nilfs2: use mnt_want_write in ioctls where write access is needed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_conservative.c
blob599a40b25cb06e26e14734e4af00efde52b57822
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
65 int cpu;
66 unsigned int enable:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex);
84 static struct workqueue_struct *kconservative_wq;
86 static struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int sampling_down_factor;
89 unsigned int up_threshold;
90 unsigned int down_threshold;
91 unsigned int ignore_nice;
92 unsigned int freq_step;
93 } dbs_tuners_ins = {
94 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
95 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
96 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97 .ignore_nice = 0,
98 .freq_step = 5,
101 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
102 cputime64_t *wall)
104 cputime64_t idle_time;
105 cputime64_t cur_wall_time;
106 cputime64_t busy_time;
108 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
109 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
110 kstat_cpu(cpu).cpustat.system);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
114 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
115 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
117 idle_time = cputime64_sub(cur_wall_time, busy_time);
118 if (wall)
119 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
121 return (cputime64_t)jiffies_to_usecs(idle_time);;
124 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
126 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
128 if (idle_time == -1ULL)
129 return get_cpu_idle_time_jiffy(cpu, wall);
131 return idle_time;
134 /* keep track of frequency transitions */
135 static int
136 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137 void *data)
139 struct cpufreq_freqs *freq = data;
140 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 freq->cpu);
143 struct cpufreq_policy *policy;
145 if (!this_dbs_info->enable)
146 return 0;
148 policy = this_dbs_info->cur_policy;
151 * we only care if our internally tracked freq moves outside
152 * the 'valid' ranges of freqency available to us otherwise
153 * we do not change it
155 if (this_dbs_info->requested_freq > policy->max
156 || this_dbs_info->requested_freq < policy->min)
157 this_dbs_info->requested_freq = freq->new;
159 return 0;
162 static struct notifier_block dbs_cpufreq_notifier_block = {
163 .notifier_call = dbs_cpufreq_notifier
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct kobject *kobj,
168 struct attribute *attr, char *buf)
170 printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current->comm);
172 return sprintf(buf, "%u\n", -1U);
175 static ssize_t show_sampling_rate_min(struct kobject *kobj,
176 struct attribute *attr, char *buf)
178 return sprintf(buf, "%u\n", min_sampling_rate);
181 #define define_one_ro(_name) \
182 static struct global_attr _name = \
183 __ATTR(_name, 0444, show_##_name, NULL)
185 define_one_ro(sampling_rate_max);
186 define_one_ro(sampling_rate_min);
188 /* cpufreq_conservative Governor Tunables */
189 #define show_one(file_name, object) \
190 static ssize_t show_##file_name \
191 (struct kobject *kobj, struct attribute *attr, char *buf) \
193 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
195 show_one(sampling_rate, sampling_rate);
196 show_one(sampling_down_factor, sampling_down_factor);
197 show_one(up_threshold, up_threshold);
198 show_one(down_threshold, down_threshold);
199 show_one(ignore_nice_load, ignore_nice);
200 show_one(freq_step, freq_step);
202 /*** delete after deprecation time ***/
203 #define DEPRECATION_MSG(file_name) \
204 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
205 "interface is deprecated - " #file_name "\n");
207 #define show_one_old(file_name) \
208 static ssize_t show_##file_name##_old \
209 (struct cpufreq_policy *unused, char *buf) \
211 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
212 "interface is deprecated - " #file_name "\n"); \
213 return show_##file_name(NULL, NULL, buf); \
215 show_one_old(sampling_rate);
216 show_one_old(sampling_down_factor);
217 show_one_old(up_threshold);
218 show_one_old(down_threshold);
219 show_one_old(ignore_nice_load);
220 show_one_old(freq_step);
221 show_one_old(sampling_rate_min);
222 show_one_old(sampling_rate_max);
224 #define define_one_ro_old(object, _name) \
225 static struct freq_attr object = \
226 __ATTR(_name, 0444, show_##_name##_old, NULL)
228 define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
229 define_one_ro_old(sampling_rate_max_old, sampling_rate_max);
231 /*** delete after deprecation time ***/
233 static ssize_t store_sampling_down_factor(struct kobject *a,
234 struct attribute *b,
235 const char *buf, size_t count)
237 unsigned int input;
238 int ret;
239 ret = sscanf(buf, "%u", &input);
241 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
242 return -EINVAL;
244 mutex_lock(&dbs_mutex);
245 dbs_tuners_ins.sampling_down_factor = input;
246 mutex_unlock(&dbs_mutex);
248 return count;
251 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
252 const char *buf, size_t count)
254 unsigned int input;
255 int ret;
256 ret = sscanf(buf, "%u", &input);
258 if (ret != 1)
259 return -EINVAL;
261 mutex_lock(&dbs_mutex);
262 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
263 mutex_unlock(&dbs_mutex);
265 return count;
268 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
269 const char *buf, size_t count)
271 unsigned int input;
272 int ret;
273 ret = sscanf(buf, "%u", &input);
275 mutex_lock(&dbs_mutex);
276 if (ret != 1 || input > 100 ||
277 input <= dbs_tuners_ins.down_threshold) {
278 mutex_unlock(&dbs_mutex);
279 return -EINVAL;
282 dbs_tuners_ins.up_threshold = input;
283 mutex_unlock(&dbs_mutex);
285 return count;
288 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
289 const char *buf, size_t count)
291 unsigned int input;
292 int ret;
293 ret = sscanf(buf, "%u", &input);
295 mutex_lock(&dbs_mutex);
296 /* cannot be lower than 11 otherwise freq will not fall */
297 if (ret != 1 || input < 11 || input > 100 ||
298 input >= dbs_tuners_ins.up_threshold) {
299 mutex_unlock(&dbs_mutex);
300 return -EINVAL;
303 dbs_tuners_ins.down_threshold = input;
304 mutex_unlock(&dbs_mutex);
306 return count;
309 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
310 const char *buf, size_t count)
312 unsigned int input;
313 int ret;
315 unsigned int j;
317 ret = sscanf(buf, "%u", &input);
318 if (ret != 1)
319 return -EINVAL;
321 if (input > 1)
322 input = 1;
324 mutex_lock(&dbs_mutex);
325 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
326 mutex_unlock(&dbs_mutex);
327 return count;
329 dbs_tuners_ins.ignore_nice = input;
331 /* we need to re-evaluate prev_cpu_idle */
332 for_each_online_cpu(j) {
333 struct cpu_dbs_info_s *dbs_info;
334 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
335 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
336 &dbs_info->prev_cpu_wall);
337 if (dbs_tuners_ins.ignore_nice)
338 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
340 mutex_unlock(&dbs_mutex);
342 return count;
345 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
346 const char *buf, size_t count)
348 unsigned int input;
349 int ret;
350 ret = sscanf(buf, "%u", &input);
352 if (ret != 1)
353 return -EINVAL;
355 if (input > 100)
356 input = 100;
358 /* no need to test here if freq_step is zero as the user might actually
359 * want this, they would be crazy though :) */
360 mutex_lock(&dbs_mutex);
361 dbs_tuners_ins.freq_step = input;
362 mutex_unlock(&dbs_mutex);
364 return count;
367 #define define_one_rw(_name) \
368 static struct global_attr _name = \
369 __ATTR(_name, 0644, show_##_name, store_##_name)
371 define_one_rw(sampling_rate);
372 define_one_rw(sampling_down_factor);
373 define_one_rw(up_threshold);
374 define_one_rw(down_threshold);
375 define_one_rw(ignore_nice_load);
376 define_one_rw(freq_step);
378 static struct attribute *dbs_attributes[] = {
379 &sampling_rate_max.attr,
380 &sampling_rate_min.attr,
381 &sampling_rate.attr,
382 &sampling_down_factor.attr,
383 &up_threshold.attr,
384 &down_threshold.attr,
385 &ignore_nice_load.attr,
386 &freq_step.attr,
387 NULL
390 static struct attribute_group dbs_attr_group = {
391 .attrs = dbs_attributes,
392 .name = "conservative",
395 /*** delete after deprecation time ***/
397 #define write_one_old(file_name) \
398 static ssize_t store_##file_name##_old \
399 (struct cpufreq_policy *unused, const char *buf, size_t count) \
401 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
402 "interface is deprecated - " #file_name "\n"); \
403 return store_##file_name(NULL, NULL, buf, count); \
405 write_one_old(sampling_rate);
406 write_one_old(sampling_down_factor);
407 write_one_old(up_threshold);
408 write_one_old(down_threshold);
409 write_one_old(ignore_nice_load);
410 write_one_old(freq_step);
412 #define define_one_rw_old(object, _name) \
413 static struct freq_attr object = \
414 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
416 define_one_rw_old(sampling_rate_old, sampling_rate);
417 define_one_rw_old(sampling_down_factor_old, sampling_down_factor);
418 define_one_rw_old(up_threshold_old, up_threshold);
419 define_one_rw_old(down_threshold_old, down_threshold);
420 define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
421 define_one_rw_old(freq_step_old, freq_step);
423 static struct attribute *dbs_attributes_old[] = {
424 &sampling_rate_max_old.attr,
425 &sampling_rate_min_old.attr,
426 &sampling_rate_old.attr,
427 &sampling_down_factor_old.attr,
428 &up_threshold_old.attr,
429 &down_threshold_old.attr,
430 &ignore_nice_load_old.attr,
431 &freq_step_old.attr,
432 NULL
435 static struct attribute_group dbs_attr_group_old = {
436 .attrs = dbs_attributes_old,
437 .name = "conservative",
440 /*** delete after deprecation time ***/
442 /************************** sysfs end ************************/
444 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
446 unsigned int load = 0;
447 unsigned int freq_target;
449 struct cpufreq_policy *policy;
450 unsigned int j;
452 policy = this_dbs_info->cur_policy;
455 * Every sampling_rate, we check, if current idle time is less
456 * than 20% (default), then we try to increase frequency
457 * Every sampling_rate*sampling_down_factor, we check, if current
458 * idle time is more than 80%, then we try to decrease frequency
460 * Any frequency increase takes it to the maximum frequency.
461 * Frequency reduction happens at minimum steps of
462 * 5% (default) of maximum frequency
465 /* Get Absolute Load */
466 for_each_cpu(j, policy->cpus) {
467 struct cpu_dbs_info_s *j_dbs_info;
468 cputime64_t cur_wall_time, cur_idle_time;
469 unsigned int idle_time, wall_time;
471 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
473 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
475 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
476 j_dbs_info->prev_cpu_wall);
477 j_dbs_info->prev_cpu_wall = cur_wall_time;
479 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
480 j_dbs_info->prev_cpu_idle);
481 j_dbs_info->prev_cpu_idle = cur_idle_time;
483 if (dbs_tuners_ins.ignore_nice) {
484 cputime64_t cur_nice;
485 unsigned long cur_nice_jiffies;
487 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
488 j_dbs_info->prev_cpu_nice);
490 * Assumption: nice time between sampling periods will
491 * be less than 2^32 jiffies for 32 bit sys
493 cur_nice_jiffies = (unsigned long)
494 cputime64_to_jiffies64(cur_nice);
496 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
497 idle_time += jiffies_to_usecs(cur_nice_jiffies);
500 if (unlikely(!wall_time || wall_time < idle_time))
501 continue;
503 load = 100 * (wall_time - idle_time) / wall_time;
507 * break out if we 'cannot' reduce the speed as the user might
508 * want freq_step to be zero
510 if (dbs_tuners_ins.freq_step == 0)
511 return;
513 /* Check for frequency increase */
514 if (load > dbs_tuners_ins.up_threshold) {
515 this_dbs_info->down_skip = 0;
517 /* if we are already at full speed then break out early */
518 if (this_dbs_info->requested_freq == policy->max)
519 return;
521 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
523 /* max freq cannot be less than 100. But who knows.... */
524 if (unlikely(freq_target == 0))
525 freq_target = 5;
527 this_dbs_info->requested_freq += freq_target;
528 if (this_dbs_info->requested_freq > policy->max)
529 this_dbs_info->requested_freq = policy->max;
531 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
532 CPUFREQ_RELATION_H);
533 return;
537 * The optimal frequency is the frequency that is the lowest that
538 * can support the current CPU usage without triggering the up
539 * policy. To be safe, we focus 10 points under the threshold.
541 if (load < (dbs_tuners_ins.down_threshold - 10)) {
542 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
544 this_dbs_info->requested_freq -= freq_target;
545 if (this_dbs_info->requested_freq < policy->min)
546 this_dbs_info->requested_freq = policy->min;
549 * if we cannot reduce the frequency anymore, break out early
551 if (policy->cur == policy->min)
552 return;
554 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
555 CPUFREQ_RELATION_H);
556 return;
560 static void do_dbs_timer(struct work_struct *work)
562 struct cpu_dbs_info_s *dbs_info =
563 container_of(work, struct cpu_dbs_info_s, work.work);
564 unsigned int cpu = dbs_info->cpu;
566 /* We want all CPUs to do sampling nearly on same jiffy */
567 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
569 delay -= jiffies % delay;
571 mutex_lock(&dbs_info->timer_mutex);
573 dbs_check_cpu(dbs_info);
575 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
576 mutex_unlock(&dbs_info->timer_mutex);
579 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
581 /* We want all CPUs to do sampling nearly on same jiffy */
582 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
583 delay -= jiffies % delay;
585 dbs_info->enable = 1;
586 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
587 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
588 delay);
591 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
593 dbs_info->enable = 0;
594 cancel_delayed_work_sync(&dbs_info->work);
597 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
598 unsigned int event)
600 unsigned int cpu = policy->cpu;
601 struct cpu_dbs_info_s *this_dbs_info;
602 unsigned int j;
603 int rc;
605 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
607 switch (event) {
608 case CPUFREQ_GOV_START:
609 if ((!cpu_online(cpu)) || (!policy->cur))
610 return -EINVAL;
612 mutex_lock(&dbs_mutex);
614 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
615 if (rc) {
616 mutex_unlock(&dbs_mutex);
617 return rc;
620 for_each_cpu(j, policy->cpus) {
621 struct cpu_dbs_info_s *j_dbs_info;
622 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
623 j_dbs_info->cur_policy = policy;
625 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
626 &j_dbs_info->prev_cpu_wall);
627 if (dbs_tuners_ins.ignore_nice) {
628 j_dbs_info->prev_cpu_nice =
629 kstat_cpu(j).cpustat.nice;
632 this_dbs_info->down_skip = 0;
633 this_dbs_info->requested_freq = policy->cur;
635 mutex_init(&this_dbs_info->timer_mutex);
636 dbs_enable++;
638 * Start the timerschedule work, when this governor
639 * is used for first time
641 if (dbs_enable == 1) {
642 unsigned int latency;
643 /* policy latency is in nS. Convert it to uS first */
644 latency = policy->cpuinfo.transition_latency / 1000;
645 if (latency == 0)
646 latency = 1;
648 rc = sysfs_create_group(cpufreq_global_kobject,
649 &dbs_attr_group);
650 if (rc) {
651 mutex_unlock(&dbs_mutex);
652 return rc;
656 * conservative does not implement micro like ondemand
657 * governor, thus we are bound to jiffes/HZ
659 min_sampling_rate =
660 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
661 /* Bring kernel and HW constraints together */
662 min_sampling_rate = max(min_sampling_rate,
663 MIN_LATENCY_MULTIPLIER * latency);
664 dbs_tuners_ins.sampling_rate =
665 max(min_sampling_rate,
666 latency * LATENCY_MULTIPLIER);
668 cpufreq_register_notifier(
669 &dbs_cpufreq_notifier_block,
670 CPUFREQ_TRANSITION_NOTIFIER);
672 mutex_unlock(&dbs_mutex);
674 dbs_timer_init(this_dbs_info);
676 break;
678 case CPUFREQ_GOV_STOP:
679 dbs_timer_exit(this_dbs_info);
681 mutex_lock(&dbs_mutex);
682 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
683 dbs_enable--;
684 mutex_destroy(&this_dbs_info->timer_mutex);
687 * Stop the timerschedule work, when this governor
688 * is used for first time
690 if (dbs_enable == 0)
691 cpufreq_unregister_notifier(
692 &dbs_cpufreq_notifier_block,
693 CPUFREQ_TRANSITION_NOTIFIER);
695 mutex_unlock(&dbs_mutex);
696 if (!dbs_enable)
697 sysfs_remove_group(cpufreq_global_kobject,
698 &dbs_attr_group);
700 break;
702 case CPUFREQ_GOV_LIMITS:
703 mutex_lock(&this_dbs_info->timer_mutex);
704 if (policy->max < this_dbs_info->cur_policy->cur)
705 __cpufreq_driver_target(
706 this_dbs_info->cur_policy,
707 policy->max, CPUFREQ_RELATION_H);
708 else if (policy->min > this_dbs_info->cur_policy->cur)
709 __cpufreq_driver_target(
710 this_dbs_info->cur_policy,
711 policy->min, CPUFREQ_RELATION_L);
712 mutex_unlock(&this_dbs_info->timer_mutex);
714 break;
716 return 0;
719 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
720 static
721 #endif
722 struct cpufreq_governor cpufreq_gov_conservative = {
723 .name = "conservative",
724 .governor = cpufreq_governor_dbs,
725 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
726 .owner = THIS_MODULE,
729 static int __init cpufreq_gov_dbs_init(void)
731 int err;
733 kconservative_wq = create_workqueue("kconservative");
734 if (!kconservative_wq) {
735 printk(KERN_ERR "Creation of kconservative failed\n");
736 return -EFAULT;
739 err = cpufreq_register_governor(&cpufreq_gov_conservative);
740 if (err)
741 destroy_workqueue(kconservative_wq);
743 return err;
746 static void __exit cpufreq_gov_dbs_exit(void)
748 cpufreq_unregister_governor(&cpufreq_gov_conservative);
749 destroy_workqueue(kconservative_wq);
753 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
754 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
755 "Low Latency Frequency Transition capable processors "
756 "optimised for use in a battery environment");
757 MODULE_LICENSE("GPL");
759 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
760 fs_initcall(cpufreq_gov_dbs_init);
761 #else
762 module_init(cpufreq_gov_dbs_init);
763 #endif
764 module_exit(cpufreq_gov_dbs_exit);