xfs: convert buffer cache hash to rbtree
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_mount.c
blobcfa2fb4e7f978cbc939c0b577f34059dd1f18f13
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
47 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
50 #ifdef HAVE_PERCPU_SB
51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
56 int64_t, int);
57 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
59 #else
61 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
62 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
63 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
65 #endif
67 static const struct {
68 short offset;
69 short type; /* 0 = integer
70 * 1 = binary / string (no translation)
72 } xfs_sb_info[] = {
73 { offsetof(xfs_sb_t, sb_magicnum), 0 },
74 { offsetof(xfs_sb_t, sb_blocksize), 0 },
75 { offsetof(xfs_sb_t, sb_dblocks), 0 },
76 { offsetof(xfs_sb_t, sb_rblocks), 0 },
77 { offsetof(xfs_sb_t, sb_rextents), 0 },
78 { offsetof(xfs_sb_t, sb_uuid), 1 },
79 { offsetof(xfs_sb_t, sb_logstart), 0 },
80 { offsetof(xfs_sb_t, sb_rootino), 0 },
81 { offsetof(xfs_sb_t, sb_rbmino), 0 },
82 { offsetof(xfs_sb_t, sb_rsumino), 0 },
83 { offsetof(xfs_sb_t, sb_rextsize), 0 },
84 { offsetof(xfs_sb_t, sb_agblocks), 0 },
85 { offsetof(xfs_sb_t, sb_agcount), 0 },
86 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
87 { offsetof(xfs_sb_t, sb_logblocks), 0 },
88 { offsetof(xfs_sb_t, sb_versionnum), 0 },
89 { offsetof(xfs_sb_t, sb_sectsize), 0 },
90 { offsetof(xfs_sb_t, sb_inodesize), 0 },
91 { offsetof(xfs_sb_t, sb_inopblock), 0 },
92 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
93 { offsetof(xfs_sb_t, sb_blocklog), 0 },
94 { offsetof(xfs_sb_t, sb_sectlog), 0 },
95 { offsetof(xfs_sb_t, sb_inodelog), 0 },
96 { offsetof(xfs_sb_t, sb_inopblog), 0 },
97 { offsetof(xfs_sb_t, sb_agblklog), 0 },
98 { offsetof(xfs_sb_t, sb_rextslog), 0 },
99 { offsetof(xfs_sb_t, sb_inprogress), 0 },
100 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
101 { offsetof(xfs_sb_t, sb_icount), 0 },
102 { offsetof(xfs_sb_t, sb_ifree), 0 },
103 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
104 { offsetof(xfs_sb_t, sb_frextents), 0 },
105 { offsetof(xfs_sb_t, sb_uquotino), 0 },
106 { offsetof(xfs_sb_t, sb_gquotino), 0 },
107 { offsetof(xfs_sb_t, sb_qflags), 0 },
108 { offsetof(xfs_sb_t, sb_flags), 0 },
109 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
110 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
111 { offsetof(xfs_sb_t, sb_unit), 0 },
112 { offsetof(xfs_sb_t, sb_width), 0 },
113 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
114 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
115 { offsetof(xfs_sb_t, sb_logsectsize),0 },
116 { offsetof(xfs_sb_t, sb_logsunit), 0 },
117 { offsetof(xfs_sb_t, sb_features2), 0 },
118 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
119 { sizeof(xfs_sb_t), 0 }
122 static DEFINE_MUTEX(xfs_uuid_table_mutex);
123 static int xfs_uuid_table_size;
124 static uuid_t *xfs_uuid_table;
127 * See if the UUID is unique among mounted XFS filesystems.
128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130 STATIC int
131 xfs_uuid_mount(
132 struct xfs_mount *mp)
134 uuid_t *uuid = &mp->m_sb.sb_uuid;
135 int hole, i;
137 if (mp->m_flags & XFS_MOUNT_NOUUID)
138 return 0;
140 if (uuid_is_nil(uuid)) {
141 cmn_err(CE_WARN,
142 "XFS: Filesystem %s has nil UUID - can't mount",
143 mp->m_fsname);
144 return XFS_ERROR(EINVAL);
147 mutex_lock(&xfs_uuid_table_mutex);
148 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
149 if (uuid_is_nil(&xfs_uuid_table[i])) {
150 hole = i;
151 continue;
153 if (uuid_equal(uuid, &xfs_uuid_table[i]))
154 goto out_duplicate;
157 if (hole < 0) {
158 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
159 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
160 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
161 KM_SLEEP);
162 hole = xfs_uuid_table_size++;
164 xfs_uuid_table[hole] = *uuid;
165 mutex_unlock(&xfs_uuid_table_mutex);
167 return 0;
169 out_duplicate:
170 mutex_unlock(&xfs_uuid_table_mutex);
171 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
172 mp->m_fsname);
173 return XFS_ERROR(EINVAL);
176 STATIC void
177 xfs_uuid_unmount(
178 struct xfs_mount *mp)
180 uuid_t *uuid = &mp->m_sb.sb_uuid;
181 int i;
183 if (mp->m_flags & XFS_MOUNT_NOUUID)
184 return;
186 mutex_lock(&xfs_uuid_table_mutex);
187 for (i = 0; i < xfs_uuid_table_size; i++) {
188 if (uuid_is_nil(&xfs_uuid_table[i]))
189 continue;
190 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 continue;
192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 break;
195 ASSERT(i < xfs_uuid_table_size);
196 mutex_unlock(&xfs_uuid_table_mutex);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
205 struct xfs_perag *
206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 struct xfs_perag *pag;
209 int ref = 0;
211 rcu_read_lock();
212 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 if (pag) {
214 ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 ref = atomic_inc_return(&pag->pag_ref);
217 rcu_read_unlock();
218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 return pag;
223 * search from @first to find the next perag with the given tag set.
225 struct xfs_perag *
226 xfs_perag_get_tag(
227 struct xfs_mount *mp,
228 xfs_agnumber_t first,
229 int tag)
231 struct xfs_perag *pag;
232 int found;
233 int ref;
235 rcu_read_lock();
236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 (void **)&pag, first, 1, tag);
238 if (found <= 0) {
239 rcu_read_unlock();
240 return NULL;
242 ref = atomic_inc_return(&pag->pag_ref);
243 rcu_read_unlock();
244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 return pag;
248 void
249 xfs_perag_put(struct xfs_perag *pag)
251 int ref;
253 ASSERT(atomic_read(&pag->pag_ref) > 0);
254 ref = atomic_dec_return(&pag->pag_ref);
255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
258 STATIC void
259 __xfs_free_perag(
260 struct rcu_head *head)
262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
264 ASSERT(atomic_read(&pag->pag_ref) == 0);
265 kmem_free(pag);
269 * Free up the per-ag resources associated with the mount structure.
271 STATIC void
272 xfs_free_perag(
273 xfs_mount_t *mp)
275 xfs_agnumber_t agno;
276 struct xfs_perag *pag;
278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 spin_lock(&mp->m_perag_lock);
280 pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 spin_unlock(&mp->m_perag_lock);
282 ASSERT(pag);
283 call_rcu(&pag->rcu_head, __xfs_free_perag);
288 * Check size of device based on the (data/realtime) block count.
289 * Note: this check is used by the growfs code as well as mount.
292 xfs_sb_validate_fsb_count(
293 xfs_sb_t *sbp,
294 __uint64_t nblocks)
296 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
297 ASSERT(sbp->sb_blocklog >= BBSHIFT);
299 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
300 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
301 return EFBIG;
302 #else /* Limited by UINT_MAX of sectors */
303 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
304 return EFBIG;
305 #endif
306 return 0;
310 * Check the validity of the SB found.
312 STATIC int
313 xfs_mount_validate_sb(
314 xfs_mount_t *mp,
315 xfs_sb_t *sbp,
316 int flags)
319 * If the log device and data device have the
320 * same device number, the log is internal.
321 * Consequently, the sb_logstart should be non-zero. If
322 * we have a zero sb_logstart in this case, we may be trying to mount
323 * a volume filesystem in a non-volume manner.
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 xfs_fs_mount_cmn_err(flags, "bad magic number");
327 return XFS_ERROR(EWRONGFS);
330 if (!xfs_sb_good_version(sbp)) {
331 xfs_fs_mount_cmn_err(flags, "bad version");
332 return XFS_ERROR(EWRONGFS);
335 if (unlikely(
336 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
337 xfs_fs_mount_cmn_err(flags,
338 "filesystem is marked as having an external log; "
339 "specify logdev on the\nmount command line.");
340 return XFS_ERROR(EINVAL);
343 if (unlikely(
344 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
345 xfs_fs_mount_cmn_err(flags,
346 "filesystem is marked as having an internal log; "
347 "do not specify logdev on\nthe mount command line.");
348 return XFS_ERROR(EINVAL);
352 * More sanity checking. These were stolen directly from
353 * xfs_repair.
355 if (unlikely(
356 sbp->sb_agcount <= 0 ||
357 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
358 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
359 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
360 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
361 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
362 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
363 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
364 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
365 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
366 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
367 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
368 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
369 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
370 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
371 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
372 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
373 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
374 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
375 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
376 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
377 return XFS_ERROR(EFSCORRUPTED);
381 * Sanity check AG count, size fields against data size field
383 if (unlikely(
384 sbp->sb_dblocks == 0 ||
385 sbp->sb_dblocks >
386 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
387 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
388 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
389 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
390 return XFS_ERROR(EFSCORRUPTED);
394 * Until this is fixed only page-sized or smaller data blocks work.
396 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
397 xfs_fs_mount_cmn_err(flags,
398 "file system with blocksize %d bytes",
399 sbp->sb_blocksize);
400 xfs_fs_mount_cmn_err(flags,
401 "only pagesize (%ld) or less will currently work.",
402 PAGE_SIZE);
403 return XFS_ERROR(ENOSYS);
407 * Currently only very few inode sizes are supported.
409 switch (sbp->sb_inodesize) {
410 case 256:
411 case 512:
412 case 1024:
413 case 2048:
414 break;
415 default:
416 xfs_fs_mount_cmn_err(flags,
417 "inode size of %d bytes not supported",
418 sbp->sb_inodesize);
419 return XFS_ERROR(ENOSYS);
422 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
423 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
424 xfs_fs_mount_cmn_err(flags,
425 "file system too large to be mounted on this system.");
426 return XFS_ERROR(EFBIG);
429 if (unlikely(sbp->sb_inprogress)) {
430 xfs_fs_mount_cmn_err(flags, "file system busy");
431 return XFS_ERROR(EFSCORRUPTED);
435 * Version 1 directory format has never worked on Linux.
437 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
438 xfs_fs_mount_cmn_err(flags,
439 "file system using version 1 directory format");
440 return XFS_ERROR(ENOSYS);
443 return 0;
447 xfs_initialize_perag(
448 xfs_mount_t *mp,
449 xfs_agnumber_t agcount,
450 xfs_agnumber_t *maxagi)
452 xfs_agnumber_t index, max_metadata;
453 xfs_agnumber_t first_initialised = 0;
454 xfs_perag_t *pag;
455 xfs_agino_t agino;
456 xfs_ino_t ino;
457 xfs_sb_t *sbp = &mp->m_sb;
458 int error = -ENOMEM;
461 * Walk the current per-ag tree so we don't try to initialise AGs
462 * that already exist (growfs case). Allocate and insert all the
463 * AGs we don't find ready for initialisation.
465 for (index = 0; index < agcount; index++) {
466 pag = xfs_perag_get(mp, index);
467 if (pag) {
468 xfs_perag_put(pag);
469 continue;
471 if (!first_initialised)
472 first_initialised = index;
474 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
475 if (!pag)
476 goto out_unwind;
477 pag->pag_agno = index;
478 pag->pag_mount = mp;
479 rwlock_init(&pag->pag_ici_lock);
480 mutex_init(&pag->pag_ici_reclaim_lock);
481 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
482 spin_lock_init(&pag->pag_buf_lock);
483 pag->pag_buf_tree = RB_ROOT;
485 if (radix_tree_preload(GFP_NOFS))
486 goto out_unwind;
488 spin_lock(&mp->m_perag_lock);
489 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
490 BUG();
491 spin_unlock(&mp->m_perag_lock);
492 radix_tree_preload_end();
493 error = -EEXIST;
494 goto out_unwind;
496 spin_unlock(&mp->m_perag_lock);
497 radix_tree_preload_end();
501 * If we mount with the inode64 option, or no inode overflows
502 * the legacy 32-bit address space clear the inode32 option.
504 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
505 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
507 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
508 mp->m_flags |= XFS_MOUNT_32BITINODES;
509 else
510 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
512 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
514 * Calculate how much should be reserved for inodes to meet
515 * the max inode percentage.
517 if (mp->m_maxicount) {
518 __uint64_t icount;
520 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
521 do_div(icount, 100);
522 icount += sbp->sb_agblocks - 1;
523 do_div(icount, sbp->sb_agblocks);
524 max_metadata = icount;
525 } else {
526 max_metadata = agcount;
529 for (index = 0; index < agcount; index++) {
530 ino = XFS_AGINO_TO_INO(mp, index, agino);
531 if (ino > XFS_MAXINUMBER_32) {
532 index++;
533 break;
536 pag = xfs_perag_get(mp, index);
537 pag->pagi_inodeok = 1;
538 if (index < max_metadata)
539 pag->pagf_metadata = 1;
540 xfs_perag_put(pag);
542 } else {
543 for (index = 0; index < agcount; index++) {
544 pag = xfs_perag_get(mp, index);
545 pag->pagi_inodeok = 1;
546 xfs_perag_put(pag);
550 if (maxagi)
551 *maxagi = index;
552 return 0;
554 out_unwind:
555 kmem_free(pag);
556 for (; index > first_initialised; index--) {
557 pag = radix_tree_delete(&mp->m_perag_tree, index);
558 kmem_free(pag);
560 return error;
563 void
564 xfs_sb_from_disk(
565 xfs_sb_t *to,
566 xfs_dsb_t *from)
568 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
569 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
570 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
571 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
572 to->sb_rextents = be64_to_cpu(from->sb_rextents);
573 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
574 to->sb_logstart = be64_to_cpu(from->sb_logstart);
575 to->sb_rootino = be64_to_cpu(from->sb_rootino);
576 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
577 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
578 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
579 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
580 to->sb_agcount = be32_to_cpu(from->sb_agcount);
581 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
582 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
583 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
584 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
585 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
586 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
587 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
588 to->sb_blocklog = from->sb_blocklog;
589 to->sb_sectlog = from->sb_sectlog;
590 to->sb_inodelog = from->sb_inodelog;
591 to->sb_inopblog = from->sb_inopblog;
592 to->sb_agblklog = from->sb_agblklog;
593 to->sb_rextslog = from->sb_rextslog;
594 to->sb_inprogress = from->sb_inprogress;
595 to->sb_imax_pct = from->sb_imax_pct;
596 to->sb_icount = be64_to_cpu(from->sb_icount);
597 to->sb_ifree = be64_to_cpu(from->sb_ifree);
598 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
599 to->sb_frextents = be64_to_cpu(from->sb_frextents);
600 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
601 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
602 to->sb_qflags = be16_to_cpu(from->sb_qflags);
603 to->sb_flags = from->sb_flags;
604 to->sb_shared_vn = from->sb_shared_vn;
605 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
606 to->sb_unit = be32_to_cpu(from->sb_unit);
607 to->sb_width = be32_to_cpu(from->sb_width);
608 to->sb_dirblklog = from->sb_dirblklog;
609 to->sb_logsectlog = from->sb_logsectlog;
610 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
611 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
612 to->sb_features2 = be32_to_cpu(from->sb_features2);
613 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
617 * Copy in core superblock to ondisk one.
619 * The fields argument is mask of superblock fields to copy.
621 void
622 xfs_sb_to_disk(
623 xfs_dsb_t *to,
624 xfs_sb_t *from,
625 __int64_t fields)
627 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
628 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
629 xfs_sb_field_t f;
630 int first;
631 int size;
633 ASSERT(fields);
634 if (!fields)
635 return;
637 while (fields) {
638 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
639 first = xfs_sb_info[f].offset;
640 size = xfs_sb_info[f + 1].offset - first;
642 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
644 if (size == 1 || xfs_sb_info[f].type == 1) {
645 memcpy(to_ptr + first, from_ptr + first, size);
646 } else {
647 switch (size) {
648 case 2:
649 *(__be16 *)(to_ptr + first) =
650 cpu_to_be16(*(__u16 *)(from_ptr + first));
651 break;
652 case 4:
653 *(__be32 *)(to_ptr + first) =
654 cpu_to_be32(*(__u32 *)(from_ptr + first));
655 break;
656 case 8:
657 *(__be64 *)(to_ptr + first) =
658 cpu_to_be64(*(__u64 *)(from_ptr + first));
659 break;
660 default:
661 ASSERT(0);
665 fields &= ~(1LL << f);
670 * xfs_readsb
672 * Does the initial read of the superblock.
675 xfs_readsb(xfs_mount_t *mp, int flags)
677 unsigned int sector_size;
678 xfs_buf_t *bp;
679 int error;
681 ASSERT(mp->m_sb_bp == NULL);
682 ASSERT(mp->m_ddev_targp != NULL);
685 * Allocate a (locked) buffer to hold the superblock.
686 * This will be kept around at all times to optimize
687 * access to the superblock.
689 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
691 reread:
692 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
693 XFS_SB_DADDR, sector_size, 0);
694 if (!bp) {
695 xfs_fs_mount_cmn_err(flags, "SB buffer read failed");
696 return EIO;
700 * Initialize the mount structure from the superblock.
701 * But first do some basic consistency checking.
703 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
704 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
705 if (error) {
706 xfs_fs_mount_cmn_err(flags, "SB validate failed");
707 goto release_buf;
711 * We must be able to do sector-sized and sector-aligned IO.
713 if (sector_size > mp->m_sb.sb_sectsize) {
714 xfs_fs_mount_cmn_err(flags,
715 "device supports only %u byte sectors (not %u)",
716 sector_size, mp->m_sb.sb_sectsize);
717 error = ENOSYS;
718 goto release_buf;
722 * If device sector size is smaller than the superblock size,
723 * re-read the superblock so the buffer is correctly sized.
725 if (sector_size < mp->m_sb.sb_sectsize) {
726 xfs_buf_relse(bp);
727 sector_size = mp->m_sb.sb_sectsize;
728 goto reread;
731 /* Initialize per-cpu counters */
732 xfs_icsb_reinit_counters(mp);
734 mp->m_sb_bp = bp;
735 xfs_buf_unlock(bp);
736 return 0;
738 release_buf:
739 xfs_buf_relse(bp);
740 return error;
745 * xfs_mount_common
747 * Mount initialization code establishing various mount
748 * fields from the superblock associated with the given
749 * mount structure
751 STATIC void
752 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
754 mp->m_agfrotor = mp->m_agirotor = 0;
755 spin_lock_init(&mp->m_agirotor_lock);
756 mp->m_maxagi = mp->m_sb.sb_agcount;
757 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
758 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
759 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
760 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
761 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
762 mp->m_blockmask = sbp->sb_blocksize - 1;
763 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
764 mp->m_blockwmask = mp->m_blockwsize - 1;
766 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
767 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
768 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
769 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
771 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
772 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
773 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
774 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
776 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
777 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
778 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
779 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
781 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
782 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
783 sbp->sb_inopblock);
784 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
788 * xfs_initialize_perag_data
790 * Read in each per-ag structure so we can count up the number of
791 * allocated inodes, free inodes and used filesystem blocks as this
792 * information is no longer persistent in the superblock. Once we have
793 * this information, write it into the in-core superblock structure.
795 STATIC int
796 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
798 xfs_agnumber_t index;
799 xfs_perag_t *pag;
800 xfs_sb_t *sbp = &mp->m_sb;
801 uint64_t ifree = 0;
802 uint64_t ialloc = 0;
803 uint64_t bfree = 0;
804 uint64_t bfreelst = 0;
805 uint64_t btree = 0;
806 int error;
808 for (index = 0; index < agcount; index++) {
810 * read the agf, then the agi. This gets us
811 * all the information we need and populates the
812 * per-ag structures for us.
814 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
815 if (error)
816 return error;
818 error = xfs_ialloc_pagi_init(mp, NULL, index);
819 if (error)
820 return error;
821 pag = xfs_perag_get(mp, index);
822 ifree += pag->pagi_freecount;
823 ialloc += pag->pagi_count;
824 bfree += pag->pagf_freeblks;
825 bfreelst += pag->pagf_flcount;
826 btree += pag->pagf_btreeblks;
827 xfs_perag_put(pag);
830 * Overwrite incore superblock counters with just-read data
832 spin_lock(&mp->m_sb_lock);
833 sbp->sb_ifree = ifree;
834 sbp->sb_icount = ialloc;
835 sbp->sb_fdblocks = bfree + bfreelst + btree;
836 spin_unlock(&mp->m_sb_lock);
838 /* Fixup the per-cpu counters as well. */
839 xfs_icsb_reinit_counters(mp);
841 return 0;
845 * Update alignment values based on mount options and sb values
847 STATIC int
848 xfs_update_alignment(xfs_mount_t *mp)
850 xfs_sb_t *sbp = &(mp->m_sb);
852 if (mp->m_dalign) {
854 * If stripe unit and stripe width are not multiples
855 * of the fs blocksize turn off alignment.
857 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
858 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
859 if (mp->m_flags & XFS_MOUNT_RETERR) {
860 cmn_err(CE_WARN,
861 "XFS: alignment check 1 failed");
862 return XFS_ERROR(EINVAL);
864 mp->m_dalign = mp->m_swidth = 0;
865 } else {
867 * Convert the stripe unit and width to FSBs.
869 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
870 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
871 if (mp->m_flags & XFS_MOUNT_RETERR) {
872 return XFS_ERROR(EINVAL);
874 xfs_fs_cmn_err(CE_WARN, mp,
875 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
876 mp->m_dalign, mp->m_swidth,
877 sbp->sb_agblocks);
879 mp->m_dalign = 0;
880 mp->m_swidth = 0;
881 } else if (mp->m_dalign) {
882 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
883 } else {
884 if (mp->m_flags & XFS_MOUNT_RETERR) {
885 xfs_fs_cmn_err(CE_WARN, mp,
886 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
887 mp->m_dalign,
888 mp->m_blockmask +1);
889 return XFS_ERROR(EINVAL);
891 mp->m_swidth = 0;
896 * Update superblock with new values
897 * and log changes
899 if (xfs_sb_version_hasdalign(sbp)) {
900 if (sbp->sb_unit != mp->m_dalign) {
901 sbp->sb_unit = mp->m_dalign;
902 mp->m_update_flags |= XFS_SB_UNIT;
904 if (sbp->sb_width != mp->m_swidth) {
905 sbp->sb_width = mp->m_swidth;
906 mp->m_update_flags |= XFS_SB_WIDTH;
909 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
910 xfs_sb_version_hasdalign(&mp->m_sb)) {
911 mp->m_dalign = sbp->sb_unit;
912 mp->m_swidth = sbp->sb_width;
915 return 0;
919 * Set the maximum inode count for this filesystem
921 STATIC void
922 xfs_set_maxicount(xfs_mount_t *mp)
924 xfs_sb_t *sbp = &(mp->m_sb);
925 __uint64_t icount;
927 if (sbp->sb_imax_pct) {
929 * Make sure the maximum inode count is a multiple
930 * of the units we allocate inodes in.
932 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
933 do_div(icount, 100);
934 do_div(icount, mp->m_ialloc_blks);
935 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
936 sbp->sb_inopblog;
937 } else {
938 mp->m_maxicount = 0;
943 * Set the default minimum read and write sizes unless
944 * already specified in a mount option.
945 * We use smaller I/O sizes when the file system
946 * is being used for NFS service (wsync mount option).
948 STATIC void
949 xfs_set_rw_sizes(xfs_mount_t *mp)
951 xfs_sb_t *sbp = &(mp->m_sb);
952 int readio_log, writeio_log;
954 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
955 if (mp->m_flags & XFS_MOUNT_WSYNC) {
956 readio_log = XFS_WSYNC_READIO_LOG;
957 writeio_log = XFS_WSYNC_WRITEIO_LOG;
958 } else {
959 readio_log = XFS_READIO_LOG_LARGE;
960 writeio_log = XFS_WRITEIO_LOG_LARGE;
962 } else {
963 readio_log = mp->m_readio_log;
964 writeio_log = mp->m_writeio_log;
967 if (sbp->sb_blocklog > readio_log) {
968 mp->m_readio_log = sbp->sb_blocklog;
969 } else {
970 mp->m_readio_log = readio_log;
972 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
973 if (sbp->sb_blocklog > writeio_log) {
974 mp->m_writeio_log = sbp->sb_blocklog;
975 } else {
976 mp->m_writeio_log = writeio_log;
978 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
982 * Set whether we're using inode alignment.
984 STATIC void
985 xfs_set_inoalignment(xfs_mount_t *mp)
987 if (xfs_sb_version_hasalign(&mp->m_sb) &&
988 mp->m_sb.sb_inoalignmt >=
989 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
990 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
991 else
992 mp->m_inoalign_mask = 0;
994 * If we are using stripe alignment, check whether
995 * the stripe unit is a multiple of the inode alignment
997 if (mp->m_dalign && mp->m_inoalign_mask &&
998 !(mp->m_dalign & mp->m_inoalign_mask))
999 mp->m_sinoalign = mp->m_dalign;
1000 else
1001 mp->m_sinoalign = 0;
1005 * Check that the data (and log if separate) are an ok size.
1007 STATIC int
1008 xfs_check_sizes(xfs_mount_t *mp)
1010 xfs_buf_t *bp;
1011 xfs_daddr_t d;
1013 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1014 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1015 cmn_err(CE_WARN, "XFS: filesystem size mismatch detected");
1016 return XFS_ERROR(EFBIG);
1018 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1019 d - XFS_FSS_TO_BB(mp, 1),
1020 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1021 if (!bp) {
1022 cmn_err(CE_WARN, "XFS: last sector read failed");
1023 return EIO;
1025 xfs_buf_relse(bp);
1027 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1028 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1029 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1030 cmn_err(CE_WARN, "XFS: log size mismatch detected");
1031 return XFS_ERROR(EFBIG);
1033 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1034 d - XFS_FSB_TO_BB(mp, 1),
1035 XFS_FSB_TO_B(mp, 1), 0);
1036 if (!bp) {
1037 cmn_err(CE_WARN, "XFS: log device read failed");
1038 return EIO;
1040 xfs_buf_relse(bp);
1042 return 0;
1046 * Clear the quotaflags in memory and in the superblock.
1049 xfs_mount_reset_sbqflags(
1050 struct xfs_mount *mp)
1052 int error;
1053 struct xfs_trans *tp;
1055 mp->m_qflags = 0;
1058 * It is OK to look at sb_qflags here in mount path,
1059 * without m_sb_lock.
1061 if (mp->m_sb.sb_qflags == 0)
1062 return 0;
1063 spin_lock(&mp->m_sb_lock);
1064 mp->m_sb.sb_qflags = 0;
1065 spin_unlock(&mp->m_sb_lock);
1068 * If the fs is readonly, let the incore superblock run
1069 * with quotas off but don't flush the update out to disk
1071 if (mp->m_flags & XFS_MOUNT_RDONLY)
1072 return 0;
1074 #ifdef QUOTADEBUG
1075 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1076 #endif
1078 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1079 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1080 XFS_DEFAULT_LOG_COUNT);
1081 if (error) {
1082 xfs_trans_cancel(tp, 0);
1083 xfs_fs_cmn_err(CE_ALERT, mp,
1084 "xfs_mount_reset_sbqflags: Superblock update failed!");
1085 return error;
1088 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1089 return xfs_trans_commit(tp, 0);
1092 __uint64_t
1093 xfs_default_resblks(xfs_mount_t *mp)
1095 __uint64_t resblks;
1098 * We default to 5% or 8192 fsbs of space reserved, whichever is
1099 * smaller. This is intended to cover concurrent allocation
1100 * transactions when we initially hit enospc. These each require a 4
1101 * block reservation. Hence by default we cover roughly 2000 concurrent
1102 * allocation reservations.
1104 resblks = mp->m_sb.sb_dblocks;
1105 do_div(resblks, 20);
1106 resblks = min_t(__uint64_t, resblks, 8192);
1107 return resblks;
1111 * This function does the following on an initial mount of a file system:
1112 * - reads the superblock from disk and init the mount struct
1113 * - if we're a 32-bit kernel, do a size check on the superblock
1114 * so we don't mount terabyte filesystems
1115 * - init mount struct realtime fields
1116 * - allocate inode hash table for fs
1117 * - init directory manager
1118 * - perform recovery and init the log manager
1121 xfs_mountfs(
1122 xfs_mount_t *mp)
1124 xfs_sb_t *sbp = &(mp->m_sb);
1125 xfs_inode_t *rip;
1126 __uint64_t resblks;
1127 uint quotamount = 0;
1128 uint quotaflags = 0;
1129 int error = 0;
1131 xfs_mount_common(mp, sbp);
1134 * Check for a mismatched features2 values. Older kernels
1135 * read & wrote into the wrong sb offset for sb_features2
1136 * on some platforms due to xfs_sb_t not being 64bit size aligned
1137 * when sb_features2 was added, which made older superblock
1138 * reading/writing routines swap it as a 64-bit value.
1140 * For backwards compatibility, we make both slots equal.
1142 * If we detect a mismatched field, we OR the set bits into the
1143 * existing features2 field in case it has already been modified; we
1144 * don't want to lose any features. We then update the bad location
1145 * with the ORed value so that older kernels will see any features2
1146 * flags, and mark the two fields as needing updates once the
1147 * transaction subsystem is online.
1149 if (xfs_sb_has_mismatched_features2(sbp)) {
1150 cmn_err(CE_WARN,
1151 "XFS: correcting sb_features alignment problem");
1152 sbp->sb_features2 |= sbp->sb_bad_features2;
1153 sbp->sb_bad_features2 = sbp->sb_features2;
1154 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1157 * Re-check for ATTR2 in case it was found in bad_features2
1158 * slot.
1160 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1161 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1162 mp->m_flags |= XFS_MOUNT_ATTR2;
1165 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1166 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1167 xfs_sb_version_removeattr2(&mp->m_sb);
1168 mp->m_update_flags |= XFS_SB_FEATURES2;
1170 /* update sb_versionnum for the clearing of the morebits */
1171 if (!sbp->sb_features2)
1172 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1176 * Check if sb_agblocks is aligned at stripe boundary
1177 * If sb_agblocks is NOT aligned turn off m_dalign since
1178 * allocator alignment is within an ag, therefore ag has
1179 * to be aligned at stripe boundary.
1181 error = xfs_update_alignment(mp);
1182 if (error)
1183 goto out;
1185 xfs_alloc_compute_maxlevels(mp);
1186 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1187 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1188 xfs_ialloc_compute_maxlevels(mp);
1190 xfs_set_maxicount(mp);
1192 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1194 error = xfs_uuid_mount(mp);
1195 if (error)
1196 goto out;
1199 * Set the minimum read and write sizes
1201 xfs_set_rw_sizes(mp);
1204 * Set the inode cluster size.
1205 * This may still be overridden by the file system
1206 * block size if it is larger than the chosen cluster size.
1208 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1211 * Set inode alignment fields
1213 xfs_set_inoalignment(mp);
1216 * Check that the data (and log if separate) are an ok size.
1218 error = xfs_check_sizes(mp);
1219 if (error)
1220 goto out_remove_uuid;
1223 * Initialize realtime fields in the mount structure
1225 error = xfs_rtmount_init(mp);
1226 if (error) {
1227 cmn_err(CE_WARN, "XFS: RT mount failed");
1228 goto out_remove_uuid;
1232 * Copies the low order bits of the timestamp and the randomly
1233 * set "sequence" number out of a UUID.
1235 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1237 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1239 xfs_dir_mount(mp);
1242 * Initialize the attribute manager's entries.
1244 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1247 * Initialize the precomputed transaction reservations values.
1249 xfs_trans_init(mp);
1252 * Allocate and initialize the per-ag data.
1254 spin_lock_init(&mp->m_perag_lock);
1255 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1256 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1257 if (error) {
1258 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1259 goto out_remove_uuid;
1262 if (!sbp->sb_logblocks) {
1263 cmn_err(CE_WARN, "XFS: no log defined");
1264 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1265 error = XFS_ERROR(EFSCORRUPTED);
1266 goto out_free_perag;
1270 * log's mount-time initialization. Perform 1st part recovery if needed
1272 error = xfs_log_mount(mp, mp->m_logdev_targp,
1273 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1274 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1275 if (error) {
1276 cmn_err(CE_WARN, "XFS: log mount failed");
1277 goto out_free_perag;
1281 * Now the log is mounted, we know if it was an unclean shutdown or
1282 * not. If it was, with the first phase of recovery has completed, we
1283 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1284 * but they are recovered transactionally in the second recovery phase
1285 * later.
1287 * Hence we can safely re-initialise incore superblock counters from
1288 * the per-ag data. These may not be correct if the filesystem was not
1289 * cleanly unmounted, so we need to wait for recovery to finish before
1290 * doing this.
1292 * If the filesystem was cleanly unmounted, then we can trust the
1293 * values in the superblock to be correct and we don't need to do
1294 * anything here.
1296 * If we are currently making the filesystem, the initialisation will
1297 * fail as the perag data is in an undefined state.
1299 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1300 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1301 !mp->m_sb.sb_inprogress) {
1302 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1303 if (error)
1304 goto out_free_perag;
1308 * Get and sanity-check the root inode.
1309 * Save the pointer to it in the mount structure.
1311 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1312 if (error) {
1313 cmn_err(CE_WARN, "XFS: failed to read root inode");
1314 goto out_log_dealloc;
1317 ASSERT(rip != NULL);
1319 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1320 cmn_err(CE_WARN, "XFS: corrupted root inode");
1321 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1322 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1323 (unsigned long long)rip->i_ino);
1324 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1325 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1326 mp);
1327 error = XFS_ERROR(EFSCORRUPTED);
1328 goto out_rele_rip;
1330 mp->m_rootip = rip; /* save it */
1332 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1335 * Initialize realtime inode pointers in the mount structure
1337 error = xfs_rtmount_inodes(mp);
1338 if (error) {
1340 * Free up the root inode.
1342 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1343 goto out_rele_rip;
1347 * If this is a read-only mount defer the superblock updates until
1348 * the next remount into writeable mode. Otherwise we would never
1349 * perform the update e.g. for the root filesystem.
1351 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1352 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1353 if (error) {
1354 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1355 goto out_rtunmount;
1360 * Initialise the XFS quota management subsystem for this mount
1362 if (XFS_IS_QUOTA_RUNNING(mp)) {
1363 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1364 if (error)
1365 goto out_rtunmount;
1366 } else {
1367 ASSERT(!XFS_IS_QUOTA_ON(mp));
1370 * If a file system had quotas running earlier, but decided to
1371 * mount without -o uquota/pquota/gquota options, revoke the
1372 * quotachecked license.
1374 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1375 cmn_err(CE_NOTE,
1376 "XFS: resetting qflags for filesystem %s",
1377 mp->m_fsname);
1379 error = xfs_mount_reset_sbqflags(mp);
1380 if (error)
1381 return error;
1386 * Finish recovering the file system. This part needed to be
1387 * delayed until after the root and real-time bitmap inodes
1388 * were consistently read in.
1390 error = xfs_log_mount_finish(mp);
1391 if (error) {
1392 cmn_err(CE_WARN, "XFS: log mount finish failed");
1393 goto out_rtunmount;
1397 * Complete the quota initialisation, post-log-replay component.
1399 if (quotamount) {
1400 ASSERT(mp->m_qflags == 0);
1401 mp->m_qflags = quotaflags;
1403 xfs_qm_mount_quotas(mp);
1407 * Now we are mounted, reserve a small amount of unused space for
1408 * privileged transactions. This is needed so that transaction
1409 * space required for critical operations can dip into this pool
1410 * when at ENOSPC. This is needed for operations like create with
1411 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1412 * are not allowed to use this reserved space.
1414 * This may drive us straight to ENOSPC on mount, but that implies
1415 * we were already there on the last unmount. Warn if this occurs.
1417 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1418 resblks = xfs_default_resblks(mp);
1419 error = xfs_reserve_blocks(mp, &resblks, NULL);
1420 if (error)
1421 cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1422 "blocks. Continuing without a reserve pool.");
1425 return 0;
1427 out_rtunmount:
1428 xfs_rtunmount_inodes(mp);
1429 out_rele_rip:
1430 IRELE(rip);
1431 out_log_dealloc:
1432 xfs_log_unmount(mp);
1433 out_free_perag:
1434 xfs_free_perag(mp);
1435 out_remove_uuid:
1436 xfs_uuid_unmount(mp);
1437 out:
1438 return error;
1442 * This flushes out the inodes,dquots and the superblock, unmounts the
1443 * log and makes sure that incore structures are freed.
1445 void
1446 xfs_unmountfs(
1447 struct xfs_mount *mp)
1449 __uint64_t resblks;
1450 int error;
1452 xfs_qm_unmount_quotas(mp);
1453 xfs_rtunmount_inodes(mp);
1454 IRELE(mp->m_rootip);
1457 * We can potentially deadlock here if we have an inode cluster
1458 * that has been freed has its buffer still pinned in memory because
1459 * the transaction is still sitting in a iclog. The stale inodes
1460 * on that buffer will have their flush locks held until the
1461 * transaction hits the disk and the callbacks run. the inode
1462 * flush takes the flush lock unconditionally and with nothing to
1463 * push out the iclog we will never get that unlocked. hence we
1464 * need to force the log first.
1466 xfs_log_force(mp, XFS_LOG_SYNC);
1469 * Do a delwri reclaim pass first so that as many dirty inodes are
1470 * queued up for IO as possible. Then flush the buffers before making
1471 * a synchronous path to catch all the remaining inodes are reclaimed.
1472 * This makes the reclaim process as quick as possible by avoiding
1473 * synchronous writeout and blocking on inodes already in the delwri
1474 * state as much as possible.
1476 xfs_reclaim_inodes(mp, 0);
1477 XFS_bflush(mp->m_ddev_targp);
1478 xfs_reclaim_inodes(mp, SYNC_WAIT);
1480 xfs_qm_unmount(mp);
1483 * Flush out the log synchronously so that we know for sure
1484 * that nothing is pinned. This is important because bflush()
1485 * will skip pinned buffers.
1487 xfs_log_force(mp, XFS_LOG_SYNC);
1489 xfs_binval(mp->m_ddev_targp);
1490 if (mp->m_rtdev_targp) {
1491 xfs_binval(mp->m_rtdev_targp);
1495 * Unreserve any blocks we have so that when we unmount we don't account
1496 * the reserved free space as used. This is really only necessary for
1497 * lazy superblock counting because it trusts the incore superblock
1498 * counters to be absolutely correct on clean unmount.
1500 * We don't bother correcting this elsewhere for lazy superblock
1501 * counting because on mount of an unclean filesystem we reconstruct the
1502 * correct counter value and this is irrelevant.
1504 * For non-lazy counter filesystems, this doesn't matter at all because
1505 * we only every apply deltas to the superblock and hence the incore
1506 * value does not matter....
1508 resblks = 0;
1509 error = xfs_reserve_blocks(mp, &resblks, NULL);
1510 if (error)
1511 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1512 "Freespace may not be correct on next mount.");
1514 error = xfs_log_sbcount(mp, 1);
1515 if (error)
1516 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1517 "Freespace may not be correct on next mount.");
1518 xfs_unmountfs_writesb(mp);
1519 xfs_unmountfs_wait(mp); /* wait for async bufs */
1520 xfs_log_unmount_write(mp);
1521 xfs_log_unmount(mp);
1522 xfs_uuid_unmount(mp);
1524 #if defined(DEBUG)
1525 xfs_errortag_clearall(mp, 0);
1526 #endif
1527 xfs_free_perag(mp);
1530 STATIC void
1531 xfs_unmountfs_wait(xfs_mount_t *mp)
1533 if (mp->m_logdev_targp != mp->m_ddev_targp)
1534 xfs_wait_buftarg(mp->m_logdev_targp);
1535 if (mp->m_rtdev_targp)
1536 xfs_wait_buftarg(mp->m_rtdev_targp);
1537 xfs_wait_buftarg(mp->m_ddev_targp);
1541 xfs_fs_writable(xfs_mount_t *mp)
1543 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1544 (mp->m_flags & XFS_MOUNT_RDONLY));
1548 * xfs_log_sbcount
1550 * Called either periodically to keep the on disk superblock values
1551 * roughly up to date or from unmount to make sure the values are
1552 * correct on a clean unmount.
1554 * Note this code can be called during the process of freezing, so
1555 * we may need to use the transaction allocator which does not not
1556 * block when the transaction subsystem is in its frozen state.
1559 xfs_log_sbcount(
1560 xfs_mount_t *mp,
1561 uint sync)
1563 xfs_trans_t *tp;
1564 int error;
1566 if (!xfs_fs_writable(mp))
1567 return 0;
1569 xfs_icsb_sync_counters(mp, 0);
1572 * we don't need to do this if we are updating the superblock
1573 * counters on every modification.
1575 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1576 return 0;
1578 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1579 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1580 XFS_DEFAULT_LOG_COUNT);
1581 if (error) {
1582 xfs_trans_cancel(tp, 0);
1583 return error;
1586 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1587 if (sync)
1588 xfs_trans_set_sync(tp);
1589 error = xfs_trans_commit(tp, 0);
1590 return error;
1594 xfs_unmountfs_writesb(xfs_mount_t *mp)
1596 xfs_buf_t *sbp;
1597 int error = 0;
1600 * skip superblock write if fs is read-only, or
1601 * if we are doing a forced umount.
1603 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1604 XFS_FORCED_SHUTDOWN(mp))) {
1606 sbp = xfs_getsb(mp, 0);
1608 XFS_BUF_UNDONE(sbp);
1609 XFS_BUF_UNREAD(sbp);
1610 XFS_BUF_UNDELAYWRITE(sbp);
1611 XFS_BUF_WRITE(sbp);
1612 XFS_BUF_UNASYNC(sbp);
1613 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1614 xfsbdstrat(mp, sbp);
1615 error = xfs_iowait(sbp);
1616 if (error)
1617 xfs_ioerror_alert("xfs_unmountfs_writesb",
1618 mp, sbp, XFS_BUF_ADDR(sbp));
1619 xfs_buf_relse(sbp);
1621 return error;
1625 * xfs_mod_sb() can be used to copy arbitrary changes to the
1626 * in-core superblock into the superblock buffer to be logged.
1627 * It does not provide the higher level of locking that is
1628 * needed to protect the in-core superblock from concurrent
1629 * access.
1631 void
1632 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1634 xfs_buf_t *bp;
1635 int first;
1636 int last;
1637 xfs_mount_t *mp;
1638 xfs_sb_field_t f;
1640 ASSERT(fields);
1641 if (!fields)
1642 return;
1643 mp = tp->t_mountp;
1644 bp = xfs_trans_getsb(tp, mp, 0);
1645 first = sizeof(xfs_sb_t);
1646 last = 0;
1648 /* translate/copy */
1650 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1652 /* find modified range */
1653 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1654 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1655 last = xfs_sb_info[f + 1].offset - 1;
1657 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1658 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1659 first = xfs_sb_info[f].offset;
1661 xfs_trans_log_buf(tp, bp, first, last);
1666 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1667 * a delta to a specified field in the in-core superblock. Simply
1668 * switch on the field indicated and apply the delta to that field.
1669 * Fields are not allowed to dip below zero, so if the delta would
1670 * do this do not apply it and return EINVAL.
1672 * The m_sb_lock must be held when this routine is called.
1674 STATIC int
1675 xfs_mod_incore_sb_unlocked(
1676 xfs_mount_t *mp,
1677 xfs_sb_field_t field,
1678 int64_t delta,
1679 int rsvd)
1681 int scounter; /* short counter for 32 bit fields */
1682 long long lcounter; /* long counter for 64 bit fields */
1683 long long res_used, rem;
1686 * With the in-core superblock spin lock held, switch
1687 * on the indicated field. Apply the delta to the
1688 * proper field. If the fields value would dip below
1689 * 0, then do not apply the delta and return EINVAL.
1691 switch (field) {
1692 case XFS_SBS_ICOUNT:
1693 lcounter = (long long)mp->m_sb.sb_icount;
1694 lcounter += delta;
1695 if (lcounter < 0) {
1696 ASSERT(0);
1697 return XFS_ERROR(EINVAL);
1699 mp->m_sb.sb_icount = lcounter;
1700 return 0;
1701 case XFS_SBS_IFREE:
1702 lcounter = (long long)mp->m_sb.sb_ifree;
1703 lcounter += delta;
1704 if (lcounter < 0) {
1705 ASSERT(0);
1706 return XFS_ERROR(EINVAL);
1708 mp->m_sb.sb_ifree = lcounter;
1709 return 0;
1710 case XFS_SBS_FDBLOCKS:
1711 lcounter = (long long)
1712 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1713 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1715 if (delta > 0) { /* Putting blocks back */
1716 if (res_used > delta) {
1717 mp->m_resblks_avail += delta;
1718 } else {
1719 rem = delta - res_used;
1720 mp->m_resblks_avail = mp->m_resblks;
1721 lcounter += rem;
1723 } else { /* Taking blocks away */
1724 lcounter += delta;
1725 if (lcounter >= 0) {
1726 mp->m_sb.sb_fdblocks = lcounter +
1727 XFS_ALLOC_SET_ASIDE(mp);
1728 return 0;
1732 * We are out of blocks, use any available reserved
1733 * blocks if were allowed to.
1735 if (!rsvd)
1736 return XFS_ERROR(ENOSPC);
1738 lcounter = (long long)mp->m_resblks_avail + delta;
1739 if (lcounter >= 0) {
1740 mp->m_resblks_avail = lcounter;
1741 return 0;
1743 printk_once(KERN_WARNING
1744 "Filesystem \"%s\": reserve blocks depleted! "
1745 "Consider increasing reserve pool size.",
1746 mp->m_fsname);
1747 return XFS_ERROR(ENOSPC);
1750 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1751 return 0;
1752 case XFS_SBS_FREXTENTS:
1753 lcounter = (long long)mp->m_sb.sb_frextents;
1754 lcounter += delta;
1755 if (lcounter < 0) {
1756 return XFS_ERROR(ENOSPC);
1758 mp->m_sb.sb_frextents = lcounter;
1759 return 0;
1760 case XFS_SBS_DBLOCKS:
1761 lcounter = (long long)mp->m_sb.sb_dblocks;
1762 lcounter += delta;
1763 if (lcounter < 0) {
1764 ASSERT(0);
1765 return XFS_ERROR(EINVAL);
1767 mp->m_sb.sb_dblocks = lcounter;
1768 return 0;
1769 case XFS_SBS_AGCOUNT:
1770 scounter = mp->m_sb.sb_agcount;
1771 scounter += delta;
1772 if (scounter < 0) {
1773 ASSERT(0);
1774 return XFS_ERROR(EINVAL);
1776 mp->m_sb.sb_agcount = scounter;
1777 return 0;
1778 case XFS_SBS_IMAX_PCT:
1779 scounter = mp->m_sb.sb_imax_pct;
1780 scounter += delta;
1781 if (scounter < 0) {
1782 ASSERT(0);
1783 return XFS_ERROR(EINVAL);
1785 mp->m_sb.sb_imax_pct = scounter;
1786 return 0;
1787 case XFS_SBS_REXTSIZE:
1788 scounter = mp->m_sb.sb_rextsize;
1789 scounter += delta;
1790 if (scounter < 0) {
1791 ASSERT(0);
1792 return XFS_ERROR(EINVAL);
1794 mp->m_sb.sb_rextsize = scounter;
1795 return 0;
1796 case XFS_SBS_RBMBLOCKS:
1797 scounter = mp->m_sb.sb_rbmblocks;
1798 scounter += delta;
1799 if (scounter < 0) {
1800 ASSERT(0);
1801 return XFS_ERROR(EINVAL);
1803 mp->m_sb.sb_rbmblocks = scounter;
1804 return 0;
1805 case XFS_SBS_RBLOCKS:
1806 lcounter = (long long)mp->m_sb.sb_rblocks;
1807 lcounter += delta;
1808 if (lcounter < 0) {
1809 ASSERT(0);
1810 return XFS_ERROR(EINVAL);
1812 mp->m_sb.sb_rblocks = lcounter;
1813 return 0;
1814 case XFS_SBS_REXTENTS:
1815 lcounter = (long long)mp->m_sb.sb_rextents;
1816 lcounter += delta;
1817 if (lcounter < 0) {
1818 ASSERT(0);
1819 return XFS_ERROR(EINVAL);
1821 mp->m_sb.sb_rextents = lcounter;
1822 return 0;
1823 case XFS_SBS_REXTSLOG:
1824 scounter = mp->m_sb.sb_rextslog;
1825 scounter += delta;
1826 if (scounter < 0) {
1827 ASSERT(0);
1828 return XFS_ERROR(EINVAL);
1830 mp->m_sb.sb_rextslog = scounter;
1831 return 0;
1832 default:
1833 ASSERT(0);
1834 return XFS_ERROR(EINVAL);
1839 * xfs_mod_incore_sb() is used to change a field in the in-core
1840 * superblock structure by the specified delta. This modification
1841 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1842 * routine to do the work.
1845 xfs_mod_incore_sb(
1846 xfs_mount_t *mp,
1847 xfs_sb_field_t field,
1848 int64_t delta,
1849 int rsvd)
1851 int status;
1853 /* check for per-cpu counters */
1854 switch (field) {
1855 #ifdef HAVE_PERCPU_SB
1856 case XFS_SBS_ICOUNT:
1857 case XFS_SBS_IFREE:
1858 case XFS_SBS_FDBLOCKS:
1859 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1860 status = xfs_icsb_modify_counters(mp, field,
1861 delta, rsvd);
1862 break;
1864 /* FALLTHROUGH */
1865 #endif
1866 default:
1867 spin_lock(&mp->m_sb_lock);
1868 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1869 spin_unlock(&mp->m_sb_lock);
1870 break;
1873 return status;
1877 * xfs_mod_incore_sb_batch() is used to change more than one field
1878 * in the in-core superblock structure at a time. This modification
1879 * is protected by a lock internal to this module. The fields and
1880 * changes to those fields are specified in the array of xfs_mod_sb
1881 * structures passed in.
1883 * Either all of the specified deltas will be applied or none of
1884 * them will. If any modified field dips below 0, then all modifications
1885 * will be backed out and EINVAL will be returned.
1888 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1890 int status=0;
1891 xfs_mod_sb_t *msbp;
1894 * Loop through the array of mod structures and apply each
1895 * individually. If any fail, then back out all those
1896 * which have already been applied. Do all of this within
1897 * the scope of the m_sb_lock so that all of the changes will
1898 * be atomic.
1900 spin_lock(&mp->m_sb_lock);
1901 msbp = &msb[0];
1902 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1904 * Apply the delta at index n. If it fails, break
1905 * from the loop so we'll fall into the undo loop
1906 * below.
1908 switch (msbp->msb_field) {
1909 #ifdef HAVE_PERCPU_SB
1910 case XFS_SBS_ICOUNT:
1911 case XFS_SBS_IFREE:
1912 case XFS_SBS_FDBLOCKS:
1913 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1914 spin_unlock(&mp->m_sb_lock);
1915 status = xfs_icsb_modify_counters(mp,
1916 msbp->msb_field,
1917 msbp->msb_delta, rsvd);
1918 spin_lock(&mp->m_sb_lock);
1919 break;
1921 /* FALLTHROUGH */
1922 #endif
1923 default:
1924 status = xfs_mod_incore_sb_unlocked(mp,
1925 msbp->msb_field,
1926 msbp->msb_delta, rsvd);
1927 break;
1930 if (status != 0) {
1931 break;
1936 * If we didn't complete the loop above, then back out
1937 * any changes made to the superblock. If you add code
1938 * between the loop above and here, make sure that you
1939 * preserve the value of status. Loop back until
1940 * we step below the beginning of the array. Make sure
1941 * we don't touch anything back there.
1943 if (status != 0) {
1944 msbp--;
1945 while (msbp >= msb) {
1946 switch (msbp->msb_field) {
1947 #ifdef HAVE_PERCPU_SB
1948 case XFS_SBS_ICOUNT:
1949 case XFS_SBS_IFREE:
1950 case XFS_SBS_FDBLOCKS:
1951 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1952 spin_unlock(&mp->m_sb_lock);
1953 status = xfs_icsb_modify_counters(mp,
1954 msbp->msb_field,
1955 -(msbp->msb_delta),
1956 rsvd);
1957 spin_lock(&mp->m_sb_lock);
1958 break;
1960 /* FALLTHROUGH */
1961 #endif
1962 default:
1963 status = xfs_mod_incore_sb_unlocked(mp,
1964 msbp->msb_field,
1965 -(msbp->msb_delta),
1966 rsvd);
1967 break;
1969 ASSERT(status == 0);
1970 msbp--;
1973 spin_unlock(&mp->m_sb_lock);
1974 return status;
1978 * xfs_getsb() is called to obtain the buffer for the superblock.
1979 * The buffer is returned locked and read in from disk.
1980 * The buffer should be released with a call to xfs_brelse().
1982 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1983 * the superblock buffer if it can be locked without sleeping.
1984 * If it can't then we'll return NULL.
1986 xfs_buf_t *
1987 xfs_getsb(
1988 xfs_mount_t *mp,
1989 int flags)
1991 xfs_buf_t *bp;
1993 ASSERT(mp->m_sb_bp != NULL);
1994 bp = mp->m_sb_bp;
1995 if (flags & XBF_TRYLOCK) {
1996 if (!XFS_BUF_CPSEMA(bp)) {
1997 return NULL;
1999 } else {
2000 XFS_BUF_PSEMA(bp, PRIBIO);
2002 XFS_BUF_HOLD(bp);
2003 ASSERT(XFS_BUF_ISDONE(bp));
2004 return bp;
2008 * Used to free the superblock along various error paths.
2010 void
2011 xfs_freesb(
2012 struct xfs_mount *mp)
2014 struct xfs_buf *bp = mp->m_sb_bp;
2016 xfs_buf_lock(bp);
2017 mp->m_sb_bp = NULL;
2018 xfs_buf_relse(bp);
2022 * Used to log changes to the superblock unit and width fields which could
2023 * be altered by the mount options, as well as any potential sb_features2
2024 * fixup. Only the first superblock is updated.
2027 xfs_mount_log_sb(
2028 xfs_mount_t *mp,
2029 __int64_t fields)
2031 xfs_trans_t *tp;
2032 int error;
2034 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2035 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2036 XFS_SB_VERSIONNUM));
2038 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2039 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2040 XFS_DEFAULT_LOG_COUNT);
2041 if (error) {
2042 xfs_trans_cancel(tp, 0);
2043 return error;
2045 xfs_mod_sb(tp, fields);
2046 error = xfs_trans_commit(tp, 0);
2047 return error;
2051 * If the underlying (data/log/rt) device is readonly, there are some
2052 * operations that cannot proceed.
2055 xfs_dev_is_read_only(
2056 struct xfs_mount *mp,
2057 char *message)
2059 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2060 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2061 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2062 cmn_err(CE_NOTE,
2063 "XFS: %s required on read-only device.", message);
2064 cmn_err(CE_NOTE,
2065 "XFS: write access unavailable, cannot proceed.");
2066 return EROFS;
2068 return 0;
2071 #ifdef HAVE_PERCPU_SB
2073 * Per-cpu incore superblock counters
2075 * Simple concept, difficult implementation
2077 * Basically, replace the incore superblock counters with a distributed per cpu
2078 * counter for contended fields (e.g. free block count).
2080 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2081 * hence needs to be accurately read when we are running low on space. Hence
2082 * there is a method to enable and disable the per-cpu counters based on how
2083 * much "stuff" is available in them.
2085 * Basically, a counter is enabled if there is enough free resource to justify
2086 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2087 * ENOSPC), then we disable the counters to synchronise all callers and
2088 * re-distribute the available resources.
2090 * If, once we redistributed the available resources, we still get a failure,
2091 * we disable the per-cpu counter and go through the slow path.
2093 * The slow path is the current xfs_mod_incore_sb() function. This means that
2094 * when we disable a per-cpu counter, we need to drain its resources back to
2095 * the global superblock. We do this after disabling the counter to prevent
2096 * more threads from queueing up on the counter.
2098 * Essentially, this means that we still need a lock in the fast path to enable
2099 * synchronisation between the global counters and the per-cpu counters. This
2100 * is not a problem because the lock will be local to a CPU almost all the time
2101 * and have little contention except when we get to ENOSPC conditions.
2103 * Basically, this lock becomes a barrier that enables us to lock out the fast
2104 * path while we do things like enabling and disabling counters and
2105 * synchronising the counters.
2107 * Locking rules:
2109 * 1. m_sb_lock before picking up per-cpu locks
2110 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2111 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2112 * 4. modifying per-cpu counters requires holding per-cpu lock
2113 * 5. modifying global counters requires holding m_sb_lock
2114 * 6. enabling or disabling a counter requires holding the m_sb_lock
2115 * and _none_ of the per-cpu locks.
2117 * Disabled counters are only ever re-enabled by a balance operation
2118 * that results in more free resources per CPU than a given threshold.
2119 * To ensure counters don't remain disabled, they are rebalanced when
2120 * the global resource goes above a higher threshold (i.e. some hysteresis
2121 * is present to prevent thrashing).
2124 #ifdef CONFIG_HOTPLUG_CPU
2126 * hot-plug CPU notifier support.
2128 * We need a notifier per filesystem as we need to be able to identify
2129 * the filesystem to balance the counters out. This is achieved by
2130 * having a notifier block embedded in the xfs_mount_t and doing pointer
2131 * magic to get the mount pointer from the notifier block address.
2133 STATIC int
2134 xfs_icsb_cpu_notify(
2135 struct notifier_block *nfb,
2136 unsigned long action,
2137 void *hcpu)
2139 xfs_icsb_cnts_t *cntp;
2140 xfs_mount_t *mp;
2142 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2143 cntp = (xfs_icsb_cnts_t *)
2144 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2145 switch (action) {
2146 case CPU_UP_PREPARE:
2147 case CPU_UP_PREPARE_FROZEN:
2148 /* Easy Case - initialize the area and locks, and
2149 * then rebalance when online does everything else for us. */
2150 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2151 break;
2152 case CPU_ONLINE:
2153 case CPU_ONLINE_FROZEN:
2154 xfs_icsb_lock(mp);
2155 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2156 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2157 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2158 xfs_icsb_unlock(mp);
2159 break;
2160 case CPU_DEAD:
2161 case CPU_DEAD_FROZEN:
2162 /* Disable all the counters, then fold the dead cpu's
2163 * count into the total on the global superblock and
2164 * re-enable the counters. */
2165 xfs_icsb_lock(mp);
2166 spin_lock(&mp->m_sb_lock);
2167 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2168 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2169 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2171 mp->m_sb.sb_icount += cntp->icsb_icount;
2172 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2173 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2175 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2177 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2178 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2179 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2180 spin_unlock(&mp->m_sb_lock);
2181 xfs_icsb_unlock(mp);
2182 break;
2185 return NOTIFY_OK;
2187 #endif /* CONFIG_HOTPLUG_CPU */
2190 xfs_icsb_init_counters(
2191 xfs_mount_t *mp)
2193 xfs_icsb_cnts_t *cntp;
2194 int i;
2196 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2197 if (mp->m_sb_cnts == NULL)
2198 return -ENOMEM;
2200 #ifdef CONFIG_HOTPLUG_CPU
2201 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2202 mp->m_icsb_notifier.priority = 0;
2203 register_hotcpu_notifier(&mp->m_icsb_notifier);
2204 #endif /* CONFIG_HOTPLUG_CPU */
2206 for_each_online_cpu(i) {
2207 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2208 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2211 mutex_init(&mp->m_icsb_mutex);
2214 * start with all counters disabled so that the
2215 * initial balance kicks us off correctly
2217 mp->m_icsb_counters = -1;
2218 return 0;
2221 void
2222 xfs_icsb_reinit_counters(
2223 xfs_mount_t *mp)
2225 xfs_icsb_lock(mp);
2227 * start with all counters disabled so that the
2228 * initial balance kicks us off correctly
2230 mp->m_icsb_counters = -1;
2231 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2232 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2233 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2234 xfs_icsb_unlock(mp);
2237 void
2238 xfs_icsb_destroy_counters(
2239 xfs_mount_t *mp)
2241 if (mp->m_sb_cnts) {
2242 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2243 free_percpu(mp->m_sb_cnts);
2245 mutex_destroy(&mp->m_icsb_mutex);
2248 STATIC void
2249 xfs_icsb_lock_cntr(
2250 xfs_icsb_cnts_t *icsbp)
2252 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2253 ndelay(1000);
2257 STATIC void
2258 xfs_icsb_unlock_cntr(
2259 xfs_icsb_cnts_t *icsbp)
2261 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2265 STATIC void
2266 xfs_icsb_lock_all_counters(
2267 xfs_mount_t *mp)
2269 xfs_icsb_cnts_t *cntp;
2270 int i;
2272 for_each_online_cpu(i) {
2273 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2274 xfs_icsb_lock_cntr(cntp);
2278 STATIC void
2279 xfs_icsb_unlock_all_counters(
2280 xfs_mount_t *mp)
2282 xfs_icsb_cnts_t *cntp;
2283 int i;
2285 for_each_online_cpu(i) {
2286 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2287 xfs_icsb_unlock_cntr(cntp);
2291 STATIC void
2292 xfs_icsb_count(
2293 xfs_mount_t *mp,
2294 xfs_icsb_cnts_t *cnt,
2295 int flags)
2297 xfs_icsb_cnts_t *cntp;
2298 int i;
2300 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2302 if (!(flags & XFS_ICSB_LAZY_COUNT))
2303 xfs_icsb_lock_all_counters(mp);
2305 for_each_online_cpu(i) {
2306 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2307 cnt->icsb_icount += cntp->icsb_icount;
2308 cnt->icsb_ifree += cntp->icsb_ifree;
2309 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2312 if (!(flags & XFS_ICSB_LAZY_COUNT))
2313 xfs_icsb_unlock_all_counters(mp);
2316 STATIC int
2317 xfs_icsb_counter_disabled(
2318 xfs_mount_t *mp,
2319 xfs_sb_field_t field)
2321 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2322 return test_bit(field, &mp->m_icsb_counters);
2325 STATIC void
2326 xfs_icsb_disable_counter(
2327 xfs_mount_t *mp,
2328 xfs_sb_field_t field)
2330 xfs_icsb_cnts_t cnt;
2332 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2335 * If we are already disabled, then there is nothing to do
2336 * here. We check before locking all the counters to avoid
2337 * the expensive lock operation when being called in the
2338 * slow path and the counter is already disabled. This is
2339 * safe because the only time we set or clear this state is under
2340 * the m_icsb_mutex.
2342 if (xfs_icsb_counter_disabled(mp, field))
2343 return;
2345 xfs_icsb_lock_all_counters(mp);
2346 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2347 /* drain back to superblock */
2349 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2350 switch(field) {
2351 case XFS_SBS_ICOUNT:
2352 mp->m_sb.sb_icount = cnt.icsb_icount;
2353 break;
2354 case XFS_SBS_IFREE:
2355 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2356 break;
2357 case XFS_SBS_FDBLOCKS:
2358 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2359 break;
2360 default:
2361 BUG();
2365 xfs_icsb_unlock_all_counters(mp);
2368 STATIC void
2369 xfs_icsb_enable_counter(
2370 xfs_mount_t *mp,
2371 xfs_sb_field_t field,
2372 uint64_t count,
2373 uint64_t resid)
2375 xfs_icsb_cnts_t *cntp;
2376 int i;
2378 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2380 xfs_icsb_lock_all_counters(mp);
2381 for_each_online_cpu(i) {
2382 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2383 switch (field) {
2384 case XFS_SBS_ICOUNT:
2385 cntp->icsb_icount = count + resid;
2386 break;
2387 case XFS_SBS_IFREE:
2388 cntp->icsb_ifree = count + resid;
2389 break;
2390 case XFS_SBS_FDBLOCKS:
2391 cntp->icsb_fdblocks = count + resid;
2392 break;
2393 default:
2394 BUG();
2395 break;
2397 resid = 0;
2399 clear_bit(field, &mp->m_icsb_counters);
2400 xfs_icsb_unlock_all_counters(mp);
2403 void
2404 xfs_icsb_sync_counters_locked(
2405 xfs_mount_t *mp,
2406 int flags)
2408 xfs_icsb_cnts_t cnt;
2410 xfs_icsb_count(mp, &cnt, flags);
2412 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2413 mp->m_sb.sb_icount = cnt.icsb_icount;
2414 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2415 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2416 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2417 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2421 * Accurate update of per-cpu counters to incore superblock
2423 void
2424 xfs_icsb_sync_counters(
2425 xfs_mount_t *mp,
2426 int flags)
2428 spin_lock(&mp->m_sb_lock);
2429 xfs_icsb_sync_counters_locked(mp, flags);
2430 spin_unlock(&mp->m_sb_lock);
2434 * Balance and enable/disable counters as necessary.
2436 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2437 * chosen to be the same number as single on disk allocation chunk per CPU, and
2438 * free blocks is something far enough zero that we aren't going thrash when we
2439 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2440 * prevent looping endlessly when xfs_alloc_space asks for more than will
2441 * be distributed to a single CPU but each CPU has enough blocks to be
2442 * reenabled.
2444 * Note that we can be called when counters are already disabled.
2445 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2446 * prevent locking every per-cpu counter needlessly.
2449 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2450 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2451 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2452 STATIC void
2453 xfs_icsb_balance_counter_locked(
2454 xfs_mount_t *mp,
2455 xfs_sb_field_t field,
2456 int min_per_cpu)
2458 uint64_t count, resid;
2459 int weight = num_online_cpus();
2460 uint64_t min = (uint64_t)min_per_cpu;
2462 /* disable counter and sync counter */
2463 xfs_icsb_disable_counter(mp, field);
2465 /* update counters - first CPU gets residual*/
2466 switch (field) {
2467 case XFS_SBS_ICOUNT:
2468 count = mp->m_sb.sb_icount;
2469 resid = do_div(count, weight);
2470 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2471 return;
2472 break;
2473 case XFS_SBS_IFREE:
2474 count = mp->m_sb.sb_ifree;
2475 resid = do_div(count, weight);
2476 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2477 return;
2478 break;
2479 case XFS_SBS_FDBLOCKS:
2480 count = mp->m_sb.sb_fdblocks;
2481 resid = do_div(count, weight);
2482 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2483 return;
2484 break;
2485 default:
2486 BUG();
2487 count = resid = 0; /* quiet, gcc */
2488 break;
2491 xfs_icsb_enable_counter(mp, field, count, resid);
2494 STATIC void
2495 xfs_icsb_balance_counter(
2496 xfs_mount_t *mp,
2497 xfs_sb_field_t fields,
2498 int min_per_cpu)
2500 spin_lock(&mp->m_sb_lock);
2501 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2502 spin_unlock(&mp->m_sb_lock);
2505 STATIC int
2506 xfs_icsb_modify_counters(
2507 xfs_mount_t *mp,
2508 xfs_sb_field_t field,
2509 int64_t delta,
2510 int rsvd)
2512 xfs_icsb_cnts_t *icsbp;
2513 long long lcounter; /* long counter for 64 bit fields */
2514 int ret = 0;
2516 might_sleep();
2517 again:
2518 preempt_disable();
2519 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2522 * if the counter is disabled, go to slow path
2524 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2525 goto slow_path;
2526 xfs_icsb_lock_cntr(icsbp);
2527 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2528 xfs_icsb_unlock_cntr(icsbp);
2529 goto slow_path;
2532 switch (field) {
2533 case XFS_SBS_ICOUNT:
2534 lcounter = icsbp->icsb_icount;
2535 lcounter += delta;
2536 if (unlikely(lcounter < 0))
2537 goto balance_counter;
2538 icsbp->icsb_icount = lcounter;
2539 break;
2541 case XFS_SBS_IFREE:
2542 lcounter = icsbp->icsb_ifree;
2543 lcounter += delta;
2544 if (unlikely(lcounter < 0))
2545 goto balance_counter;
2546 icsbp->icsb_ifree = lcounter;
2547 break;
2549 case XFS_SBS_FDBLOCKS:
2550 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2552 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2553 lcounter += delta;
2554 if (unlikely(lcounter < 0))
2555 goto balance_counter;
2556 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2557 break;
2558 default:
2559 BUG();
2560 break;
2562 xfs_icsb_unlock_cntr(icsbp);
2563 preempt_enable();
2564 return 0;
2566 slow_path:
2567 preempt_enable();
2570 * serialise with a mutex so we don't burn lots of cpu on
2571 * the superblock lock. We still need to hold the superblock
2572 * lock, however, when we modify the global structures.
2574 xfs_icsb_lock(mp);
2577 * Now running atomically.
2579 * If the counter is enabled, someone has beaten us to rebalancing.
2580 * Drop the lock and try again in the fast path....
2582 if (!(xfs_icsb_counter_disabled(mp, field))) {
2583 xfs_icsb_unlock(mp);
2584 goto again;
2588 * The counter is currently disabled. Because we are
2589 * running atomically here, we know a rebalance cannot
2590 * be in progress. Hence we can go straight to operating
2591 * on the global superblock. We do not call xfs_mod_incore_sb()
2592 * here even though we need to get the m_sb_lock. Doing so
2593 * will cause us to re-enter this function and deadlock.
2594 * Hence we get the m_sb_lock ourselves and then call
2595 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2596 * directly on the global counters.
2598 spin_lock(&mp->m_sb_lock);
2599 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2600 spin_unlock(&mp->m_sb_lock);
2603 * Now that we've modified the global superblock, we
2604 * may be able to re-enable the distributed counters
2605 * (e.g. lots of space just got freed). After that
2606 * we are done.
2608 if (ret != ENOSPC)
2609 xfs_icsb_balance_counter(mp, field, 0);
2610 xfs_icsb_unlock(mp);
2611 return ret;
2613 balance_counter:
2614 xfs_icsb_unlock_cntr(icsbp);
2615 preempt_enable();
2618 * We may have multiple threads here if multiple per-cpu
2619 * counters run dry at the same time. This will mean we can
2620 * do more balances than strictly necessary but it is not
2621 * the common slowpath case.
2623 xfs_icsb_lock(mp);
2626 * running atomically.
2628 * This will leave the counter in the correct state for future
2629 * accesses. After the rebalance, we simply try again and our retry
2630 * will either succeed through the fast path or slow path without
2631 * another balance operation being required.
2633 xfs_icsb_balance_counter(mp, field, delta);
2634 xfs_icsb_unlock(mp);
2635 goto again;
2638 #endif