2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex
);
84 static struct workqueue_struct
*kconservative_wq
;
86 static struct dbs_tuners
{
87 unsigned int sampling_rate
;
88 unsigned int sampling_down_factor
;
89 unsigned int up_threshold
;
90 unsigned int down_threshold
;
91 unsigned int ignore_nice
;
92 unsigned int freq_step
;
94 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
95 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
96 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
101 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
104 cputime64_t idle_time
;
105 cputime64_t cur_wall_time
;
106 cputime64_t busy_time
;
108 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
109 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
110 kstat_cpu(cpu
).cpustat
.system
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
113 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
114 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
115 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
117 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
119 *wall
= (cputime64_t
)jiffies_to_usecs(cur_wall_time
);
121 return (cputime64_t
)jiffies_to_usecs(idle_time
);;
124 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
126 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
128 if (idle_time
== -1ULL)
129 return get_cpu_idle_time_jiffy(cpu
, wall
);
134 /* keep track of frequency transitions */
136 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
139 struct cpufreq_freqs
*freq
= data
;
140 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
143 struct cpufreq_policy
*policy
;
145 if (!this_dbs_info
->enable
)
148 policy
= this_dbs_info
->cur_policy
;
151 * we only care if our internally tracked freq moves outside
152 * the 'valid' ranges of freqency available to us otherwise
153 * we do not change it
155 if (this_dbs_info
->requested_freq
> policy
->max
156 || this_dbs_info
->requested_freq
< policy
->min
)
157 this_dbs_info
->requested_freq
= freq
->new;
162 static struct notifier_block dbs_cpufreq_notifier_block
= {
163 .notifier_call
= dbs_cpufreq_notifier
166 /************************** sysfs interface ************************/
167 static ssize_t
show_sampling_rate_max(struct kobject
*kobj
,
168 struct attribute
*attr
, char *buf
)
170 printk_once(KERN_INFO
"CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current
->comm
);
172 return sprintf(buf
, "%u\n", -1U);
175 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
176 struct attribute
*attr
, char *buf
)
178 return sprintf(buf
, "%u\n", min_sampling_rate
);
181 #define define_one_ro(_name) \
182 static struct global_attr _name = \
183 __ATTR(_name, 0444, show_##_name, NULL)
185 define_one_ro(sampling_rate_max
);
186 define_one_ro(sampling_rate_min
);
188 /* cpufreq_conservative Governor Tunables */
189 #define show_one(file_name, object) \
190 static ssize_t show_##file_name \
191 (struct kobject *kobj, struct attribute *attr, char *buf) \
193 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
195 show_one(sampling_rate
, sampling_rate
);
196 show_one(sampling_down_factor
, sampling_down_factor
);
197 show_one(up_threshold
, up_threshold
);
198 show_one(down_threshold
, down_threshold
);
199 show_one(ignore_nice_load
, ignore_nice
);
200 show_one(freq_step
, freq_step
);
202 /*** delete after deprecation time ***/
203 #define DEPRECATION_MSG(file_name) \
204 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
205 "interface is deprecated - " #file_name "\n");
207 #define show_one_old(file_name) \
208 static ssize_t show_##file_name##_old \
209 (struct cpufreq_policy *unused, char *buf) \
211 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
212 "interface is deprecated - " #file_name "\n"); \
213 return show_##file_name(NULL, NULL, buf); \
215 show_one_old(sampling_rate
);
216 show_one_old(sampling_down_factor
);
217 show_one_old(up_threshold
);
218 show_one_old(down_threshold
);
219 show_one_old(ignore_nice_load
);
220 show_one_old(freq_step
);
221 show_one_old(sampling_rate_min
);
222 show_one_old(sampling_rate_max
);
224 #define define_one_ro_old(object, _name) \
225 static struct freq_attr object = \
226 __ATTR(_name, 0444, show_##_name##_old, NULL)
228 define_one_ro_old(sampling_rate_min_old
, sampling_rate_min
);
229 define_one_ro_old(sampling_rate_max_old
, sampling_rate_max
);
231 /*** delete after deprecation time ***/
233 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
235 const char *buf
, size_t count
)
239 ret
= sscanf(buf
, "%u", &input
);
241 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
244 mutex_lock(&dbs_mutex
);
245 dbs_tuners_ins
.sampling_down_factor
= input
;
246 mutex_unlock(&dbs_mutex
);
251 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
252 const char *buf
, size_t count
)
256 ret
= sscanf(buf
, "%u", &input
);
261 mutex_lock(&dbs_mutex
);
262 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
263 mutex_unlock(&dbs_mutex
);
268 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
269 const char *buf
, size_t count
)
273 ret
= sscanf(buf
, "%u", &input
);
275 mutex_lock(&dbs_mutex
);
276 if (ret
!= 1 || input
> 100 ||
277 input
<= dbs_tuners_ins
.down_threshold
) {
278 mutex_unlock(&dbs_mutex
);
282 dbs_tuners_ins
.up_threshold
= input
;
283 mutex_unlock(&dbs_mutex
);
288 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
289 const char *buf
, size_t count
)
293 ret
= sscanf(buf
, "%u", &input
);
295 mutex_lock(&dbs_mutex
);
296 /* cannot be lower than 11 otherwise freq will not fall */
297 if (ret
!= 1 || input
< 11 || input
> 100 ||
298 input
>= dbs_tuners_ins
.up_threshold
) {
299 mutex_unlock(&dbs_mutex
);
303 dbs_tuners_ins
.down_threshold
= input
;
304 mutex_unlock(&dbs_mutex
);
309 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
310 const char *buf
, size_t count
)
317 ret
= sscanf(buf
, "%u", &input
);
324 mutex_lock(&dbs_mutex
);
325 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
326 mutex_unlock(&dbs_mutex
);
329 dbs_tuners_ins
.ignore_nice
= input
;
331 /* we need to re-evaluate prev_cpu_idle */
332 for_each_online_cpu(j
) {
333 struct cpu_dbs_info_s
*dbs_info
;
334 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
335 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
336 &dbs_info
->prev_cpu_wall
);
337 if (dbs_tuners_ins
.ignore_nice
)
338 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
340 mutex_unlock(&dbs_mutex
);
345 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
346 const char *buf
, size_t count
)
350 ret
= sscanf(buf
, "%u", &input
);
358 /* no need to test here if freq_step is zero as the user might actually
359 * want this, they would be crazy though :) */
360 mutex_lock(&dbs_mutex
);
361 dbs_tuners_ins
.freq_step
= input
;
362 mutex_unlock(&dbs_mutex
);
367 #define define_one_rw(_name) \
368 static struct global_attr _name = \
369 __ATTR(_name, 0644, show_##_name, store_##_name)
371 define_one_rw(sampling_rate
);
372 define_one_rw(sampling_down_factor
);
373 define_one_rw(up_threshold
);
374 define_one_rw(down_threshold
);
375 define_one_rw(ignore_nice_load
);
376 define_one_rw(freq_step
);
378 static struct attribute
*dbs_attributes
[] = {
379 &sampling_rate_max
.attr
,
380 &sampling_rate_min
.attr
,
382 &sampling_down_factor
.attr
,
384 &down_threshold
.attr
,
385 &ignore_nice_load
.attr
,
390 static struct attribute_group dbs_attr_group
= {
391 .attrs
= dbs_attributes
,
392 .name
= "conservative",
395 /*** delete after deprecation time ***/
397 #define write_one_old(file_name) \
398 static ssize_t store_##file_name##_old \
399 (struct cpufreq_policy *unused, const char *buf, size_t count) \
401 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
402 "interface is deprecated - " #file_name "\n"); \
403 return store_##file_name(NULL, NULL, buf, count); \
405 write_one_old(sampling_rate
);
406 write_one_old(sampling_down_factor
);
407 write_one_old(up_threshold
);
408 write_one_old(down_threshold
);
409 write_one_old(ignore_nice_load
);
410 write_one_old(freq_step
);
412 #define define_one_rw_old(object, _name) \
413 static struct freq_attr object = \
414 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
416 define_one_rw_old(sampling_rate_old
, sampling_rate
);
417 define_one_rw_old(sampling_down_factor_old
, sampling_down_factor
);
418 define_one_rw_old(up_threshold_old
, up_threshold
);
419 define_one_rw_old(down_threshold_old
, down_threshold
);
420 define_one_rw_old(ignore_nice_load_old
, ignore_nice_load
);
421 define_one_rw_old(freq_step_old
, freq_step
);
423 static struct attribute
*dbs_attributes_old
[] = {
424 &sampling_rate_max_old
.attr
,
425 &sampling_rate_min_old
.attr
,
426 &sampling_rate_old
.attr
,
427 &sampling_down_factor_old
.attr
,
428 &up_threshold_old
.attr
,
429 &down_threshold_old
.attr
,
430 &ignore_nice_load_old
.attr
,
435 static struct attribute_group dbs_attr_group_old
= {
436 .attrs
= dbs_attributes_old
,
437 .name
= "conservative",
440 /*** delete after deprecation time ***/
442 /************************** sysfs end ************************/
444 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
446 unsigned int load
= 0;
447 unsigned int freq_target
;
449 struct cpufreq_policy
*policy
;
452 policy
= this_dbs_info
->cur_policy
;
455 * Every sampling_rate, we check, if current idle time is less
456 * than 20% (default), then we try to increase frequency
457 * Every sampling_rate*sampling_down_factor, we check, if current
458 * idle time is more than 80%, then we try to decrease frequency
460 * Any frequency increase takes it to the maximum frequency.
461 * Frequency reduction happens at minimum steps of
462 * 5% (default) of maximum frequency
465 /* Get Absolute Load */
466 for_each_cpu(j
, policy
->cpus
) {
467 struct cpu_dbs_info_s
*j_dbs_info
;
468 cputime64_t cur_wall_time
, cur_idle_time
;
469 unsigned int idle_time
, wall_time
;
471 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
473 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
475 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
476 j_dbs_info
->prev_cpu_wall
);
477 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
479 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
480 j_dbs_info
->prev_cpu_idle
);
481 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
483 if (dbs_tuners_ins
.ignore_nice
) {
484 cputime64_t cur_nice
;
485 unsigned long cur_nice_jiffies
;
487 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
488 j_dbs_info
->prev_cpu_nice
);
490 * Assumption: nice time between sampling periods will
491 * be less than 2^32 jiffies for 32 bit sys
493 cur_nice_jiffies
= (unsigned long)
494 cputime64_to_jiffies64(cur_nice
);
496 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
497 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
500 if (unlikely(!wall_time
|| wall_time
< idle_time
))
503 load
= 100 * (wall_time
- idle_time
) / wall_time
;
507 * break out if we 'cannot' reduce the speed as the user might
508 * want freq_step to be zero
510 if (dbs_tuners_ins
.freq_step
== 0)
513 /* Check for frequency increase */
514 if (load
> dbs_tuners_ins
.up_threshold
) {
515 this_dbs_info
->down_skip
= 0;
517 /* if we are already at full speed then break out early */
518 if (this_dbs_info
->requested_freq
== policy
->max
)
521 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
523 /* max freq cannot be less than 100. But who knows.... */
524 if (unlikely(freq_target
== 0))
527 this_dbs_info
->requested_freq
+= freq_target
;
528 if (this_dbs_info
->requested_freq
> policy
->max
)
529 this_dbs_info
->requested_freq
= policy
->max
;
531 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
537 * The optimal frequency is the frequency that is the lowest that
538 * can support the current CPU usage without triggering the up
539 * policy. To be safe, we focus 10 points under the threshold.
541 if (load
< (dbs_tuners_ins
.down_threshold
- 10)) {
542 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
544 this_dbs_info
->requested_freq
-= freq_target
;
545 if (this_dbs_info
->requested_freq
< policy
->min
)
546 this_dbs_info
->requested_freq
= policy
->min
;
549 * if we cannot reduce the frequency anymore, break out early
551 if (policy
->cur
== policy
->min
)
554 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
560 static void do_dbs_timer(struct work_struct
*work
)
562 struct cpu_dbs_info_s
*dbs_info
=
563 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
564 unsigned int cpu
= dbs_info
->cpu
;
566 /* We want all CPUs to do sampling nearly on same jiffy */
567 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
569 delay
-= jiffies
% delay
;
571 mutex_lock(&dbs_info
->timer_mutex
);
573 dbs_check_cpu(dbs_info
);
575 queue_delayed_work_on(cpu
, kconservative_wq
, &dbs_info
->work
, delay
);
576 mutex_unlock(&dbs_info
->timer_mutex
);
579 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
581 /* We want all CPUs to do sampling nearly on same jiffy */
582 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
583 delay
-= jiffies
% delay
;
585 dbs_info
->enable
= 1;
586 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
587 queue_delayed_work_on(dbs_info
->cpu
, kconservative_wq
, &dbs_info
->work
,
591 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
593 dbs_info
->enable
= 0;
594 cancel_delayed_work_sync(&dbs_info
->work
);
597 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
600 unsigned int cpu
= policy
->cpu
;
601 struct cpu_dbs_info_s
*this_dbs_info
;
605 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
608 case CPUFREQ_GOV_START
:
609 if ((!cpu_online(cpu
)) || (!policy
->cur
))
612 mutex_lock(&dbs_mutex
);
614 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group_old
);
616 mutex_unlock(&dbs_mutex
);
620 for_each_cpu(j
, policy
->cpus
) {
621 struct cpu_dbs_info_s
*j_dbs_info
;
622 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
623 j_dbs_info
->cur_policy
= policy
;
625 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
626 &j_dbs_info
->prev_cpu_wall
);
627 if (dbs_tuners_ins
.ignore_nice
) {
628 j_dbs_info
->prev_cpu_nice
=
629 kstat_cpu(j
).cpustat
.nice
;
632 this_dbs_info
->down_skip
= 0;
633 this_dbs_info
->requested_freq
= policy
->cur
;
635 mutex_init(&this_dbs_info
->timer_mutex
);
638 * Start the timerschedule work, when this governor
639 * is used for first time
641 if (dbs_enable
== 1) {
642 unsigned int latency
;
643 /* policy latency is in nS. Convert it to uS first */
644 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
648 rc
= sysfs_create_group(cpufreq_global_kobject
,
651 mutex_unlock(&dbs_mutex
);
656 * conservative does not implement micro like ondemand
657 * governor, thus we are bound to jiffes/HZ
660 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
661 /* Bring kernel and HW constraints together */
662 min_sampling_rate
= max(min_sampling_rate
,
663 MIN_LATENCY_MULTIPLIER
* latency
);
664 dbs_tuners_ins
.sampling_rate
=
665 max(min_sampling_rate
,
666 latency
* LATENCY_MULTIPLIER
);
668 cpufreq_register_notifier(
669 &dbs_cpufreq_notifier_block
,
670 CPUFREQ_TRANSITION_NOTIFIER
);
672 mutex_unlock(&dbs_mutex
);
674 dbs_timer_init(this_dbs_info
);
678 case CPUFREQ_GOV_STOP
:
679 dbs_timer_exit(this_dbs_info
);
681 mutex_lock(&dbs_mutex
);
682 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group_old
);
684 mutex_destroy(&this_dbs_info
->timer_mutex
);
687 * Stop the timerschedule work, when this governor
688 * is used for first time
691 cpufreq_unregister_notifier(
692 &dbs_cpufreq_notifier_block
,
693 CPUFREQ_TRANSITION_NOTIFIER
);
695 mutex_unlock(&dbs_mutex
);
697 sysfs_remove_group(cpufreq_global_kobject
,
702 case CPUFREQ_GOV_LIMITS
:
703 mutex_lock(&this_dbs_info
->timer_mutex
);
704 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
705 __cpufreq_driver_target(
706 this_dbs_info
->cur_policy
,
707 policy
->max
, CPUFREQ_RELATION_H
);
708 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
709 __cpufreq_driver_target(
710 this_dbs_info
->cur_policy
,
711 policy
->min
, CPUFREQ_RELATION_L
);
712 mutex_unlock(&this_dbs_info
->timer_mutex
);
719 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
722 struct cpufreq_governor cpufreq_gov_conservative
= {
723 .name
= "conservative",
724 .governor
= cpufreq_governor_dbs
,
725 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
726 .owner
= THIS_MODULE
,
729 static int __init
cpufreq_gov_dbs_init(void)
733 kconservative_wq
= create_workqueue("kconservative");
734 if (!kconservative_wq
) {
735 printk(KERN_ERR
"Creation of kconservative failed\n");
739 err
= cpufreq_register_governor(&cpufreq_gov_conservative
);
741 destroy_workqueue(kconservative_wq
);
746 static void __exit
cpufreq_gov_dbs_exit(void)
748 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
749 destroy_workqueue(kconservative_wq
);
753 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
754 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
755 "Low Latency Frequency Transition capable processors "
756 "optimised for use in a battery environment");
757 MODULE_LICENSE("GPL");
759 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
760 fs_initcall(cpufreq_gov_dbs_init
);
762 module_init(cpufreq_gov_dbs_init
);
764 module_exit(cpufreq_gov_dbs_exit
);