4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
57 * Protected counters by write_lock_irq(&tasklist_lock)
59 unsigned long total_forks
; /* Handle normal Linux uptimes. */
60 int nr_threads
; /* The idle threads do not count.. */
62 int max_threads
; /* tunable limit on nr_threads */
64 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
66 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
68 int nr_processes(void)
73 for_each_online_cpu(cpu
)
74 total
+= per_cpu(process_counts
, cpu
);
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t
*task_struct_cachep
;
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 static kmem_cache_t
*signal_cachep
;
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t
*sighand_cachep
;
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t
*files_cachep
;
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t
*fs_cachep
;
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t
*vm_area_cachep
;
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t
*mm_cachep
;
103 void free_task(struct task_struct
*tsk
)
105 free_thread_info(tsk
->thread_info
);
106 rt_mutex_debug_task_free(tsk
);
107 free_task_struct(tsk
);
109 EXPORT_SYMBOL(free_task
);
111 void __put_task_struct(struct task_struct
*tsk
)
113 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
114 WARN_ON(atomic_read(&tsk
->usage
));
115 WARN_ON(tsk
== current
);
117 security_task_free(tsk
);
119 put_group_info(tsk
->group_info
);
120 delayacct_tsk_free(tsk
);
122 if (!profile_handoff_task(tsk
))
126 void __init
fork_init(unsigned long mempages
)
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 /* create a slab on which task_structs can be allocated */
134 kmem_cache_create("task_struct", sizeof(struct task_struct
),
135 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
143 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
146 * we need to allow at least 20 threads to boot a system
151 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
152 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
153 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
154 init_task
.signal
->rlim
[RLIMIT_NPROC
];
157 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
159 struct task_struct
*tsk
;
160 struct thread_info
*ti
;
162 prepare_to_copy(orig
);
164 tsk
= alloc_task_struct();
168 ti
= alloc_thread_info(tsk
);
170 free_task_struct(tsk
);
175 tsk
->thread_info
= ti
;
176 setup_thread_stack(tsk
, orig
);
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk
->usage
,2);
180 atomic_set(&tsk
->fs_excl
, 0);
182 tsk
->splice_pipe
= NULL
;
187 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
189 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
190 struct rb_node
**rb_link
, *rb_parent
;
192 unsigned long charge
;
193 struct mempolicy
*pol
;
195 down_write(&oldmm
->mmap_sem
);
196 flush_cache_mm(oldmm
);
198 * Not linked in yet - no deadlock potential:
200 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
204 mm
->mmap_cache
= NULL
;
205 mm
->free_area_cache
= oldmm
->mmap_base
;
206 mm
->cached_hole_size
= ~0UL;
208 cpus_clear(mm
->cpu_vm_mask
);
210 rb_link
= &mm
->mm_rb
.rb_node
;
214 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
217 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
218 long pages
= vma_pages(mpnt
);
219 mm
->total_vm
-= pages
;
220 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
225 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
226 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
227 if (security_vm_enough_memory(len
))
231 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
235 pol
= mpol_copy(vma_policy(mpnt
));
236 retval
= PTR_ERR(pol
);
238 goto fail_nomem_policy
;
239 vma_set_policy(tmp
, pol
);
240 tmp
->vm_flags
&= ~VM_LOCKED
;
246 struct inode
*inode
= file
->f_dentry
->d_inode
;
248 if (tmp
->vm_flags
& VM_DENYWRITE
)
249 atomic_dec(&inode
->i_writecount
);
251 /* insert tmp into the share list, just after mpnt */
252 spin_lock(&file
->f_mapping
->i_mmap_lock
);
253 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
254 flush_dcache_mmap_lock(file
->f_mapping
);
255 vma_prio_tree_add(tmp
, mpnt
);
256 flush_dcache_mmap_unlock(file
->f_mapping
);
257 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
261 * Link in the new vma and copy the page table entries.
264 pprev
= &tmp
->vm_next
;
266 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
267 rb_link
= &tmp
->vm_rb
.rb_right
;
268 rb_parent
= &tmp
->vm_rb
;
271 retval
= copy_page_range(mm
, oldmm
, mpnt
);
273 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
274 tmp
->vm_ops
->open(tmp
);
281 up_write(&mm
->mmap_sem
);
283 up_write(&oldmm
->mmap_sem
);
286 kmem_cache_free(vm_area_cachep
, tmp
);
289 vm_unacct_memory(charge
);
293 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
295 mm
->pgd
= pgd_alloc(mm
);
296 if (unlikely(!mm
->pgd
))
301 static inline void mm_free_pgd(struct mm_struct
* mm
)
306 #define dup_mmap(mm, oldmm) (0)
307 #define mm_alloc_pgd(mm) (0)
308 #define mm_free_pgd(mm)
309 #endif /* CONFIG_MMU */
311 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
313 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
314 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
316 #include <linux/init_task.h>
318 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
320 atomic_set(&mm
->mm_users
, 1);
321 atomic_set(&mm
->mm_count
, 1);
322 init_rwsem(&mm
->mmap_sem
);
323 INIT_LIST_HEAD(&mm
->mmlist
);
324 mm
->core_waiters
= 0;
326 set_mm_counter(mm
, file_rss
, 0);
327 set_mm_counter(mm
, anon_rss
, 0);
328 spin_lock_init(&mm
->page_table_lock
);
329 rwlock_init(&mm
->ioctx_list_lock
);
330 mm
->ioctx_list
= NULL
;
331 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
332 mm
->cached_hole_size
= ~0UL;
334 if (likely(!mm_alloc_pgd(mm
))) {
343 * Allocate and initialize an mm_struct.
345 struct mm_struct
* mm_alloc(void)
347 struct mm_struct
* mm
;
351 memset(mm
, 0, sizeof(*mm
));
358 * Called when the last reference to the mm
359 * is dropped: either by a lazy thread or by
360 * mmput. Free the page directory and the mm.
362 void fastcall
__mmdrop(struct mm_struct
*mm
)
364 BUG_ON(mm
== &init_mm
);
371 * Decrement the use count and release all resources for an mm.
373 void mmput(struct mm_struct
*mm
)
377 if (atomic_dec_and_test(&mm
->mm_users
)) {
380 if (!list_empty(&mm
->mmlist
)) {
381 spin_lock(&mmlist_lock
);
382 list_del(&mm
->mmlist
);
383 spin_unlock(&mmlist_lock
);
389 EXPORT_SYMBOL_GPL(mmput
);
392 * get_task_mm - acquire a reference to the task's mm
394 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
395 * this kernel workthread has transiently adopted a user mm with use_mm,
396 * to do its AIO) is not set and if so returns a reference to it, after
397 * bumping up the use count. User must release the mm via mmput()
398 * after use. Typically used by /proc and ptrace.
400 struct mm_struct
*get_task_mm(struct task_struct
*task
)
402 struct mm_struct
*mm
;
407 if (task
->flags
& PF_BORROWED_MM
)
410 atomic_inc(&mm
->mm_users
);
415 EXPORT_SYMBOL_GPL(get_task_mm
);
417 /* Please note the differences between mmput and mm_release.
418 * mmput is called whenever we stop holding onto a mm_struct,
419 * error success whatever.
421 * mm_release is called after a mm_struct has been removed
422 * from the current process.
424 * This difference is important for error handling, when we
425 * only half set up a mm_struct for a new process and need to restore
426 * the old one. Because we mmput the new mm_struct before
427 * restoring the old one. . .
428 * Eric Biederman 10 January 1998
430 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
432 struct completion
*vfork_done
= tsk
->vfork_done
;
434 /* Get rid of any cached register state */
435 deactivate_mm(tsk
, mm
);
437 /* notify parent sleeping on vfork() */
439 tsk
->vfork_done
= NULL
;
440 complete(vfork_done
);
442 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
443 u32 __user
* tidptr
= tsk
->clear_child_tid
;
444 tsk
->clear_child_tid
= NULL
;
447 * We don't check the error code - if userspace has
448 * not set up a proper pointer then tough luck.
451 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
456 * Allocate a new mm structure and copy contents from the
457 * mm structure of the passed in task structure.
459 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
461 struct mm_struct
*mm
, *oldmm
= current
->mm
;
471 memcpy(mm
, oldmm
, sizeof(*mm
));
476 if (init_new_context(tsk
, mm
))
479 err
= dup_mmap(mm
, oldmm
);
483 mm
->hiwater_rss
= get_mm_rss(mm
);
484 mm
->hiwater_vm
= mm
->total_vm
;
496 * If init_new_context() failed, we cannot use mmput() to free the mm
497 * because it calls destroy_context()
504 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
506 struct mm_struct
* mm
, *oldmm
;
509 tsk
->min_flt
= tsk
->maj_flt
= 0;
510 tsk
->nvcsw
= tsk
->nivcsw
= 0;
513 tsk
->active_mm
= NULL
;
516 * Are we cloning a kernel thread?
518 * We need to steal a active VM for that..
524 if (clone_flags
& CLONE_VM
) {
525 atomic_inc(&oldmm
->mm_users
);
544 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
546 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
547 /* We don't need to lock fs - think why ;-) */
549 atomic_set(&fs
->count
, 1);
550 rwlock_init(&fs
->lock
);
551 fs
->umask
= old
->umask
;
552 read_lock(&old
->lock
);
553 fs
->rootmnt
= mntget(old
->rootmnt
);
554 fs
->root
= dget(old
->root
);
555 fs
->pwdmnt
= mntget(old
->pwdmnt
);
556 fs
->pwd
= dget(old
->pwd
);
558 fs
->altrootmnt
= mntget(old
->altrootmnt
);
559 fs
->altroot
= dget(old
->altroot
);
561 fs
->altrootmnt
= NULL
;
564 read_unlock(&old
->lock
);
569 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
571 return __copy_fs_struct(old
);
574 EXPORT_SYMBOL_GPL(copy_fs_struct
);
576 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
578 if (clone_flags
& CLONE_FS
) {
579 atomic_inc(¤t
->fs
->count
);
582 tsk
->fs
= __copy_fs_struct(current
->fs
);
588 static int count_open_files(struct fdtable
*fdt
)
590 int size
= fdt
->max_fdset
;
593 /* Find the last open fd */
594 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
595 if (fdt
->open_fds
->fds_bits
[--i
])
598 i
= (i
+1) * 8 * sizeof(long);
602 static struct files_struct
*alloc_files(void)
604 struct files_struct
*newf
;
607 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
611 atomic_set(&newf
->count
, 1);
613 spin_lock_init(&newf
->file_lock
);
616 fdt
->max_fds
= NR_OPEN_DEFAULT
;
617 fdt
->max_fdset
= EMBEDDED_FD_SET_SIZE
;
618 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
619 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
620 fdt
->fd
= &newf
->fd_array
[0];
621 INIT_RCU_HEAD(&fdt
->rcu
);
622 fdt
->free_files
= NULL
;
624 rcu_assign_pointer(newf
->fdt
, fdt
);
630 * Allocate a new files structure and copy contents from the
631 * passed in files structure.
632 * errorp will be valid only when the returned files_struct is NULL.
634 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
636 struct files_struct
*newf
;
637 struct file
**old_fds
, **new_fds
;
638 int open_files
, size
, i
, expand
;
639 struct fdtable
*old_fdt
, *new_fdt
;
642 newf
= alloc_files();
646 spin_lock(&oldf
->file_lock
);
647 old_fdt
= files_fdtable(oldf
);
648 new_fdt
= files_fdtable(newf
);
649 size
= old_fdt
->max_fdset
;
650 open_files
= count_open_files(old_fdt
);
654 * Check whether we need to allocate a larger fd array or fd set.
655 * Note: we're not a clone task, so the open count won't change.
657 if (open_files
> new_fdt
->max_fdset
) {
658 new_fdt
->max_fdset
= 0;
661 if (open_files
> new_fdt
->max_fds
) {
662 new_fdt
->max_fds
= 0;
666 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
668 spin_unlock(&oldf
->file_lock
);
669 spin_lock(&newf
->file_lock
);
670 *errorp
= expand_files(newf
, open_files
-1);
671 spin_unlock(&newf
->file_lock
);
674 new_fdt
= files_fdtable(newf
);
676 * Reacquire the oldf lock and a pointer to its fd table
677 * who knows it may have a new bigger fd table. We need
678 * the latest pointer.
680 spin_lock(&oldf
->file_lock
);
681 old_fdt
= files_fdtable(oldf
);
684 old_fds
= old_fdt
->fd
;
685 new_fds
= new_fdt
->fd
;
687 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
688 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
690 for (i
= open_files
; i
!= 0; i
--) {
691 struct file
*f
= *old_fds
++;
696 * The fd may be claimed in the fd bitmap but not yet
697 * instantiated in the files array if a sibling thread
698 * is partway through open(). So make sure that this
699 * fd is available to the new process.
701 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
703 rcu_assign_pointer(*new_fds
++, f
);
705 spin_unlock(&oldf
->file_lock
);
707 /* compute the remainder to be cleared */
708 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
710 /* This is long word aligned thus could use a optimized version */
711 memset(new_fds
, 0, size
);
713 if (new_fdt
->max_fdset
> open_files
) {
714 int left
= (new_fdt
->max_fdset
-open_files
)/8;
715 int start
= open_files
/ (8 * sizeof(unsigned long));
717 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
718 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
725 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
726 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
727 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
728 kmem_cache_free(files_cachep
, newf
);
732 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
734 struct files_struct
*oldf
, *newf
;
738 * A background process may not have any files ...
740 oldf
= current
->files
;
744 if (clone_flags
& CLONE_FILES
) {
745 atomic_inc(&oldf
->count
);
750 * Note: we may be using current for both targets (See exec.c)
751 * This works because we cache current->files (old) as oldf. Don't
755 newf
= dup_fd(oldf
, &error
);
766 * Helper to unshare the files of the current task.
767 * We don't want to expose copy_files internals to
768 * the exec layer of the kernel.
771 int unshare_files(void)
773 struct files_struct
*files
= current
->files
;
778 /* This can race but the race causes us to copy when we don't
779 need to and drop the copy */
780 if(atomic_read(&files
->count
) == 1)
782 atomic_inc(&files
->count
);
785 rc
= copy_files(0, current
);
787 current
->files
= files
;
791 EXPORT_SYMBOL(unshare_files
);
793 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
795 struct sighand_struct
*sig
;
797 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
798 atomic_inc(¤t
->sighand
->count
);
801 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
802 rcu_assign_pointer(tsk
->sighand
, sig
);
805 atomic_set(&sig
->count
, 1);
806 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
810 void __cleanup_sighand(struct sighand_struct
*sighand
)
812 if (atomic_dec_and_test(&sighand
->count
))
813 kmem_cache_free(sighand_cachep
, sighand
);
816 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
818 struct signal_struct
*sig
;
821 if (clone_flags
& CLONE_THREAD
) {
822 atomic_inc(¤t
->signal
->count
);
823 atomic_inc(¤t
->signal
->live
);
824 taskstats_tgid_alloc(current
->signal
);
827 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
832 ret
= copy_thread_group_keys(tsk
);
834 kmem_cache_free(signal_cachep
, sig
);
838 atomic_set(&sig
->count
, 1);
839 atomic_set(&sig
->live
, 1);
840 init_waitqueue_head(&sig
->wait_chldexit
);
842 sig
->group_exit_code
= 0;
843 sig
->group_exit_task
= NULL
;
844 sig
->group_stop_count
= 0;
845 sig
->curr_target
= NULL
;
846 init_sigpending(&sig
->shared_pending
);
847 INIT_LIST_HEAD(&sig
->posix_timers
);
849 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_REL
);
850 sig
->it_real_incr
.tv64
= 0;
851 sig
->real_timer
.function
= it_real_fn
;
854 sig
->it_virt_expires
= cputime_zero
;
855 sig
->it_virt_incr
= cputime_zero
;
856 sig
->it_prof_expires
= cputime_zero
;
857 sig
->it_prof_incr
= cputime_zero
;
859 sig
->leader
= 0; /* session leadership doesn't inherit */
860 sig
->tty_old_pgrp
= 0;
862 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
863 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
864 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
866 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
867 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
868 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
869 taskstats_tgid_init(sig
);
871 task_lock(current
->group_leader
);
872 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
873 task_unlock(current
->group_leader
);
875 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
877 * New sole thread in the process gets an expiry time
878 * of the whole CPU time limit.
880 tsk
->it_prof_expires
=
881 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
883 acct_init_pacct(&sig
->pacct
);
888 void __cleanup_signal(struct signal_struct
*sig
)
890 exit_thread_group_keys(sig
);
891 taskstats_tgid_free(sig
);
892 kmem_cache_free(signal_cachep
, sig
);
895 static inline void cleanup_signal(struct task_struct
*tsk
)
897 struct signal_struct
*sig
= tsk
->signal
;
899 atomic_dec(&sig
->live
);
901 if (atomic_dec_and_test(&sig
->count
))
902 __cleanup_signal(sig
);
905 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
907 unsigned long new_flags
= p
->flags
;
909 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
910 new_flags
|= PF_FORKNOEXEC
;
911 if (!(clone_flags
& CLONE_PTRACE
))
913 p
->flags
= new_flags
;
916 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
918 current
->clear_child_tid
= tidptr
;
923 static inline void rt_mutex_init_task(struct task_struct
*p
)
925 #ifdef CONFIG_RT_MUTEXES
926 spin_lock_init(&p
->pi_lock
);
927 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
928 p
->pi_blocked_on
= NULL
;
933 * This creates a new process as a copy of the old one,
934 * but does not actually start it yet.
936 * It copies the registers, and all the appropriate
937 * parts of the process environment (as per the clone
938 * flags). The actual kick-off is left to the caller.
940 static struct task_struct
*copy_process(unsigned long clone_flags
,
941 unsigned long stack_start
,
942 struct pt_regs
*regs
,
943 unsigned long stack_size
,
944 int __user
*parent_tidptr
,
945 int __user
*child_tidptr
,
949 struct task_struct
*p
= NULL
;
951 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
952 return ERR_PTR(-EINVAL
);
955 * Thread groups must share signals as well, and detached threads
956 * can only be started up within the thread group.
958 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
959 return ERR_PTR(-EINVAL
);
962 * Shared signal handlers imply shared VM. By way of the above,
963 * thread groups also imply shared VM. Blocking this case allows
964 * for various simplifications in other code.
966 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
967 return ERR_PTR(-EINVAL
);
969 retval
= security_task_create(clone_flags
);
974 p
= dup_task_struct(current
);
978 #ifdef CONFIG_TRACE_IRQFLAGS
979 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
980 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
983 if (atomic_read(&p
->user
->processes
) >=
984 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
985 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
986 p
->user
!= &root_user
)
990 atomic_inc(&p
->user
->__count
);
991 atomic_inc(&p
->user
->processes
);
992 get_group_info(p
->group_info
);
995 * If multiple threads are within copy_process(), then this check
996 * triggers too late. This doesn't hurt, the check is only there
997 * to stop root fork bombs.
999 if (nr_threads
>= max_threads
)
1000 goto bad_fork_cleanup_count
;
1002 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1003 goto bad_fork_cleanup_count
;
1005 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1006 goto bad_fork_cleanup_put_domain
;
1009 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1010 copy_flags(clone_flags
, p
);
1013 if (clone_flags
& CLONE_PARENT_SETTID
)
1014 if (put_user(p
->pid
, parent_tidptr
))
1015 goto bad_fork_cleanup_delays_binfmt
;
1017 INIT_LIST_HEAD(&p
->children
);
1018 INIT_LIST_HEAD(&p
->sibling
);
1019 p
->vfork_done
= NULL
;
1020 spin_lock_init(&p
->alloc_lock
);
1022 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1023 init_sigpending(&p
->pending
);
1025 p
->utime
= cputime_zero
;
1026 p
->stime
= cputime_zero
;
1028 p
->rchar
= 0; /* I/O counter: bytes read */
1029 p
->wchar
= 0; /* I/O counter: bytes written */
1030 p
->syscr
= 0; /* I/O counter: read syscalls */
1031 p
->syscw
= 0; /* I/O counter: write syscalls */
1032 acct_clear_integrals(p
);
1034 p
->it_virt_expires
= cputime_zero
;
1035 p
->it_prof_expires
= cputime_zero
;
1036 p
->it_sched_expires
= 0;
1037 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1038 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1039 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1041 p
->lock_depth
= -1; /* -1 = no lock */
1042 do_posix_clock_monotonic_gettime(&p
->start_time
);
1044 p
->io_context
= NULL
;
1046 p
->audit_context
= NULL
;
1049 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1050 if (IS_ERR(p
->mempolicy
)) {
1051 retval
= PTR_ERR(p
->mempolicy
);
1052 p
->mempolicy
= NULL
;
1053 goto bad_fork_cleanup_cpuset
;
1055 mpol_fix_fork_child_flag(p
);
1057 #ifdef CONFIG_TRACE_IRQFLAGS
1059 p
->hardirqs_enabled
= 0;
1060 p
->hardirq_enable_ip
= 0;
1061 p
->hardirq_enable_event
= 0;
1062 p
->hardirq_disable_ip
= _THIS_IP_
;
1063 p
->hardirq_disable_event
= 0;
1064 p
->softirqs_enabled
= 1;
1065 p
->softirq_enable_ip
= _THIS_IP_
;
1066 p
->softirq_enable_event
= 0;
1067 p
->softirq_disable_ip
= 0;
1068 p
->softirq_disable_event
= 0;
1069 p
->hardirq_context
= 0;
1070 p
->softirq_context
= 0;
1072 #ifdef CONFIG_LOCKDEP
1073 p
->lockdep_depth
= 0; /* no locks held yet */
1074 p
->curr_chain_key
= 0;
1075 p
->lockdep_recursion
= 0;
1078 rt_mutex_init_task(p
);
1080 #ifdef CONFIG_DEBUG_MUTEXES
1081 p
->blocked_on
= NULL
; /* not blocked yet */
1085 if (clone_flags
& CLONE_THREAD
)
1086 p
->tgid
= current
->tgid
;
1088 if ((retval
= security_task_alloc(p
)))
1089 goto bad_fork_cleanup_policy
;
1090 if ((retval
= audit_alloc(p
)))
1091 goto bad_fork_cleanup_security
;
1092 /* copy all the process information */
1093 if ((retval
= copy_semundo(clone_flags
, p
)))
1094 goto bad_fork_cleanup_audit
;
1095 if ((retval
= copy_files(clone_flags
, p
)))
1096 goto bad_fork_cleanup_semundo
;
1097 if ((retval
= copy_fs(clone_flags
, p
)))
1098 goto bad_fork_cleanup_files
;
1099 if ((retval
= copy_sighand(clone_flags
, p
)))
1100 goto bad_fork_cleanup_fs
;
1101 if ((retval
= copy_signal(clone_flags
, p
)))
1102 goto bad_fork_cleanup_sighand
;
1103 if ((retval
= copy_mm(clone_flags
, p
)))
1104 goto bad_fork_cleanup_signal
;
1105 if ((retval
= copy_keys(clone_flags
, p
)))
1106 goto bad_fork_cleanup_mm
;
1107 if ((retval
= copy_namespace(clone_flags
, p
)))
1108 goto bad_fork_cleanup_keys
;
1109 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1111 goto bad_fork_cleanup_namespace
;
1113 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1115 * Clear TID on mm_release()?
1117 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1118 p
->robust_list
= NULL
;
1119 #ifdef CONFIG_COMPAT
1120 p
->compat_robust_list
= NULL
;
1122 INIT_LIST_HEAD(&p
->pi_state_list
);
1123 p
->pi_state_cache
= NULL
;
1126 * sigaltstack should be cleared when sharing the same VM
1128 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1129 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1132 * Syscall tracing should be turned off in the child regardless
1135 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1136 #ifdef TIF_SYSCALL_EMU
1137 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1140 /* Our parent execution domain becomes current domain
1141 These must match for thread signalling to apply */
1143 p
->parent_exec_id
= p
->self_exec_id
;
1145 /* ok, now we should be set up.. */
1146 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1147 p
->pdeath_signal
= 0;
1151 * Ok, make it visible to the rest of the system.
1152 * We dont wake it up yet.
1154 p
->group_leader
= p
;
1155 INIT_LIST_HEAD(&p
->thread_group
);
1156 INIT_LIST_HEAD(&p
->ptrace_children
);
1157 INIT_LIST_HEAD(&p
->ptrace_list
);
1159 /* Perform scheduler related setup. Assign this task to a CPU. */
1160 sched_fork(p
, clone_flags
);
1162 /* Need tasklist lock for parent etc handling! */
1163 write_lock_irq(&tasklist_lock
);
1166 * The task hasn't been attached yet, so its cpus_allowed mask will
1167 * not be changed, nor will its assigned CPU.
1169 * The cpus_allowed mask of the parent may have changed after it was
1170 * copied first time - so re-copy it here, then check the child's CPU
1171 * to ensure it is on a valid CPU (and if not, just force it back to
1172 * parent's CPU). This avoids alot of nasty races.
1174 p
->cpus_allowed
= current
->cpus_allowed
;
1175 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1176 !cpu_online(task_cpu(p
))))
1177 set_task_cpu(p
, smp_processor_id());
1179 /* CLONE_PARENT re-uses the old parent */
1180 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1181 p
->real_parent
= current
->real_parent
;
1183 p
->real_parent
= current
;
1184 p
->parent
= p
->real_parent
;
1186 spin_lock(¤t
->sighand
->siglock
);
1189 * Process group and session signals need to be delivered to just the
1190 * parent before the fork or both the parent and the child after the
1191 * fork. Restart if a signal comes in before we add the new process to
1192 * it's process group.
1193 * A fatal signal pending means that current will exit, so the new
1194 * thread can't slip out of an OOM kill (or normal SIGKILL).
1196 recalc_sigpending();
1197 if (signal_pending(current
)) {
1198 spin_unlock(¤t
->sighand
->siglock
);
1199 write_unlock_irq(&tasklist_lock
);
1200 retval
= -ERESTARTNOINTR
;
1201 goto bad_fork_cleanup_namespace
;
1204 if (clone_flags
& CLONE_THREAD
) {
1205 p
->group_leader
= current
->group_leader
;
1206 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1208 if (!cputime_eq(current
->signal
->it_virt_expires
,
1210 !cputime_eq(current
->signal
->it_prof_expires
,
1212 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1213 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1214 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1215 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1217 * Have child wake up on its first tick to check
1218 * for process CPU timers.
1220 p
->it_prof_expires
= jiffies_to_cputime(1);
1227 p
->ioprio
= current
->ioprio
;
1229 if (likely(p
->pid
)) {
1231 if (unlikely(p
->ptrace
& PT_PTRACED
))
1232 __ptrace_link(p
, current
->parent
);
1234 if (thread_group_leader(p
)) {
1235 p
->signal
->tty
= current
->signal
->tty
;
1236 p
->signal
->pgrp
= process_group(current
);
1237 p
->signal
->session
= current
->signal
->session
;
1238 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1239 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1241 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1242 __get_cpu_var(process_counts
)++;
1244 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1249 spin_unlock(¤t
->sighand
->siglock
);
1250 write_unlock_irq(&tasklist_lock
);
1251 proc_fork_connector(p
);
1254 bad_fork_cleanup_namespace
:
1256 bad_fork_cleanup_keys
:
1258 bad_fork_cleanup_mm
:
1261 bad_fork_cleanup_signal
:
1263 bad_fork_cleanup_sighand
:
1264 __cleanup_sighand(p
->sighand
);
1265 bad_fork_cleanup_fs
:
1266 exit_fs(p
); /* blocking */
1267 bad_fork_cleanup_files
:
1268 exit_files(p
); /* blocking */
1269 bad_fork_cleanup_semundo
:
1271 bad_fork_cleanup_audit
:
1273 bad_fork_cleanup_security
:
1274 security_task_free(p
);
1275 bad_fork_cleanup_policy
:
1277 mpol_free(p
->mempolicy
);
1278 bad_fork_cleanup_cpuset
:
1281 bad_fork_cleanup_delays_binfmt
:
1282 delayacct_tsk_free(p
);
1284 module_put(p
->binfmt
->module
);
1285 bad_fork_cleanup_put_domain
:
1286 module_put(task_thread_info(p
)->exec_domain
->module
);
1287 bad_fork_cleanup_count
:
1288 put_group_info(p
->group_info
);
1289 atomic_dec(&p
->user
->processes
);
1294 return ERR_PTR(retval
);
1297 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1299 memset(regs
, 0, sizeof(struct pt_regs
));
1303 struct task_struct
* __devinit
fork_idle(int cpu
)
1305 struct task_struct
*task
;
1306 struct pt_regs regs
;
1308 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1310 return ERR_PTR(-ENOMEM
);
1311 init_idle(task
, cpu
);
1316 static inline int fork_traceflag (unsigned clone_flags
)
1318 if (clone_flags
& CLONE_UNTRACED
)
1320 else if (clone_flags
& CLONE_VFORK
) {
1321 if (current
->ptrace
& PT_TRACE_VFORK
)
1322 return PTRACE_EVENT_VFORK
;
1323 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1324 if (current
->ptrace
& PT_TRACE_CLONE
)
1325 return PTRACE_EVENT_CLONE
;
1326 } else if (current
->ptrace
& PT_TRACE_FORK
)
1327 return PTRACE_EVENT_FORK
;
1333 * Ok, this is the main fork-routine.
1335 * It copies the process, and if successful kick-starts
1336 * it and waits for it to finish using the VM if required.
1338 long do_fork(unsigned long clone_flags
,
1339 unsigned long stack_start
,
1340 struct pt_regs
*regs
,
1341 unsigned long stack_size
,
1342 int __user
*parent_tidptr
,
1343 int __user
*child_tidptr
)
1345 struct task_struct
*p
;
1347 struct pid
*pid
= alloc_pid();
1353 if (unlikely(current
->ptrace
)) {
1354 trace
= fork_traceflag (clone_flags
);
1356 clone_flags
|= CLONE_PTRACE
;
1359 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, nr
);
1361 * Do this prior waking up the new thread - the thread pointer
1362 * might get invalid after that point, if the thread exits quickly.
1365 struct completion vfork
;
1367 if (clone_flags
& CLONE_VFORK
) {
1368 p
->vfork_done
= &vfork
;
1369 init_completion(&vfork
);
1372 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1374 * We'll start up with an immediate SIGSTOP.
1376 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1377 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1380 if (!(clone_flags
& CLONE_STOPPED
))
1381 wake_up_new_task(p
, clone_flags
);
1383 p
->state
= TASK_STOPPED
;
1385 if (unlikely (trace
)) {
1386 current
->ptrace_message
= nr
;
1387 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1390 if (clone_flags
& CLONE_VFORK
) {
1391 wait_for_completion(&vfork
);
1392 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1393 current
->ptrace_message
= nr
;
1394 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1404 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1405 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1408 static void sighand_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
1410 struct sighand_struct
*sighand
= data
;
1412 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) ==
1413 SLAB_CTOR_CONSTRUCTOR
)
1414 spin_lock_init(&sighand
->siglock
);
1417 void __init
proc_caches_init(void)
1419 sighand_cachep
= kmem_cache_create("sighand_cache",
1420 sizeof(struct sighand_struct
), 0,
1421 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1422 sighand_ctor
, NULL
);
1423 signal_cachep
= kmem_cache_create("signal_cache",
1424 sizeof(struct signal_struct
), 0,
1425 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1426 files_cachep
= kmem_cache_create("files_cache",
1427 sizeof(struct files_struct
), 0,
1428 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1429 fs_cachep
= kmem_cache_create("fs_cache",
1430 sizeof(struct fs_struct
), 0,
1431 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1432 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1433 sizeof(struct vm_area_struct
), 0,
1434 SLAB_PANIC
, NULL
, NULL
);
1435 mm_cachep
= kmem_cache_create("mm_struct",
1436 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1437 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1442 * Check constraints on flags passed to the unshare system call and
1443 * force unsharing of additional process context as appropriate.
1445 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1448 * If unsharing a thread from a thread group, must also
1451 if (*flags_ptr
& CLONE_THREAD
)
1452 *flags_ptr
|= CLONE_VM
;
1455 * If unsharing vm, must also unshare signal handlers.
1457 if (*flags_ptr
& CLONE_VM
)
1458 *flags_ptr
|= CLONE_SIGHAND
;
1461 * If unsharing signal handlers and the task was created
1462 * using CLONE_THREAD, then must unshare the thread
1464 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1465 (atomic_read(¤t
->signal
->count
) > 1))
1466 *flags_ptr
|= CLONE_THREAD
;
1469 * If unsharing namespace, must also unshare filesystem information.
1471 if (*flags_ptr
& CLONE_NEWNS
)
1472 *flags_ptr
|= CLONE_FS
;
1476 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1478 static int unshare_thread(unsigned long unshare_flags
)
1480 if (unshare_flags
& CLONE_THREAD
)
1487 * Unshare the filesystem structure if it is being shared
1489 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1491 struct fs_struct
*fs
= current
->fs
;
1493 if ((unshare_flags
& CLONE_FS
) &&
1494 (fs
&& atomic_read(&fs
->count
) > 1)) {
1495 *new_fsp
= __copy_fs_struct(current
->fs
);
1504 * Unshare the namespace structure if it is being shared
1506 static int unshare_namespace(unsigned long unshare_flags
, struct namespace **new_nsp
, struct fs_struct
*new_fs
)
1508 struct namespace *ns
= current
->namespace;
1510 if ((unshare_flags
& CLONE_NEWNS
) &&
1511 (ns
&& atomic_read(&ns
->count
) > 1)) {
1512 if (!capable(CAP_SYS_ADMIN
))
1515 *new_nsp
= dup_namespace(current
, new_fs
? new_fs
: current
->fs
);
1524 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1527 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1529 struct sighand_struct
*sigh
= current
->sighand
;
1531 if ((unshare_flags
& CLONE_SIGHAND
) &&
1532 (sigh
&& atomic_read(&sigh
->count
) > 1))
1539 * Unshare vm if it is being shared
1541 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1543 struct mm_struct
*mm
= current
->mm
;
1545 if ((unshare_flags
& CLONE_VM
) &&
1546 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1554 * Unshare file descriptor table if it is being shared
1556 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1558 struct files_struct
*fd
= current
->files
;
1561 if ((unshare_flags
& CLONE_FILES
) &&
1562 (fd
&& atomic_read(&fd
->count
) > 1)) {
1563 *new_fdp
= dup_fd(fd
, &error
);
1572 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1575 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1577 if (unshare_flags
& CLONE_SYSVSEM
)
1584 * unshare allows a process to 'unshare' part of the process
1585 * context which was originally shared using clone. copy_*
1586 * functions used by do_fork() cannot be used here directly
1587 * because they modify an inactive task_struct that is being
1588 * constructed. Here we are modifying the current, active,
1591 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1594 struct fs_struct
*fs
, *new_fs
= NULL
;
1595 struct namespace *ns
, *new_ns
= NULL
;
1596 struct sighand_struct
*sigh
, *new_sigh
= NULL
;
1597 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1598 struct files_struct
*fd
, *new_fd
= NULL
;
1599 struct sem_undo_list
*new_ulist
= NULL
;
1601 check_unshare_flags(&unshare_flags
);
1603 /* Return -EINVAL for all unsupported flags */
1605 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1606 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
))
1607 goto bad_unshare_out
;
1609 if ((err
= unshare_thread(unshare_flags
)))
1610 goto bad_unshare_out
;
1611 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1612 goto bad_unshare_cleanup_thread
;
1613 if ((err
= unshare_namespace(unshare_flags
, &new_ns
, new_fs
)))
1614 goto bad_unshare_cleanup_fs
;
1615 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1616 goto bad_unshare_cleanup_ns
;
1617 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1618 goto bad_unshare_cleanup_sigh
;
1619 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1620 goto bad_unshare_cleanup_vm
;
1621 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1622 goto bad_unshare_cleanup_fd
;
1624 if (new_fs
|| new_ns
|| new_sigh
|| new_mm
|| new_fd
|| new_ulist
) {
1630 current
->fs
= new_fs
;
1635 ns
= current
->namespace;
1636 current
->namespace = new_ns
;
1641 sigh
= current
->sighand
;
1642 rcu_assign_pointer(current
->sighand
, new_sigh
);
1648 active_mm
= current
->active_mm
;
1649 current
->mm
= new_mm
;
1650 current
->active_mm
= new_mm
;
1651 activate_mm(active_mm
, new_mm
);
1656 fd
= current
->files
;
1657 current
->files
= new_fd
;
1661 task_unlock(current
);
1664 bad_unshare_cleanup_fd
:
1666 put_files_struct(new_fd
);
1668 bad_unshare_cleanup_vm
:
1672 bad_unshare_cleanup_sigh
:
1674 if (atomic_dec_and_test(&new_sigh
->count
))
1675 kmem_cache_free(sighand_cachep
, new_sigh
);
1677 bad_unshare_cleanup_ns
:
1679 put_namespace(new_ns
);
1681 bad_unshare_cleanup_fs
:
1683 put_fs_struct(new_fs
);
1685 bad_unshare_cleanup_thread
: