwick
1171 * fixes in irq.c. That works well enough for the single case
1172 * where that happens though...
1174 if (macio_irq_count(mdev) == 0) {
1175 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1176 "13\n", mdev->ofdev.node->full_name);
1177 irq = irq_create_mapping(NULL, 13);
1178 } else
1179 irq = macio_irq(mdev, 0);
1181 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1182 regbase = (unsigned long) base;
1184 pmif->mdev = mdev;
1185 pmif->node = mdev->ofdev.node;
1186 pmif->regbase = regbase;
1187 pmif->irq = irq;
1188 pmif->kauai_fcr = NULL;
1190 if (macio_resource_count(mdev) >= 2) {
1191 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1192 printk(KERN_WARNING "ide-pmac: can't request DMA "
1193 "resource for %s!\n",
1194 mdev->ofdev.node->full_name);
1195 else
1196 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1197 } else
1198 pmif->dma_regs = NULL;
1200 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1202 memset(&hw, 0, sizeof(hw));
1203 pmac_ide_init_ports(&hw, pmif->regbase);
1204 hw.irq = irq;
1205 hw.dev = &mdev->bus->pdev->dev;
1206 hw.parent = &mdev->ofdev.dev;
1208 rc = pmac_ide_setup_device(pmif, &hw);
1209 if (rc != 0) {
1210 /* The inteface is released to the common IDE layer */
1211 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1212 iounmap(base);
1213 if (pmif->dma_regs) {
1214 iounmap(pmif->dma_regs);
1215 macio_release_resource(mdev, 1);
1217 macio_release_resource(mdev, 0);
1218 kfree(pmif);
1221 return rc;
1223 out_free_pmif:
1224 kfree(pmif);
1225 return rc;
1228 static int
1229 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1231 pmac_ide_hwif_t *pmif =
1232 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1233 int rc = 0;
1235 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1236 && (mesg.event & PM_EVENT_SLEEP)) {
1237 rc = pmac_ide_do_suspend(pmif);
1238 if (rc == 0)
1239 mdev->ofdev.dev.power.power_state = mesg;
1242 return rc;
1245 static int
1246 pmac_ide_macio_resume(struct macio_dev *mdev)
1248 pmac_ide_hwif_t *pmif =
1249 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1250 int rc = 0;
1252 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1253 rc = pmac_ide_do_resume(pmif);
1254 if (rc == 0)
1255 mdev->ofdev.dev.power.power_state = PMSG_ON;
1258 return rc;
1262 * Attach to a PCI probed interface
1264 static int __devinit
1265 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1267 struct device_node *np;
1268 pmac_ide_hwif_t *pmif;
1269 void __iomem *base;
1270 unsigned long rbase, rlen;
1271 int rc;
1272 struct ide_hw hw;
1274 np = pci_device_to_OF_node(pdev);
1275 if (np == NULL) {
1276 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1277 return -ENODEV;
1280 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1281 if (pmif == NULL)
1282 return -ENOMEM;
1284 if (pci_enable_device(pdev)) {
1285 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1286 "%s\n", np->full_name);
1287 rc = -ENXIO;
1288 goto out_free_pmif;
1290 pci_set_master(pdev);
1292 if (pci_request_regions(pdev, "Kauai ATA")) {
1293 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1294 "%s\n", np->full_name);
1295 rc = -ENXIO;
1296 goto out_free_pmif;
1299 pmif->mdev = NULL;
1300 pmif->node = np;
1302 rbase = pci_resource_start(pdev, 0);
1303 rlen = pci_resource_len(pdev, 0);
1305 base = ioremap(rbase, rlen);
1306 pmif->regbase = (unsigned long) base + 0x2000;
1307 pmif->dma_regs = base + 0x1000;
1308 pmif->kauai_fcr = base;
1309 pmif->irq = pdev->irq;
1311 pci_set_drvdata(pdev, pmif);
1313 memset(&hw, 0, sizeof(hw));
1314 pmac_ide_init_ports(&hw, pmif->regbase);
1315 hw.irq = pdev->irq;
1316 hw.dev = &pdev->dev;
1318 rc = pmac_ide_setup_device(pmif, &hw);
1319 if (rc != 0) {
1320 /* The inteface is released to the common IDE layer */
1321 pci_set_drvdata(pdev, NULL);
1322 iounmap(base);
1323 pci_release_regions(pdev);
1324 kfree(pmif);
1327 return rc;
1329 out_free_pmif:
1330 kfree(pmif);
1331 return rc;
1334 static int
1335 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1337 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1338 int rc = 0;
1340 if (mesg.event != pdev->dev.power.power_state.event
1341 && (mesg.event & PM_EVENT_SLEEP)) {
1342 rc = pmac_ide_do_suspend(pmif);
1343 if (rc == 0)
1344 pdev->dev.power.power_state = mesg;
1347 return rc;
1350 static int
1351 pmac_ide_pci_resume(struct pci_dev *pdev)
1353 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1354 int rc = 0;
1356 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1357 rc = pmac_ide_do_resume(pmif);
1358 if (rc == 0)
1359 pdev->dev.power.power_state = PMSG_ON;
1362 return rc;
1365 static struct of_device_id pmac_ide_macio_match[] =
1368 .name = "IDE",
1371 .name = "ATA",
1374 .type = "ide",
1377 .type = "ata",
1382 static struct macio_driver pmac_ide_macio_driver =
1384 .name = "ide-pmac",
1385 .match_table = pmac_ide_macio_match,
1386 .probe = pmac_ide_macio_attach,
1387 .suspend = pmac_ide_macio_suspend,
1388 .resume = pmac_ide_macio_resume,
1391 static const struct pci_device_id pmac_ide_pci_match[] = {
1392 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1393 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1394 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1395 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1396 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1400 static struct pci_driver pmac_ide_pci_driver = {
1401 .name = "ide-pmac",
1402 .id_table = pmac_ide_pci_match,
1403 .probe = pmac_ide_pci_attach,
1404 .suspend = pmac_ide_pci_suspend,
1405 .resume = pmac_ide_pci_resume,
1407 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1409 int __init pmac_ide_probe(void)
1411 int error;
1413 if (!machine_is(powermac))
1414 return -ENODEV;
1416 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1417 error = pci_register_driver(&pmac_ide_pci_driver);
1418 if (error)
1419 goto out;
1420 error = macio_register_driver(&pmac_ide_macio_driver);
1421 if (error) {
1422 pci_unregister_driver(&pmac_ide_pci_driver);
1423 goto out;
1425 #else
1426 error = macio_register_driver(&pmac_ide_macio_driver);
1427 if (error)
1428 goto out;
1429 error = pci_register_driver(&pmac_ide_pci_driver);
1430 if (error) {
1431 macio_unregister_driver(&pmac_ide_macio_driver);
1432 goto out;
1434 #endif
1435 out:
1436 return error;
1440 * pmac_ide_build_dmatable builds the DBDMA command list
1441 * for a transfer and sets the DBDMA channel to point to it.
1443 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1445 ide_hwif_t *hwif = drive->hwif;
1446 pmac_ide_hwif_t *pmif =
1447 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1448 struct dbdma_cmd *table;
1449 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1450 struct scatterlist *sg;
1451 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1452 int i = cmd->sg_nents, count = 0;
1454 /* DMA table is already aligned */
1455 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1457 /* Make sure DMA controller is stopped (necessary ?) */
1458 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1459 while (readl(&dma->status) & RUN)
1460 udelay(1);
1462 /* Build DBDMA commands list */
1463 sg = hwif->sg_table;
1464 while (i && sg_dma_len(sg)) {
1465 u32 cur_addr;
1466 u32 cur_len;
1468 cur_addr = sg_dma_address(sg);
1469 cur_len = sg_dma_len(sg);
1471 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1472 if (pmif->broken_dma_warn == 0) {
1473 printk(KERN_WARNING "%s: DMA on non aligned address, "
1474 "switching to PIO on Ohare chipset\n", drive->name);
1475 pmif->broken_dma_warn = 1;
1477 return 0;
1479 while (cur_len) {
1480 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1482 if (count++ >= MAX_DCMDS) {
1483 printk(KERN_WARNING "%s: DMA table too small\n",
1484 drive->name);
1485 return 0;
1487 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1488 st_le16(&table->req_count, tc);
1489 st_le32(&table->phy_addr, cur_addr);
1490 table->cmd_dep = 0;
1491 table->xfer_status = 0;
1492 table->res_count = 0;
1493 cur_addr += tc;
1494 cur_len -= tc;
1495 ++table;
1497 sg = sg_next(sg);
1498 i--;
1501 /* convert the last command to an input/output last command */
1502 if (count) {
1503 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1504 /* add the stop command to the end of the list */
1505 memset(table, 0, sizeof(struct dbdma_cmd));
1506 st_le16(&table->command, DBDMA_STOP);
1507 mb();
1508 writel(hwif->dmatable_dma, &dma->cmdptr);
1509 return 1;
1512 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1514 return 0; /* revert to PIO for this request */
1518 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1519 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1521 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1523 ide_hwif_t *hwif = drive->hwif;
1524 pmac_ide_hwif_t *pmif =
1525 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1526 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1527 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1529 if (pmac_ide_build_dmatable(drive, cmd) == 0)
1530 return 1;
1532 /* Apple adds 60ns to wrDataSetup on reads */
1533 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1534 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1535 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1536 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1539 return 0;
1543 * Kick the DMA controller into life after the DMA command has been issued
1544 * to the drive.
1546 static void
1547 pmac_ide_dma_start(ide_drive_t *drive)
1549 ide_hwif_t *hwif = drive->hwif;
1550 pmac_ide_hwif_t *pmif =
1551 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1552 volatile struct dbdma_regs __iomem *dma;
1554 dma = pmif->dma_regs;
1556 writel((RUN << 16) | RUN, &dma->control);
1557 /* Make sure it gets to the controller right now */
1558 (void)readl(&dma->control);
1562 * After a DMA transfer, make sure the controller is stopped
1564 static int
1565 pmac_ide_dma_end (ide_drive_t *drive)
1567 ide_hwif_t *hwif = drive->hwif;
1568 pmac_ide_hwif_t *pmif =
1569 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1570 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1571 u32 dstat;
1573 dstat = readl(&dma->status);
1574 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1576 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1577 * in theory, but with ATAPI decices doing buffer underruns, that would
1578 * cause us to disable DMA, which isn't what we want
1580 return (dstat & (RUN|DEAD)) != RUN;
1584 * Check out that the interrupt we got was for us. We can't always know this
1585 * for sure with those Apple interfaces (well, we could on the recent ones but
1586 * that's not implemented yet), on the other hand, we don't have shared interrupts
1587 * so it's not really a problem
1589 static int
1590 pmac_ide_dma_test_irq (ide_drive_t *drive)
1592 ide_hwif_t *hwif = drive->hwif;
1593 pmac_ide_hwif_t *pmif =
1594 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1595 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1596 unsigned long status, timeout;
1598 /* We have to things to deal with here:
1600 * - The dbdma won't stop if the command was started
1601 * but completed with an error without transferring all
1602 * datas. This happens when bad blocks are met during
1603 * a multi-block transfer.
1605 * - The dbdma fifo hasn't yet finished flushing to
1606 * to system memory when the disk interrupt occurs.
1610 /* If ACTIVE is cleared, the STOP command have passed and
1611 * transfer is complete.
1613 status = readl(&dma->status);
1614 if (!(status & ACTIVE))
1615 return 1;
1617 /* If dbdma didn't execute the STOP command yet, the
1618 * active bit is still set. We consider that we aren't
1619 * sharing interrupts (which is hopefully the case with
1620 * those controllers) and so we just try to flush the
1621 * channel for pending data in the fifo
1623 udelay(1);
1624 writel((FLUSH << 16) | FLUSH, &dma->control);
1625 timeout = 0;
1626 for (;;) {
1627 udelay(1);
1628 status = readl(&dma->status);
1629 if ((status & FLUSH) == 0)
1630 break;
1631 if (++timeout > 100) {
1632 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1633 timeout flushing channel\n", hwif->index);
1634 break;
1637 return 1;
1640 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1644 static void
1645 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1647 ide_hwif_t *hwif = drive->hwif;
1648 pmac_ide_hwif_t *pmif =
1649 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1650 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1651 unsigned long status = readl(&dma->status);
1653 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1656 static const struct ide_dma_ops pmac_dma_ops = {
1657 .dma_host_set = pmac_ide_dma_host_set,
1658 .dma_setup = pmac_ide_dma_setup,
1659 .dma_start = pmac_ide_dma_start,
1660 .dma_end = pmac_ide_dma_end,
1661 .dma_test_irq = pmac_ide_dma_test_irq,
1662 .dma_lost_irq = pmac_ide_dma_lost_irq,
1666 * Allocate the data structures needed for using DMA with an interface
1667 * and fill the proper list of functions pointers
1669 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1670 const struct ide_port_info *d)
1672 pmac_ide_hwif_t *pmif =
1673 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1674 struct pci_dev *dev = to_pci_dev(hwif->dev);
1676 /* We won't need pci_dev if we switch to generic consistent
1677 * DMA routines ...
1679 if (dev == NULL || pmif->dma_regs == 0)
1680 return -ENODEV;
1682 * Allocate space for the DBDMA commands.
1683 * The +2 is +1 for the stop command and +1 to allow for
1684 * aligning the start address to a multiple of 16 bytes.
1686 pmif->dma_table_cpu = pci_alloc_consistent(
1687 dev,
1688 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1689 &hwif->dmatable_dma);
1690 if (pmif->dma_table_cpu == NULL) {
1691 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1692 hwif->name);
1693 return -ENOMEM;
1696 hwif->sg_max_nents = MAX_DCMDS;
1698 return 0;
1701 module_init(pmac_ide_probe);
1703 MODULE_LICENSE("GPL");