gru: add hugepage support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / cpmac.c
blob678222389407b91ba0073780e18c7c04c10dde4a
1 /*
2 * Copyright (C) 2006, 2007 Eugene Konev
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/phy.h>
36 #include <linux/phy_fixed.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <asm/gpio.h>
40 #include <asm/atomic.h>
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
47 static int debug_level = 8;
48 static int dumb_switch;
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
57 #define CPMAC_VERSION "0.5.1"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES 8
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL 0x0004
64 #define CPMAC_TX_TEARDOWN 0x0008
65 #define CPMAC_RX_CONTROL 0x0014
66 #define CPMAC_RX_TEARDOWN 0x0018
67 #define CPMAC_MBP 0x0100
68 # define MBP_RXPASSCRC 0x40000000
69 # define MBP_RXQOS 0x20000000
70 # define MBP_RXNOCHAIN 0x10000000
71 # define MBP_RXCMF 0x01000000
72 # define MBP_RXSHORT 0x00800000
73 # define MBP_RXCEF 0x00400000
74 # define MBP_RXPROMISC 0x00200000
75 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
76 # define MBP_RXBCAST 0x00002000
77 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
78 # define MBP_RXMCAST 0x00000020
79 # define MBP_MCASTCHAN(channel) ((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE 0x0104
81 #define CPMAC_UNICAST_CLEAR 0x0108
82 #define CPMAC_MAX_LENGTH 0x010c
83 #define CPMAC_BUFFER_OFFSET 0x0110
84 #define CPMAC_MAC_CONTROL 0x0160
85 # define MAC_TXPTYPE 0x00000200
86 # define MAC_TXPACE 0x00000040
87 # define MAC_MII 0x00000020
88 # define MAC_TXFLOW 0x00000010
89 # define MAC_RXFLOW 0x00000008
90 # define MAC_MTEST 0x00000004
91 # define MAC_LOOPBACK 0x00000002
92 # define MAC_FDX 0x00000001
93 #define CPMAC_MAC_STATUS 0x0164
94 # define MAC_STATUS_QOS 0x00000004
95 # define MAC_STATUS_RXFLOW 0x00000002
96 # define MAC_STATUS_TXFLOW 0x00000001
97 #define CPMAC_TX_INT_ENABLE 0x0178
98 #define CPMAC_TX_INT_CLEAR 0x017c
99 #define CPMAC_MAC_INT_VECTOR 0x0180
100 # define MAC_INT_STATUS 0x00080000
101 # define MAC_INT_HOST 0x00040000
102 # define MAC_INT_RX 0x00020000
103 # define MAC_INT_TX 0x00010000
104 #define CPMAC_MAC_EOI_VECTOR 0x0184
105 #define CPMAC_RX_INT_ENABLE 0x0198
106 #define CPMAC_RX_INT_CLEAR 0x019c
107 #define CPMAC_MAC_INT_ENABLE 0x01a8
108 #define CPMAC_MAC_INT_CLEAR 0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID 0x01d0
111 #define CPMAC_MAC_ADDR_HI 0x01d4
112 #define CPMAC_MAC_HASH_LO 0x01d8
113 #define CPMAC_MAC_HASH_HI 0x01dc
114 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
118 #define CPMAC_REG_END 0x0680
120 * Rx/Tx statistics
121 * TODO: use some of them to fill stats in cpmac_stats()
123 #define CPMAC_STATS_RX_GOOD 0x0200
124 #define CPMAC_STATS_RX_BCAST 0x0204
125 #define CPMAC_STATS_RX_MCAST 0x0208
126 #define CPMAC_STATS_RX_PAUSE 0x020c
127 #define CPMAC_STATS_RX_CRC 0x0210
128 #define CPMAC_STATS_RX_ALIGN 0x0214
129 #define CPMAC_STATS_RX_OVER 0x0218
130 #define CPMAC_STATS_RX_JABBER 0x021c
131 #define CPMAC_STATS_RX_UNDER 0x0220
132 #define CPMAC_STATS_RX_FRAG 0x0224
133 #define CPMAC_STATS_RX_FILTER 0x0228
134 #define CPMAC_STATS_RX_QOSFILTER 0x022c
135 #define CPMAC_STATS_RX_OCTETS 0x0230
137 #define CPMAC_STATS_TX_GOOD 0x0234
138 #define CPMAC_STATS_TX_BCAST 0x0238
139 #define CPMAC_STATS_TX_MCAST 0x023c
140 #define CPMAC_STATS_TX_PAUSE 0x0240
141 #define CPMAC_STATS_TX_DEFER 0x0244
142 #define CPMAC_STATS_TX_COLLISION 0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
144 #define CPMAC_STATS_TX_MULTICOLL 0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
146 #define CPMAC_STATS_TX_LATECOLL 0x0258
147 #define CPMAC_STATS_TX_UNDERRUN 0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
149 #define CPMAC_STATS_TX_OCTETS 0x0264
151 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
153 (reg)))
155 /* MDIO bus */
156 #define CPMAC_MDIO_VERSION 0x0000
157 #define CPMAC_MDIO_CONTROL 0x0004
158 # define MDIOC_IDLE 0x80000000
159 # define MDIOC_ENABLE 0x40000000
160 # define MDIOC_PREAMBLE 0x00100000
161 # define MDIOC_FAULT 0x00080000
162 # define MDIOC_FAULTDETECT 0x00040000
163 # define MDIOC_INTTEST 0x00020000
164 # define MDIOC_CLKDIV(div) ((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE 0x0008
166 #define CPMAC_MDIO_LINK 0x000c
167 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
168 # define MDIO_BUSY 0x80000000
169 # define MDIO_WRITE 0x40000000
170 # define MDIO_REG(reg) (((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data) ((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL 0x00000040
175 # define PHYSEL_LINKINT 0x00000020
177 struct cpmac_desc {
178 u32 hw_next;
179 u32 hw_data;
180 u16 buflen;
181 u16 bufflags;
182 u16 datalen;
183 u16 dataflags;
184 #define CPMAC_SOP 0x8000
185 #define CPMAC_EOP 0x4000
186 #define CPMAC_OWN 0x2000
187 #define CPMAC_EOQ 0x1000
188 struct sk_buff *skb;
189 struct cpmac_desc *next;
190 struct cpmac_desc *prev;
191 dma_addr_t mapping;
192 dma_addr_t data_mapping;
195 struct cpmac_priv {
196 spinlock_t lock;
197 spinlock_t rx_lock;
198 struct cpmac_desc *rx_head;
199 int ring_size;
200 struct cpmac_desc *desc_ring;
201 dma_addr_t dma_ring;
202 void __iomem *regs;
203 struct mii_bus *mii_bus;
204 struct phy_device *phy;
205 char phy_name[MII_BUS_ID_SIZE + 3];
206 int oldlink, oldspeed, oldduplex;
207 u32 msg_enable;
208 struct net_device *dev;
209 struct work_struct reset_work;
210 struct platform_device *pdev;
211 struct napi_struct napi;
212 atomic_t reset_pending;
215 static irqreturn_t cpmac_irq(int, void *);
216 static void cpmac_hw_start(struct net_device *dev);
217 static void cpmac_hw_stop(struct net_device *dev);
218 static int cpmac_stop(struct net_device *dev);
219 static int cpmac_open(struct net_device *dev);
221 static void cpmac_dump_regs(struct net_device *dev)
223 int i;
224 struct cpmac_priv *priv = netdev_priv(dev);
225 for (i = 0; i < CPMAC_REG_END; i += 4) {
226 if (i % 16 == 0) {
227 if (i)
228 printk("\n");
229 printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
230 priv->regs + i);
232 printk(" %08x", cpmac_read(priv->regs, i));
234 printk("\n");
237 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
239 int i;
240 printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
241 for (i = 0; i < sizeof(*desc) / 4; i++)
242 printk(" %08x", ((u32 *)desc)[i]);
243 printk("\n");
246 static void cpmac_dump_all_desc(struct net_device *dev)
248 struct cpmac_priv *priv = netdev_priv(dev);
249 struct cpmac_desc *dump = priv->rx_head;
250 do {
251 cpmac_dump_desc(dev, dump);
252 dump = dump->next;
253 } while (dump != priv->rx_head);
256 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
258 int i;
259 printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
260 for (i = 0; i < skb->len; i++) {
261 if (i % 16 == 0) {
262 if (i)
263 printk("\n");
264 printk(KERN_DEBUG "%s: data[%p]:", dev->name,
265 skb->data + i);
267 printk(" %02x", ((u8 *)skb->data)[i]);
269 printk("\n");
272 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
274 u32 val;
276 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
277 cpu_relax();
278 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
279 MDIO_PHY(phy_id));
280 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
281 cpu_relax();
282 return MDIO_DATA(val);
285 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
286 int reg, u16 val)
288 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
289 cpu_relax();
290 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
291 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
292 return 0;
295 static int cpmac_mdio_reset(struct mii_bus *bus)
297 ar7_device_reset(AR7_RESET_BIT_MDIO);
298 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
299 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
300 return 0;
303 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
305 static struct mii_bus *cpmac_mii;
307 static int cpmac_config(struct net_device *dev, struct ifmap *map)
309 if (dev->flags & IFF_UP)
310 return -EBUSY;
312 /* Don't allow changing the I/O address */
313 if (map->base_addr != dev->base_addr)
314 return -EOPNOTSUPP;
316 /* ignore other fields */
317 return 0;
320 static void cpmac_set_multicast_list(struct net_device *dev)
322 struct dev_mc_list *iter;
323 int i;
324 u8 tmp;
325 u32 mbp, bit, hash[2] = { 0, };
326 struct cpmac_priv *priv = netdev_priv(dev);
328 mbp = cpmac_read(priv->regs, CPMAC_MBP);
329 if (dev->flags & IFF_PROMISC) {
330 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
331 MBP_RXPROMISC);
332 } else {
333 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
334 if (dev->flags & IFF_ALLMULTI) {
335 /* enable all multicast mode */
336 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
337 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
338 } else {
340 * cpmac uses some strange mac address hashing
341 * (not crc32)
343 for (i = 0, iter = dev->mc_list; i < dev->mc_count;
344 i++, iter = iter->next) {
345 bit = 0;
346 tmp = iter->dmi_addr[0];
347 bit ^= (tmp >> 2) ^ (tmp << 4);
348 tmp = iter->dmi_addr[1];
349 bit ^= (tmp >> 4) ^ (tmp << 2);
350 tmp = iter->dmi_addr[2];
351 bit ^= (tmp >> 6) ^ tmp;
352 tmp = iter->dmi_addr[3];
353 bit ^= (tmp >> 2) ^ (tmp << 4);
354 tmp = iter->dmi_addr[4];
355 bit ^= (tmp >> 4) ^ (tmp << 2);
356 tmp = iter->dmi_addr[5];
357 bit ^= (tmp >> 6) ^ tmp;
358 bit &= 0x3f;
359 hash[bit / 32] |= 1 << (bit % 32);
362 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
363 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
368 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
369 struct cpmac_desc *desc)
371 struct sk_buff *skb, *result = NULL;
373 if (unlikely(netif_msg_hw(priv)))
374 cpmac_dump_desc(priv->dev, desc);
375 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
376 if (unlikely(!desc->datalen)) {
377 if (netif_msg_rx_err(priv) && net_ratelimit())
378 printk(KERN_WARNING "%s: rx: spurious interrupt\n",
379 priv->dev->name);
380 return NULL;
383 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
384 if (likely(skb)) {
385 skb_put(desc->skb, desc->datalen);
386 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
387 desc->skb->ip_summed = CHECKSUM_NONE;
388 priv->dev->stats.rx_packets++;
389 priv->dev->stats.rx_bytes += desc->datalen;
390 result = desc->skb;
391 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
392 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
393 desc->skb = skb;
394 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
395 CPMAC_SKB_SIZE,
396 DMA_FROM_DEVICE);
397 desc->hw_data = (u32)desc->data_mapping;
398 if (unlikely(netif_msg_pktdata(priv))) {
399 printk(KERN_DEBUG "%s: received packet:\n",
400 priv->dev->name);
401 cpmac_dump_skb(priv->dev, result);
403 } else {
404 if (netif_msg_rx_err(priv) && net_ratelimit())
405 printk(KERN_WARNING
406 "%s: low on skbs, dropping packet\n",
407 priv->dev->name);
408 priv->dev->stats.rx_dropped++;
411 desc->buflen = CPMAC_SKB_SIZE;
412 desc->dataflags = CPMAC_OWN;
414 return result;
417 static int cpmac_poll(struct napi_struct *napi, int budget)
419 struct sk_buff *skb;
420 struct cpmac_desc *desc, *restart;
421 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
422 int received = 0, processed = 0;
424 spin_lock(&priv->rx_lock);
425 if (unlikely(!priv->rx_head)) {
426 if (netif_msg_rx_err(priv) && net_ratelimit())
427 printk(KERN_WARNING "%s: rx: polling, but no queue\n",
428 priv->dev->name);
429 spin_unlock(&priv->rx_lock);
430 napi_complete(napi);
431 return 0;
434 desc = priv->rx_head;
435 restart = NULL;
436 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
437 processed++;
439 if ((desc->dataflags & CPMAC_EOQ) != 0) {
440 /* The last update to eoq->hw_next didn't happen
441 * soon enough, and the receiver stopped here.
442 *Remember this descriptor so we can restart
443 * the receiver after freeing some space.
445 if (unlikely(restart)) {
446 if (netif_msg_rx_err(priv))
447 printk(KERN_ERR "%s: poll found a"
448 " duplicate EOQ: %p and %p\n",
449 priv->dev->name, restart, desc);
450 goto fatal_error;
453 restart = desc->next;
456 skb = cpmac_rx_one(priv, desc);
457 if (likely(skb)) {
458 netif_receive_skb(skb);
459 received++;
461 desc = desc->next;
464 if (desc != priv->rx_head) {
465 /* We freed some buffers, but not the whole ring,
466 * add what we did free to the rx list */
467 desc->prev->hw_next = (u32)0;
468 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
471 /* Optimization: If we did not actually process an EOQ (perhaps because
472 * of quota limits), check to see if the tail of the queue has EOQ set.
473 * We should immediately restart in that case so that the receiver can
474 * restart and run in parallel with more packet processing.
475 * This lets us handle slightly larger bursts before running
476 * out of ring space (assuming dev->weight < ring_size) */
478 if (!restart &&
479 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
480 == CPMAC_EOQ &&
481 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
482 /* reset EOQ so the poll loop (above) doesn't try to
483 * restart this when it eventually gets to this descriptor.
485 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
486 restart = priv->rx_head;
489 if (restart) {
490 priv->dev->stats.rx_errors++;
491 priv->dev->stats.rx_fifo_errors++;
492 if (netif_msg_rx_err(priv) && net_ratelimit())
493 printk(KERN_WARNING "%s: rx dma ring overrun\n",
494 priv->dev->name);
496 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
497 if (netif_msg_drv(priv))
498 printk(KERN_ERR "%s: cpmac_poll is trying to "
499 "restart rx from a descriptor that's "
500 "not free: %p\n",
501 priv->dev->name, restart);
502 goto fatal_error;
505 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
508 priv->rx_head = desc;
509 spin_unlock(&priv->rx_lock);
510 if (unlikely(netif_msg_rx_status(priv)))
511 printk(KERN_DEBUG "%s: poll processed %d packets\n",
512 priv->dev->name, received);
513 if (processed == 0) {
514 /* we ran out of packets to read,
515 * revert to interrupt-driven mode */
516 napi_complete(napi);
517 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
518 return 0;
521 return 1;
523 fatal_error:
524 /* Something went horribly wrong.
525 * Reset hardware to try to recover rather than wedging. */
527 if (netif_msg_drv(priv)) {
528 printk(KERN_ERR "%s: cpmac_poll is confused. "
529 "Resetting hardware\n", priv->dev->name);
530 cpmac_dump_all_desc(priv->dev);
531 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
532 priv->dev->name,
533 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
534 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
537 spin_unlock(&priv->rx_lock);
538 napi_complete(napi);
539 netif_tx_stop_all_queues(priv->dev);
540 napi_disable(&priv->napi);
542 atomic_inc(&priv->reset_pending);
543 cpmac_hw_stop(priv->dev);
544 if (!schedule_work(&priv->reset_work))
545 atomic_dec(&priv->reset_pending);
546 return 0;
550 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
552 int queue, len;
553 struct cpmac_desc *desc;
554 struct cpmac_priv *priv = netdev_priv(dev);
556 if (unlikely(atomic_read(&priv->reset_pending)))
557 return NETDEV_TX_BUSY;
559 if (unlikely(skb_padto(skb, ETH_ZLEN)))
560 return NETDEV_TX_OK;
562 len = max(skb->len, ETH_ZLEN);
563 queue = skb_get_queue_mapping(skb);
564 netif_stop_subqueue(dev, queue);
566 desc = &priv->desc_ring[queue];
567 if (unlikely(desc->dataflags & CPMAC_OWN)) {
568 if (netif_msg_tx_err(priv) && net_ratelimit())
569 printk(KERN_WARNING "%s: tx dma ring full\n",
570 dev->name);
571 return NETDEV_TX_BUSY;
574 spin_lock(&priv->lock);
575 dev->trans_start = jiffies;
576 spin_unlock(&priv->lock);
577 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
578 desc->skb = skb;
579 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
580 DMA_TO_DEVICE);
581 desc->hw_data = (u32)desc->data_mapping;
582 desc->datalen = len;
583 desc->buflen = len;
584 if (unlikely(netif_msg_tx_queued(priv)))
585 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
586 skb->len);
587 if (unlikely(netif_msg_hw(priv)))
588 cpmac_dump_desc(dev, desc);
589 if (unlikely(netif_msg_pktdata(priv)))
590 cpmac_dump_skb(dev, skb);
591 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
593 return NETDEV_TX_OK;
596 static void cpmac_end_xmit(struct net_device *dev, int queue)
598 struct cpmac_desc *desc;
599 struct cpmac_priv *priv = netdev_priv(dev);
601 desc = &priv->desc_ring[queue];
602 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
603 if (likely(desc->skb)) {
604 spin_lock(&priv->lock);
605 dev->stats.tx_packets++;
606 dev->stats.tx_bytes += desc->skb->len;
607 spin_unlock(&priv->lock);
608 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
609 DMA_TO_DEVICE);
611 if (unlikely(netif_msg_tx_done(priv)))
612 printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
613 desc->skb, desc->skb->len);
615 dev_kfree_skb_irq(desc->skb);
616 desc->skb = NULL;
617 if (__netif_subqueue_stopped(dev, queue))
618 netif_wake_subqueue(dev, queue);
619 } else {
620 if (netif_msg_tx_err(priv) && net_ratelimit())
621 printk(KERN_WARNING
622 "%s: end_xmit: spurious interrupt\n", dev->name);
623 if (__netif_subqueue_stopped(dev, queue))
624 netif_wake_subqueue(dev, queue);
628 static void cpmac_hw_stop(struct net_device *dev)
630 int i;
631 struct cpmac_priv *priv = netdev_priv(dev);
632 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
634 ar7_device_reset(pdata->reset_bit);
635 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
636 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
637 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
638 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
639 for (i = 0; i < 8; i++) {
640 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
641 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
643 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
644 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
645 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
646 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
647 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
648 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
651 static void cpmac_hw_start(struct net_device *dev)
653 int i;
654 struct cpmac_priv *priv = netdev_priv(dev);
655 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
657 ar7_device_reset(pdata->reset_bit);
658 for (i = 0; i < 8; i++) {
659 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
660 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
662 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
664 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
665 MBP_RXMCAST);
666 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
667 for (i = 0; i < 8; i++)
668 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
669 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
670 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
671 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
672 (dev->dev_addr[3] << 24));
673 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
674 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
675 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
676 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
677 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
678 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
679 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
680 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
681 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
683 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
684 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
685 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
686 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
687 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
688 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
689 MAC_FDX);
692 static void cpmac_clear_rx(struct net_device *dev)
694 struct cpmac_priv *priv = netdev_priv(dev);
695 struct cpmac_desc *desc;
696 int i;
697 if (unlikely(!priv->rx_head))
698 return;
699 desc = priv->rx_head;
700 for (i = 0; i < priv->ring_size; i++) {
701 if ((desc->dataflags & CPMAC_OWN) == 0) {
702 if (netif_msg_rx_err(priv) && net_ratelimit())
703 printk(KERN_WARNING "%s: packet dropped\n",
704 dev->name);
705 if (unlikely(netif_msg_hw(priv)))
706 cpmac_dump_desc(dev, desc);
707 desc->dataflags = CPMAC_OWN;
708 dev->stats.rx_dropped++;
710 desc->hw_next = desc->next->mapping;
711 desc = desc->next;
713 priv->rx_head->prev->hw_next = 0;
716 static void cpmac_clear_tx(struct net_device *dev)
718 struct cpmac_priv *priv = netdev_priv(dev);
719 int i;
720 if (unlikely(!priv->desc_ring))
721 return;
722 for (i = 0; i < CPMAC_QUEUES; i++) {
723 priv->desc_ring[i].dataflags = 0;
724 if (priv->desc_ring[i].skb) {
725 dev_kfree_skb_any(priv->desc_ring[i].skb);
726 priv->desc_ring[i].skb = NULL;
731 static void cpmac_hw_error(struct work_struct *work)
733 struct cpmac_priv *priv =
734 container_of(work, struct cpmac_priv, reset_work);
736 spin_lock(&priv->rx_lock);
737 cpmac_clear_rx(priv->dev);
738 spin_unlock(&priv->rx_lock);
739 cpmac_clear_tx(priv->dev);
740 cpmac_hw_start(priv->dev);
741 barrier();
742 atomic_dec(&priv->reset_pending);
744 netif_tx_wake_all_queues(priv->dev);
745 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
748 static void cpmac_check_status(struct net_device *dev)
750 struct cpmac_priv *priv = netdev_priv(dev);
752 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
753 int rx_channel = (macstatus >> 8) & 7;
754 int rx_code = (macstatus >> 12) & 15;
755 int tx_channel = (macstatus >> 16) & 7;
756 int tx_code = (macstatus >> 20) & 15;
758 if (rx_code || tx_code) {
759 if (netif_msg_drv(priv) && net_ratelimit()) {
760 /* Can't find any documentation on what these
761 *error codes actually are. So just log them and hope..
763 if (rx_code)
764 printk(KERN_WARNING "%s: host error %d on rx "
765 "channel %d (macstatus %08x), resetting\n",
766 dev->name, rx_code, rx_channel, macstatus);
767 if (tx_code)
768 printk(KERN_WARNING "%s: host error %d on tx "
769 "channel %d (macstatus %08x), resetting\n",
770 dev->name, tx_code, tx_channel, macstatus);
773 netif_tx_stop_all_queues(dev);
774 cpmac_hw_stop(dev);
775 if (schedule_work(&priv->reset_work))
776 atomic_inc(&priv->reset_pending);
777 if (unlikely(netif_msg_hw(priv)))
778 cpmac_dump_regs(dev);
780 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
783 static irqreturn_t cpmac_irq(int irq, void *dev_id)
785 struct net_device *dev = dev_id;
786 struct cpmac_priv *priv;
787 int queue;
788 u32 status;
790 priv = netdev_priv(dev);
792 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
794 if (unlikely(netif_msg_intr(priv)))
795 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
796 status);
798 if (status & MAC_INT_TX)
799 cpmac_end_xmit(dev, (status & 7));
801 if (status & MAC_INT_RX) {
802 queue = (status >> 8) & 7;
803 if (napi_schedule_prep(&priv->napi)) {
804 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
805 __napi_schedule(&priv->napi);
809 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
811 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
812 cpmac_check_status(dev);
814 return IRQ_HANDLED;
817 static void cpmac_tx_timeout(struct net_device *dev)
819 struct cpmac_priv *priv = netdev_priv(dev);
821 spin_lock(&priv->lock);
822 dev->stats.tx_errors++;
823 spin_unlock(&priv->lock);
824 if (netif_msg_tx_err(priv) && net_ratelimit())
825 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
827 atomic_inc(&priv->reset_pending);
828 barrier();
829 cpmac_clear_tx(dev);
830 barrier();
831 atomic_dec(&priv->reset_pending);
833 netif_tx_wake_all_queues(priv->dev);
836 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
838 struct cpmac_priv *priv = netdev_priv(dev);
839 if (!(netif_running(dev)))
840 return -EINVAL;
841 if (!priv->phy)
842 return -EINVAL;
843 if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
844 (cmd == SIOCSMIIREG))
845 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
847 return -EOPNOTSUPP;
850 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
852 struct cpmac_priv *priv = netdev_priv(dev);
854 if (priv->phy)
855 return phy_ethtool_gset(priv->phy, cmd);
857 return -EINVAL;
860 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
862 struct cpmac_priv *priv = netdev_priv(dev);
864 if (!capable(CAP_NET_ADMIN))
865 return -EPERM;
867 if (priv->phy)
868 return phy_ethtool_sset(priv->phy, cmd);
870 return -EINVAL;
873 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
875 struct cpmac_priv *priv = netdev_priv(dev);
877 ring->rx_max_pending = 1024;
878 ring->rx_mini_max_pending = 1;
879 ring->rx_jumbo_max_pending = 1;
880 ring->tx_max_pending = 1;
882 ring->rx_pending = priv->ring_size;
883 ring->rx_mini_pending = 1;
884 ring->rx_jumbo_pending = 1;
885 ring->tx_pending = 1;
888 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
890 struct cpmac_priv *priv = netdev_priv(dev);
892 if (netif_running(dev))
893 return -EBUSY;
894 priv->ring_size = ring->rx_pending;
895 return 0;
898 static void cpmac_get_drvinfo(struct net_device *dev,
899 struct ethtool_drvinfo *info)
901 strcpy(info->driver, "cpmac");
902 strcpy(info->version, CPMAC_VERSION);
903 info->fw_version[0] = '\0';
904 sprintf(info->bus_info, "%s", "cpmac");
905 info->regdump_len = 0;
908 static const struct ethtool_ops cpmac_ethtool_ops = {
909 .get_settings = cpmac_get_settings,
910 .set_settings = cpmac_set_settings,
911 .get_drvinfo = cpmac_get_drvinfo,
912 .get_link = ethtool_op_get_link,
913 .get_ringparam = cpmac_get_ringparam,
914 .set_ringparam = cpmac_set_ringparam,
917 static void cpmac_adjust_link(struct net_device *dev)
919 struct cpmac_priv *priv = netdev_priv(dev);
920 int new_state = 0;
922 spin_lock(&priv->lock);
923 if (priv->phy->link) {
924 netif_tx_start_all_queues(dev);
925 if (priv->phy->duplex != priv->oldduplex) {
926 new_state = 1;
927 priv->oldduplex = priv->phy->duplex;
930 if (priv->phy->speed != priv->oldspeed) {
931 new_state = 1;
932 priv->oldspeed = priv->phy->speed;
935 if (!priv->oldlink) {
936 new_state = 1;
937 priv->oldlink = 1;
939 } else if (priv->oldlink) {
940 new_state = 1;
941 priv->oldlink = 0;
942 priv->oldspeed = 0;
943 priv->oldduplex = -1;
946 if (new_state && netif_msg_link(priv) && net_ratelimit())
947 phy_print_status(priv->phy);
949 spin_unlock(&priv->lock);
952 static int cpmac_open(struct net_device *dev)
954 int i, size, res;
955 struct cpmac_priv *priv = netdev_priv(dev);
956 struct resource *mem;
957 struct cpmac_desc *desc;
958 struct sk_buff *skb;
960 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
961 if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
962 if (netif_msg_drv(priv))
963 printk(KERN_ERR "%s: failed to request registers\n",
964 dev->name);
965 res = -ENXIO;
966 goto fail_reserve;
969 priv->regs = ioremap(mem->start, mem->end - mem->start);
970 if (!priv->regs) {
971 if (netif_msg_drv(priv))
972 printk(KERN_ERR "%s: failed to remap registers\n",
973 dev->name);
974 res = -ENXIO;
975 goto fail_remap;
978 size = priv->ring_size + CPMAC_QUEUES;
979 priv->desc_ring = dma_alloc_coherent(&dev->dev,
980 sizeof(struct cpmac_desc) * size,
981 &priv->dma_ring,
982 GFP_KERNEL);
983 if (!priv->desc_ring) {
984 res = -ENOMEM;
985 goto fail_alloc;
988 for (i = 0; i < size; i++)
989 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
991 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
992 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
993 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
994 if (unlikely(!skb)) {
995 res = -ENOMEM;
996 goto fail_desc;
998 desc->skb = skb;
999 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1000 CPMAC_SKB_SIZE,
1001 DMA_FROM_DEVICE);
1002 desc->hw_data = (u32)desc->data_mapping;
1003 desc->buflen = CPMAC_SKB_SIZE;
1004 desc->dataflags = CPMAC_OWN;
1005 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1006 desc->next->prev = desc;
1007 desc->hw_next = (u32)desc->next->mapping;
1010 priv->rx_head->prev->hw_next = (u32)0;
1012 if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1013 dev->name, dev))) {
1014 if (netif_msg_drv(priv))
1015 printk(KERN_ERR "%s: failed to obtain irq\n",
1016 dev->name);
1017 goto fail_irq;
1020 atomic_set(&priv->reset_pending, 0);
1021 INIT_WORK(&priv->reset_work, cpmac_hw_error);
1022 cpmac_hw_start(dev);
1024 napi_enable(&priv->napi);
1025 priv->phy->state = PHY_CHANGELINK;
1026 phy_start(priv->phy);
1028 return 0;
1030 fail_irq:
1031 fail_desc:
1032 for (i = 0; i < priv->ring_size; i++) {
1033 if (priv->rx_head[i].skb) {
1034 dma_unmap_single(&dev->dev,
1035 priv->rx_head[i].data_mapping,
1036 CPMAC_SKB_SIZE,
1037 DMA_FROM_DEVICE);
1038 kfree_skb(priv->rx_head[i].skb);
1041 fail_alloc:
1042 kfree(priv->desc_ring);
1043 iounmap(priv->regs);
1045 fail_remap:
1046 release_mem_region(mem->start, mem->end - mem->start);
1048 fail_reserve:
1049 return res;
1052 static int cpmac_stop(struct net_device *dev)
1054 int i;
1055 struct cpmac_priv *priv = netdev_priv(dev);
1056 struct resource *mem;
1058 netif_tx_stop_all_queues(dev);
1060 cancel_work_sync(&priv->reset_work);
1061 napi_disable(&priv->napi);
1062 phy_stop(priv->phy);
1064 cpmac_hw_stop(dev);
1066 for (i = 0; i < 8; i++)
1067 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1068 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1069 cpmac_write(priv->regs, CPMAC_MBP, 0);
1071 free_irq(dev->irq, dev);
1072 iounmap(priv->regs);
1073 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1074 release_mem_region(mem->start, mem->end - mem->start);
1075 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1076 for (i = 0; i < priv->ring_size; i++) {
1077 if (priv->rx_head[i].skb) {
1078 dma_unmap_single(&dev->dev,
1079 priv->rx_head[i].data_mapping,
1080 CPMAC_SKB_SIZE,
1081 DMA_FROM_DEVICE);
1082 kfree_skb(priv->rx_head[i].skb);
1086 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1087 (CPMAC_QUEUES + priv->ring_size),
1088 priv->desc_ring, priv->dma_ring);
1089 return 0;
1092 static const struct net_device_ops cpmac_netdev_ops = {
1093 .ndo_open = cpmac_open,
1094 .ndo_stop = cpmac_stop,
1095 .ndo_start_xmit = cpmac_start_xmit,
1096 .ndo_tx_timeout = cpmac_tx_timeout,
1097 .ndo_set_multicast_list = cpmac_set_multicast_list,
1098 .ndo_do_ioctl = cpmac_ioctl,
1099 .ndo_set_config = cpmac_config,
1100 .ndo_change_mtu = eth_change_mtu,
1101 .ndo_validate_addr = eth_validate_addr,
1102 .ndo_set_mac_address = eth_mac_addr,
1105 static int external_switch;
1107 static int __devinit cpmac_probe(struct platform_device *pdev)
1109 int rc, phy_id;
1110 char mdio_bus_id[MII_BUS_ID_SIZE];
1111 struct resource *mem;
1112 struct cpmac_priv *priv;
1113 struct net_device *dev;
1114 struct plat_cpmac_data *pdata;
1116 pdata = pdev->dev.platform_data;
1118 if (external_switch || dumb_switch) {
1119 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1120 phy_id = pdev->id;
1121 } else {
1122 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1123 if (!(pdata->phy_mask & (1 << phy_id)))
1124 continue;
1125 if (!cpmac_mii->phy_map[phy_id])
1126 continue;
1127 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1128 break;
1132 if (phy_id == PHY_MAX_ADDR) {
1133 dev_err(&pdev->dev, "no PHY present\n");
1134 return -ENODEV;
1137 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1139 if (!dev) {
1140 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1141 return -ENOMEM;
1144 platform_set_drvdata(pdev, dev);
1145 priv = netdev_priv(dev);
1147 priv->pdev = pdev;
1148 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1149 if (!mem) {
1150 rc = -ENODEV;
1151 goto fail;
1154 dev->irq = platform_get_irq_byname(pdev, "irq");
1156 dev->netdev_ops = &cpmac_netdev_ops;
1157 dev->ethtool_ops = &cpmac_ethtool_ops;
1159 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1161 spin_lock_init(&priv->lock);
1162 spin_lock_init(&priv->rx_lock);
1163 priv->dev = dev;
1164 priv->ring_size = 64;
1165 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1166 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1168 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
1170 priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0,
1171 PHY_INTERFACE_MODE_MII);
1173 if (IS_ERR(priv->phy)) {
1174 if (netif_msg_drv(priv))
1175 printk(KERN_ERR "%s: Could not attach to PHY\n",
1176 dev->name);
1177 return PTR_ERR(priv->phy);
1180 if ((rc = register_netdev(dev))) {
1181 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1182 dev->name);
1183 goto fail;
1186 if (netif_msg_probe(priv)) {
1187 printk(KERN_INFO
1188 "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1189 "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1190 priv->phy_name, dev->dev_addr);
1192 return 0;
1194 fail:
1195 free_netdev(dev);
1196 return rc;
1199 static int __devexit cpmac_remove(struct platform_device *pdev)
1201 struct net_device *dev = platform_get_drvdata(pdev);
1202 unregister_netdev(dev);
1203 free_netdev(dev);
1204 return 0;
1207 static struct platform_driver cpmac_driver = {
1208 .driver.name = "cpmac",
1209 .driver.owner = THIS_MODULE,
1210 .probe = cpmac_probe,
1211 .remove = __devexit_p(cpmac_remove),
1214 int __devinit cpmac_init(void)
1216 u32 mask;
1217 int i, res;
1219 cpmac_mii = mdiobus_alloc();
1220 if (cpmac_mii == NULL)
1221 return -ENOMEM;
1223 cpmac_mii->name = "cpmac-mii";
1224 cpmac_mii->read = cpmac_mdio_read;
1225 cpmac_mii->write = cpmac_mdio_write;
1226 cpmac_mii->reset = cpmac_mdio_reset;
1227 cpmac_mii->irq = mii_irqs;
1229 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1231 if (!cpmac_mii->priv) {
1232 printk(KERN_ERR "Can't ioremap mdio registers\n");
1233 res = -ENXIO;
1234 goto fail_alloc;
1237 #warning FIXME: unhardcode gpio&reset bits
1238 ar7_gpio_disable(26);
1239 ar7_gpio_disable(27);
1240 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1241 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1242 ar7_device_reset(AR7_RESET_BIT_EPHY);
1244 cpmac_mii->reset(cpmac_mii);
1246 for (i = 0; i < 300; i++)
1247 if ((mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE)))
1248 break;
1249 else
1250 msleep(10);
1252 mask &= 0x7fffffff;
1253 if (mask & (mask - 1)) {
1254 external_switch = 1;
1255 mask = 0;
1258 cpmac_mii->phy_mask = ~(mask | 0x80000000);
1259 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1261 res = mdiobus_register(cpmac_mii);
1262 if (res)
1263 goto fail_mii;
1265 res = platform_driver_register(&cpmac_driver);
1266 if (res)
1267 goto fail_cpmac;
1269 return 0;
1271 fail_cpmac:
1272 mdiobus_unregister(cpmac_mii);
1274 fail_mii:
1275 iounmap(cpmac_mii->priv);
1277 fail_alloc:
1278 mdiobus_free(cpmac_mii);
1280 return res;
1283 void __devexit cpmac_exit(void)
1285 platform_driver_unregister(&cpmac_driver);
1286 mdiobus_unregister(cpmac_mii);
1287 mdiobus_free(cpmac_mii);
1288 iounmap(cpmac_mii->priv);
1291 module_init(cpmac_init);
1292 module_exit(cpmac_exit);